第一章线弹性断裂力学(精)

第一章线弹性断裂力学(精)
第一章线弹性断裂力学(精)

第一章 线弹性断裂力学

线弹性断裂力学认为,材料和构件在断裂以前基本上处于弹性范围内,可以把物体视为带有裂纹的弹性体。研究裂纹扩展有两种观点:一种是能量平衡的观点,认为裂纹扩展的动力是构件在裂纹扩展中所释放出的弹性应变能,它补偿了产生新裂纹表面所消耗的能量,如Griffith 理论;一种是应力场强度的观点,认为裂纹扩展的临界状态是裂纹尖端的应力场强度达到材料的临界值,如Irwin 理论。(李灏)

§1.1 线弹性断裂力学的基本理论

线弹性断裂力学的基本理论包括:Griffith 理论,即能量释放率理论;Irwin 理论,即应力强度因子理论。

一、Griffith 理论

1913年,Inglis 研究了无限大板中含有一个穿透板厚的椭圆孔的问题,得到了弹性力学精确分析解,称之为Inglis 解。1920年,Griffith 研究玻璃与陶瓷材料脆性断裂问题时,将Inglis 解中的短半轴趋于0,得到Griffith 裂纹。

Griffith 研究了如图1-1所示厚度为B 的薄平板。上、下端受到均匀拉应力σ作用,将板拉长后,固定两端。由Inglis 解得到由于裂纹存在而释放的弹性应变能为

2

222211

U a B

E U a B

E

νπσπσ-==平面应变

平面应力

图1-1

其中:ν为泊松比。

另一方面,Griffith 认为,裂纹扩展形成新的表面,需要吸收的能量为

4S a B γ=

其中:γ为单位面积上的表面能。

如果应变能释放率

d d U A ,等于形成新表面所需要吸收的能量率d d S

A

,则裂纹达到临界状态;如果应变能释放率d d U A 小于吸收的能量率d d S

A

,则裂纹稳定;如

果应变能释放率d d U A 大于吸收的能量率d d S

A

,则裂纹不稳定。因此可以得到如下

表达式

d

()0d U S A -= 临界状态 d

()0d U S A -< 裂纹稳定 d

()0d U S A

-> 裂纹不稳定 能量关系为()d d W U S dA dA

-= (其中W 为外力功) 板中初始的应变能2

0122U V V E

σσε==

,形成裂纹后系统的总能量012C U U U =-+.

以平面应力为例:

2

22

42a U V a E

E σπσγ=-

+?2240U a a E

πσγ?=-+=?

可得2

2c E a γ

πσ=,又22

220U a E

πσ?=-

2c E a γ

πσ=

时,系统有极大内能。

当c a a <时,a 增大,内能增大,需补充能量,若无裂纹不会扩展. 当c a a >时,a 增大,内能减少,无需补充能量,裂纹即扩展.

同理:当a 固定,1

22()c E a γσπ=,当c σσ>时裂纹失稳扩展. 对于平面应变

:222(1)c c E a γπνσσ?

=?-?

??=

??

Griffith 判据:

(1)当外加应力σ超过临界应力c σ时;(2)当裂纹尺寸a 超过临界裂纹尺寸c

a

时;则脆性物体断裂.(适用于理想的脆性材料).

二、Orowan 与Irwin 对griffith 理论的解释与发展

Orowan 在1948年指出:金属材料考虑塑性变形,p U ----塑性变形功

.

c σ=平面应变平面应力 2222()(1)2()P c P E U a E U γπνσ

γπσ+??-?=?+???平面应变平面应力 Irwin 在1948年引入解记号G

1()2G W U a

?=-?

其中W 为外力功,U 为裂纹存在释放出的应变能,G 为裂纹能量释放率(裂纹扩展能力).

判据(G 准则):

c G G =

其中:c G 是临界值,由试验确定.

Irwin 的理论适用于金属材料的准脆性破坏—破坏前裂纹尖端附近有相当范围的塑性变形。

该理论的提出是线弹性断裂力学诞生的标志。

三、应力强度因子理论

Irwin 判据提出后的最初十年未取得显著的成果,主要原因是G 计算不方便.而在Irwin 之前,发现裂纹尖端的奇异性(如图1-2),即

:

(,)(0)iy r r σθ∝

图1-2

基于这种性质,1957年Irwin 提出的解的物理量—应力强度因子K ,即:

(,0)yy r K r →=

K 是仅与裂纹顶端局部相关联的量,确定比G 容易.

1960年Irwin 用石墨做实验,测定开始裂纹扩展时的c K K →. 断裂判据(K 准则):

c K K =.

总结:1920年Griffith 理论提出,1960年线弹性断裂力学最终建立.

§1.2 裂纹的类型.裂纹尖端附近的应力场和位移值

一、裂纹的类型

1.按裂纹的几何类型分类:

穿透裂纹:裂纹沿构件整个厚度贯穿.

表面裂纹:深度和长度皆处于构件表面的裂纹,可简化为半椭圆裂纹.

深埋裂纹:完全处于构件内部的裂纹,片状圆形或片状椭圆裂纹.

2.按裂纹的受力和断裂特征分类:

张开型(Ⅰ型):拉应力垂直于裂纹扩展面,裂纹上、下表面沿作用力的方向张开,裂纹沿着裂纹面向前扩展,是最常见的一种裂纹.

滑开型(Ⅱ型):裂纹扩展受切应力控制,切应力平行作用于裂纹面而且垂直于裂纹线,裂纹沿裂纹面平行滑开扩展.

撕开型裂纹(Ⅲ型):在平行于裂纹面而与裂纹前沿线方向平行的剪应力作用下,裂纹沿裂纹面撕开扩展.

二、裂纹尖端附近的应力场.位移场

1.Ⅰ型裂纹

问题的描述:无限大板,有一长为2a 的穿透裂纹,在无限远处受双向拉应力σ的作用,确定裂纹尖端附近的应力场和位移场.

Irwin 应用Westergaurd 的方法进行分析. (1)Westergaurd 应力函数

弹性力学平面问题的求解,归结为要求求一个应力函数.该函数边界条件及双调和方程.这类问题的应力,应变和位移.

1939年Westergaurd 应力函数

Re Im Z y Z ?=+ⅠⅠ

其中:Z 为解析函数.,Z Z 为一次积分和二次积分. 首先证明:?为应力函数.即40??=满足双调和方程.

42222

(

)()x y x y ?????=+?+???? 因为:222Re (Im )Z y Z ??=?+?ⅠⅠ

解析函数的性质:(1)解析函数的导数和积分仍为解析函数

(2)解析函数的实部和虚部均满足调和方程

?2

Re 0Z ?=Ⅰ?22

2

2

22(Im )(Im )(Im )y Z y Z y Z x y

????=?=+??ⅠⅠ

22

Im (Im Im )Z y

y y Z Z x y y y ????=++???? 2222

Im Im Im Im Z Z y Z y Z x y y y ????

=+++???? 2Im Im 2Z

y Z y

?=?+? 柯西黎曼条件

解析函数性质:

Re Im Im Z Z Z y x ??'=-=-?? Im Re Re Z Z

Z y x

??'==-?? 有Im 2

2Re Z

Z y

?=? 222(2Re )0Z ?∴??=?=Ⅰ

即函数?是平面问题的应力函数. 则应力分量:

22

22(Re Im )x Z y Z y y

?σ??==+??ⅠⅠ

Re Im (Im )Z Z Z y y y y

???=

++???Ⅰ

ⅠⅠ (Im Im Re )Z Z y Z y

?

=

-++?ⅠⅠⅠ

Re Re Z Z y

y

?=+?Ⅰ

Ⅰ Re Im Z y Z '=-ⅠⅠ

即 Re Im x Z y Z σ'=-ⅠⅠ 0z σ= (平面应力) Re Im y Z y Z σ'=+ⅠⅠ ()2Re z x y Z σνσσν=+=Ⅰ (平面应变)

Re xy y Z τ'=-Ⅰ

物理方程:

y

x x E E

νσσε=

- y x

y E E

σνσε=

- xy

xy G

τγ=

(平面应力)

21

[(1)(1)]x x y E ενσννσ=

--+ 21

[(1)(1)]y y x E

ενσννσ=--+

xy

xy G

τγ= (平面应变)

几何方程:

x u x ε?=

? y u y

ε?=? 得:

平面应力

1

[(1)Re (1)Im ]u Z y Z E νν=

--+ⅠⅠ 1

[2Im (1)Re ]v Z y Z E ν=-+ⅠⅠ

平面应变

1[(12)Re (1)Re ]u Z y Z E ν

νν+=

--+ⅠⅠ 1[2(1)Im Re ]v Z y Z E

νν+=--ⅠⅠ

(2)求解双向拉伸Ⅰ型裂纹 边界条件:

a: 0y = x a <时,0y xy στ==

b: 无穷远处,z →∞时,,0x y xy σσστ=== 选取Ⅰ型裂纹的Z Ⅰ函数:

Z =

Ⅰ验证:

a: 0y =,z x =

, Z =

Ⅰ?Re 0Z =Ⅰ又0y =,

0y xy στ∴==

b:lim lim

z z Z σ→∞

→∞

==Ⅰ,即Re Im x Z y Z σ'=-

同理: Re Im y Z y Z σ'=+ Re xy y Z τ'=-

0z σ= (平面应力) ()2Re z x y Z σνσσν=+= (平面应变) 将应力分量代入物理方程.

1

[(1)Re (1)Im ]2(1)

x Z y Z G εννν'''=--+'+ 1

[(1)Re (1)Im ]2(1)y Z y Z G εννν'''=

-++'+

1

Re 2xy y Z G

γ'=-

()1ννννν'=???'=?-?

平面应力(平面应变)

2Re z Z E

ν

ε=-

(平面应力) 0z ε= (平面应变)

对几何方程积分

1

[(1)Re (1)Im ]2(1)

x u dx Z y Z G εννν''==--+'+?

1

[2Im (1)Re ]2(1)

y v dx Z y Z G ενν'==

-+'+?

采用新的坐标系,,

x o y

1

,

z a

ξ=-又i reθ

ξ=

?()

Zξ==

(+)

其中()

fξ=

lim()lim()

f

ξξ

ξξ

→→

===

K

?=

--应力强度因子

()sin)

22

Z i

θθ

ξ

?==-

3

2

133

()(cos sin)

22

Z i

r

θθ

ξ'=-

3

Re Im(1sin sin)

222

x

Z y Z

θθθ

σ'

?=-=-

ⅠⅠ

3

(1sin sin)

222

y

θθθ

σ=+

3

sin cos

222

xy

θθθ

τ=

xz yz

ττ==

()

z x y

σμσσ

=+平面应变

z

σ=平面应力

31)cos cos ]22u k θθ

=

--

31)sin sin ]22

v k θθ

=

+-

0w = 平面应变

()x y w dz E

μ

σσ=-+?

平面应力

3431k μμμ-??=-??+?

平面应变平面应力

注意:以上各式适用于裂纹尖端附近 2.Ⅱ型裂纹

无限大板,中心2a 穿透裂纹、无穷远处受切应力作用.

(1)解II 型Westergaard 应力函数

求解方法与I 型基本相同,1主要差别是无穷远处边界上受力条件不同。选取应力函数

进而可得到位移分量

平面应变

II -Z y Re =?'

Re Im 2II

II +=Z y Z x σ‘

II II -=Z y Z xy Im Re τ'

Re II

-=Z y y σ[]

[]

II

II II

II ---++-+Z y Z E

v Z y Z E u Im Re )21()1(Re Im )1(2)1(νννν==

(2)选II 型裂纹的

边界条件: 在 处

选取

在裂纹表面

为虚数

采用新坐标

(3)用 求II 型裂尖附近的应力场和位移场

()Z z II =

()Z z II 0

==xy y τσ0=y a x < 0

z y xy σσ

στ===

→z ()2'3/2

22lim

()lim lim (

)lim 0

z z z z Z z a Z z z a ττII →∞→∞

II →∞→∞==-==-()Z z II ==Re ()0

Z z II =0==xy y τσ'

Re Im 2II II +=Z y Z x σ'

Re II -=Z y y σ‘

II

II -=Z y Z xy Im Re τa z -=ξ()a Z τξξII +==

0lim ()()f ξξξξII →→==()()a

a a Z K πτξ

ξξτπξξπξξξ=++==→II →II 22lim )(2lim 00()Z z II ()Z ξII =

若以极坐标表示复变量

则:裂纹尖端应力场和位移场为

3

(2cos cos)

222

x

θθθ

σ=+

3

sin cos

222

x

θθθ

σ=

3

(1sin sin)

222

xy

θθθ

τ=-

xz yz

ττ==

()

z x y

σμσσ

=+平面应变

z

σ=平面应力

3

3)sin sin]

22

u k

θθ

=++

3

2)cos cos]

22

v k

θθ

=-+

w=平面应变

()

x y

w dz

E

μ

σσ

=-+

?平面应力

3.撕开型(Ⅲ型)

问题描述:无限大板,中心裂纹(穿透)2a.无限远处受与z方向平行的τ作用,其位移(,),0

w w x y u v

===.

反平面(纵向剪切)问题:非零位移为一个,(,)

z

u x y此量与应力分量均与z无关.

)

sin

(cosθ

θ

ξθi

r

re i+

=

=

()sin)

22

Z i

θθ

ξ

II

=

-

()33

sin)

22

dZ

i

d

ξθθ

ξ

II==-

根据几何方程和物理方程:

1xz xz w r x G τ?=

=? 1yz yz w r y G

τ?==? 0x y xy z σστσ==== 单元体的平衡方程:

200yz xz w x y ττ??+=??=?? 位移函数满足laplace 方程. 所以w 为调和函数.

解析函数性质:任意解析函数的实部和虚部都是解析的.

1

(,)Im ()w x y Z z G

?=Ⅲ

Im Im xz Z w G

Z x x

τ???===??Ⅲ

Ⅲ Im Re yz Z w G

Z y y

τ??===??Ⅲ

Ⅲ 边界条件:

a.0,,0yz y x a τ=<=.

b.,0,xz yz z τττ→∞==. 选取函数()Z z =

Ⅲ满足边界条件.

取新坐标z a ξ=-.()Z ξ?=Ⅲ

令lim K ξ→==Ⅲ

§1.3 应力强度因子与能量释放率G 的关系

能量释放率G : 裂纹扩展单位面积所需能量.

()G W U a

?=-?

板厚为1B =,W 为外力功,U 裂纹存在释放出的应变能. Irwin 将()W U δ-只在裂纹尖端进行了局部的处理.

通过建立应力分析和能量分析之间的关系,来建立G Ⅰ和K

Ⅰ的关系.

假设裂纹闭合.

3(sin sin )222y H θθθ

σ=

当0θ=,r x =时,y σ=.

31)sin sin ]22

v k θθ=

+-

当r a x =?-,θπ=时.

2)v k =

+

应力0y σ→,位移0v →.

在闭合时,应力在a ?那段所做的功为0

a

y B vdx σ??.

2 00

141

2)

4

a a

y

B k

G vdx k dx K

B a a G

σ

??+

?==+=

??

??

ⅠⅠ平面应力情况:

2

3

,

1

K

k G

E

μ

μ

-

=?=

+

平面应变情况:

2

2

1

34

k G K

E

μ

μ

-

=-?=

ⅠⅠ

2

K

G

E

?=

'

2

1

E E

E

E

μ

'=

?

?

?'

=

?-

?

平面应力

平面应变

同理:

2

K

G

E

=

'

2

1

G K

E

μ

+

=

ⅢⅢ

损伤与断裂力学论文

损伤力学研究的是材料内部缺陷的产生和发展引起的宏观力学效应以及缺陷最终导致材料破坏的过程和规律。1958年Kachanov在研究蠕变断裂时引入了损伤力学的概念,提出了“连续性因子”和有效应力。1963年Rabotonov在Kachanov基础上引入了“损伤变量”的概念,奠定了损伤力学的基础。在其后的二三十年中,各国学者对损伤力学的基本概念、研究方法、损伤变量的定义等做了大量的开创性工作,极大推动了损伤力学理论的进展。1976年Dougill将损伤力学从金属材料中引入到岩石材料,之后岩石损伤力学迅速发展,已成为当今岩石研究领域的热门课题之一。 岩石损伤力学的研究关键是定义材料的损伤变量及正确地给出演变规律的本构方程。能否得到合理的损伤演变方程和含损伤的本构方程关键是对损伤变量的定义是否合理,建立一个损伤模型的基本要求是能在实验中直接或间接确定与损伤演变规律有关的材料参数。 对损伤变量的定义,从损伤力学提出就开始进行广泛的研究,可从微观和宏观这两个方面选择。微观方面,可以选择裂纹数目、长度、面积和体积等;宏观方面,可以选择弹性模量、屈服应力、拉伸强度、密度等。 国内学者唐春安从岩体材料内部所含裂纹缺陷分布的随机性出发,利用岩石微元强度服从正态分布或Weibull分布的特征,用发生破坏的微元数在微元总数中所占的比例来定义损伤变量。 谢和平等将分形几何理论应用于岩石损伤研究中,将岩石损伤程度的增加看作是分形维数的增加,从损伤与断裂之间的联系方面定量的描述了损伤,从而创建了分形几何与岩石力学理论体系,提出了分形损伤力学理论。 从微观角度出发对损伤变量进行定义,不仅物理意义明确,而且能够比较真实地反映材料性能逐渐劣化,但是从微观角度定义的损伤变量难以量测。 Lamaitre基于弹性模量变化用无损杨氏模量和损伤杨氏模量定义损伤变量,谢和平和鞠杨等讨论了该损伤变量定义的适用条件,进行了修正。使基于宏观弹性模量定义的损伤变量在实际应用中比较方便,但这种定义方法需要事先知道材料的初始弹性模量,而且在实际的工程中很多材料都有具有初始损伤的。 谢和平、鞠杨等认为单元强度丧失实则为其粘聚力的丧失,即单元在经历一定的能量耗散后,其内部的损伤达到了最大值,与此同时微结构中的粘聚力完全丧失。国内外学者进行了大量通过能量分析的方法来描述岩体的破坏行为的研究。 另外还有学者使用CT技术在岩石损伤检测中的应用,并给出了一种基于

工程断裂力学

工程断裂力学76 (2009) 709–714 内容列表可以在ScienceDirect期刊获得 工程断裂力学 杂志主页: https://www.360docs.net/doc/d395837.html,/locate/engfracmech AA7075-T651在交变载荷下裂纹形核的显微结构形貌 H. Weiland a,*, J. Nardiello b, S. Zaefferer c, S. Cheong a, J. Papazian b, Dierk Raabe c a 美国铝业有限公司,100技术驱动,美国铝业中心,宾夕法尼亚15069,美国 b 诺斯罗普2格鲁曼公司AEW/EW系统,925 S,.牡蛎湾路,贝思佩奇,纽约11714,美国 c普朗克铁研究所,普朗克Stra?e 1,,杜塞尔多夫D 40237,德国 文章信息摘要 文章历史: 一系列由7075-T651铝合金制作的疲劳试验样品被打断成各种寿命的部分和2007年1月9日收到一定数量脱胶,破裂的粒子和在金属基体中的破裂决定了定量是加载周期的函数2008年11月24日收到修订后的形式根据发现,只有破裂的第二相粒子,在一个基体裂纹中形核。晶体学关于一个独2008年11月26日录入立的裂纹和它的三维形状是由在扫描显微镜下一系列的切片通过应用聚焦离子束2008年12月10日网上可获得粉末与取向成像显微技术结合决定。这些极限数据显示裂纹萌生方向,受金属基体 中扩展的裂纹的晶体取向影响。。 关键字: 裂纹萌生 AA7075 3D微观结构 疲劳 @2008爱思唯尔有限公司保留所有权利。 1.介绍 优化的铝合金对航天航空应用,需要定量的理解不同控制形核的显微结构特性和裂纹在金属基体中的扩展。此外,在整体部分,裂纹在连接处的停滞不是给定的,显微结构的作用变得越来越重要。需要定量的理解,在复杂微观结构下的损伤演化。 当前对于航空航天应用铝合金的发展,基于一个良好的理解,关于微观结构下破坏的相关性质影响,例如断裂韧性和疲劳[1-5]。然而,铝合金上个世纪上半年的发展,例如AA7075,主要使用Edisonian方法。尽管存在一些研究,关于老化条件对性能的影响,详细分析显微结构属性下控制裂纹形核和单调生长区间,或者在那时候开发的铝合金没有采用交变载荷。然而,在早期理论上可知,含铁第二相在5-50微米直径范围,一般被称为夹杂相,是裂纹的起始点位置[1]。因此,此后的铝合金发展包括减少铁和硅元素提高损伤的相关性质。另一方面,如果粒子密度减少,正如当前阶段铝合金,其他显微结构下的特征,例如晶界和晶粒取向,将有助于裂纹的形核和扩展。读者可以参考文献[1-5],详细的讨论商业铝合金微观结构的损坏的影响。它必须指出,外推法得到的知识在Al-Cu系统(2xxx系列合金)不能容易的推测Al–Zn(7xxx系列合金),因为相和强化机制不同。 在目前的研究中,一部分数量脱粘和破裂的粒子,决定了一定数量是疲劳循环的函数,来自中断的疲劳试验。此外,破裂粒子在开裂基体中形核的尺寸和相关的裂纹长度是确定的。晶体学中关于裂纹和三维形状由来自一系列的切片通过聚焦离子束制粉和取向成像显微技术的结合决定。这些数据显示一开始裂纹的生长方向,同时由粒子周围的局部应力场和基体中正在生长的裂纹的晶向决定。 如今工作的目的,确定一定数量第二相粒子在交变载荷控制裂纹形核的作用,目的是确定以微观结构为基础,预测以这些合金制成的机身零件部分寿命。后者将另行公布。

断裂力学习题

断裂力学习题 一、问答题 1、什么是裂纹? 2、试述线弹性断裂力学的平面问题的解题思路。 3、断裂力学的任务是什么? 4、试述可用于处理线弹性条件下裂纹体的断裂力学问题两种方法: 5、试述I型裂纹双向拉伸问题中的边界条件,如何根据该边界条件确定一复变函数,并由此构成应力函数,最后写出问题的解。b5E2RGbCAP 6、什么是应力场强度因子K1?什么是材料的断裂韧度K1C?对比单向拉伸条件下的应力及断裂强度极限b,,说明K1与K1C的区别与联系?p1EanqFDPw 7、在什么条件下应力强度因子K的计算可以用叠加原理 8、试说明为什么裂纹顶端的塑性区尺寸平面应变状态比平面应力状态小? 9、试说明应力松驰对裂纹顶端塑性区尺寸有何影响。 10、K准则可以解决哪些问题? 11、何谓应力强度因子断裂准则?线弹性断裂力学的断裂准则与材料力学的强度条件有何不同? 12、确定K的常用方法有哪些? 13、什么叫裂纹扩展能量释放率?什么叫裂纹扩展阻力? 14、从裂纹扩展过程中的能量变化关系说明裂纹处于不稳定平衡的条件是什么? 15、什么是格里菲斯裂纹?试述格氏理论。

16、奥罗万是如何对格里菲斯理论进行修正的? 17、裂纹对材料强度有何影响? 18、裂纹按其力学特征可分为哪几类?试分别述其受力特征 19、什么叫塑性功率? 20什么是G准则? 21、线弹性断裂力学的适用范围。 22、“小范围屈服”指的是什么情况?线弹性断裂力学的理论公式能否应用?如何应用? 23、什么是Airry应力函数?什么是韦斯特加德

材料的韧性及断裂力学简介

第二节材料的韧性及断裂力学简介 一、低应力脆断及材料的韧性 人们在对船舶的脆断、无缝输气钢管的脆断裂缝、铁桥的脆断倒塌、飞机因脆断而失事、石油、电站设备因脆断而发生重大事故的分析中,发现了一些它们的共同特点: 1.通常发生脆断时的宏观应力很低,按强度设计是安全的; 2.脆断事故通常发生在比较低的工作温度环境下; 3.脆断从应力集中处开始,裂纹源通常在结构或材料的缺陷处,如缺口、裂纹、夹杂等; 4.厚截面、高应变速率促进脆断。 由此,人们发现了传统设计思想和材料的性能指标在强度设计上的不足,试图提出新的性能指标和安全判据,找到防止脆断的新的设计方法。 传统的强度设计所依据的性能指标主要为弹性模量E、屈服极限σs、抗拉强度σb,而塑性指标延伸率δ和面收缩率φ在设计中只是参考数据,通常还会考虑应力集中现象,即使如此,设计的安全判据仍不足以防止脆断的发生,这说明材料的强度、塑性、弹性这些性能指标还不能完全反映材料抵抗脆断的发生。经过对众多脆断事故的分析和研究,人们提出了一个便于反映材料抗脆断能力的新的性能指标——韧性,从使脆性材料和韧性材料断裂所消耗的能量不同,归纳出韧性的定义为:所谓韧性是材料从变形到断裂过程中吸收能量的太小,它是材料强度和塑性的综合反映。 例如图l-2为球墨铸铁和低碳钢的拉伸曲线,可以用拉伸曲线下的面积来表示材料的韧性,即 图中可见,虽然球墨铸铁的抗拉强度σb比低碳钢高,但其断裂时的塑性应变εp确远较低碳钢小,综合起来看,低碳钢的韧性高。 图1-2 球铁和低碳钢拉伸曲线表示的韧性 材料的韧性可用实验的方法测试和判定。应用较早和较广泛的是缺口冲击试验,这种方法已经规范化。具体方法是将图1-3所示的缺口试样用专用冲击试验机施加冲击载荷,使试 样断裂,用冲击过程中吸收的功除以断口面积,所得即为材料的冲击韧性,以αk表示,单位为J/cm^2。目前国际上多用夏氏V型缺口试样,我国多用U型缺口试样。由于缺口冲击

损伤与断裂课程总结

中国矿业大学 2013 级硕士研究生课程考试试卷 考试科目损伤与断裂力学 考试时间2014. 01 学生姓名梁亚武 学号ZS13030020 所在院系力建学院 任课教师高峰 中国矿业大学研究生院培养管理处印制

《损伤与断裂力学》课程学习总结 1 前言 据美国和欧共体的权威专业机构统计:世界上由于机件、构件及电子元件的断裂、疲劳、腐蚀、磨损破坏造成的经济损失高达各国国民生产总值的6%到8%。包括压力管道破裂、铁轨断裂、轮毂破裂、飞机、船体破裂等。 长期以来,工程上对结构或构件的计算方法,是以结构力学和材料力学为基础的。它们通常都假定材料是均匀的连续体,没有考虑客观存在的裂纹和缺陷,计算时只要工作应力不超过许用应力,就认为结构是安全的,反之就是不安全的。工作应力根据载荷情况、构件几何尺寸计算出来,许用应力则根据工作条件和材料性质选用。 对于实际结构中可能存在的缺陷和其他考虑不到的因素,都放在安全系数里考虑。安全系数并未考虑到其他失效形式的可能性,例如脆性断裂或快速断裂。人们曾普遍认为,选用较高的安全系数就能避免这种低应力断裂。然而,实践证明并非如此,材料存在缺陷或裂纹的结构或构件,在应力值远低于设计应力的情况下就会发生全面失效。这样的例子很多,因而动摇了上述传统设计思想的安全感,使人们认识到,对含有裂纹的物体必须作进一步的研究。断裂力学就是在这个基础上应运而生的。 断裂力学是研究带裂纹体的强度以及裂纹扩展规律的一门学科。由于研究的主要对象是裂纹,因此,人们也称它为“裂纹力学”。它的主要任务是:研究裂纹尖端附近的应力应变情况,掌握裂纹在载荷作用下的扩展规律;了解带裂纹构件的承载能力,从而提出抵抗断裂的设计方法,以保证构件的安全工作。由于断裂力学能把含裂纹构件的断裂应力和裂纹大小以及材料抵抗裂纹扩展的能力定量地联系在一起,所以,它不仅能圆满地解释常规设计不能解释的“低应力脆断”事故,而且也为避免这类事故的发生找到了办法。同时,它也为发展新材料、创造新工艺指明了方向,为材料的强度设计打开了一个新的领域。 由于研究的观点和出发点不同,断裂力学分为微观断裂力学和宏观断裂力学。微观断裂力学是研究原子位错等晶粒尺度内的断裂过程,根据对这些过程的了解,建立起支配裂纹扩展和断裂的判据。宏观断裂力学是在不涉及材料内部的断裂机

第一章断裂力学概论-2009分解

第一章断裂力学概论 第1节绪论 1.断裂力学的起源与发展 最早的断裂力学思想 1921年英国科学家Griffith研究“为什么玻璃的实际强度比从它的分子结构所预期的强度低得多?”,推测“由于微小的裂纹所引起的应力集中而产生”,提出适合于判断脆性材料的与材料裂纹尺寸有关的断裂准则——能量准则。 断裂力学发展的背景 蓬勃发展的近代先进科学技术,对传统的强度理论提出了挑战。 1) 高强度材料和超高强度材料的使用 2) 构件的大型化 3) 全焊接结构的使用 灾难性事故 焊接铁桥断裂破坏 1938-1942年,世界上有40座焊接铁桥,按照传统观点未发现任何异常的情况下,突然断裂倒塌。 自由号轮船的断裂破坏 上世纪40年代,美国“自由号”轮船焊接部位的25%被发现有裂纹,在4694艘轮船的焊接结构中,有1289处有裂纹,其中有233处引发了灾难性事故。典型的T-2号油船上,由裂纹导致甲板在几秒钟内破坏成两半,调查发现,破断处的最大弯矩还不到许用设计弯矩的一半。 “彗星”号飞机破坏失事

1954年1月10日,一架“彗星”号飞机飞行在纽约30000英尺高空突然解体坠入地中海,飞机破坏的主要原因是疲劳引起的增压舱破坏,增压座舱观察窗一角应力太高而引起疲劳破坏。破坏时的应力只相当70%的材料的强度极限。 事故的规律 1)断裂时,工作应力都较低 2)尽管是典型的塑性材料,却表现出脆性断裂现象(低应力脆断) 3)对断口进行分析,发现“低应力脆断”是从构件内部存在的微小裂 纹源扩展引起的。 ——构件中不可避免的存在裂纹或类似裂纹的缺陷是引起“低应力脆断”的根源——以裂纹体为研究对象的一门学科——断裂力学应运而生。 断裂力学的形成 1957年,美国科学家G.R.Irwin提出应力强度因子的概念, 线弹性断裂理论的重大突破,应力强度因子理论作为断裂力学的最初分支——线弹性断裂力学建立起来。 断裂力学的发展 现代断裂理论大约是在1948—1957年间形成,它是在当时生产实践问题的强烈推动下,在经典Griffith理论的基础上发展起来的,上世纪60年代是其大发展时期。 我国断裂力学工作起步至少比国外晚了20年,直到上世纪70年代,断裂力学才广泛引入我国,一些单位和科技工作者逐步开展了断裂力学的研究和应用工作。 断裂力学是起源于20世纪初期,发展于20世纪后期,并且仍在不断发展和完善的一门科学。因此,它是具有前沿性和挑战性的研究成果。

线弹性断裂力学

线弹性断裂力学 1、概念: 断裂力学:断裂力学是以变形体力学为基础,研究含缺陷(或者裂纹)材料和结构的抗断裂性能,以及在各种工作环境下裂纹的平衡、扩展、失稳及止裂规律的一门学科。 线弹性断裂力学:应用线弹性理论研究物体裂纹扩展规律和断裂准则。 2、材料缺陷 实际构件存在的缺陷是多种多样的,可能是冶炼中产生的夹渣、气孔,加工中引起的刀痕、刻槽,焊接时产生的裂缝、未焊透、气孔、咬边、过烧、夹杂物,铸件中的缩孔、疏松,以及结构在不同环境中使用时产生的腐蚀裂纹和疲劳裂纹。在断裂力学中,常把这些缺陷都简化为裂纹,并统称为“裂纹”。 3、裂纹的类型 (1)、按照裂纹的几何特征分类 (a)穿透裂纹:厚度方向贯穿的裂纹。 (b)表面裂纹:深度和长度皆在构件的表面,常简化为半椭圆裂纹。 (c)深埋裂纹:裂纹的三维尺寸都在构件内部,常简化为椭园裂纹。

(2)按照裂纹的受力和断裂特征分类 (a)张开型:(Ⅰ型,opening mode,or tensile mode) 特征:外加拉应力垂直于裂纹面,也垂直于裂纹扩展的前沿线。在外力的作用下,裂纹沿原裂纹开裂方向扩展。 (b)滑开型:(Ⅱ型, sliding mode, or in-plane shear mode)特征:外加剪应力平行于裂纹面,但垂直于裂纹扩展的前沿线。在外力的作用下,裂纹沿原裂纹开裂方向成一定角度扩展。 (c)撕开型:(Ⅲ型, tearing mode, or anti-plane shear mode)特征:外加剪应力平行于裂纹面,也平行于裂纹扩展的前沿线。使裂纹面错开。在外力的作用下,裂纹基本上沿原裂纹开裂方向扩展。 Ⅲ型是最简单的一种受力方式,分析起来较容易,又称反平面问题。 (d)混合型:( 或复合型,mixed mode )经常是拉应力与剪应力同时存在,实际问题多半是Ⅰ+Ⅱ,Ⅰ+Ⅲ,Ⅰ+Ⅱ+Ⅲ等,从安全的角度和方便出发,将混合型问题常做简化看成Ⅰ型处理。 (3)按裂纹形状分类

第一章 工程材料的力学性能

第一章金属材料的力学性能 学习目的和要求: 学习目的在于了解工程材料力学性能的物理意义,熟悉金属主要的力学性能指标,以便在设计机械时,根据零件的技术要求选用材料,或在编制金属加工工艺时参考。 学完本章后,要求在掌握概念的基础上,熟悉有关术语、符号意义及应用场合,并了解测定方法。 学习重点: 1、掌握强度、塑性、韧性、硬度的概念、物理意义及应 用; 2、掌握布氏硬度和洛氏硬度的优缺点及应用场合。 学习难点: 1、疲劳强度和断裂韧性的概念及应用。 §1-1 材料的强度与塑性 材料的力学(机械)性能,是指材料受不同外力时所表现出来的特性,这种特性是机器安全运转的保证。所以机械性能是设计机械时强度计算和选用材料的基本依据,是评价材料质量和工艺强化水平的重要参数。常用的机械性能指标,都是在特定条件下用规定的测试方法获得的,因为与实用工作状况不尽相同,所以选用数据时应考虑安全系数。 一、弹性与刚度 1、弹性:材料在外力作用下产生变形,当外力去掉 后能恢复其原来形状的性能。

2、弹性极限(σe ):材料承受最大弹性变形时的应力。 3、刚度:材料在外力作用下抵抗弹性变形的能力。指标 为弹性模量 4、弹性模量(E ):应力与应变的比值,物理意义是产 生单位弹性变形时所需应力的大小,表征材料产生弹性变形的难易程度。弹性模量是材料最稳定的性能之一,其大小主要取决于材料的本性,随温度升高而逐渐降低,材料的强化手段(如热处理、冷热加工、合金化等)对弹性模量影响很小。提高金属制品的刚度,可以通过更换金属材料、改变截面形状、增加横截面面积。 为什么弹簧还要进行热处理?弹簧进行热 处理的目的是什么? 二、强度 韧性材料拉伸曲线 脆性材料拉伸曲线

断裂力学发展史

断裂力学研究的内容几乎完全是断裂为主的破坏。1920年格里菲斯(Griffith)研究玻璃中裂纹的脆性扩展,成功地提出了以含裂纹体的应变能释放率为参量的裂纹失稳扩展准则,其内容是:结构体系内裂纹扩展,体系内总能量降低,降低的能量用于裂纹增加新自由表面的表面能,裂纹扩展的临界条件是裂纹扩展力(即应变能释放率)等于扩展阻力(裂纹扩展,要增加自由表面能而引起的阻力)。很好地解释了玻璃的低应力脆断现象。Griffith理论可用于估算脆性固体的理论强度,并给出了断裂强度与缺陷尺寸之间的正确关系。 1944年泽纳(Zener)和霍洛蒙(Hollmon)又首先把Griffith理论用于金属材料的脆性断裂。不久欧文(1rwin)指出,Griffith的能量平衡应该是体系内储存的应变能与表面能、塑性变形所做的功之间的能量平衡,并且还指出,对于延性大的材料,表面能与塑性功相比一般是很小的。同时把G定义为“能量释放率”或“裂纹驱动力”,即裂纹扩展过程中增加单位长度时系统所提供的能量,或裂纹扩展单位面积系统能量的下降率。 20世纪50年代,Irwin又提出表征外力作用下,弹性物体裂纹尖端附近应力强度的一个参量一应力强度因子,建立以应力强度因子为参量的裂纹扩展准则一应力强度因子准则(亦称K准则)。其内容为:裂纹扩展的临界条件为K1:=K1c,其中尺K1为应力强度因子,可由弹性力学方法求得,K1c为材料的临界应力强度因子或平面应变断裂韧度,可由试验测定。Irwin的另一贡献是,他还指出,能量方法相当于应力强度方法。 1963年韦尔斯(Wells)发表有关裂纹张开位移(COD)的著名著作,提出以裂纹张开位移作为断裂参量判别裂纹失稳扩展的一个近似工程方法。其内容是:不管含裂纹体的形状、尺寸、受力大小和方式如何,当裂纹张开位移δ达到临界值δc时,裂纹开始扩展。δc是表征材料性能的常数,由试验得到。对于韧性材料,短裂纹平面应力断裂问题,特别是裂纹体内出现大范围屈服和全面屈服情况可采用此法。 1968年赖斯(Rice)提出围绕含裂纹体裂纹尖端的一个与路径无关的回路积分,定义为二维含裂纹体的J积分。J积分可用来描述裂纹尖端附近在非线性弹性情况下的应力应变场,建立J l=J1c的断裂准则。J1c为表征材料断裂韧性的临界J积分值,可由试验确定。 由于研究的观点和出发点不同,断裂力学分为微观断裂力学和宏观断裂力学。微观断裂力学是研究原子位错等晶体尺度内的断裂过程,宏观断裂力学是在不涉及材料内部断裂机理的条件下,通过连续介质力学分析和试样的实验作出断裂强度的估算与控制。宏观断裂力学通常又分为线弹性断裂力学和弹塑性断裂力学。 线弹性断裂力学是应用线性弹性理论研究物体裂纹扩展规律和断裂准则。线弹性断裂力学可用来解决材料的平面应变断裂问题,适用于大型构件(如发电机转子,较大的接头,车轴等)和脆性材料的断裂分析。线弹性断裂力学还主要用于宇航工业,因为在宇航工业里减轻重量是非常重要的,所以必须采用高强度低韧性的金属材料。实际上对金属材料裂纹尖端附近总存在着塑性区,若塑性区很小(如远小于裂纹长度),经过适当的修正,则仍可以采用线弹性断裂力学进行断裂分析。目前,线弹性断裂力学已发展的比较成熟,但也还存在一些问题(如表面裂纹分析,复合型断裂准则,裂纹动力扩展等)有待进一步研究。 弹塑性断裂力学是应用弹性力学、塑性力学研究物体裂纹扩展规律和断裂准则,适用于裂纹尖端附近有较大范围塑性区的情况。由于直接求裂纹尖端附近塑性区断裂问题的解析解十分

断裂力学

损伤:在外载或环境作用下,由细观结构缺陷(如微裂纹、微孔隙等)萌生、扩展等不可逆变化引起的材料或结构宏观力学性能的劣化称为损伤。 损伤力学:研究材料或构件在各种加载条件下,其中损伤随变形而演化发展并最终导致破坏的过程中的力学规律。 损伤变量:把含有众多分散的微裂纹区域看成是局部均匀场,在场内考虑裂纹的整体效应,试图通过定义一个与不可逆相关的场变量来描述均匀场的损伤状态,这个场变量就是损伤变量。 损伤力学发展:损伤力学是近二十年才开始形成和发展的一门新的固体力学分支,它是将固体物理学、材料强度理论和连续介质力学统一起来进行研究的理论,弥补了微观研究和断裂力学研究的不足,越来越多地应用于航天航空、高温高压热力设备寿命评估和混凝土、复合材料、高分子材料质量评估计算,是一门有着无限广阔用途的新学科。 1958年,卡钦诺夫(Kachanov)在研究金属的蠕变破坏时,为了反映材料内部的损伤,第一次提出了“连续性因子”和“有效应力”的概念。后来,拉博诺夫(Rabotnov)又引入了“损伤因子”的概念。他们为损伤力学的建立和发展做了开创性的工作。但在很长的一段时间内,这些概念和方法除了应用于蠕变问题的研究外,并未引起人们的广泛重视。70年代初,“损伤”概念被重新提出来了。值

得指出的是法国学者勒梅特在这方面做出了卓越的贡献。1971年勒梅特将损伤 概念用于低周疲劳研究,1974年英国学者勒基(Leckie)和瑞典学者赫尔特(Hult)在蠕变的研究中将损伤理论的研究向前推进了一步。70年代中期和末期各国学者相继采用连续介质力学的方法,把损伤因子作为一种场变量,并称为损伤变量;逐步形成了连续损伤力学的框架和基础。80年代中期,能量损伤理论和几何损伤理论相继形成。各国学者相继的研究成果,对损伤理论的形成和发展都做出了有益的贡献。

断裂力学答案

( ( = K I + K I(2) 1.简述断裂力学的发展历程(含3-5 个关键人物和主要贡献)。 答:1)断裂力学的思想是由Griffith 在1920 年提出的。他首先提出将强度与裂纹长度定量 地联系在一起。他对玻璃平板进行了大量的实验研究工作,提出了能量理论思想。(2)断裂 力学作为一门科学,是从1948 年开始的。这一年Irwin 发表了他的第一篇经典文章“Fracture Dynamic(断裂动力学)”,研究了金属的断裂问题。这篇文章标志着断裂力学的诞生。(3) 关于脆性断裂理论的重大突破仍归功于Irwin。他于1957 年提出了应力强度因子的概念,在 此基础上形成了断裂韧性的概念,并建立起测量材料断裂韧性的实验技术。这样,作为断裂 力学的最初分支——线弹性断裂力学就开始建立起来了。(4)1963 年,Wells 提出了裂纹张 开位移(COD)的概念,并用于大范围屈服的情况。研究表明,在小范围屈服情况下COD 法与LEFM 是等效的。(5)1968 年,Rice 等人根据与路径无关的回路积分,提出了J 积分 的概念。J 积分是一个定义明确、理论严密的应力应变参量,它的实验测定也比较简单可靠。 J 积分的提出,标志着弹塑性断裂力学基本框架形成。 2.断裂力学的定义,研究对象和主要任务。 答:1)断裂力学的定义:断裂力学是一门工程学科,它定量地研究承载结构由于所含有的 一条主裂纹发生扩展而产生失效的条件。 (2)研究对象:断裂力学的研究对象是带有裂纹的承载结构。 (3)主要任务:研究裂纹尖端附近应力应变分布,掌握裂纹在载荷作用下的扩展规律;了 解带裂纹构件的承载能力,进而提出抗断设计的方法,保证构件安全工作。 3.什么是平面应力和平面应变状态,二者有什么特点?请举例说明之。 答:(1)平面应力:薄板问题,只有xoy 平面内的三个应力分量σ x、σ y、τ xy; ε z ≠ 0, 属三向应变状态。 (2)平面应变:长坝问题,与oz 轴垂直的各横截面相同,载荷垂直于z 轴且沿z 轴方向无 变化; ε z = 0, σ z ≠ 0,属三向应力状态;材料不易发生塑性变形,更具危险。 4.什么是应力强度因子的叠加原理,并证明之。掌握工程应用的方法。 答:(1)应力强度因子的叠加原理:复杂载荷下的应力强度因子等于各单个载荷的应力强 度因子之和。 (1) 在外载荷T2作用下,裂纹前端应力场为 σ2,则相应的应力强度因子为K I(2) = σ 2 π a 如果外载荷T1和T2联合作用,则裂纹前端应力场为 σ1+ σ2,则相应的应力强度因子为 K I = (σ 1 + σ 2 ) π a = σ 1 π a + σ 2 π a (1) 6.为什么裂纹尖端会发生应力松弛?如何对应力强度因子进行修正? 答:裂纹尖端附近存在着小范围的塑性区(设塑性区是以裂纹尖端为圆心,半径为r0 的圆 π a 形区域),材料屈服后,多出来的应力将要松驰(即传递给r>r0 的区域),使r0 前方局部地 区的应力升高,又导致这些地方发生屈服。即屈服导致应力松弛。 Irwin 提出了有效裂纹尺寸的概念a eff = a + r y对应力强度因子进行修正,在小范围条件下,

断裂力学材料

?断裂力学是为解决机械结构断裂问题而发展起来的力学分支,它将力学、物理学、材料学以及数学、工程科学紧密结合,是一门涉及多学科专业的力学专业课程。 ?本课程将简要介绍断裂的工程问题、能量守恒与断裂判据、应力强度因子、线弹性和弹塑性断裂力学基本理论、裂纹扩展、J积分以及断裂问题的有限元方法等内容。 ?当机械结构带有裂纹时,判断机械结构发生断裂的时机,不能用屈服判据,而应该寻求新的断裂判据。 ?现代断裂力学(fracture mechanics)这门学科,就在这种背景下诞生了。从上世纪五十年代中期以来,断裂力学发展很快,目前线性理论部分已比较成熟,在工程方面,已广泛应用于宇航、航空、海洋、兵器、机械、化工和地质等许多领域。断裂力学的关键问题(一) 1.多小的裂纹或缺陷是允许存在的,即此小裂纹或缺陷不会在预定的服役期间发展成断裂时的大裂纹? 2.多大的裂纹就可能发生断裂,即用什么判据判断断裂发生的时机? 3.从允许存在的小裂纹扩展到断裂时的大裂纹需要多长时间,即机械结构的寿命如何估算?以及影响裂纹扩展率的因素。 4.在既能保证安全,又能避免不必要的停产损失,探伤检查周期应如何安排? 5.万一检查时发现了裂纹,该如何处理? 断裂力学的关键问题(二) 1.什么材料比较不容易萌生裂纹? 2.什么材料可以容许比较长的裂纹存在而不发断裂? 3.什么材料抵抗裂纹扩展的性能较好? 4.怎样冶炼、加工和热处理可以得到最佳效果? 前五个问题可以用断裂力学的方法来解决;后面四个问题则属于材料或金属学的领域。因此,断裂是与力学、材料和工程应用有关的问题。应综合力学、材料学和工程应用等方面着手研究。 解决断裂问题的思路 为解决上面所提的工程问题和材料问题,对于含裂纹的受力机械零件或构件,必须先找到一个能表征裂纹端点区应力应变场强度(intensity)的参量,就象应力可以作为裂纹不存在时的表征参量一样。 解决断裂问题的思路—科学假说(续) 因为断裂的发生绝大多数都是由裂纹引起的,而断裂尤其是脆性断裂,一般就是裂纹的失稳扩展。裂纹的失稳扩展,通常由裂纹端点开始。因此,发生断裂的时机必然与裂端区应力应变场的强度有关。 对于不含裂纹的物体,当某处的应力水平超过屈服应力,就要发生塑性变形;而对于含裂纹的物体,当某裂端表征应力应变场强度的参量达到临界值时,就要发生断裂。 这个发生断裂的临界值很可能是材料常数,它既可表征材料抵抗断裂的性能,亦可用来衡量材料质量的优劣。 影响断裂的两大因素 载荷大小和裂纹长度 考虑含有一条宏观裂纹的构件,随着服役时间后使用次数的增加,裂纹总是愈来愈长。在工作载荷较高时,比较短的裂纹就有可能发生断裂;在工作载荷较低时,比较长的裂纹才会带来危险。这表明表征裂端区应力变场强度的参量与载荷大小和裂纹长短有关,甚至可能与构件的几何形状有关。 断裂力学研究内容

线弹性断裂力学的本质

线弹性断裂力学的本质 一、线弹性断裂力学 1.1 线弹性断裂力学的研究范围 线弹性断裂力学是断裂力学的一个重要分支,它是用弹性力学的线性理论对裂纹体进行力学分析,并采用由此求得的某些特征参量(如应力强度因子、能量释放率)作为判断裂纹扩展的准则。线弹性断裂力学认为,材料和构件在断裂以前基本上处于弹性范围内,可以把物体视为带有裂纹的弹性体。研究裂纹扩展有两种观点:一种是能量平衡的观点,认为裂纹扩展的动力是构件在裂纹扩展中所释放出的弹性应变能,它补偿了产生新裂纹表面所消耗的能量,如Griffith理论;一种是应力场强度的观点,认为裂纹扩展的临界状态是裂纹尖端的应力场强度达到材料的临界值,如Irwin理论。 1.2线弹性断裂力学的基本理论 线弹性断裂力学的基本理论包括: ●Griffith理论,即能量释放率理论; ●Irwin理论,即应力强度因子理论。 Griffith理论:1913年,Inglis研究了无限大板中含有一个穿透板厚 的椭圆孔的问题,得到了弹性力学精确分析解,称之为Inglis解。1920年,Griffith研究玻璃与陶瓷材料脆性断裂问题时,将Inglis解中的短半轴趋于0,得到Griffith裂纹。Orowan在1948年对其发展指出,金属材料在裂纹的扩展过程中,其尖端附近局部区域发生塑性变形。因此,裂纹扩展时,金属材料释放的应变能,不仅用于形成裂纹表面所吸收的表面能,同时用于克服裂纹扩展所需要吸收的塑性变形能(也称为塑性功)。 Irwin的理论:Irwin的理论适用于金属材料的准脆性破坏—破坏前裂 纹尖端附近有相当范围的塑性变形 .该理论的提出是线弹性断裂力学诞生的标志。Irwin认为裂纹尖端存在奇异性,基于这种性质,1957年Irwin提出新的物理量—应力强度因子。 1.3线弹性断裂力学的应用 按线弹性力学求得的裂纹体的应力和应变通常是有奇异性的,即在裂纹顶端处的应力和应变为无穷大。这在物理上是不合理的。实际上,裂纹顶端附近的应力和应变很大,线弹性力学在裂纹顶端不适用。一般说,这些区域的情况很复杂,很多微观因素(如晶粒大小、位错结构等)对裂纹顶端应力场影响很大。线弹性断裂力学不考虑裂纹顶端的复杂情况,而采用裂纹顶端外部区域的应力状况来表征断裂特性。当外加载荷不大时,裂纹顶端附近一个小区域内的应力和应变的变化并不影响外面大区域内的应力和应变的分布,而且在小区域外围作用的应力、应变场可以由应力强度因子这个参量确定。对于这种载荷作用下裂纹的失稳和扩展,线弹性断裂力学是适用的。 线弹性断裂力学适用的载荷值根据经验可以由下面两个不等式确定: , ,式中为裂纹长度;为构件厚度;为材料的

损伤与断裂力学读书报告

中国矿业大学 2012 级硕士研究生课程考试试卷 考试科目损伤与断裂力学 考试时间2012. 12 学生姓名张亚楠 学号ZS12030092 所在院系力建学院 任课教师高峰 中国矿业大学研究生院培养管理处印制

《损伤与断裂力学》读书报告 一.断裂力学 1.基本概念及研究内容 断裂力学是为解决机械结构断裂问题而发展起来的力学分支,它将力学、物理学、材料学以及数学、工程科学紧密结合,是一门涉及多学科专业的力学专业课程。 随时间和裂纹长度的增长,构件强度从设计的最高强度逐渐地减少。假设在储备强度A点时,只有服役期间偶而出现一次的最大载荷才能使构件发生断裂;在储备强度B点时,只要正常载荷就会发生断裂。因此,从A点到B点这段期间就是危险期,在危险期中随时可能发生断裂。如果安排探伤检查的话,检查周期就不能超过危险期。如下图所示: 问题是储备强度究竟是个什么样的参量?它与表征裂端区应力变场强度的参量有何关系?如何计算它?如何测量它?它随时间变化的规律如何?受到什么因素的影响?这一系列问题如能找到答案的话,则提出的以上五个工程问题就有可能得到解决。断裂力学这门学科就是来解决这些问题的。 1.1影响断裂力学的两大因素 a.荷载大小b.裂纹长度 考虑含有一条宏观裂纹的构件,随着服役时间后使用次数的增加,裂纹总是愈来愈长。在工作载荷较高时,比较短的裂纹就有可能发生断裂;在工作载荷较低时,比较长的裂纹才会带来危险。这表明表征裂端区应力变场强度的参量与载荷大小和裂纹长短有关,甚至可能与构件的几何形状有关。

1.2脆性断裂与韧性断裂 韧度(toughness ):是指材料在断裂前的弹塑性变形中吸收能量的能力。它是个能量的概念。 脆性(brittle )和韧性(ductile ):一般是相对于韧度低或韧度高而言的,而韧度的高低通常用冲击实验测量。 高韧度材料比较不容易断裂,在断裂前往往有大量的塑性变形。如低强度钢,在断裂前必定伸长并颈缩,是塑性大、韧度高的金属。金、银比低强度钢更容易产生塑性变形,但是因为强度太低,因此吸收能量的能力还是不高的。玻璃和粉笔则是低韧度、低塑性材料,断裂前几乎没有变形。 脆性断裂:如下图所示的一个带环形尖锐切口的低碳钢圆棒,受到轴向拉伸载荷的作用,在拉断时,没有明显的颈缩塑性变形,断裂面比较平坦,而且基本与轴向垂直,这是典型的脆性断裂。粉笔、玻璃以及环氧树脂、超高强度合金等的断裂都属于脆性断裂这一类。 韧性断裂:若断裂前的切口根部发生了塑性变形,剩余截面的面积缩小(既发生颈缩),段口可能呈锯齿状,这种断裂一般是韧性断裂。前边提到的低强度钢的断裂就属于韧性断裂。 像金、银的圆棒试样,破坏前可颈缩至一条线那样细,这种破坏是大塑性破坏,不能称为韧性断裂。 2.能量守恒与断裂判据 2.1传统强度理论 在现代断裂力学建立以前,机械零构件是根据传统的强度理论进行设计的,不论在机械零构件的哪一部分,设计应力的水平一般都不大于材料的屈服应力,即 n ys σσ≤

岩石的损伤力学及断裂力学综述

岩石的断裂力学及损伤力学综述 摘要:论述了国内外断裂力学及损伤力学的学科发展历程,总结了岩体断裂力学损伤力学的研究内容、研究特点以及岩石力学专家们一些年来所取得的主要成果,并简单介绍了断裂力学损伤力学在岩土工程中的实际应用。最后,通过对岩石破坏的断裂-损伤理论的阐述,指出了综合考虑损伤与断裂的破坏理论是能更好地反映岩石实际破坏过程的一种新的理论, 可在以后的理论研究和实际工程中得以更为广泛的应用。 关键词:岩石 断裂力学 损伤力学 应用 1 引 言 岩石的破坏过程总是伴随着损伤(分布缺陷)和裂纹(集中缺陷)的交互扩展, 这种耦合效应使得裂纹尖端附近区域材料必然具有更严重的分布缺陷。岩石的破坏, 如脆性断裂和塑性失稳, 虽然有突然发生的表面现象, 但是, 从材料损伤的发生、发展和演化直到出现宏观的裂纹型缺陷, 伴随着裂纹的稳定扩展或失稳扩展, 是作为过程而展开的。 经典的断裂力学广泛研究的是裂纹及其扩展规律问题。物体中的裂纹被理想化为一光滑的零厚度间断面。在裂纹的前缘存在着应力应变的奇异场,而裂纹尖端附近的材料假定同尖端远处的材料性质并无区别。象裂纹这样的缺陷可称它为奇异缺陷,因此经典断裂力学中物体的缺陷仅仅表现为有奇异缺陷的存在。 而损伤力学所研究的是连续分布的缺陷, 物体中存在着位错、微裂纹与微孔洞等形形色色的缺陷,这些统称为损伤。从宏观来看, 它们遍布于整个物体。这些缺陷的发生与发展表现为材料的变形与破坏。损伤力学就是研究在各种加载条件下, 物体中的损伤随变形而发展并导致破坏的过程和规律。 事实上, 物体中往往同时存在着奇异缺陷和分布缺陷。在裂纹(奇异缺陷)附近区域中的材料必然具有更严重的分布缺陷, 它的力学性质必然不同于距离裂纹尖端远处的材料。因此, 为了更切合实际, 就必须把损伤力学和断裂力学结合起来, 用于研究物体更真实的破坏过程。 2 断裂力学 2.1 断裂力学学科发展 “断裂力学”指的是固体力学的一个重要分支,该学科要在假定裂纹存在的条件下,寻求裂纹长度、材料抗裂纹增长的固有阻力、以及能使裂纹高速扩展从而导致结构失效的应力之间的定量关系[]1。 断裂力学最早是在1920年提出的。当时格里菲斯为了研究玻璃、陶瓷等脆性材料的实际强度比理论强度低的原因,提出了在固体材料中或在材料的运行过程中存在或产生裂纹的设想,计算了当裂纹存在时,板状构件中应变能变化进而得出了一个十分重要的结果:常数≡a c δ。 1949年,奥罗万在分析了金属构件的断裂现象后对格里菲斯的公式提出了修正,他认为产生裂纹所释放的应变能不仅能转化为表面能,也应转化为裂纹前沿

断裂力学论文

中国矿业大学 断裂力学课程报告课程总结及创新应用 XXX 2014/5/7 班级:工程力学XX班 学号:0211XXXX

断裂力学结课论文 一、学科简介 1、学科综述 结构的破坏控制一直是工程设计的关键所在。工程构件中难免有裂纹,从而会产生应力集中、结构失效等问题。裂纹既可能是结构零件使用前就存在的,也可能是结构在使用过程中产生的。但裂纹的存在并不意味着构件的报废,而是要求我们能准确地预测含裂纹构件的使用寿命或剩余强度。针对脆性材料的研究已有完善的弹性理论方法,并获得了广发的应用。但对于工程中许多由韧性较好的中、低强度金属材料制成的构件,往往在裂纹处先经历大量的塑性变形,然后才发生断裂破坏或失稳等。这说明,韧性好的金属材料有能力在一定程度上减弱裂纹的危险,并可以增大结构零件的承载能力或延长器使用寿命,这也是韧性材料的优点所在。但与此同时,这给预测强度的力学工作者带来了更复杂的问题,即不可逆的非塑性变形,这也是开展工程构架弹塑性变形的原因之一。 因而,裂纹的弹塑性变形研究具有广泛的工程背景和重要的理论意义。作为研究裂纹规律的一门学科,即断裂力学,它是50年代开始蓬勃发展起来的固体力学新分支,是为解决机械结构断裂问题而发展起来的力学分支,被广泛地应用于航海、航空、兵器、机械、化工和地质等诸多领域,它将力学、物理学、材料学以及数学、工程科学紧密结合,是一门涉及多学科专业的力学专业课程。 断裂力学有微观断裂力学与宏观断裂力学之分。一方面,需要深入到微观领域弄清微观的断裂机理,才能深入了解宏观断裂的现象。另一方面,宏观断裂力学仍然没有发展完善,尤其是在工程实际中的应用还远未成熟,即使平面弹塑性断裂力学也依然有许多亟待解决的问题。 2、断裂力学研究的主要问题 1、多少裂纹和缺陷是允许存在的? 2、用什么判据来判断断裂发生的时机? 3、研究对象的寿命图和估算?如何进行裂纹扩展率的测试及研究影响裂纹扩展率的因素。 4、如何在既安全又能避免不必要的停产损失的情况下安排探伤检测周期。 5、若检测出裂纹又应如何处理? 3、生活中常见的断裂破坏及破坏的主要特征 断裂在生活及工程中引发的问题和事故:1、海洋平台发生崩溃;2、压力容器发生破裂;3、吊桥的钢索断;4、天然气管道破裂;5、房屋开裂倒塌;6、气轮机叶片断裂。 断裂破坏的主要特征:1、尽管材料可能是由延性材料制成,但是灾难性破坏大多有脆性特征。2、大多数是低应力破坏,破坏时应力远小于屈服极限或设计的极限应力。3、大多数破坏始于缺陷、孔口、缺口根部等不连续部位。4、断裂破坏传播速度很高,难以防范和补救。5、高速撞击、高强度材料、低温情况下更容易发生。 4、断裂力学的发展历史 断裂力学的发展迄今为止大致经历了一下几个阶段,首先1920—1949年间主要以能量的方法求解,其中最有影响的是英国科学家Griffith提出的能量断裂理论以及据此建立的断裂判据。而后从1957年开始时线弹性断裂理论阶段,提出了应力强度因子概念及相应的判断依据。到1961—1968年间是弹塑性理论阶段,其中以1961年的裂纹尖端位移判据和

第一章线弹性断裂力学(精)

第一章 线弹性断裂力学 线弹性断裂力学认为,材料和构件在断裂以前基本上处于弹性范围内,可以把物体视为带有裂纹的弹性体。研究裂纹扩展有两种观点:一种是能量平衡的观点,认为裂纹扩展的动力是构件在裂纹扩展中所释放出的弹性应变能,它补偿了产生新裂纹表面所消耗的能量,如Griffith 理论;一种是应力场强度的观点,认为裂纹扩展的临界状态是裂纹尖端的应力场强度达到材料的临界值,如Irwin 理论。(李灏) §1.1 线弹性断裂力学的基本理论 线弹性断裂力学的基本理论包括:Griffith 理论,即能量释放率理论;Irwin 理论,即应力强度因子理论。 一、Griffith 理论 1913年,Inglis 研究了无限大板中含有一个穿透板厚的椭圆孔的问题,得到了弹性力学精确分析解,称之为Inglis 解。1920年,Griffith 研究玻璃与陶瓷材料脆性断裂问题时,将Inglis 解中的短半轴趋于0,得到Griffith 裂纹。 Griffith 研究了如图1-1所示厚度为B 的薄平板。上、下端受到均匀拉应力σ作用,将板拉长后,固定两端。由Inglis 解得到由于裂纹存在而释放的弹性应变能为 2 222211 U a B E U a B E νπσπσ-==平面应变 平面应力 图1-1 其中:ν为泊松比。 另一方面,Griffith 认为,裂纹扩展形成新的表面,需要吸收的能量为 4S a B γ= 其中:γ为单位面积上的表面能。

如果应变能释放率 d d U A ,等于形成新表面所需要吸收的能量率d d S A ,则裂纹达到临界状态;如果应变能释放率d d U A 小于吸收的能量率d d S A ,则裂纹稳定;如 果应变能释放率d d U A 大于吸收的能量率d d S A ,则裂纹不稳定。因此可以得到如下 表达式 d ()0d U S A -= 临界状态 d ()0d U S A -< 裂纹稳定 d ()0d U S A -> 裂纹不稳定 能量关系为()d d W U S dA dA -= (其中W 为外力功) 板中初始的应变能2 0122U V V E σσε== ,形成裂纹后系统的总能量012C U U U =-+. 以平面应力为例: 2 22 42a U V a E E σπσγ=- +?2240U a a E πσγ?=-+=? 可得2 2c E a γ πσ=,又22 220U a E πσ?=-时,a 增大,内能减少,无需补充能量,裂纹即扩展. 同理:当a 固定,1 22()c E a γσπ=,当c σσ>时裂纹失稳扩展. 对于平面应变 :222(1)c c E a γπνσσ? =?-? ??= ?? Griffith 判据: (1)当外加应力σ超过临界应力c σ时;(2)当裂纹尺寸a 超过临界裂纹尺寸c a

相关文档
最新文档