一次函数几何拔高专题

一次函数几何拔高专题
一次函数几何拔高专题

一次函数几何专题

经典例题

例1、已知:一次函数y kx b

M N两点。

=+的图象经过(0,2),(1,3)

(1)求,k b的值;

(2)若一次函数y kx b

=+的图象与x轴的交点为A(a,0),求a的值。

例2、直线y kx b

=--相交,交点在y

y x

=+与直线y=5-4x平行,且与直线3(6)

轴上,求此直线的解析式.

例3、求直线21

=+向左平移2个单位后的解析式.

y x

例4、已知点(,)

+=,点A的坐标为(10,0),

x y

P x y是第一象限内的点,且8

设△OAP的面积为S.

(1)求S关于x的函数解析式,并写出自变量的取值范围;

(2)画出此函数的图象.

例5、在直角坐标系中,是否存在x轴上的动点,使得它到定点P(5,5)和到Q(0,1)的距离MP十MQ的值最小?若存在,求出点M的横坐标x;若不存

在,请说明理由。

例6、已知,如图,在平面直角坐标系内,点A 的坐标为(0,24),经过原点的直线1l 与经过点A 的直线2l 相交于点B ,点B 坐标为(18,6). (1) 求直线1l 、2l 的表达式;

(2)点C 为线段OB 上一动点(点C 不与点O ,B 重合),作CD ∥y 轴交直线2l 于点D ,过点C ,D 分别向y 轴作垂线,垂足分别为F ,E ,得到矩形CDEF .

①设点C 的纵坐标为a ,求点D 的坐标(用含a 的代数式表示)

②若矩形CDEF 的面积为60,请直接写出此时点C 的坐标.

例7、如图,在平面直角坐标系中,直线AB 交x 轴于点A(a ,0),交y 轴于点B(0,6),且,a b

2(2)0b -= ,直线y =x 交AB 于点M .

(l)求直线AB 的解析式;

(2)过点M 作MC ⊥AB 交y 轴于点C ,求点C 的坐标;

(3)在直线上是否存在一点D ,使得6ABD S =△

?

若存在,求出D 点的坐标;若不存在,请说明理由.

巩固练习

1. 如图,在平面直角坐标系中,一条直线l 与x 轴相交于点A(2,0),与正比例函数y kx = (k ≠0,且k

的图象相交于点P(1,1). (1)求k 的值; (2)求△AOP 的面积.

2. 如图,直线

112

y x =+ 交x 轴于B ,交Y 轴于M ,点A 在y 轴负半轴上,

2BAO S S =△△BMO 。

(l)求点B 、M 的坐标; (2)求点A 的坐标;

(3)在直线BM 上是否存在一点P ,使AM 为△PBA 的角平分线.若存在,先画出草图,并求出P 说明理由.

3. 如图,已知直角坐标系中,点M(3

轴对称,并且MN 交x 轴于点P .点A 在线段ON 上且点A 的横坐标是1. (1)求△OMN 的面积;

(2)试在线段OM 上找一点B 使得PB = PA ,求直线PB 的解析式.

4. 如图,直线1l 的解析表达式为33y x =-+ ,且1l 与x 轴交于点D ,直线2l 经过点A 、B ,直线12,l l 交于点C 。 (1)求点D 的坐标;

(2)求直线2l 的解析表达式; (3)求△ADC 的面积;

(4)在直线上存在异于点C 的另一点P ,使得△ADP 与△ADC 的面积相等,请直接写出点P 的坐标.

5. 如图,直线23y x =+和直线21y x =-- 分别交y 轴于点A 、B ,两直线交于点C .

(1)求两直线交点C 的坐标; (2)求△ABC 的面积;

(3)在直线上能否找到点P ,使得6APC S =△ ?若能,请求出点P 的坐标;若不能,请说明理由.

2

6. 如图1直线AB:y= -x-b 分别与x y 、 轴交于A(6,0)、B 两点,过点B 的直线交x 轴负半轴于C ,且OB :OC=3:1; (1)求直线BC 的解析式;

(2)直线EF:y=kx-k (k ≠O )交AB 于E ,交BC 于点F ,交x 轴于D ,是否存在这样的直线EF ,使得EBD FBD S S △△ ?若存在,求出k 的值;若不存在,说明理由.

(3)如图2,P 为A 点右侧x 轴上的一动点,以P 为直角顶点、BP 为腰在第一象限内作等腰直角三角形BPQ ,连结QA 并延长交y 轴于点K .当P 点运动时,K 点的位置是否发生变化?如果不变,请求出它的坐标;如果变化,请说明理由.

7. 如图1,在平面直角坐标系中,△AOB 为等腰直角三角形,A(4,4). (1)求B

点的坐标;

(2)如图2,若C 为x 轴正半轴上一动点,以AC 为直角边作等腰直角△ACD ,

90o ACD =∠ ,连

OD ,求AOD ∠ 的度数;

(3)如图3,过点A 作y 轴的垂线交y 轴于E ,F 为x 轴负半轴上一点,G 在EF 的延长线上,以EG 为直角边作等腰Rt △EGH ,过A 作x 轴的垂线交EH 于点M ,连FM ,等式1AM FM

OF

-= 是否成立?若成立,请证明;若不成

立,说明理由.

8. A 、B 两所学校在一条东西走向公路的同旁,以公路所在直线为x 轴建立如图所示的平面直角坐标系,且点A 的坐标是

(2,2),点B 的坐标是(7,3).

(1)一辆汽车由西向东行驶,在行驶过程中是否存在一点C ,使C 点到A 、B 两校的距离相等?如果有,请用尺规作图找出该点,保留作图痕迹,不求该点坐标.

(2)若在公路边建一游乐场P ,使游乐场到两校距离之和最小,通过作图在图中找出建游乐场P 的位置,并求出它的坐标.

一次函数与几何综合(一)(讲义及答案).

一次函数与几何综合(一)(讲义) ? 课前预习 1. 若一次函数经过点 A (2,-1)和点 B (4,3),则该一次函数的表达式为 . 2. 若直线 l 平行于直线 y =-2x -1,且过点(1,4),则直线 l 的表 达式为 . 3. 如图,一次函数的图象经过点 A ,且与正比例函数 y =-x 的图象交于点 B ,则该一次函数的表达式为 . 第 3 题图 第 4 题图 4. 如图,点 A 在直线 l 1:y =3x 上,且点 A 在第一象限,过点 A 作 y 轴的平行线交直线 l 2:y =x 于点 B . (1) 设点 A 的横坐标为 t ,则点 A 的坐标为 ,点 B 的坐标为 ,线段 AB 的长为 ;(用含 t 的式子表示) (2) 若 AB =4,则点 A 的坐标是 . ? 知识点睛 1. 一次函数与几何综合的处理思路: 从已知的表达式、坐标或几何图形入手,分析特征,通过坐标与横平竖直线段长、函数表达式相互转化解决问题. 2. 函数与几何综合问题中常见转化方式: (1) 借助表达式设出点坐标,将点坐标转化为横平竖直线段 长,结合几何特征利用线段长列方程; (2) 研究几何特征,考虑线段间关系,通过设线段长进而表 达点坐标,将点坐标代入函数表达式列方程. 表达线段长: 横平线段长,横坐标相减,右减左; 竖直线段长,纵坐标相减,上减下.

1

? 精讲精练 1. 如图,直线 y = - 3 x + 3 与 x 轴、y 轴交于 A ,B 两点,点 C 4 是 y 轴负半轴上一点,若 BA =BC ,则直线 AC 的表达式为 . 第 1 题图 第 2 题图 2. 如图,在平面直角坐标系中,一次函数 y =kx +b 的图象经过点A (-2,6),且与 x 轴相交于点 B ,与正比例函数 y =3x 的图象交于点 C ,点 C 的横坐标为 1,则△OBC 的面积为 . 3. 如图,直线l :y = 3 x + 6 与 y 轴相交于点 N ,直线l :y = kx -3 1 4 2 与直线l 1 相交于点 P ,与 y 轴相交于点 M ,若△PMN 的面积为 18,则直线l 2的表达式为 . 4. 如图,一次函数 y = 1 x + 2 的图象与 y 轴交于点 A ,与正比例 3 函数 y =kx 的图象交于第二象限内的点 B ,若 AB =OB ,则 k 的值为 .

浅说函数与几何综合题的解题策略及复习

浅说函数与几何综合题的解题策略及复习 函数与几何是初中数学中的重点内容,是中考命题重点考查的内容之一;函数中的几何问题,能使代数知识图形化,而几何中的函数问题,能使图形性质代数化;由于函数与几何结合的综合题的形式灵活、立意新颖,能更好地考查学生的思维水平和数学思想方法,因而成为近几年各地中考的一类热门试题;这一特点在孝感市近三年的中考数学试卷中表现得尤为突出;如2001年的中考压轴题是以直角三角形为背景,揉合一次函数、相似形、直线与圆的位置关系等知识构成;2002年的中考压轴题是以矩形为背景,揉合轴对称、二次函数、几何证明等知识构成;2003年的压轴题是以二次函数为背景,揉合直角三角形的知识构成;因此,将函数知识与几何知识有机结合编制出综合题作为压轴题是我市中考命题的一大特点,也是今后中考命题的一大趋势; 函数知识与几何知识有机结合的综合题,根据构成命题的主要要素可分为以下两类:一类是几何元素间的函数关系问题(这类问题不妨称简称为“几函”问题),这类问题的特点是:根据已知几何图形间的位置和数量关系(如平行、全等、相似,特别是成比例)建立自变量与函数所表示的几何元素间的等量关系,求出函数关系式,运用函数的性质解决几何图形中的问题;另一类是函数图像中的几何图形的问题(如三角形、四边形,特别是圆)(这类问题不妨简称为“函几”问题),这类问题的特点是:根据已知函数图像中的几何图形的位置特征,运用数形结合方法解决有关函数、几何问题;本文特从2003年各地的中考试题中略选几例,谈一谈解决这类问题的策略和复习方法,以期达到抛砖引玉的目的。 一、函数与几何综合题例析 (一)“几函”问题: 1、线段与线段之间的函数关系: 由于这类试题的主要要素是几何图形,因此,在解决此类问题时首先要观察几何图形的特征,然后依据相关图形的性质(如直角三角形的性质、特殊四边形的性质、平行线分

一次函数与几何图形的面积专题

八年代数期末复习专题7 一次函数与几何图形的面积 例1、面积公式的应用 (1)已知直线y=k x+2与x轴、y轴围成的三角形面积为12,则k= ; (1)已知直线y=-4x+b与x轴、y轴围成的三角形面积为12,则b= 。 小结: 例2、求几何图形的面积或求点坐标 如图,在平面直角坐标系中,过点B(6,0)的直线AB与直线OA相交于点A(4,2),动点M在线段OA和射线AC上运动. (1)求直线AB的解析式. (2)求△OAC的面积. (3)是否存在点M,使△OMC的面积是△OAC的面积的?若存在求出此时点M的坐标;若不存在,说明理由. 小结:

例3、动点中的面积问题 如图,直线l1:y1=﹣x+2与x轴,y轴分别交于A,B两点,点P(m,3)为直线l1上一点, 另一直线l2:y2=x+b过点P. (1)求点P坐标和b的值; (2)若点C是直线l2与x轴的交点,动点Q从点C开始以每秒1个单位的速度向x轴正方向移动.设点Q的运动时间为t秒. ①请写出当点Q在运动过程中,△APQ的面积S与t的函数关系式; ②求出t为多少时,△APQ的面积小于3;

当堂检测: 如图直线l:y=kx+9与x轴,y轴分别交于点B,C,点B的坐标是(﹣12,0),点A的坐标为(﹣9,0),点P(x,y)是直线l上的一个动点. (1)求k的值; (2)当点P在线段BC上时,试求出△OPA的面积S与x的函数关系式; (3)请直接写出当点P运动到什么位置时,△OPA的面积为27. 能力提升: 1、如图,直角坐标系xOy中,A(0,5),直线x=﹣5与x轴交于点D,直线y=﹣x﹣ 与x轴及直线x=﹣5分别交于点C,E,点B,E关于x轴对称,连接AB. (1)求点C,E的坐标及直线AB的解析式; (2)设面积的和S=S△CDE+S四边形ABDO,求S的值; (3)在求(2)中S时,嘉琪有个想法:“将△CDE沿x轴翻折到△CDB的位置,而△CDB 与四边形ABDO拼接后可看成△AOC,这样求S便转化为直接求△AOC的面积不更快捷吗?”但大家经反复演算,发现S△AOC≠S,请通过计算解释他的想法错在哪里.

二次函数最值问题及解题技巧(个人整理)

一、二次函数线段最值问题 1、平行于x轴的线段最值问题 1)首先表示出线段两个端点的坐标 2)用右侧端点的横坐标减去左侧端点的横坐标 3)得到一个线段长关于自变量的二次函数 4)将其化为顶点式,并根据a的正负及自变量的取值范围判断最值 2、平行于y轴的线段最值问题 1)首先表示出线段两个端点的坐标 2)用上面端点的纵坐标减去下面端点的纵坐标 3)得到一个线段长关于自变量的二次函数解析式 4)将其化为顶点式,并根据a的正负及自变量的取值范围判断最值 3、既不平行于x轴,又不平行于y轴的线段最值问题 1)以此线段为斜边构造一个直角三角形,并使此直角三角形的两条直角边分别平行于x轴、y轴 2)根据线段两个端点的坐标表示出直角顶点坐标 3)根据“上减下,右减左”分别表示出两直角边长 4)根据勾股定理表示出斜边的平方(即两直角边的平方和) 5)得到一个斜边的平方关于自变量的二次函数 6)将其化为顶点式,并根据a的正负及自变量的取值范围判断最值 7)根据所求得的斜边平方的最值求出斜边的最值即可 二、二次函数周长最值问题 1、矩形周长最值问题 1)一般会给出一点落在抛物线上,从这点向两坐标轴引垂线构成一个矩形,求其周长最值 2)可先设此点坐标,点p到x轴、y轴的距离和再乘以2,即为周长 3)将其化为顶点式,并根据a的正负及自变量的取值范围判断最值 2、利用两点之间线段最短求三角形周长最值 1)首先判断图形中那些边是定值,哪些边是变量 2)利用二次函数轴对称性及两点之间线段最短找到两条变化的边,并求其和的最小值3)周长最小值即为两条变化的边的和最小值加上不变的边长 三、二次函数面积最值问题 1、规则图形面积最值问题(这里规则图形指三角形必有一边平行于坐标轴,四边形必有一组对边平行于坐标轴) 1)首先表示出所需的边长及高 2)利用求面积公式表示出面积 3)得到一个面积关于自变量的二次函数 4)将其化为顶点式,并根据a的正负及自变量的取值范围判断最值 2、不规则图形面积最值问题 1)分割。将已有的不规则图形经过分割后得到几个规则图形 2)再分别表示出分割后的几个规则图形面积,求和 3)得到一个面积关于自变量的二次函数 4)将其化为顶点式,并根据a的正负及自变量的取值范围判断最值 或1)利用大减小,不规则图形的面积可由规则的图形面积减去一个或几个规则小图形的面积来得到

一次函数与几何或动点问题

一次函数与几何或动点问题 1、直线y =-2x +2与x 轴、y 轴交于A 、B 两点,C 在y 轴的负半轴上,且OC =OB (1) 求AC 的解析 式; (2) 在 OA 的延长线上任取一点P ,作PQ ⊥BP ,交直线 AC 于Q ,试探究BP 与PQ 的数量关系,并证明你的结 论。 (3) 在(2)的前提下,作PM ⊥AC 于M ,BP 交AC 于N ,下面两个结论:①(MQ +AC )/PM 的值不变; ②(MQ -AC )/PM 的值不变,期中只有一个正确结论,请选择并加以证明。 2.如图①所示,直线L :5y mx m =+与x 轴负半轴、y 轴正半轴分别交于A 、B 两点。 (1)当OA =OB 时,试确定直线L 的解析式; (2)在(1)的条件下,如图②所示,设Q 为AB 延长线上一点,作直线OQ ,过A 、B 两点分别作AM ⊥OQ 于M ,BN ⊥OQ 于N ,若AM =4,BN =3,求MN 的长。 (3)当m 取不同的值时,点B 在y 轴正半轴上运动,分别以OB 、AB 为边,点B 为直角顶点在第一、二象限内作等腰直角△OBF 和等腰直角△ABE ,连EF 交y 轴于P 点,如图③。 问:当点B 在 y 轴正半轴上运动时,试猜想PB 的长是否为定值,若是,请求出其值,若不是,说明理由。 x y o B A C P Q x y o B A C P Q M 第2题图① 第2题图② 第2题图③

3、如图,直线1l 与x 轴、y 轴分别交于A 、B 两点,直线2l 与直线1l 关于x 轴对称,已知直线1l 的解析式为3y x =+, (1)求直线2l 的解析式;(3分) (2)过A 点在△ABC 的外部作一条直线3l ,过点B 作BE ⊥3l 于E ,过点C 作CF ⊥3l 于F 分别,请画出图形并求证:BE +CF =EF (3)△ABC 沿y 轴向下平移,AB 边交x 轴于点P ,过P 点的直线与AC 边的延长线相交于点Q ,与y 轴相交与点M ,且BP =CQ ,在△ABC 平移的过程中,①OM 为定值;②MC 为定值。在这两个结论中,有且只有一个是正确的,请找出正确的结论,并求出其值。(6分) (4)4.如图,在平面直角坐标系中,A (a ,0),B (0,b ),且a 、b 满足 . (1)求直线AB 的解析式; (2)若点M 为直线y =mx 上一点,且△ABM 是以AB 为底的等腰直角三角形,求m 值; (3)过A 点的直线交y 轴于负半轴于P ,N 点的横坐标为-1,过N 点的直线交AP 于点M ,试证明的值 为定 值. 5.如图,直线AB :y =-x -b 分别与x 、y 轴交于A (6,0)、B 两点,过点 B 的直线交x 轴负半轴于 C ,且OB :OC=3:1。 (1)求直线BC 的解析式: Q M P C B A x y

【精校版】初中二次函数(最值问题)

二次函数最值问题专题资料

名校冲刺班一题80问(最值篇) 01、如图,二次函数212124 y x x =-++与x 轴交于B C 、两点,与y 轴交于D 点,对称轴为直线l . (1)若E 为l 上一动点,求DE BE +的最小值,并求出此时E 点的坐标; (2)若E 为l 上一动点,求DE EC -的最大值,并求出此时E 点的坐标; (3)若K 为直线CD 上一动点,求BK OK +的最小值,并求出此时K 点坐标; (4)若F N 、分别为直线CD 、x 轴上的动点,求DN FN BF ++的最小值,并求出此时F N 、的坐标;

(5)若R 为y 轴上一点,满足CR BD ⊥,S T 、为直线CD 上的动点,且满足2ST =,求 RS ST TO ++的最小值,并求出此时tan TOC ∠的值; (6)若M 点从C 点出发,以1个单位每秒的速度运动到y 轴,再以10个单位每秒的速度 沿着y 轴运动到D 点,求从C 点到D 点的最短时间; (7)若一点从O 点出发以1个单位每秒的速度先到达直线BD 上一点Z ,再从Z 到达y 轴 上一点K ,求整个过程的最短时间; (8)E 为对称轴与x 轴的交点,从E 出发以1个单位每秒的速度运动到直线CD 上一点F , 再从F 运动到y 轴,求整个运动过程的最短时间;

(9)如图,Q 为一象限抛物线上一点,过Q 作y 轴平行线交线段CD 于R ,求线段QR 的 最大值; (10)如图,Q 为一象限抛物线上一点,过Q 作QS 垂直于直线CD ,求QS 的最大值; (11)如图,Q 为一象限抛物线上一点,连接BQ 交直线CD 于点R ,求QR BR 的最大值; (12)如图,Q 为一象限抛物线上一点,求DQC 面积的最大值;

(完整版)一次函数与几何图形综合题,精选十道,道道经典。

专题训练:一次函数与几何图形综合 1、直线y=-2x+2与x 轴、y 轴交于A 、B 两点,C 在y 轴的负半轴上,且OC=OB (1) 求AC 的解析式; (2) 在OA 的延长线上任取一点P,作PQ ⊥BP,交直线AC 于Q,试探究BP 与PQ 的数量关系,并 证明你的结论。 (3) 在(2)的前提下,作PM ⊥AC 于M,BP 交AC 于N,下面两个结论:①(MQ+AC)/PM 的值不 变;②(MQ-AC)/PM 的值不变,期中只有一个正确结论,请选择并加以证明。 2.(本题满分12分)如图①所示,直线L :5y mx m =+与x 轴负半轴、y 轴正半轴分别交于A 、B 两点。 (1)当OA=OB 时,试确定直线L 的解析式; x y o B A C P Q x y o B A C P Q M 第2题图①

(2)在(1)的条件下,如图②所示,设Q 为AB 延长线上一点,作直线OQ ,过A 、B 两点分别作AM ⊥OQ 于M ,BN ⊥OQ 于N ,若AM=4,BN=3,求MN 的长。 (3)当m 取不同的值时,点B 在y 轴正半轴上运动,分别以OB 、AB 为边,点B 为直角顶点在第一、二象限内作等腰直角△OBF 和等腰直角△ABE ,连EF 交y 轴于P 点,如图③。 问:当点B 在 y 轴正半轴上运动时,试猜想PB 的长是否为定值,若是,请求出其值,若不是,说明理由。 3、如图,直线1l 与x 轴、y 轴分别交于A 、B 两点,直线2l 与直线1l 关于x 轴对称,已知直线1l 的解析式为3y x =+, (1)求直线2l 的解析式;(3分) 第2题图② 第2题图③ C B A l 2 l 1 x y

二次函数和几何综合压轴题题型归纳

学生: 科目: 数 学 教师: 刘美玲 一、二次函数和特殊多边形形状 二、二次函数和特殊多边形面积 三、函数动点引起的最值问题 四、常考点汇总 1、两点间的距离公式:()()22B A B A x x y y AB -+-= 2、中点坐标:线段AB 的中点C 的坐标为:??? ??++22 B A B A y y x x , 直线11b x k y +=(01≠k )与22b x k y +=(02≠k )的位置关系: (1)两直线平行?21k k =且21b b ≠ (2)两直线相交?21k k ≠ (3)两直线重合?21k k =且21b b = (4)两直线垂直?121-=k k 3、一元二次方程有整数根问题,解题步骤如下: ① 用?和参数的其他要求确定参数的取值范围; ② 解方程,求出方程的根;(两种形式:分式、二次根式) ③ 分析求解:若是分式,分母是分子的因数;若是二次根式,被开方式是完全平方式。 例:关于x 的一元二次方程()0122 2 =-m x m x ++有两个整数根,5<m 且m 为整数,求m 的值。 4、二次函数与x 轴的交点为整数点问题。(方法同上) 例:若抛物线()3132 +++=x m mx y 与x 轴交于两个不同的整数点,且m 为正整数,试确定 此抛物线的解析式。 课 题 函数的综合压轴题型归类 教学目标 1、 要学会利用特殊图形的性质去分析二次函数与特殊图形的关系 2、 掌握特殊图形面积的各种求法 重点、难点 1、 利用图形的性质找点 2、 分解图形求面积 教学内容

5、方程总有固定根问题,可以通过解方程的方法求出该固定根。举例如下: 已知关于x 的方程2 3(1)230mx m x m --+-=(m 为实数),求证:无论m 为何值,方程总有一个固定的根。 解:当0=m 时,1=x ; 当0≠m 时,()032 ≥-=?m ,()m m x 213?±-= ,m x 3 21-=、12=x ; 综上所述:无论m 为何值,方程总有一个固定的根是1。 6、函数过固定点问题,举例如下: 已知抛物线22 -+-=m mx x y (m 是常数),求证:不论m 为何值,该抛物线总经过一个固定的点,并求出固定点的坐标。 解:把原解析式变形为关于m 的方程()x m x y -=+-122 ; ∴ ???=-=+-0 1 02 2x x y ,解得:???=-=1 1 x y ; ∴ 抛物线总经过一个固定的点(1,-1)。 (题目要求等价于:关于m 的方程()x m x y -=+-122 不论m 为何值,方程恒成立) 小结.. :关于x 的方程b ax =有无数解????==0 b a 7、路径最值问题(待定的点所在的直线就是对称轴) (1)如图,直线1l 、2l ,点A 在2l 上,分别在1l 、2l 上确定两点M 、N ,使得MN AM +之和最小。 (2)如图,直线1l 、2l 相交,两个固定点A 、B ,分别在1l 、2l 上确定两点M 、N ,使得 AN MN BM ++之和最小。

二次函数最值问题解答题专项练习60题(有答案)

二次函数最值专项练习60题 1.画出抛物线y=4(x﹣3)2+2的大致图象,写出它的最值和增减性. 2.如图,二次函数y=ax2+bx+c的图象经过A(﹣1,0)、B(2,3)两点,求出此二次函数的解析式;并通过配方法求出此抛物线的对称轴和二次函数的最大值. 3.已知二次函数y=x2﹣x﹣2及实数a>﹣2,求 (1)函数在一2<x≤a的最小值; (2)函数在a≤x≤a+2的最小值. 4.已知函数y=x2+2ax+a2﹣1在0≤x≤3范围内有最大值24最小值3,求实数a的值. 5.我们知道任何实数的平方一定是一个非负数,即:(a+b)2≥0,且﹣(a+b)2≤0.据此,我们可以得到下面的推理: ∵x2+2x+3=(x2+2x+1)+2=(x+1)2+2,而(x+1)2≥0 ∴(x+1)2+2≥2,故x2+2x+3的最小值是2. 试根据以上方法判断代数式3y2﹣6y+11是否存在最大值或最小值?若有,请求出它的最大值或最小值.

6.如图所示,已知平行四边形ABCD的周长为8cm,∠B=30°,若边长AB=x(cm). (1)写出?ABCD的面积y(cm2)与x的函数关系式,并求自变量x的取值范围. (2)当x取什么值时,y的值最大?并求最大值. 7.求函数y=2x2﹣ax+1当0≤x≤1时的最小值. 8.已知m,n是关于x的方程x2﹣2ax+a+6=0的两实根,求y=(m﹣1)2+(n﹣1)2的最小值. 9.当﹣1≤x≤2时,求函数y=f(x)=2x2﹣4ax+a2+2a+2的最小值,并求最小值为﹣1时,a的所有可能的值.10.已知二次函数y=x2﹣6x+m的最小值为1,求m的值.

(完整版)一次函数与几何综合练习(含答案)

一次函数与几何综合 1.如图,在平面直角坐标系中,点A 的坐标为(2,0),以OA 为边在第四象限内作等边△AOB ,点C 为x 轴的正半轴上一动点(OC >2),连接BC ,以BC 为边在第四象限内作等边△CBD . (1)试问△OBC 与△ABD 全等吗?并证明你的结论; (2)直线AD 与y 轴交于点E ,在C 点移动的过程中,E 点的位置是否发生变化?如果不变求出它的坐标;如果变化,请说明理由. 2.如图1,在平面直角坐标系中,直线y =1 2 x m -+(m >0)与x 轴,y 轴分别交 于点A ,B ,过点A 作x 轴的垂线交直线y =x 于点D ,C 点坐标(m ,0),连接 CD . (1)求证:CD ⊥AB ; (2)连接BC 交OD 于点H (如图2),求证:DH = 3 2 BC . y =-1 2 x y =-1 2 x 图1 图2

3.如图,将边长为4的正方形置于平面直角坐标系第一象限,使AB落在x轴正 半轴上,直线 48 33 y x =-经过点C,与x轴交于点E. (1)求四边形AECD的面积; (2)若直线l经过点E,且将正方形ABCD分成面积相等的两部分,求直线l 的解析式; (3)若直线l1经过点F(-3 2 ,0)且与直线y=3x平行,将(2)中直线l沿着 y轴向上平移1个单位,交x轴于点M,交直线l1于点N,求△NMF的面积. 4.已知,如图,在平面直角坐标系内,点A的坐标为(0,24),经过原点的直线l1与经过点A的直线l2相交于点B,点B坐标为(18,6). (1)求直线l1,l2的表达式; (2)点C为线段OB上一动点(点C不与点O,B重合),作CD∥y轴交直线l2于点D,过点C,D分别向y轴作垂线,垂足分别为F,E,得到矩形CDEF. ①设点C的纵坐标为a,求点D的坐标(用含a的代数式表示); ②若矩形CDEF的面积为108,求出点C的坐标.

一次函数的与几何图形综合的题目(含答案)

一次函数与几何图形综合专题讲座 思想方法小结 : (1)函数方法. 函数方法就是用运动、变化的观点来分析题中的数量关系,抽象、升华为函数的模型,进而解决有关问题的方法.函数的实质是研究两个变量之间的对应关系,灵活运用函数方法可以解决许多数学问题. (2)数形结合法. 数形结合法是指将数与形结合,分析、研究、解决问题的一种思想方法,数形结合法在解决与函数有关的问题时,能起到事半功倍的作用. 知识规律小结 : (1)常数k ,b 对直线y =kx +b (k ≠0)位置的影响. ①当b >0时,直线与y 轴的正半轴相交; 当b =0时,直线经过原点; 当b ﹤0时,直线与y 轴的负半轴相交. ②当k ,b 异号时,即-k b >0时,直线与x 轴正半轴相交; 当b =0时,即- k b =0时,直线经过原点; 当k ,b 同号时,即-k b ﹤0时,直线与x 轴负半轴相交. ③当k >O ,b >O 时,图象经过第一、二、三象限; 当k >0,b =0时,图象经过第一、三象限; 当b >O ,b <O 时,图象经过第一、三、四象限; 当k ﹤O ,b >0时,图象经过第一、二、四象限; 当k ﹤O ,b =0时,图象经过第二、四象限;

当b <O ,b <O 时,图象经过第二、三、四象限. (2)直线y =kx +b (k ≠0)与直线y =kx (k ≠0)的位置关系. 直线y =kx +b (k ≠0)平行于直线y =kx (k ≠0) 当b >0时,把直线y =kx 向上平移b 个单位,可得直线y =kx +b ; 当b ﹤O 时,把直线y =kx 向下平移|b |个单位,可得直线y =kx +b . (3)直线b 1=k 1x +b 1与直线y 2=k 2x +b 2(k 1≠0 ,k 2≠0)的位置关系. ①k 1≠k 2?y 1与y 2相交; ②?? ?=≠2 12 1b b k k ?y 1与y 2相交于y 轴上同一点(0,b 1)或(0,b 2) ; ③???≠=21 21,b b k k ?y 1与y 2平行; ④?? ?==2 121, b b k k ?y 1与y 2重合. 例题精讲: 1、直线y =-2x +2与x 轴、y 轴交于A 、B 两点,C 在y 轴的负半轴上,且OC =OB (1) 求AC (2) 在OA 的延长线上任取一点P ,作PQ ⊥BP ,交直线AC 于Q ,试探究BP 与PQ 的数量关系, 并证明你的结论。 (3) 在(2)的前提下,作PM ⊥AC 于M ,BP 交AC 于N ,下面两个结论:①(MQ +AC )/PM x y

一次函数与几何图形的综合运用

富乐实验中学:魏世君 《一次函数与几何图形的综合运用》 教学目标:继续探索一次函数与几何图形的综合运用。 学情分析:学生已经学习和掌握了一次函数与一元一次方程、一元一次不等(组)、二元一次方程组有关的综合性问题;前面也探讨了一次函数与简单的几何图形的有关问题,具有一定的分析能力和解题能力。本节课是在已学过的类型上进行加深和变式,加入了几何的平移、折叠、运动性问题,渗透了分类讨论和化归思想。 教学重点:一次函数与几何变换的综合问题。 教学难点:一次函数与几何变换的综合问题。 教学过程: 一、知识回顾 1、一次函数的一般形式是 ,它的图象是 ,与x 轴的交点坐标为 ,与y 轴的交点坐标为 ; 2、待定系数法求一次函数解析式的步骤是 。 二、热身训练 例:如图,一次函数34 3+-=x y 的图象分别与x 轴、y 轴交于点A 、B ; (1)点A 的坐标是 线段OA= (2)点B 的坐标是 线段OB= (3)线段AB= ; (4)________AOB S ?=, (5)将直线AB 向下平移3个单位,此时直线对应的函数解析式为 变式训练:若点P 是直线AB 上的一个动点,当点P 在第一象限运动时, (1)求△AOP 的面积S 与自变量x 的函数关系式,并写出自变量x 的取值范围; (2)当3AOP S ?=,P 点坐标为 ,此时在x 轴上求作一点M ,使得BM+PM 的和最小,作出图形并求出点M 的坐标。

反思提炼: 师生活动:学生认真审题,教师用几何画板动态演示该题的运动过程,引导学生分析问题,得出解答过程。 三、自主探究:若以线段AB为直角边,在第一象限内作等腰直角△ABC,求斜边所在直线的函数解析式。 反思提炼: 师生活动:学生认真审题,自主作图,在在小组内进行讨论,教师用几何画板动态演示作图过程,引导学生分析问题,得出解答过程。 四、合作探究:如图,若在x轴上有一点C,点H在y轴上,将△AOB沿AH折叠,使点B恰好与点C重合;(1)求出点C和点H的坐标; (2)在平面坐标系内确定一点D,使得以点A、B、C、D为顶点的四边形为平行四边形,求出点D的坐标。 反思提炼: 师生活动:学生认真审题,自主作图,在在小组内进行讨论,教师用几何画板动态演示作图过程,引导学生分析问题,得出解答过程。对于分类讨论做到不重不漏。

反比例函数与几何图形的综合

代几结合专题:反比例函数与几何图形的综合(选做) ——代几结合,掌握中考风向标 ◆类型一 与三角形的综合 1.(2016·云南中考)位于第一象限的点E 在反比例函数y =k x 的图象上,点F 在x 轴的 正半轴上,O 是坐标原点.若EO =EF ,△EOF 的面积等于2,则k 的值为( ) A .4 B .2 C .1 D .-2 2.(2016·菏泽中考)如图,△OAC 和△BAD 都是等腰直角三角形,∠ACO =∠ADB =90°,反比例函数y =6 x 在第一象限的图象经过点B ,则△OAC 与△BAD 的面积之差S △OAC -S △BAD 为( ) A .36 B .12 C .6 D .3 3.如图,点A 在双曲线y =5x 上,点B 在双曲线y =8 x 上,且AB ∥x 轴,则△OAB 的 面积等于________. 第3题图 第4题图 4.(2016·包头中考)如图,在平面直角坐标系中,点A 在第二象限内,点B 在x 轴上,∠AOB =30°,AB =BO ,反比例函数y =k x (x <0)的图象经过点A ,若S △AOB =3,则k 的值为________. 5.(2016·宁波中考)如图,点A 为函数y =9 x (x >0)图象上一点,连接OA ,交函数y =1 x (x >0)的图象于点B ,点C 是x 轴上一点,且AO =AC ,则△ABC 的面积为________.

第5题图 第6题图 6.★如图,若双曲线y =k x (k >0)与边长为3的等边△AOB (O 为坐标原点)的边OA 、 AB 分别交于C 、D 两点,且OC =2BD ,则k 的值为________. 7.(2016·宁夏中考)如图,Rt △ABO 的顶点O 在坐标原点,点B 在x 轴上,∠ABO =90°,∠AOB =30°,OB =23,反比例函数y =k x (x >0)的图象经过OA 的中点C ,交 AB 于点D . (1)求反比例函数的关系式; (2)连接CD ,求四边形CDBO 的面积. 8.(2016·大庆中考)如图,P 1、P 2是反比例函数y =k x (k >0)在第一象限图象上的两点,点A 1的坐标为(4,0).若△P 1OA 1与△P 2A 1A 2均为等腰直角三角形,其中点P 1、P 2为直角顶点. (1)求反比例函数的解析式; (2)①求P 2的坐标;②根据图象直接写出在第一象限内当x 满足什么条件时,经过点P 1、 P 2的一次函数的函数值大于反比例函数y =k x 的函数值.

二次函数最值问题(含答案)

二次函数最值问题 一.选择题(共8小题) 1.如果多项式P=a2+4a+2014,则P的最小值是() A.2010 B.2011 C.2012 D.2013 2.已知二次函数y=x2﹣6x+m的最小值是﹣3,那么m的值等于()A.10 B.4 C.5 D.6 3.若二次函数y=ax2+bx+c的图象开口向下、顶点坐标为(2,﹣3),则此函数有() A.最小值2 B.最小值﹣3 C.最大值2 D.最大值﹣3 4.设x≥0,y≥0,2x+y=6,则u=4x2+3xy+y2﹣6x﹣3y的最大值是()A.B.18 C.20 D.不存在 5.二次函数的图象如图所示,当﹣1≤x≤0时,该函数的最大值是() A.3.125 B.4 C.2 D.0 6.已知二次函数y=(x﹣h)2+1(h为常数),在自变量x的值满足1≤x≤3的情况下,与其对应的函数值y的最小值为5,则h的值为() A.1或﹣5 B.﹣1或5 C.1或﹣3 D.1或3 7.二次函数y=﹣(x﹣1)2+5,当m≤x≤n且mn<0时,y的最小值为2m,最大值为2n,则m+n的值为() A.B.2 C.D. 8.如图,抛物线经过A(1,0),B(4,0),C(0,﹣4)三点,点D是直线BC 上方的抛物线上的一个动点,连结DC,DB,则△BCD的面积的最大值是()

A.7 B.7.5 C.8 D.9 二.填空题(共2小题) 9.已知二次函数y=2(x+1)2+1,﹣2≤x≤1,则函数y的最小值是,最大值是. 10.如图,在直角坐标系中,点A(0,a2﹣a)和点B(0,﹣3a﹣5)在y轴上, =6.当线段OM最长时,点M的坐标为. 点M在x轴负半轴上,S △ABM 三.解答题(共3小题) 11.在平面直角坐标系中,O为原点,直线l:x=1,点A(2,0),点E,点F,点M都在直线l上,且点E和点F关于点M对称,直线EA与直线OF交于点P.(Ⅰ)若点M的坐标为(1,﹣1), ①当点F的坐标为(1,1)时,如图,求点P的坐标; ②当点F为直线l上的动点时,记点P(x,y),求y关于x的函数解析式.(Ⅱ)若点M(1,m),点F(1,t),其中t≠0,过点P作PQ⊥l于点Q,当OQ=PQ时,试用含t的式子表示m.

一次函数与几何图形综合题

一次函数与几何图形 1、 平面直角坐标系中,点A 的坐标为(4,0),点P 在直线y=-x-m 上,且AP=OP=4,则m 的值是多少? 2、如图,已知点A 的坐标为(1,0),点B 在直线y=-x 上运动,当线段AB 最短时,试求点B 的坐标。 3、如图,在直角坐标系中,矩形OABC 的顶点B 的坐标为(15,6),直线y=1/3x+b 恰好将矩形OABC 分为面积相等的两部分,试求b 的值。 4、如图,在平面直角坐标系中,直线y= 2x —6与x 轴、y 轴分别相交于点A 、B ,点C 在x 轴上,若△ABC 是等腰三角形,试求点C 的坐标。 5、在平面直角坐标系中,已知A (1,4)、B (3,1),P 是坐标轴上一点,(1)当P 的坐标为多少时,AP+BP 取最小值,最小值为多少? 当P 的坐标为多少时,AP-BP 取最大值,最大

值为多少? 6、如图,已知一次函数图像交正比例函数图像于第二象限的A点,交x轴于点B(-6,0),△AOB的面积为15,且AB=AO,求正比例函数和一次函数的解析式。 7、已知一次函数的图象经过点(2,20),它与两坐标轴所围成的三角形的面积等于1,求这个一次函数的表达式。 8、正方形ABCD的边长是4,将此正方形置于平面直角坐标系中,使AB在x轴负半轴上,A 点的坐标是(-1,0), (1)经过点C的直线y=-4x-16与x轴交于点E,求四边形AECD的面积; (2)若直线L经过点E且将正方形ABCD分成面积相等的两部分,求直线L的解析式。

9、在平面直角坐标系中,一次函数y=kx+b(b 小于0)的图像分别与x 轴、y 轴和直线x=4交于A 、B 、C ,直线x=4与x 轴交于点D ,四边形OBCD 的面积为10,若A 的横坐标为-1/2,求此一次函数的关系式 10、在平面直角坐标系中,一个一次函数的图像过点B(-3,4),与y 轴交于点A ,且OA=OB :求这个一次函数解析式 11、如图,A 、B 分别是x 轴上位于原点左右两侧的点,点P (2,m )在第一象限,直线PA 交y 轴于点C (0,2),直线PB 交y 轴于点D ,S AOP =6. 求:(1)△COP 的面积 (2)求点A 的坐标及m 的值; (3)若S BOP =S DOP ,求直线BD 的解析式 12、一次函数y=- 3 3x+1的图像与x 轴、y 轴分别交于点A 、B ,以AB 为边在第一象限内做等边△ABC

一次函数与几何图形综合专题

一次函数与几何图形综合专题思想方法小结: (1)函数方法. 函数方法就是用运动、变化的观点来分析题中的数量关系,抽象、升华为函数的模型,进而解决有关问题的方法.函数的实质是研究两个变量之间的对应关系,灵活运用函数方法可以解决许多数学问题. (2)数形结合法. 数形结合法是指将数与形结合,分析、研究、解决问题的一种思想方法,数形结合法在解决与函数有关的问题时,能起到事半功倍的作用.知识规律小结: (1)常数k,b对直线y=kx+b(k≠0)位置的影响. ①当b>0时,直线与y轴的正半轴相交; 当b=0时,直线经过原点; 当b﹤0时,直线与y轴的负半轴相交. b>0时,直线与x轴正半轴相交; ②当k,b异号时,即- k b=0时,直线经过原点; 当b=0时,即- k b﹤0时,直线与x轴负半轴相交. 当k,b同号时,即- k ③当k>O,b>O时,图象经过第一、二、三象限; 当k>0,b=0时,图象经过第一、三象限; 当b>O,b<O时,图象经过第一、三、四象限; 当k﹤O,b>0时,图象经过第一、二、四象限; 当k﹤O,b=0时,图象经过第二、四象限;

当b <O ,b <O 时,图象经过第二、三、四象限. (2)直线y=kx+b (k ≠0)与直线y=kx(k ≠0)的位置关系. 直线y=kx+b(k ≠0)平行于直线y=kx(k ≠0) 当b >0时,把直线y=kx 向上平移b 个单位,可得直线y=kx+b ; 当b ﹤O 时,把直线y=kx 向下平移|b|个单位,可得直线y=kx+b . (3)直线b 1=k 1x+b 1与直线y 2=k 2x+b 2(k 1≠0 ,k 2≠0)的位置关系. ①k 1≠k 2?y 1与y 2相交; ②?? ?=≠2 121b b k k ?y 1与y 2相交于y 轴上同一点(0,b 1)或(0,b 2); ③?? ?≠=2 121,b b k k ?y 1与y 2平行; ④???==2 121,b b k k ?y 1与y 2重合. 例题精讲: 1、直线y=-2x+2与x 轴、y 轴交于A 、B 两点,C 在y 轴的负半轴上,且OC=OB (1) 求AC (2) 在 OA 的延长线上任取一点P,作PQ ⊥BP,交直线AC 于Q,试探究BP 与PQ 的数量关系,并证明你的结论。 (3) 在(2)的前提下,作 PM ⊥AC 于M,BP 交AC 于N,下面两个结论:① x

初中数学之二次函数最值问题

初中数学之二次函数最值问题 一、选择题 1.(2008年山东省潍坊市)若一次函数的图像过第一、三、四象限,则函数() A.有最大值 B..有最大值 C.有最小值 D.有最小值 2.(2008浙江杭州)如图,记抛物线的图象与正半轴的交点为,将线段分成等份.设分点分别为,,,,过每个分点作轴的垂线,分别与抛物线交于点,,…,,再记直角三角形,,…的面积分别为,,…,这样就有,,…;记,当越来越大时,你猜想最接近的常数是()A.B.C.D. 3.(08绵阳市)二次函数y = ax2 + bx + c的部分对应值如下表: 利用二次函数的图象可知,当函数值y<0时,x的取值范围是(). A.x<0或x>2 B.0<x<2 C.x<-1或x>3 D.-1<x <3 4.(2008年浙江省嘉兴市)一个函数的图象如图,给出以下结论: ①当时,函数值最大; ②当时,函数随的增大而减小; ③存在,当时,函数值为0. 其中正确的结论是() A.①②B.①③C.②③D.①②③

5.(2008 湖北恩施)将一张边长为30㎝的正方形纸片的四角分别剪去一个边长为x㎝的 小正方形,然后折叠成一个无盖的长方体.当x取下面哪个数值时,长方体的体积最大() A. 7 B. 6 C. 5 D. 4 6.(2008泰安)如图所示是二次函数的图象在轴上方的一部分,对于这段图象与轴所围成的阴影部分的面积,你认为与其最.接近的值是() A.4 B.C.D. 7.(2008山东泰 安)函数的图象如 图所示,下列对该 的是() 函数性质的论断不可能正确 ..... A.该函数的图象是中心对称图形 B.当时,该函数在时取得最小值2 C.在每个象限内,的值随值的增大而减小 D.的值不可能为1 8.若一次函数的图像过第一、三、四象限,则函数() A.有最大值 B..有最大值 C.有最小值 D.有最小值 二、填空题 1.某商店经营一种水产品,成本为每千克40元的水产品,据市场分析,若按每千克50元

一次函数与几何图形综合

一次函数与几何图形综合 思想方法小结 :(1)函数方法.(2)数形结合法. 例题1、直线y =-2x +2与x 轴、y 轴交于A 、B 两点,C 在y 轴的负半轴上,且OC =OB (1) 求AC (2) 在OA 的延长线上任取一点P ,作PQ ⊥BP ,交直线AC 于Q ,试探究BP 与PQ 的数量关系, 并证明你的结论。 (3) 在(2)的前提下,作PM ⊥AC 于M ,BP 交AC 于N ,下面两个结论:①(MQ +AC )/PM 的 值不变;②(MQ -AC )/PM 的值不变,期中只有一个正确结论,请选择并加以证明。 x y x y

2、如图①所示,直线L :5y mx m =+与x 轴负半轴、y 轴正半轴分别交于A 、B 两点。 (1)当OA =OB 时,试确定直线L 的解析式; (2)在(1)的条件下,如图②所示,设Q 为AB 延长线上一点,作直线OQ ,过A 、B 两点分别作AM ⊥OQ 于M ,BN ⊥OQ 于N ,若AM =4,BN =3,求MN 的长。 (3)当m 取不同的值时,点B 在y 轴正半轴上运动,分别以OB 、AB 为边,点B 为直角顶点在第一、二象限内作等腰直角△OBF 和等腰直角△ABE ,连EF 交y 轴于P 点,如图③。 问:当点B 在 y 轴正半轴上运动时,试猜想PB 的长是否为定值,若是,请求出其值,若不是,说明理由。 第2题图① 第2题图② 第2题图③

3、如图,在平面直角坐标系中,A(a,0),B(0,b),且a、b满足. (1)求直线AB的解析式; (2)若点M为直线y=mx上一点,且△ABM是以AB为底的等腰直角三角形,求m值; (3)过A点的直线交y轴于负半轴于P,N点的横坐标为-1,过N点的直线交AP于点M,试证明的值为定值.

浅说函数与几何综合题的解题策略及复习

浅说函数与几何综合题的解题策略及复习 Last revision on 21 December 2020

浅说函数与几何综合题的解题策略及复习 函数与几何是初中数学中的重点内容,是中考命题重点考查的内容之一;函数中的几何问题,能使代数知识图形化,而几何中的函数问题,能使图形性质代数化;由于函数与几何结合的综合题的形式灵活、立意新颖,能更好地考查学生的思维水平和数学思想方法,因而成为近几年各地中考的一类热门试题;这一特点在孝感市近三年的中考数学试卷中表现得尤为突出;如2001年的中考压轴题是以直角三角形为背景,揉合一次函数、相似形、直线与圆的位置关系等知识构成;2002年的中考压轴题是以矩形为背景,揉合轴对称、二次函数、几何证明等知识构成;2003年的压轴题是以二次函数为背景,揉合直角三角形的知识构成;因此,将函数知识与几何知识有机结合编制出综合题作为压轴题是我市中考命题的一大特点,也是今后中考命题的一大趋势; 函数知识与几何知识有机结合的综合题,根据构成命题的主要要素可分为以下两类:一类是几何元素间的函数关系问题(这类问题不妨称简称为“几函”问题),这类问题的特点是:根据已知几何图形间的位置和数量关系(如平行、全等、相似,特别是成比例)建立自变量与函数所表示的几何元素间的等量关系,求出函数关系式,运用函数的性质解决几何图形中的问题;另一类是函数图像中的几何图形的问题(如三角形、四边形,特别是圆)(这类问题不妨简称为“函几”问题),这类问题的特点是:根据已知函数图像中的几何图形的位置特征,运用数形结合方法解决有关函数、几何问题;本文特从2003年各地的中考试题中略选几例,谈一谈解决这类问题的策略和复习方法,以期达到抛砖引玉的目的。 一、函数与几何综合题例析 (一)“几函”问题: 1、线段与线段之间的函数关系: 由于这类试题的主要要素是几何图形,因此,在解决此类问题时首先要观察几何图形的特征,然后依据相关图形的性质(如直角三角形的性质、特殊四边形的性质、平行线分线段成比例定理及其推论、相似三角形的性质、圆的基本性质、圆中的比例线段等等)找出几何元素之间的联系,最后将它们的联系用数学式子表示出来,并整理成函数关系式,在此函数关系式的基础上再来解决其它的问题;解决此类问题时,要特别注意自变量的 取值范围。 例1 如图,AB是半圆的直径,O为圆心 AB=6,延长BA到F,使FA=AB,若P为线段 AF上的一个动点(不与A重合),过P点作半 圆的切线,切点为C,过B点作BE⊥PC交PC 的延长线于E,设AC=x,AC+BE=y,求y与x 的函数关系式及x的取值范围。(2003年山东省烟台市中考题)O

相关文档
最新文档