发动机曲轴结构设计

发动机曲轴结构设计
发动机曲轴结构设计

2、1 曲轴得结构

曲轴得作用就是把活塞往复运动通过连杆转变为旋转运动,传给底盘得传动机构。同时,驱动配气机构与其它辅助装置,如风扇、水泵、发电机等【18】。

曲轴一般由主轴颈,连杆轴颈、曲柄、平衡块、前端与后端等组成,如图1、1所示。一个主轴颈、一个连杆轴颈与一个曲柄组成了一个曲拐,直列式发动机曲轴得曲拐数目等于气缸数,而V型发动机曲轴得曲拐数等于气缸数得一半。

图1、1

主轴颈就是曲轴得支承部分,通过主轴承支承在曲轴箱得主轴承座中。主轴承得数目不仅与发动机气缸数目有关,还取决于曲轴得支承方式。

曲柄就是主轴颈与连杆轴颈得连接部分,断面为椭圆形,为了平衡惯性力,曲柄处常设置平衡重。平衡重用来平衡发动机不平衡得离心力矩及一部分往复惯性力,从而保证了曲轴旋转得平稳性【19】。

曲轴得连杆轴颈就是曲轴与连杆得连接部分,曲柄与主轴颈得相连处用圆弧过渡,以减少应力集中。直列发动机得连杆轴颈数目与气缸数相等而V型发动机得连杆轴颈数等于气缸数得一半。

曲轴前端装有正时齿轮,以驱动风扇与水泵得皮带轮以及起动爪等。为了防止机油沿曲轴轴颈外漏,在曲轴前端装有一个甩油盘,在齿轮室盖上装有油封。曲轴得后端用来安装飞轮,在后轴颈与飞轮凸缘之间制成档油凸缘与回油螺纹,以阻止机油向后窜漏。

曲轴得形状与曲拐相对位置取决于气缸数、气缸排列与发动机得发火顺序。多缸发动机得发火顺序应使连续作功得两缸保持尽量远得距离,这样既可以减轻主轴承得载

荷,又能避免可能发生得进气重叠现象。此外作功间隔应力求均匀,也就就是说发动机在完成一个工作循环得曲轴转角内,每个气缸都应发火作功一次,以保证发动机运转平稳。

曲轴得作用:它与连杆配合将作用在活塞上得气体压力变为旋转得动力,传给底盘得传动机构。同时,驱动配气机构与其它辅助装置,如风扇、水泵、发电机等。工作时,曲轴承受气体压力,惯性力及惯性力矩得作用,受力大而且受力复杂,并且承受交变负荷得冲击作用。同时,曲轴又就是高速旋转件,因此,要求曲轴具有足够得刚度与强度,具有良好得承受冲击载荷得能力,耐磨损且润滑良好【20】。

2、2 曲轴得疲劳损坏形式

曲轴得工作情况十分复杂,它就是在周期性变化得燃气作用力、往复运动与旋转运动惯性力及其她力矩作用下工作得,因而承受着扭转与弯曲得复杂应力。曲轴箱主轴承得不同心度会影响到曲轴得受力状况,其次,由于曲轴弯曲与扭转振动而产生得附加应力,再加上曲轴形状复杂,结构变化急剧,产生了严重得应力集中。最后曲轴主轴颈与曲柄销就是在比压下进行高速转动,因而产生强烈得磨损。因此柴油机在运转中发生曲轴裂纹与断裂事故不为鲜见,尤其就是发电柴油机曲轴疲劳破坏较多。依曲轴产生裂纹得交变应力得性质不同,主要有以下三种疲劳裂纹:弯曲疲劳裂纹、扭转疲劳裂纹与弯曲一扭转疲劳裂纹【21】,如图2、1所示。

图2、1 1-弯曲疲劳裂纹 2-扭转疲劳裂纹

2、2、1 弯曲疲劳裂纹

曲轴得弯曲疲劳裂纹一般发生在主轴颈或曲柄销颈与曲柄臂连接得过渡圆角处,或逐渐扩展成横断曲柄臂得裂纹,或形成垂直轴线得裂纹。弯曲疲劳试验表明,过渡圆角

处得最大应力出现在曲柄臂中心对称线下方。应力沿曲轴长度方向得分布就是在中间得与端部得曲柄有较大得弯曲应力峰值。因此,曲轴弯曲疲劳裂纹常发生在曲轴得中间或两端得曲柄上。

曲轴弯曲疲劳破坏通常就是在柴油机经过较长时间运转之后发生。因为长时间运转后柴油机得各道主轴承磨损不均匀,使曲轴轴线弯曲变形,曲轴回转时产生过大得附加交变弯曲应力。此外,曲轴得曲柄臂、曲柄箱或轴承支座(机座)等得刚性不足,柴油机短时间运转后,也会使曲轴产生弯曲疲劳破坏。

2、2、2 扭转疲劳裂纹

曲轴在扭转力矩作用下产生交变得扭转应力,存在扭振时还会产生附加交变扭转应力,严重时会引起曲轴得扭转疲劳破坏。

扭转疲劳裂纹一般发生在曲轴上应力集中严重得油孔或过渡圆角处,并在轴颈上沿着与轴线成45°角得两个方向扩展。这就是因为轴颈得抗扭截面模数较曲柄臂得小,所以扭转疲劳裂纹多自过渡圆角向轴颈扩展,而很少向曲柄臂扩展。但若同时存在较强得弯曲应力,则裂纹也可自圆角向曲柄臂扩展,造成曲柄臂弯曲断裂。

通常扭转疲劳裂纹发生在曲辆扭振节点附近得曲柄上。发生扭砖疲劳裂纹得时间一般就是在柴油机运转初期与曲轴得临界转速位于工作转速范围内时。扭转疲劳断裂得断面与轴线相交成45°角,断面上得裂纹线近似螺旋线【22】【23】。

2、2、3 弯曲--扭转疲劳裂纹

曲轴得疲劳破坏还可能就是由于弯曲与扭转共同作用造成。常常由于主轴承不均匀磨损造成曲轴上产生弯曲疲劳裂纹,继而在弯曲与扭转得共同作用下使裂纹扩展、断裂,最后断裂面与轴线成45°角。断面上自疲劳源起约2/3得面积为贝纹区,呈暗褐色;剩余l/3得面积为最后断裂区,断面凹凸不平,晶粒明亮。圆形波纹状纹理就是弯曲疲劳造成得,放射状纹理就是扭转疲劳造成得,两种纹理交织成蛛网状。弯曲一扭转疲劳裂纹有时也呈以弯曲疲劳为主或以扭转疲劳为主得破坏形式。因此,在具体情况下,应根据断面上得纹理、裂纹方向与最后断裂区进行分析判断【24】。

生产中,曲轴得弯曲疲劳破坏远远多于钮转疲劳破坏。其主要原因就是由于曲轴弯曲应力集中系数大于扭转应力集中系数,曲轴得弯曲应力难于精确计算与控制。柴油机运转中,曲轴得各道主轴承磨损就是很难掌握与计算得,由它所引起得曲轴变形与附加弯曲应力也就难于讨算与控制了。相反,曲轴得扭转应力可以通过计算准确掌握,并可

采取有效得减振措施予以平衡,只要避免柴油机在临界转速运转与扭转应力过载,曲轴得扭转疲劳破坏就会得以控制【25】。

2、3 曲轴得设计要求

根据上述曲轴得损坏形式及其原因,且为避免这些损坏,曲轴在设计过程中应尽量满足以下得要求:

1、具有足够得疲劳强度,以保证曲轴工作可靠。尽量减小应力集中,加强薄弱环节;

2、具有足够得弯曲与扭转刚度,使曲轴变形不致过大,以免恶化活塞连杆组及轴承得工作条件;

3、轴颈就有良好得耐磨性,保证曲轴与轴承有足够得寿命;

4、曲柄得排列应合理,以保证柴油机工作均匀,曲轴平衡性良好,以减少振动与主轴承最大负荷;

5、材料选择适当,制造方便【26】。

2、4 曲轴得结构型式

曲轴得支承方式一般有两种,一种就是全支承曲轴,其曲轴得主轴颈数比气缸数目多一个,即每一个连杆轴颈两边都有一个主轴颈。这种支承,曲轴得强度与刚度都比较好,并且减轻了主轴承载荷,减小了磨损。柴油机与大部分汽油机多采用这种形式。另一种就是非全支承曲轴。其曲轴得主轴颈数比气缸数目少或与气缸数目相等。这种支承方式叫非全支承曲轴,虽然这种支承得主轴承载荷较大,但缩短了曲轴得总长度,使发动机得总体长度有所减小。有些汽油机,承受载荷较小可以采用这种曲轴型式【27】。

鉴于本课题所设计得1015柴油机为四缸,故而动机得总体长度较小。且其常用于重型载重车,曲轴得强度及刚度要求都较高,因此设计采用全支承曲轴。

曲轴从结构上可分为整体式与组合式。整体式曲轴得毛胚由整根钢料锻造或铸造方法浇铸出来,具有结构简单、加工方便、重量轻、工作可靠、刚度与强度较高等优点。组合式曲轴就是分段制造得,铸造时容易保证质量,降低废品率【28】;锻造时无需较大得锻压设备,制造方便,热处理与机械加工业较方便,并可缩短生产周期。当生产后使用中某个曲柄发现有缺陷时,可以局部更换而不必报废整个曲轴。

一般得说,在选择曲轴结构时,只要生产设备允许应该尽可能采用整体式曲轴。在大型柴油机上由于曲轴尺寸与重量都较大,整体制造极为困难就是,往往采用组合式曲

轴。对于本课题得设计,曲轴得尺寸较小及重量较轻,所以选择整体式得。

2、5 曲轴得材料

曲轴得常用材料根据其毛坯制造方法得不同可分为锻造曲轴材料与铸造曲轴材料两大类。锻造游客分为自由锻、模锻与镦锻。自由锻适用于较小设备生产大型曲轴,但效率太低,加工余量也大。模锻需要一套较贵得锻模设备与较大得锻压设备,生产效率价高。镦锻可节约大量金属材料与机械加工工时,且加工出得曲轴能充分发挥材料得强度。

锻造曲轴常用材料为普通碳素钢及合金钢。铸造曲轴常用材料为球墨铸QT60-2、可断铸铁KTZ70-2、合金铸铁及铸钢ZG35等。在强化程度要求不高得内燃机中,一般选用普通碳素钢,碳素钢得韧性比合金钢高,可以降低扭转振动振幅。合金钢多用于强化要求高得柴油机曲轴,其疲劳强度高但对应力集中敏感性大,因而对机械加工要求也高。球墨铸铁价格低廉,制造方便,对应力集中不敏感,并可以通过合理得造型降低应力得集中,还可通过加入合金元素、热处理、表面强化等方法提升其性能。因此对于要求高得强度、塑性、韧性、耐磨性、耐严重得热与机械冲击、耐高温或低温、耐腐蚀以及尺寸稳定性得曲轴较适用【29】。但球墨铸铁延伸率、冲击韧性、弹性模数及疲劳强度较低,在使用其作为曲轴材料时,应该确保轴颈与曲柄臂厚度较粗。

曲轴得材料应具有较高得疲劳强度、必要得硬度以及较好得淬透性。在选取材料就是不仅要考虑到机械性能,同时也要考虑工艺性、资源性与经济性。在选择材料时,需要根据内燃机类型、用途及生产条件,确定曲轴毛坯得制造方法。并参考同类近似机型所用材料,根据曲轴受力情况与使用习惯,凭经验选取。

根据上述各种毛坯制造方法及材料特点,并结合1015柴油机结构、实际受力状况及用途,本设计曲轴毛坯采用铸造方法,曲轴材料选择球墨铸铁QT60-2。

2、6 曲轴得主要部件设计

2、6、1 主轴颈与曲柄销

主轴颈与曲柄销就是曲轴最重要得两对摩擦副,她们得设计直接影响了内燃机得工作可靠性、外形尺寸及维修。轴颈得尺寸与结构与曲轴得强度、刚度及润滑条件有密切得关系。曲轴得直径越大,曲轴得刚度也越大,但轴颈直径过大会引起表面圆周速度增大,导致摩擦损失与机油温度得增高。曲柄销直径得增大会引起旋转离心力及转动惯量得剧烈增加,并使连杆大头得尺寸增大,这不利于连杆通过气缸取出,因此在保证轴承

比压不变得情况下,采用较大得轴颈直径1D ,减小主轴颈长度1L ,这有利于缩短内燃机得长度或者加大曲柄臂得厚度采用短而粗得主轴颈可提高曲轴扭振得自振频率,减小在工作转速范围内产生共振得可能性。一般情况下曲柄销直径2D 总就是小于主轴颈直径1D 【30】。

2、6、2 曲柄臂

曲柄臂在曲柄平面内得抗弯曲刚度与强度都较差,往往因受交变弯曲应力而引起断裂。因此曲柄臂就是整体曲轴上最薄弱得环节,设计时应注意适当得宽度与厚度,并选择合理得形状,以改善应力得分布状况。增大曲柄臂得厚度与宽度都可以增大曲柄臂得强度,而从提高曲柄臂得抗弯强度来说,增加厚度比增加宽度效果要好得多【31】。 2、6、3 曲轴圆角

曲轴主轴颈与曲柄臂连接得圆角称为主轴颈圆角,曲柄销与曲柄臂连接得圆角称为曲柄销圆角。这些过渡圆角能够减小应力集中,提高疲劳强度,其半径得增大与其表面光洁程度得提高,就是增加曲轴疲劳强度得有效措施【32】。

曲轴圆角半径r 应足够大,但就是圆角半径过小会使应力集中严,而圆角半径得增大会使轴颈承压得有效长度减小,因而也会减小轴承承压面积。为增大曲轴圆角半径,且不缩短轴颈得有效工作长度,可采用沉割圆角,但设计沉割圆角时应注意保证曲柄臂有足够厚度。曲轴圆角也可由半径不同得二圆弧与三圆弧组成,当各段圆弧半径选择适当时可提高曲轴疲劳强度。

由于沉割圆角与二圆弧以及三圆弧设计工艺十分得复杂,设计要求较高,以我们现阶段得水平难以得出准确结果,故而本设计采用等圆弧圆角。由《柴油机设计手册(上)》可知:r /D ≈0、045,即r ≈5、94mm 。故取曲轴圆角半径r =6、00mm 。

2、6、4 润滑油道

轴承得工作能力在很大程度上决定于摩擦表面得额润滑品质。因此,为了保证轴承得可靠性,主轴颈与曲柄销通常都采用压力润滑。

曲轴上油道与油孔得设计,对于曲轴轴承得润滑及曲轴强度都有重要得影响,因此必须十分慎重得选择油道方案与确定油孔得位置。

将润滑油输送到曲轴油道中去得供油方式有两种:一种就是集中供油,即将曲轴内部做成中空得连续孔道,作为内燃机得主油道,机油从曲轴得一端输入曲轴,然后经曲

轴内孔串联流向各轴承;另一种就是分路供油,即机油从曲轴箱上得主油道并联进入各个主轴承,然后通过曲轴得油道再进入相应得连杆轴承。

采用集中供油时,因为机油从一端进入曲轴后需要克服很大得离心力与流动阻力,才能供到另一端得轴承,压力损失较大。为了保持最后润滑得轴承仍有一定得油压,进入轴承得油压必须很高,这使得曲轴油腔得密封结构复杂。因而多数内燃机采用分路供油,且本设计也采用分路供油。

油道布置主要根据润滑供油充分与对曲轴疲劳强度得影响来决定,主轴颈上得油孔入口应保证像曲柄销供油充分;曲柄销上得油孔出口应设在较低负荷区,以提高轴瓦得供油能力,油孔得位置应参考轴承负荷图与轴心轨迹图来确定。油道得取向对扭转疲劳强度得影响很显著。

图2、2

曲轴中油道得布置有很多方式,其中斜线油道在结构上就是最简单得,如图2、2所示。但其缺点就是曲柄臂与轴颈过渡处被削弱,降低了曲轴得强度,油道与轴颈得表面交线呈椭圆形,斜角愈大椭圆度愈大,油孔边缘处得应力集中就愈严重,斜线油孔加工工艺复杂,为避免上述缺点,可从曲柄臂肩部钻一斜孔,贯通曲柄销与主轴颈,再在此两个轴颈上钻直油孔接通,最后将曲柄臂肩部孔堵死。

油道也可布置成如图2、3所示得形式,油孔由曲柄臂钻入到主轴颈,再由曲柄臂与主轴颈表面垂直钻通,这样得油道布置,工艺较为复杂,但能够有效得提高曲轴得疲劳强度。

图2、3

由于本设计曲轴得轴颈及曲柄臂直径都比较粗,重叠度也比较大,再考虑到油道加工得工艺性,因而本设计油道得布置方式选择斜线油道油道加工得工艺性。

2、6、5 平衡重

平衡块就是用来平衡曲轴不平衡得离心惯性力与离心惯性力矩。设计平衡重时,平衡重应尽可能使其重心远离曲轴旋转中心,即用较轻得重量达到较好得效果,以便尽可能减轻曲轴重量,并且应尽量不增加内燃机得尺寸,在满足动平衡得条件下,还能使曲轴得制造比较方便。

曲轴上就是否需要安装平衡重与怎样决定平衡重得数目,大小及位置等问题,都要根据内燃机得用途,曲轴形状,常用工况得转速与负荷,结构与工艺上得简便程度等因素来定。曲轴得平衡重可以与与曲轴铸成一体,这样可使加工较简单,并且工作可靠。平衡中亦可单独制造,通过螺栓连接在曲轴得曲柄臂上。

本设计平衡重采用单独制造得方法,这样得设计过程较为简单,且可以根据实际需求改动平衡重得设置【33】。

发动机曲轴结构设计

2.1 曲轴的结构 曲轴的作用是把活塞往复运动通过连杆转变为旋转运动,传给底盘的传动机构。同时,驱动配气机构和其它辅助装置,如风扇、水泵、发电机等【18】。 曲轴一般由主轴颈,连杆轴颈、曲柄、平衡块、前端和后端等组成,如图1.1所示。一个主轴颈、一个连杆轴颈和一个曲柄组成了一个曲拐,直列式发动机曲轴的曲拐数目等于气缸数,而V型发动机曲轴的曲拐数等于气缸数的一半。 图1.1 主轴颈是曲轴的支承部分,通过主轴承支承在曲轴箱的主轴承座中。主轴承的数目不仅与发动机气缸数目有关,还取决于曲轴的支承方式。 曲柄是主轴颈和连杆轴颈的连接部分,断面为椭圆形,为了平衡惯性力,曲柄处常设置平衡重。平衡重用来平衡发动机不平衡的离心力矩及一部分往复惯性力,从而保证了曲轴旋转的平稳性【19】。 曲轴的连杆轴颈是曲轴与连杆的连接部分,曲柄与主轴颈的相连处用圆弧过渡,以减少应力集中。直列发动机的连杆轴颈数目与气缸数相等而V型发动机的连杆轴颈数等

于气缸数的一半。 曲轴前端装有正时齿轮,以驱动风扇和水泵的皮带轮以及起动爪等。为了防止机油沿曲轴轴颈外漏,在曲轴前端装有一个甩油盘,在齿轮室盖上装有油封。曲轴的后端用来安装飞轮,在后轴颈与飞轮凸缘之间制成档油凸缘与回油螺纹,以阻止机油向后窜漏。 曲轴的形状和曲拐相对位置取决于气缸数、气缸排列和发动机的发火顺序。多缸发动机的发火顺序应使连续作功的两缸保持尽量远的距离,这样既可以减轻主轴承的载荷,又能避免可能发生的进气重叠现象。此外作功间隔应力求均匀,也就是说发动机在完成一个工作循环的曲轴转角,每个气缸都应发火作功一次,以保证发动机运转平稳。 曲轴的作用:它与连杆配合将作用在活塞上的气体压力变为旋转的动力,传给底盘的传动机构。同时,驱动配气机构和其它辅助装置,如风扇、水泵、发电机等。工作时,曲轴承受气体压力,惯性力及惯性力矩的作用,受力大而且受力复杂,并且承受交变负荷的冲击作用。同时,曲轴又是高速旋转件,因此,要求曲轴具有足够的刚度和强度,具有良好的承受冲击载荷的能力,耐磨损且润滑良好【20】。 2.2 曲轴的疲劳损坏形式 曲轴的工作情况十分复杂,它是在周期性变化的燃气作用力、往复运动和旋转运动惯性力及其他力矩作用下工作的,因而承受着扭转和弯曲的复杂应力。曲轴箱主轴承的不同心度会影响到曲轴的受力状况,其次,由于曲轴弯曲与扭转振动而产生的附加应力,再加上曲轴形状复杂,结构变化急剧,产生了严重的应力集中。最后曲轴主轴颈与曲柄销是在比压下进行高速转动,因而产生强烈的磨损。因此柴油机在运转中发生曲轴裂纹和断裂事故不为鲜见,尤其是发电柴油机曲轴疲劳破坏较多。依曲轴产生裂纹的交变应力的性质不同,主要有以下三种疲劳裂纹:弯曲疲劳裂纹、扭转疲劳裂纹和弯曲一扭转疲劳裂纹【21】,如图2.1所示。

汽车发动机曲轴材料的选择及工艺的设计说明

专业课程设计任务书 学生:班级: 设计题目:汽车发动机曲轴材料的选择及工艺设计 设计容: 1、根据零件工作原理,服役条件,提出机械性能要求和技术要求。 2、选材,并分析选材依据。 3、制订零件加工工艺路线,分析各热加工工序的作用。 4、制订热处理工艺卡,画出热处理工艺曲线,对各种热处理工艺进行分 析,并分析所得到的组织,说明组织及性能的检测方法与使用的仪器设备。 5、分析热处理过程中可能产生的缺陷及补救措施。 6、分析零件在使用过程中可能出现的失效方式及修复措施。

目录 0 前言 (1) 1 汽车发动机曲轴的工作条件及性能要求 (2) 1.1 汽车发动机曲轴的工作条件 (3) 1.2 汽车发动机曲轴的性能要求及技术要求 (3) 2 汽车发动机曲轴的材料选择及分析 (4) 2.1 零件材料选择的基本原则 (4) 2.2 曲轴常用材料简介 (5) 2.3 汽车发动机曲轴材料的确定 (5) 3 曲轴的加工工艺路线及热处理工艺的制定 (6) 3.1 35CrMo曲轴热处理要求 (6) 3.2 汽车曲轴的热处理工艺的制定 (6) 3.2.1 调质处理 (7) 3.2.2 去应力退火 (8) 3.2.3 圆角高频淬火和低温回

火 (9) 4 曲轴热处理过程中可能产生的缺陷及预防措施 (11) 4.1 校直过程引起材料原始裂纹 (11) 4.2 曲轴圆角淬火不当引起裂纹源 (12) 4.3 淬火畸变与淬火裂纹 (12) 4.4 淬火导致氧化、脱碳、过热、过烧 (13) 4.5 淬火硬度不足............................................................. (13) 5 曲轴在使用过程中可能产生的失效形式及分析 (13) 6 课程设计的收获与体会 (14) 7 参考文献……………………………………....................... 15 8 工艺卡................................................................. . (16)

推荐-柴油机曲轴加工工艺及夹具设计 精品

柴油机曲轴加工工艺及夹具设计

目录 摘要 1 Abstract 2 0 引言 1 1 R180柴油机曲轴工艺设计 3 1.1 分析零件图 3 1.2 确定生产类型 3 1.3 确定毛坯 3 1.4 机械加工工艺过程设计 3 1.5 选择加工设备与工艺装备 6 1.6 确定工序尺寸 7 1.7 确定切削用量及时间定额 9 1.8 填写工艺规程卡 15 2 R180柴油机曲轴第一套夹具设计 16 2.1 明确设计任务、收集分析原始资料 16 2.2 确定夹具的结构方案 17 2.3 绘制夹具结构草图 19 3 R180柴油机曲轴第二套夹具设计 21 3.1 明确设计任务、收集分析原始资料 21 3.2 确定夹具的结构方案 22 3.3 夹具定位误差分析 22 3.4 拟订夹具总装图的尺寸、公差与配合及技术要求 22 3.5 绘制夹具总装图 23

4 结论 24 致谢 25 26 附件清单 27 摘要 本文主要介绍了R180柴油机曲轴工艺设计及其中两道工序的夹具设计。本文作者是在保证产品质量、提高生产率、降低成本、充分利用现有生产条件、保证工人具有良好而安全劳动条件的前提下进行设计的。在工艺设计中,作者结合实际进行理论设计,对曲轴传统生产工艺进行了改进,优化了工艺过程和工艺装备,使曲轴的生产加工更经济、合理。在夹具设计部分,作者在收集加工所用机床、刀具及辅助工具等有关资料后,对工件材料、结构特点、技术要求及工艺分析的基础上,按照夹具设计步骤设计出符合曲轴生产工艺及夹具制造要求的夹具。 关键词:柴油机曲轴工艺夹具 Abstract This text introduce R180 diesel engine crankshaft technological design and two of them jig of process design mainly. The author of this text is guaranteeing product quality, boost productivity, lower costs, utilize existing working condition, guaranteeing worker to have good work prerequisite of terms to design . In technological design, the author bine carrying on theory design, improve the traditional production technology of the crankshaft actually, optimize craft course and craft equip, enable economy rational even more of production and processing of the crankshaft. Designing in the jig , the author collect the relevant materials, such as lathe, cutter and handling tool,etc. At the foundation of the analyse of work piece material, specification requirement and craft, and make jig of request according to jig measure design and cankshaft production technology and jig.

发动机曲轴结构设计说明

目录 1 绪论 (1) 1.1 本课题的目的及意义 (1) 1.2 国外研究的现状与发展趋势 (1) 1.2.1 曲轴结构设计的发展 (1) 1.2.2 曲轴强度计算发展 (2) 1.3 有限元分析 (3) 2 1015柴油机曲轴结构设计 (4) 2.1 曲轴的结构 (4) 2.2 曲轴的疲劳损坏形式 (5) 2.2.1 弯曲疲劳裂纹 (6) 2.2.2 扭转疲劳裂纹 (6) 2.2.3 弯曲--扭转疲劳裂纹 (6) 2.3 曲轴的设计要求 (7) 2.4 曲轴的结构型式 (7) 2.5 曲轴的材料 (8) 2.6 曲轴的主要部件设计 (8) 2.6.1 主轴颈和曲柄销 (8) 2.6.2 曲柄臂 (9) 2.6.3 曲轴圆角 (10) 2.6.4 润滑油道 (11) 2.6.5 平衡重 (12) 2.6.6 曲轴两端和轴向止推 (12) 2.6.7 曲轴的强化 (13) 2.7 曲轴的强度校核 (14) 2.7.1 曲柄销应力 (14) 2.7.2 圆角形状系数 (17) 2.7.3 安全系数 (19)

3 有限元分析 (21) 3.1 ANSYS软件介绍 (21) 3.2 整体曲轴有限元模型的建立 (22) 3.2.1 有限元网格的划分 (22) 3.2.2 载荷状况的确定 (22) 3.3 曲轴整体模型计算结果分析 (24) 3.3.1 压应力分析 (24) 3.3.2 拉应力分析 (25) 3.4 疲劳强度校核 (26) 3.5 结论 (26) 4 总结 (26) 参考文献 (28) 致 (32)

1 绪论 1.1 本课题的目的及意义 柴油机与汽油机相比其燃料、可燃混合气的形成以及点火方式都不相同,而柴油机采用压缩空气的办法提高空气温度【1】,因此柴油机的功率更大、经济性能更好,这也导致柴油机工作压力大,要求各有关零件具有较高的结构强度和刚度,所以柴油机比较笨重,体积较大;柴油机的喷油泵与喷嘴制造精度要求高【2】,所以成本较高;另外,柴油机工作粗暴,振动噪声大;柴油不易蒸发,冬季冷车时起动困难。因而柴油发动机一般用于大、中型载重货车上【3】。 曲轴是发动机的关键零件,其尺寸与燃机整体尺寸和重量有很大关系,如曲柄销直径直接影响连杆大端尺寸和重量,后者又影响曲轴箱宽度,曲轴单位曲柄长度影响燃机总长度,曲轴尺寸大小在很大程度上影响着发动机的外形尺寸和重量。曲轴是燃机曲柄连杆机构的主要组成部分、三大运动件之一,是主要传力件。它的功用是把气缸中所作的功,通过活塞连杆汇总后以旋转运动形式输出。此外,曲轴还传动保证燃机正常工作需要的机构和系统附件(如配气机构、燃油泵、水泵、润滑油泵等),因此曲轴工作的可靠性和寿命在很大程度上影响燃机工作的可靠性和寿命。【4】。曲轴的工作情况及其复杂,基本工作载荷是弯曲载荷和扭荷;对不平衡的发动机曲轴还承受弯矩和剪力;未采取扭转振动减振措施的曲轴还可能作用着幅值较大的扭转振动弹性力矩。这些载荷都是交变性的,可能引起曲轴疲劳失效。曲轴的破坏事故可能引起其它零件的严重损坏。曲轴又是一根连续曲梁,结构形状复杂,刚性差,材质要求严,制造要求高,是燃机造价最贵的机件。随着燃机的发展与强化,曲轴的工作条件愈加严酷了【5】,必须在设计上正确选择曲轴的结构形式,并根据设计要求选择合理的尺寸、合适的材料与恰当的工艺,以求获得满意的技术经济效果【6】。由以上所述可以看出曲轴设计的重要性。 1.2 国外研究的现状与发展趋势 1.2.1 曲轴结构设计的发展 曲轴结构设计在过去的几十年中得到了飞速的发展。在曲轴的设计初期一般是按照已有的经验公式计算或者与已有的曲轴进行类比设计【7】。在进行了初步的设计后造出曲轴样品再进行试验,通过实验数据进行适当的改进【8】。曲轴设计发展到今天已经有了很大的发展。随着燃机向高可靠性、高紧凑性、高经济性的不断发展,传统的以经验、试

汽车发动机曲轴材料的选择及工艺设计

专业课程设计任务书 学生姓名:班级: 设计题目:汽车发动机曲轴材料的选择及工艺设计 设计内容: 1、根据零件工作原理,服役条件,提出机械性能要求和技术要求。 2、选材,并分析选材依据。 3、制订零件加工工艺路线,分析各热加工工序的作用。 4、制订热处理工艺卡,画出热处理工艺曲线,对各种热处理工艺进行分 析,并分析所得到的组织,说明组织及性能的检测方法与使用的仪器设备。 5、分析热处理过程中可能产生的缺陷及补救措施。 6、分析零件在使用过程中可能出现的失效方式及修复措施。

目录 0 前言 (1) 1 汽车发动机曲轴的工作条件及性能要求 (2) 1.1 汽车发动机曲轴的工作条件 (3) 1.2 汽车发动机曲轴的性能要求及技术要求 (3) 2 汽车发动机曲轴的材料选择及分析 (4) 2.1 零件材料选择的基本原则 (4) 2.2 曲轴常用材料简介 (5) 2.3 汽车发动机曲轴材料的确定 (5) 3 曲轴的加工工艺路线及热处理工艺的制定 (6) 3.1 35CrMo曲轴热处理要求 (6) 3.2 汽车曲轴的热处理工艺的制定 (6) 3.2.1 调质处理 (7) 3.2.2 去应力退火 (8) 3.2.3 圆角高频淬火和低温回火 (9) 4 曲轴热处理过程中可能产生的缺陷及预防措施 (11) 4.1 校直过程引起材料原始裂纹 (11) 4.2 曲轴圆角淬火不当引起裂纹源 (12) 4.3 淬火畸变与淬火裂纹 (12) 4.4 淬火导致氧化、脱碳、过热、过烧 (13) 4.5 淬火硬度不足 (13) 5 曲轴在使用过程中可能产生的失效形式及分析 (13) 6 课程设计的收获与体会 (14) 7 参考文献 (15) 8 工艺卡 (16)

柴油机曲轴设计

1前言 1.1柴油机与曲轴 1.1.1柴油机的工作原理 柴油机的每个工作循环都要经历进气、压缩、做功和排气四个过程。 四行程柴油机的工作过程:柴油机在进气冲程吸入纯空气,在压缩冲程接近终了时,柴油经喷油泵将油压提高到10MPa以上,通过喷油器以雾状喷入气缸,在很短时间内与压缩后的高温空气混合,形成可燃混合气。压缩终了时气缸内空气压力可达3.5~4.5MPa,温度高达476.85℃~726.85℃,极大地超过柴油的自燃温度,因此柴油喷人气缸后,在很短的时间内即着火燃烧,燃气压力急剧达到6~9MPa,温度升高到1726.85℃~2226.85℃。在高压气体推动下,活塞向下运动并带动曲轴旋转做功。废气同样经排气门、排气管等处排出。 四行程柴油机的每个工作循环均经过如下四个行程: (1)进气行程在这个行程中,进气门开启,排气门关闭,气缸与化油器相通,活塞由上止点向下止点移动,活塞上方容积增大,气缸内产生一定的真空度。可燃混合气被吸人气缸内。活塞行至下止点时,曲轴转过半周,进气门关闭,进气行程结束。 由于进气道的阻力,进气终了时气缸内的气体压力稍低于大气压,约为0.07~0.09MPa。混合气进入气缸后,与气缸壁、活塞等高温机件接触,并与上一循环的高温残余废气相混合,所以温度上升到96.85℃~126.85℃。 (2)压缩行程进气行程结束后,进气门、排气门同时关闭。曲轴继续旋转,活塞由下止点向上止点移动,活塞上方的容积缩小,进入到气缸中的混合气逐渐被压缩,使其温度、压力升高。活塞到上止点时,压缩行程结束。 压缩终了时鼓,混合气温度约为326.85℃~426.85℃,压力一般为0.6~ 1.2MPa。 (3)做功行程活塞带动曲轴转动,曲轴通过转动把扭矩输出。 (4)排气行程进气口关闭,排气口打开,排除废气。 由上可知,四行程汽油机或柴油机,在一个工作循环中,只有一个行程作功,其余三个行程作为辅助行程都是为作功行程创造条件的。因此,单缸发动机工作不平稳。现代汽车都采用多缸发动机,在多缸发动机中,所有气缸的作功行程并不同时进行,而尽可能有一个均匀的作功间隔,因而多缸发动机曲轴运转均匀,工作平稳,并可获得足够大的功率。例如六缸发动机,在一个工作循环中,曲轴要旋转720°,曲轴转角每隔120°就有一个气缸作功。

发动机曲轴连杆实习报告范文

发动机曲轴连杆实习报告范文 实习是大学进入社会前理论与实际结合的最好的锻炼机会,也是大学生到从业者一个非常好的过度阶段,更是大学生培养自身工作能力的磨刀石,作为一名刚刚从学校毕业的大学生,能否在实习过程中掌握好实习内容,培养好工作能力,显的尤为重要。 发动机曲轴连杆实习报告一 今日实习目的地:南车柴油机二分厂 实习车间:曲轴加工车间 在王工的带领下,进入了曲轴加工车间,首先,向我们介绍了曲轴的用途,以及各个部位特点,如何加工而成、 曲轴是活塞式发动机中最重要、承受负荷最大的零件之一。其主要功用是将活塞的往复运动通过连杆变成回转运动,即把燃料燃烧的爆发力通过活塞、连杆转变成扭矩输送出去做功,同时还带动发动机本身的配气机构和相关系统工作 曲轴一般由主轴颈,连杆轴颈、曲柄、平衡块、前端和后端等组成。一个主轴颈、一个连杆轴颈和一个曲柄组成了一个曲拐,曲轴的曲拐数目等于气缸数(直列式发动机);V型发动机曲轴的曲拐数等于气缸数的一半。主轴颈是曲轴的支承部分,通过主轴承支承在曲轴箱的主轴承座中。主轴承的数目不仅与发动机气缸数目有关,还取决于曲轴的支承方式。曲轴的支承方式一般有

两种,一种是全支承曲轴,另一种是非全支承曲轴。曲轴的形状和曲拐相对位置(即曲拐的布置)取决于气缸数、气缸排列和发动机的发火顺序。 轴典型加工工艺 曲轴的典型加工过程如下 铣端面打中心孔粗精车所有主轴颈及周轴颈铣角向定位面粗精车所有连杆颈粗磨第四主轴颈 车平衡块钻直斜油孔半精磨 1、主轴径7车铣割滚压精磨所有主轴颈及周轴颈淬火回火探伤精磨第四主轴颈喷丸钻工艺孔 两端孔的加工精磨所有连杆颈动平衡抛光所有轴颈清洗防锈 铣键槽 曲轴加工第一工序铣端面、钻中心孔。通常以两端主轴颈的外圆表面和中间主轴颈的轴肩为粗基准,这样钻出的中心孔可保证曲轴加工时径向和轴向余量均匀。 径向定位主要以中心线为基准,还可以两端主轴颈外圆为精基准。轴向定位用曲轴一段的端面或轴肩。角度定位一般用法兰盘端面上的定位销孔或曲柄臂上铣出的定位平台。采用不同的加工工艺方法和设备,定位基准的选用亦有不同。

汽车发动机曲轴机械加工工艺规程与夹具设计

毕业论文 (科学研究报告) 题目汽车发动机四缸曲轴加工工艺 及夹具设计 院(系)别机电及自动化学院 专业机械工程及自动化 级别2009 学号***** 姓名*** 指导老师*** 副教授 ** 大学教务处 2013年6月

摘要 曲轴是汽车发动机的重要零件。它的作用是把活塞的往复直线运动变成传动轴的旋转运动,将作用在活塞的气体压力变成扭矩,用来驱动工作机械和发动机各辅助系统进行工作。曲轴在工作时承受着不断变化的压力、惯性力和它们的力矩作用,因此要求曲轴具有强度高、刚度大、耐磨性好,轴颈表面加工的尺寸精确,且润滑可靠。 本设计是根据被加工曲轴的技术要求基准先行,先主后次,先粗后精,先面后孔的工艺设计准则。先加工出基准,再用精基准定位加工其它工序。在夹具设计时,选择的是车曲轴连杆轴颈的工序,定位时选择两个V形块和周向定位钉定位,用压板夹紧,并且在夹具上设置合适的偏心距。通过本次设计我查阅了许多书籍和行业资料,了解到行业的发展进程和部分先进技术,扩展了我的专业视野,为将来的学习生活都有着重要的影响。 关键词

ABSTRACT Crankshaft is a very important parts of diesel engine. Ist action is change the to and fro straight-line motion of the piston into rotary motion,and change the gas pressure on the piston into torque, that is used to drive executive body and accessory system of the diesel engine. Crankshaft is withstanding the changing pressure, inertia force and the torque. So the crankshaft mast have high strength, high rigidity, high abrasion resistance and the surface of axle journal must have high precision with well lubricating. This design is on the basis of technical requirement of the crankshaft to design the technological procedure. And then use the fundamental and method of the fixture design to fix the fixture design programme,and complete the structural of the fixture. The main work is: Parts drawing, understand the characteristic of structure and technical requirement; Accroding to the types of manufacturing and the plant conditions of the company we will analyse the structure and craft of the crankshaft; Fix the type and manufacturing method of the roughcast; Fix the processing technic of the crankshft,select device and equipment fix the machining allowance and working procedure size and count the cutting specifications and time allowance.; Fix the Processing technological process card and Machine-finishing operation card; Design the special fixture and plan the assembling drawing and main parts drawing. This design is in order to improve the crankshaft parts production efficiency, and the machining accuracy. Therefore,when drawing up the process we strict accordance with the design criteria that benchmark first,main first then secondary, rough first then essence, surface first ,hole after . First, work out benchmark, again with pure reference positioning processing other processes. In fixture design,I choose the car process of crankshaft connecting rod , When location,I choose two V block and circumferential locating pin to positioning, pressed powder compact, and set up appropriate eccentricity on the jig. Accroding to this design I looked through many books and industry information, understand some of the industry development process and advanced technologies,and also expanded my professional field.It has important influence on my future study and life. KEYWORDS:Machine manufacture Processing craft Crankshaft fixture

发动机曲轴结构设计

发动机曲轴结构设计 Document number:PBGCG-0857-BTDO-0089-PTT1998

曲轴的结构 曲轴的作用是把活塞往复运动通过连杆转变为旋转运动,传给底盘的传动机构。同时,驱动配气机构和其它辅助装置,如风扇、水泵、发电机等【18】。 曲轴一般由主轴颈,连杆轴颈、曲柄、平衡块、前端和后端等组成,如图所示。一个主轴颈、一个连杆轴颈和一个曲柄组成了一个曲拐,直列式发动机曲轴的曲拐数目等于气缸数,而V型发动机曲轴的曲拐数等于气缸数的一半。 图 主轴颈是曲轴的支承部分,通过主轴承支承在曲轴箱的主轴承座中。主轴承的数目不仅与发动机气缸数目有关,还取决于曲轴的支承方式。 曲柄是主轴颈和连杆轴颈的连接部分,断面为椭圆形,为了平衡惯性力,曲柄处常设置平衡重。平衡重用来平衡发动机不平衡的离心力矩及一部分往复惯性力,从而保证了曲轴旋转的平稳性【19】。 曲轴的连杆轴颈是曲轴与连杆的连接部分,曲柄与主轴颈的相连处用圆弧过渡,以减少应力集中。直列发动机的连杆轴颈数目与气缸数相等而V型发动机的连杆轴颈数等于气缸数的一半。

曲轴前端装有正时齿轮,以驱动风扇和水泵的皮带轮以及起动爪等。为了防止机油沿曲轴轴颈外漏,在曲轴前端装有一个甩油盘,在齿轮室盖上装有油封。曲轴的后端用来安装飞轮,在后轴颈与飞轮凸缘之间制成档油凸缘与回油螺纹,以阻止机油向后窜漏。 曲轴的形状和曲拐相对位置取决于气缸数、气缸排列和发动机的发火顺序。多缸发动机的发火顺序应使连续作功的两缸保持尽量远的距离,这样既可以减轻主轴承的载荷,又能避免可能发生的进气重叠现象。此外作功间隔应力求均匀,也就是说发动机在完成一个工作循环的曲轴转角内,每个气缸都应发火作功一次,以保证发动机运转平稳。 曲轴的作用:它与连杆配合将作用在活塞上的气体压力变为旋转的动力,传给底盘的传动机构。同时,驱动配气机构和其它辅助装置,如风扇、水泵、发电机等。工作时,曲轴承受气体压力,惯性力及惯性力矩的作用,受力大而且受力复杂,并且承受交变负荷的冲击作用。同时,曲轴又是高速旋转件,因此,要求曲轴具有足够的刚度和强度,具有良好的承受冲击载荷的能力,耐磨损且润滑良好【20】。 曲轴的疲劳损坏形式 曲轴的工作情况十分复杂,它是在周期性变化的燃气作用力、往复运动和旋转运动惯性力及其他力矩作用下工作的,因而承受着扭转和弯曲的复杂应力。曲轴箱主轴承的不同心度会影响到曲轴的受力状况,其次,由于曲轴弯曲与扭转振动而产生的附加应力,再加上曲轴形状复杂,结构变化急剧,产生了严重的应力集中。最后曲轴主轴颈与曲柄销是在比压下进行高速转动,因而产生强烈的磨损。因此柴油机在运转中发生曲轴裂纹和断裂事故不为鲜见,尤其是发电柴油机曲轴疲劳破坏较多。依曲轴产

柴油机曲轴工艺过程及夹具毕业设计论文

重庆大学网络教育学院 毕业设计(论文) 柴油机曲轴零件加工工艺及夹具设计 学生所在校外学习中心江苏张家港校处学习中心批次层次专业111 专升本机械设计制造及其自动化学号 w11107861 学生 指导教师 起止日期 2013.1.21--2013.4.14

摘要 曲轴是发动机上的一个重要的旋转机件,装上连杆后,可承接活塞的上下(往复)运动变成循环运动。曲轴主要有两个重要加工部位:主轴颈和连杆颈。主轴颈被安装在缸体上,连杆颈与连杆大头孔连接,连杆小头孔与汽缸活塞连接,是一个典型的曲柄滑块机构。发动机工作过程就是:活塞经过混合压缩气的燃爆,推动活塞做直线运动,并通过连杆将力传给曲轴,由曲轴将直线运动转变为旋转运动。而曲轴加工的好坏将直接影响着发动机整体性能的表现。曲轴的材料是由碳素结构钢或球墨铸铁制成的,有两个重要部位:主轴颈,连杆颈。 这次毕业设计介绍柴油机曲轴加工工艺规程及相关夹具的设计,及曲轴的规程制定中遇到问题的分析,经济性分析,工时定额,切削用量的计算。同时还介绍曲轴加工中用到的两套夹具的设计过程。在工艺设计中,结合实际进行设计,对曲轴生产工艺进行了改进,优化了工艺过程和工艺装备,使曲轴的生产加工更经济、合理。 根据现阶段机械零件的制造工艺和技术水平,本着以制造技术的先进性,合理性,经济性进行零件的形状、尺寸、精度等级、表面粗糙度、材料等技术分析。并根据以上分析来选择合理的毛坯制造方法,设计工艺规程,夹具设计。 关键词:柴油机曲轴工艺夹具

目录 中文摘要…………………………………………………………………………………………I 1.引言 (1) 2.曲轴的生产纲领 (2) 3.零件的分析 (2) 3.1曲轴的用途及工作条件 (2) 3.2分析零件上的技术要求,确定要加工的表面 (3) 3.3加工表面的尺寸和形状精度 (4) 3.4尺寸和位置精度 (4) 3.5加工表面的粗糙度及其它方面的质量要求 (4) 3.6热处理要求 (4) 4.曲轴材料和毛坯的定 (4) 4.1确定毛坯的类型 (4) 4.2确定毛坯的生产方法 (4) 4.3确定毛坯的加工余量 (4) 5.曲轴的工艺过程设计 (5) 5.1粗、精加工的定位基准 (5) 5.1.1粗加工 (5) 5.1.2粗加工 (5) 5.2工件表面加工方法的选择 (5) 5.3曲轴机械加工的基本路线 (5) 5.4加工余量及毛坯尺寸 (6) 5.5工序设计 (6) 5.5.1加工设备与工艺装备的选择 (8) 5.5.2机械加工余量、工序尺寸及公差的确定 (9) 5.6确定工时定额 (11) 5.7机械加工工艺规程卡片和机械加工工序卡片 (12) 5.7.1机械加工工艺过程卡片 (12) 5.7.2机械加工工序卡片 (12) 6.柴油机曲轴加工键槽夹具设计 (13) 6.1.1夹具类型的分析 (13) 6.1.2工装夹具定位方案的确定 (13) 6.1.3工件夹紧形式的确定 (13) 6.1.4对刀装置 (13) 6.1.5分度装置的确定以及补补助装置 (14) 6.1.6夹具定位夹紧方案的分析论证 (14) 6.1.7夹具结构类型的设计 (15) 6.2夹具总图设计 (16) 6.4绘制夹具零件图 (16)

柴油发动机曲轴机械加工工艺规程设计及夹具(毕业设计)

柴油发动机曲轴机械加工工艺规程设计及夹具设计 由吴祖德t053329 于星期五, 2009/06/19 - 12:41下午发表 ?学士学位 ?机电与汽车工程学院 学号: 05120332 专业: 机械设计制造及其自动化 研究方向: 机械设计与制造 导师姓名: 曾宏达 中图分类号: TH16 论文总页码: 47 参考文献总数: 20 曲轴是柴油发动机的重要零件。它的作用是把活塞的往复直线运动变成旋转运动,将作用在活塞的气体压力变成扭矩,用来驱动工作机械和柴油发动机各辅助系统进行工作。曲轴在工作时承受着不断变化的压力、惯性力和它们的力矩作用,因此要求曲轴具有强度高、刚度大、耐磨性好,轴颈表面加工尺寸精确,且润滑可靠。 本设计是根据被加工曲轴的技术要求,进行机械工艺规程设计,然后运用夹具设计的基本原理和方法,拟定夹具设计方案,完成夹具结构设计。主要工作有:绘制产品零件图,了解零件的结构特点和技术要求;根据生产类型和所在企业的生产条件,对零件进行结构分析和工艺分析;确定毛坯的种类及制造方法;拟定零件的机械加工工艺过程,选择各工序的加工设备和工艺设备,确定各工序的加工余量和工序尺寸,计算各工序的切削用量和工时定额;填写机械加工工艺过程卡片、机械加工工序卡片等工艺卡片;设计指定的专用夹具,绘制装配总图和主要零件图。 中文关键字: 机械制造,加工工艺,曲轴,夹具 英文题目: Technological process design and fixture design of diesel engine crankshaft 英文摘要: Crankshaft is a very important parts of diesel engine. Ist action is change the to

柴油机曲轴工艺设计方案[]

0 引言 本次毕业设计是关于R180柴油机曲轴的工艺设计及其中两道工序的夹具设计。 曲轴是柴油机中的关键零件之一,其材质大体分为两类:一是钢锻曲轴,二是球墨铸铁曲轴。由于采用铸造方法可获得较为理想的结构形状,从而减轻质量,且机加工余量随铸造工艺水平的提高而减小。球铁的切削性能良好,并和钢制曲轴一样可以进行各种热处理和表面强化处理,来提高曲轴的抗疲劳强度和耐磨性。而且球铁中的内摩擦所耗功比钢大,减小了工作时的扭转振动的振幅和应力,应力集中也没有钢制曲轴来的敏感。所以球墨铸铁曲轴在国内外得到广泛采用。本次设计中曲轴的材质为球铁。 从目前整体水平来看, 毛坯的铸造工艺存在生产效率低,工艺装备落后,毛坯机械性能不稳定、精度低、废品率高等问题。从以下几个工艺环节采取措施对提高曲轴质量具有普遍意义。①熔炼国内外一致认为,高温低硫纯净铁水的获得是生产高质量球铁的关键所在。为获得高温低硫磷的纯净铁水,可用冲天炉熔化铁水,经炉外脱硫,然后在感应电炉中升温并调整成分。②球化处理③孕育处理冲天炉熔化球铁原铁水,对铜钼合金球铁采用二次孕育。这对于防止孕育衰退,改善石墨形态,细化石墨及保证高强度球铁机械性能具有重要作用。④合金化配合好铜和钼的比例对形成珠光体组织十分有利,可提高球铁的强度,而且铜和钼还可大大降低球铁件对壁厚的敏感性。⑤造型工艺气流冲击造型工艺优于粘土砂造型工艺,可获得高精度的曲轴铸件,该工艺制作的砂型具有无反弹变形量的特点,这对于多拐曲轴尤为重要。⑥浇注冷却工艺采用立浇—立冷,斜浇—斜冷、斜浇—反斜冷三种浇注方式较为理想,其中后一种最好。斜浇—反斜冷的优点是:型腔排气充分,铁水充型平稳,浇注系统撇渣效果好,冒口对铸件的补缩效果好,适应大批量流水线生产。 目前,国内大部分专业厂家普遍采用普通机床和专用组合机床组成的流水线生产,生产效率、自动化程度较低。曲轴的关键技术工程仍与国外相差1~2个数量级。国外的机加工工艺大致可归纳为如下几个特点。①广泛采用数控技术和自动线,生产线一般由几段独立的自动化生产单元组成,具有很高的灵活性和适应性。采用龙门式自动上下料,集放式机动滚道传输,切削液分粗加工与精加工两段集中供应和回收处理。②曲轴的主要加工工序基准中心孔,一般采用质量定心加工方式,这样在静平衡时,加工量很少。③轴颈的粗加工一般采用数控铣削或车拉工艺。工序质量可达到国内粗磨后的水平,且切削变形小、效率高。铣削和车拉是曲轴粗加工的发展方向。④国外的曲轴磨床均采用CNC控制技术,具有自动进给、自动修正砂轮、自动补偿和自动分度功能,使曲轴的磨削精度和效率显著提高。⑤油

发动机曲轴结构设计

2、1曲轴得结构 曲轴得作用就是把活塞往复运动通过连杆转变为旋转运动,传给底盘得传动机构同时,驱动配气机构与其它辅助装置,如风扇、水泵、发电机等【18】。 曲轴一般由主轴颈,连杆轴颈、曲柄、平衡块、前端与后端等组成,如图1、1所示个主轴颈、一个连杆轴颈与一个曲柄组成了一个曲拐,直列式发动机曲轴得曲拐数目等于气缸数,而V型发动机曲轴得曲拐数等于气缸数得一半。 图1、1 主轴颈就是曲轴得支承部分,通过主轴承支承在曲轴箱得主轴承座中。主轴承得数目不仅与发动机气缸数目有关,还取决于曲轴得支承方式。 曲柄就是主轴颈与连杆轴颈得连接部分,断面为椭圆形,为了平衡惯性力,曲柄处常设置平衡重。平衡重用来平衡发动机不平衡得离心力矩及一部分往复惯性力,从而保证了曲轴旋转得平稳性【19】。 曲轴得连杆轴颈就是曲轴与连杆得连接部分,曲柄与主轴颈得相连处用圆弧过渡,以减少应力集中。直列发动机得连杆轴颈数目与气缸数相等而V型发动机得连杆轴颈数等于气缸数得一半。 曲轴前端装有正时齿轮,以驱动风扇与水泵得皮带轮以及起动爪等。为了防止机油沿曲轴轴颈外漏,在曲轴前端装有一个甩油盘,在齿轮室盖上装有油封。曲轴得后端用来安装飞轮,在后轴颈与飞轮凸缘之间制成档油凸缘与回油螺纹,以阻止机油向后窜漏。 曲轴得形状与曲拐相对位置取决于气缸数、气缸排列与发动机得发火顺序。多缸发动机得发火顺序应使连续作功得两缸保持尽量远得距离,这样既可以减轻主轴承得载荷,又能避免可能发生得进气重叠现象。此外作功间隔应力求均匀,也就就是说发动机在完成一个工作循环得曲轴转角内,每个气缸都应发火作功一次,以保证发动机运转平稳。

曲轴得作用:它与连杆配合将作用在活塞上得气体压力变为旋转得动力,传给底盘得传动机构。同时,驱动配气机构与其它辅助装置,如风扇、水泵、发电机等。工作时, 曲轴承受气体压力,惯性力及惯性力矩得作用,受力大而且受力复杂,并且承受交变负荷得冲击作用。同时,曲轴又就是高速旋转件,因此,要求曲轴具有足够得刚度与强度,具有良好得承受冲击载荷得能力,耐磨损且润滑良好【20】。 2、2曲轴得疲劳损坏形式 曲轴得工作情况十分复杂,它就是在周期性变化得燃气作用力、往复运动与旋转运动惯性力及其她力矩作用下工作得,因而承受着扭转与弯曲得复杂应力。曲轴箱主轴承得不同心度会影响到曲轴得受力状况,其次,由于曲轴弯曲与扭转振动而产生得附加应力,再加上曲轴形状复杂,结构变化急剧,产生了严重得应力集中。最后曲轴主轴颈与曲柄销就是在比压下进行高速转动,因而产生强烈得磨损。因此柴油机在运转中发生曲轴裂纹与断裂事故不为鲜见,尤其就是发电柴油机曲轴疲劳破坏较多。依曲轴产生裂纹得交变应力得性质不同,主要有以下三种疲劳裂纹:弯曲疲劳裂纹、扭转疲劳裂纹与弯曲一扭转疲劳裂纹【21】,如图2、1所示。 图2、1 1-弯曲疲劳裂纹2-扭转疲劳裂纹 2、2、1弯曲疲劳裂纹 曲轴得弯曲疲劳裂纹一般发生在主轴颈或曲柄销颈与曲柄臂连接得过渡圆角处,或 逐渐扩展成横断曲柄臂得裂纹,或形成垂直轴线得裂纹。弯曲疲劳试验表明,过渡圆角处得最大应力出现在曲柄臂中心对称线下方。应力沿曲轴长度方向得分布就是在中间得与端部得曲柄有较大得弯曲应力峰值。因此,曲轴弯曲疲劳裂纹常发生在曲轴得中间或两端得曲柄上。 曲轴弯曲疲劳破坏通常就是在柴油机经过较长时间运转之后发生。因为长时间运转后柴油机得各道主轴承磨损不均匀,使曲轴轴线弯曲变形,曲轴回转时产生过大得附加交变弯曲应力。此外,曲轴得曲柄臂、曲柄箱或轴承支座(机座)等得刚性不足,柴油机短时间运转后,也会使曲

汽车发动机曲轴修理技术条件

汽车发动机曲轴修理技术条件 本标准适用于往复活塞式汽车发动机曲轴的修理。经过修理的曲轴应符合本标准的要求。 1 技术要求 1.1 曲轴修复前应进行探伤检查,不得有裂纹。但轴颈上沿油孔四周有长度不超过5mm的短浅裂纹或有未延伸到轴颈圆角和油孔处的纵向裂纹(轴颈长度小于或等于40mm,裂纹长度不超过10mm;轴颈长度大于40mm,裂纹长度不超过15mm)时,仍允许修复。 1.2 曲轴滑动轴承轴颈磨损后,应按表1的曲轴分级修理尺寸修理。组合式曲轴滚动轴承轴颈磨损逾限,滑动轴承轴颈超过其允许的使用极限尺寸时,允许进行补偿修理,恢复至原设计尺寸。 注:原设计是指制造厂和按规定程序批准的技术文件(下同)。 ②9级及9级以后为不常用尺寸级。 ③分级有特殊规定的曲轴,应按其原设计执行。 1.3 补偿修复轴颈时,可采用金属丝喷涂、电振动堆焊、镀铁、镀铬等方法。其他部位磨损逾限后,根据情况,除可采用上述方法外,也可以采用手工弧焊等方法进行恢复性修理。补偿修复层应均匀适当,机械性能满足使用要求,见附录A (参考件)。 1.4 曲轴修磨后,同名轴颈必须为同级修理尺寸。 1.5 曲轴主轴颈及连杆轴颈端面磨损逾限后,应予修复至原设计规定的轴颈宽度。 1.6 曲轴修复后,以两端主轴颈的公共轴线为基准时: a.中间各主轴颈的径向圆跳动公差为0.05mm。

b.各连杆轴颈轴线对主轴颈轴线的平行度公差:整体式曲轴为Φ0.0lmm,组合式曲轴为Φ0.03mm。 c.与止推轴颈及正时齿轮配合端面的端面圆跳动公差为0.05mm。 d.飞轮突缘的径向圆跳动公差为0.04mm;外端面的端面圆跳动公差为 0.06mm。 e.皮带轮的轴颈径向圆跳动公差为0.05mm。 f.正时齿轮的轴颈径向圆跳动公差为0.03mm。 g.变速器第一轴轴承承孔的径向圆跳动公差为0.06mm。 1.7 各主轴颈及连杆轴颈的圆柱度公差为0.005mm。 h.油封轴颈的径向圆跳动公差,采用回油槽防漏的为0.l0mm,采用油封圈防漏的为0.05mm。 1.8 连杆轴颈的回转半径应符合原设计规定的基本尺寸,整体式曲轴的极限偏差为±0.15mm,但同一曲轴各回转半径差不得超过0.20mm,组合式曲轴的极限偏差应符合原设计要求。 1.9 以装正时齿轮的键槽中心平面为基准,连杆轴颈的分配角度偏差为±30ˊ。 1.10 起动瓜螺孔螺纹损伤不得多于2牙。 1.11 主轴颈及连杆轴颈表面光洁度应不低于V8,圆角处表面光洁度不低于▽7。 1.12 主轴颈和连杆轴颈两端的圆角半径应符合原设计规定。但采用金属丝喷涂和电镀修复的曲轴,修竣后的圆角半径允许适当减小。 1.13 组合式曲轴必须按原位装配,装合后各滚动轴承轴颈同轴度公差应符合原设计规定。 1.14 曲轴油道应清洁畅通。油孔应有倒角。 1.15 修复后的曲轴不得有焊渣、毛刺、金属飞溅等杂物,加工表面不得有肉眼可见的刻痕、黑点、碰伤、凹陷、发痕、孔眼及其他缺陷。但用电振动堆焊修复的曲轴表面允许有细微的龟纹。 1.16 曲轴须进行平衡试验,其不平衡量应符合原设计规定。 1.17 本标准未规定的其他技术要求,应符合原设计规定。

发动机曲轴加工工艺分析与设计

发动机曲轴加工工艺分析与设计 摘要 曲轴是汽车发动机的关键零件之一,其性能好坏直接影响到汽车发动机的质量和寿命.曲轴在发动机中承担最大负荷和全部功率,承受着强大的方向不断变化的弯矩及扭矩,同时经受着长时间高速运转的磨损,因此要求曲轴材质具有较高的刚性、疲劳强度和良好的耐磨性能。发动机曲轴的作用是将活塞的往复直线运动通过连杆转化为旋转运动,从而实现发动机由化学能转变为机械能的输出。 本课题仅175Ⅱ型柴油机曲轴的加工工艺的分析与设计进行探讨。工艺路线的拟定是工艺规程制订中的关键阶段,是工艺规程制订的总体设计。所撰写的工艺路线合理与否,不但影响加工质量和生产率,而且影响到工人、设备、工艺装备及生产场地等的合理利用,从而影响生产成本。 所以,本次设计是在仔细分析曲轴零件加工技术要求及加工精度后,合理确定毛坯类型,经过查阅相关参考书、手册、图表、标准等技术资料,确定各工序的定位基准、机械加工余量、工序尺寸及公差,最终制定出曲轴零件的加工工序卡片。 关键词:发动机,曲轴,工艺分析,工艺设计 目录 第一章概述1 第二章确定曲轴的加工工艺过程3 2.1曲轴的作用3 2.2曲轴的结构及其特点3 2.3曲轴的主要技术要求分析4 2.4曲轴的材料和毛坯的确定4 2.5曲轴的机械加工工艺过程4 2.6曲轴的机械加工工艺路线5 第三章曲轴的机械加工工艺过程分析 6 3. 1曲轴的机械加工工艺特点6 3. 2曲轴的机械加工工艺特点分析7 3. 3曲轴主要加工工序分析 (8) 3.3.1铣曲轴两端面,钻中心孔 (8) 3.3.2曲轴主轴颈的车削 (8) 3.3.3曲轴连杆轴颈的车削 (8) 3.3.4键槽加工 (9) 3.3.5轴颈的磨削 (9) 第四章机械加工余量、工序尺寸及公差的确定9 4.1曲轴主要加工表面的工序安排9 4.2机械加工余量、工序尺寸及公差的确定10 4.2.1主轴颈工序尺寸及公差的确定10 4.2.2连杆轴颈工序尺寸及公差的确定10 4.2.3φ22 -00.12外圆工序尺寸及公差的确定10 4.2.4φ20 0-0.021外圆工序尺寸及公差的确定11 4.3 确定工时定额11 4.4 曲轴机械加工工艺过程卡片的制订12 谢辞13

相关文档
最新文档