影响水稻叶夹角的因素..

影响水稻叶夹角的因素..
影响水稻叶夹角的因素..

水稻叶片倾角分子调控研究进展

摘要

水稻产量随着株型的改善而提高,其叶片形态是影响株型的主要因素。对水稻叶片构成及其功能、叶片形态的生理效应以及遗传机制等方面做出概括性的描述,为水稻高产育种提供一些理论指导。叶片是植物进行光合作用和呼吸作用的主要器官。本文通过对已克隆多个叶片倾角相关调控基因综述了水稻叶片倾角建成的分子遗传学研究进展。但到目前为止,所有已克隆的叶形调控基因间相互调控关系的研究还不够深入,还不能完整清晰地勾勒水稻叶形建成和发育的分子调控网络。因此,在已有的研究基础上更深入地探索水稻叶片形态建成的分子调控机制,对进一步构建相关的调控网络,塑造水稻理想株型具有重要意义。

关键词: 水稻;叶片倾角;基因;分子机制

Research Advance in Molecule Regulation Mechanism of

Leaf Inclination in Rice (Oryza sativa L.)

ABSTRACT

The blade shape are the main factors influencing the plant type and rice yield . On rice leaf form and function,the physiological effects of blade forms and genetic mechanism and so on to make a general description,providing some theoretical guidance for breeding high yield of rice. Blade is plant photosynthesis and respiration of major organs. The paper expounds the advance in the molecular genetics research of rice leaf angle by analyzing the leaf shape regulating genes that have been cloned. However,the study on the relationship between regulation roles of these cloned leaf shape genes. is not profound enough to draw an outline of molecular regulation network for rice leaf development and morphosis completely and clearly.Therefore,on the basis of current research findings,it is of great significance to further explore the rice leaf molecular regulation mechanism for establishing related regulation network and shaping ideal rice plant architecture.

Keywords: Rice (Oryza sativa L.); Leaf angle; Gene; Molecular mechanism

绿色植物通过叶片进行光合作用,把光能转变成化学能,是地球上一切动物的生命源泉,同时也是人类社会的主要物质和能量的来源。水稻产量,只有5%~1 0%的物质来自根部吸收的营养物质,而90%~95%的物质则来自作物叶片光合作用的产物[1]。因此,水稻形态对产量起着关键性的作用,产量随着株型的改善而提高。叶片形态是影响株型的主要因素。从20世纪4 0,50年代至现在,中国水稻栽培品种从高秆农家品种、高秆改良品种到矮秆改良品种,矮秆品种到杂交水稻,产量都有了提高[2]。尽管这两次产量提高的原因不尽相同,但共同点是都和水稻的形态密切相关。自20世纪80年代以来,在水稻育种领域,先后有多位育种家提出了水稻高产理论株型模式,而且都提及了叶片形态的育种。国内外对于水稻叶形的生理效应和遗传机制都做了大量的研究,并且定位了若干相关的QTL,为株型的改良、产量的提高提供了大量的理论依据。

1水稻叶片形态结构

水稻植株形态发生(plant morphogenesis)指水稻的外部形态和内部结构的起源、发育和建成的过程。水稻叶片的形态是水稻植株器官发生和形态形成的一个重要组成部分,直接影响水稻株型。植物叶片形态包括叶形、叶尖、叶缘、叶基和叶脉等外部特征[3]。水稻作为单子叶模式植物,主要通过叶长、宽度、面积、厚度(比叶重)、叶倾角、披垂度和卷曲度等[4]10余个形态因子界定其叶片形态及空间伸展姿态。通常一个完整的水稻叶片包括上下表皮细胞、叶肉细胞、薄壁细胞、木质部、韧皮部和维管束等组织结构,每一个组织都发挥着不可或缺的作用,其中叶片表皮中的泡状细胞发育形态往往与叶片形态密切相关。泡状细胞是一种大型薄壁细胞,其细胞长轴与叶脉平行,分布于2个叶脉的上表皮中,每个细胞内含有大液泡。泡状细胞与叶片的卷曲和舒展有关,当叶片蒸腾失水过多时,泡状细胞失水收缩,使得叶片向上卷曲,以减少蒸腾;当天气湿润叶片蒸腾减少时,泡状细胞吸水膨胀,使得叶片又展开。水稻卷曲度、叶片角度、披垂度以及叶片宽度是水稻株型育种中特别注重的方面。叶片适度卷曲最直接的效应是对叶片的直化作用,能促进叶片的直立而不披散,改善叶片的受光状态,延迟叶片衰老,能够有效解决叶长和叶挺之间的矛盾。叶角是衡量叶片的空间伸展姿态主要指标,是指叶片和茎之间的角度;叶角对于

水稻群体的受光面积具有重要的影响,直立叶片由于两面受光,减少叶片的相互遮蔽,提高透光率,有利于叶面积指数的提高,增加光合面积[5],降低阳光反射率。通常具直立叶的水稻群体光合效率高于平展或者披、弯、垂叶片群体。叶片维管束由细胞增殖形成[6],起着机械性支撑叶片的作用,尤其是主维管束(中脉)的正常发育是保证叶片直立性的重要因素之一,直接影响叶片的披垂度。适当的叶片宽度则可以改善叶的挺拔度,调整受光状态,进而增大叶面积指数,增加光合产物,这4个方面相互关联,相互影响。改善叶形对水稻光合作用、蒸腾作用及挖掘水稻品种产量潜力都有重要作用。

2植物叶片发育调控与进程

通常植物生长发育的控制,包括三个层次,即胞内控制(即基因水平控制)、胞间控制(即激素水平控制)和胞外控制(即环境水平控制),同样,植物叶片发育也受基因水平、激素水平和环境水平共同影响。黄海等[7]认为环境因素可以诱导某些与发育相关的基因的表达,发育后期基因的表达可能受到发育前期表达的基因产物的影响,细胞内植物激素的平衡可能受到基因产物的影响,植物激素反过来又能调节另一些基因的表达等等。从植物叶片的发育进程来看,叶的发育包括叶原基在茎顶端分生组织(shoot apical meristem,SAM)的形成和分化,以及之后从叶原基分化出来的叶片的发育。从起始细胞发育成一片不对称的完整叶,还需要极性发育才能完成。极性是植物器官的形态学两端生理特性不同的现象。极性的建立是植物叶片形态发育的前提,一直被认为是器官形态建成过程中的核心因素。植物学家把典型的成熟单叶(相对于复叶而言)的发育定为三维体轴上的生长,即基-顶轴(proximo-distal fate,由基部叶柄指向叶片的尖端);近-远轴(adaxial-abaxial fate,面向茎的一侧为近轴面,反之为远轴面);中-侧轴(Centrol-lateralfate,叶片的中轴为中心指向叶片的两侧边缘)[8]。

3 叶角基因的克隆与研究

叶角是叶片与主茎的夹角,是影响植物结构的一个重要的农艺性状[9-10]。紧凑的植株表型有竖直的叶子是理想型植株,它增加了光和效率和储存氮素的能力[11],许多控制叶角的QTL基因已经被报导包括Ta1,OsDWARF4,D2,OsBRI1,OsBU1,ILI1,LC2 和ILA1[12-16]连接叶片和叶鞘的叶枕是控制叶角非常重要的部位,近来的

研究显示,叶枕发育的两方面能导致叶片倾角的改变:(1)叶枕近轴/远轴面细胞分裂与生长的不平衡;(2)叶枕机械组织发育及其机械强度,叶角主要取决于细胞分裂和伸长[16]。然而油菜素内脂(BR)能够促进水稻叶片的角度,BR缺陷或敏感突变体展现紧凑的植株表型。过表达BR合成基因会导致叶角变大[17-20]。

叶角是衡量叶片的空间伸展姿态主要指标,是指叶片和茎之间的角度;叶角对于水稻群体的受光面积具有重要的影响,直立叶片由于两面受光,减少叶片的相互遮蔽,提高透光率,有利于叶面积指数的提高,增加光合面积,降低阳光反射率。通常具直立叶的水稻群体光合效率高于平展或者披、弯、垂叶片群体,通过对叶角突变体的研究发现,绝大部分突变体的叶角改变都源于叶枕近轴面细胞分裂与生长的异常,且相应的基因都参与了油菜素内酯(BR)的生物合成与信号传导途径。这些基因的突变导致近轴与远轴面细胞分裂与生长不平衡,进而改变叶角。SLG是调控BR内稳态的重要因子,SLG过表达能引起BR含量增加,叶角增大[21]。RA V6编码B3 DNA结合蛋白,能够通过调节BR的内稳态影响叶角的大小[22]。OsBRI1是BR 信号受体,编码一个BR受体激酶,调控水稻节间的伸长,控制叶片的倾角[23]。BU1编码一个结构域蛋白,是水稻BR信号转导在的正调节因子,参与BR的信号转岛但不参与其合成。BUI1的过表达导致叶角变大[24]。LC2编码一个类VIN3蛋白,调控植物激素反应相关基因的表达,调控叶枕发育通过抑制细胞分裂。此外,还参与调控维管束两侧泡状细胞的发育和叶枕近轴面上皮细胞的分裂[25]。ILA1是一个具有Ser/Thr激酶活性的类RafMAPKKK蛋白,参与调控叶枕维管束的形成[26]。OsLIC1是一个分蘖角度相关调控因子,作为BZR1的一个拮抗转录因子,减弱BR 信号,调节水稻叶片的弯曲[27],另一个影响叶片与叶鞘连接处发育且与油菜素内酯反应无关的基因TLD1 [28],也起调节叶角大小的作用。TLD1 编码吲哚3-乙酸氨基合成酶,正常条件下该基因在地上部组织中不表达,干旱胁迫下受到强烈的诱导,该基因的一个功能获得型突变,减少了IAA 在叶片与叶枕的最大积累量,进而很大程度上促进了胚胎形成后期富集mRNA 的积累,导致叶角的改变。因此,叶角大小的调控是一个复杂的过程,在很大程度上受叶枕发育的影响,在这过程中植物内源植物激素油菜素内酯又起着很重要的调节作用。此外,除了油菜素内酯,包括生长素[29]、

乙烯[30]等植物激素都起着调节叶角大小的作用。这些植物激素与油菜素内酯协同调控叶角的大小。

4 展望

叶片形态是水稻株型的重要组成部分,尤其是上部3 叶是抽穗后期主要的光合场所,是水稻的高效面积叶,其有效叶面积量是高光效群体质量的重要生理外表指标。超高产水稻品种的80%以上籽粒产量来自于抽穗后的光合作用[30],其余来自抽穗前积累于叶鞘和茎秆的贮藏物。通过塑造理想的上部3 叶形态,调节水稻个体和群体的几何构型和空间排列方式,进而改善群体结构和受光态势,提高群体光合作用,提高抽穗后的物质积累量,最终增加稻谷产量。迄今为止,从改善株型提高光能利用率的角度对水稻剑叶形态性状有了较为深刻、全面的研究,涉及生理生化、栽培技术以及遗传机理。但大多为剑叶的长、宽、长宽比和面积等性状,而对于剑叶角度所做的相关研究较少。单纯通过叶形改造创建水稻理想株型的高产水稻育种在理论上是可行的,但由多年育种经验来看并不十分理想。因此,株型高产育种必须做到形态与生理相结合、分子设计理论与传统育种实践相结合,即叶形的改造与高光效育种相结合,提高光合效率、理顺库-源关系,同时,采用分子生物学技术理论与育种实践相结合的方法,围绕叶片形态聚合高光效、抗性、米质和产量等多个已明晰其调控机制的有利基因,开展超级稻分子设计育种,实现株型整体改良或某一性状的定向改造,从而更高效、全面地优化和改良水稻叶片形态,塑造理想株型,这将是未来超级稻株型设计育种的一条行之有效的途径。

参考文献

[1]朱雄涛, 汪真. 水稻高光效生理育种初探[J]. 福建稻麦科技, 2003, 21( 2 ) : 1 4 -17.

[2]张培江. 优质水稻生产关键技术百问百答[M]. 北京:中国农业出版社,2005.

[3]Yan S, Yan C-J, Gu M-H. Molecular mechanism of leaf development[J]. Hereditas (Beijing), 2008,30(9): 1127–1135.

[4] LüC-G, Zong S-Y, Zou J-S, YaoK-M. Leaf morphological factors and their heredity in F1 of rice[J]. Acta Agron Sin, 2005, 31(8): 1074–1079.

[5] He Y, Sun H-L, Meng G-Y. Advances in Rice leaf morphology[J]. Crop Res, 2008, 22(5):378–380.

[6] Itoh J I, Nonomura K I, Ikeda K, Yamaki S, Inukai Y, Yamagishi H, Kiyano H, Nagato Y. Rice plant development: from zygote to spikelet[J]. Plant Cell Physiol, 2005, 46: 23–47.

[7] 郎有忠.水稻卷叶性状生理生态效应的研究:光合特性、物质生产与产量形成[J]. 作物学报.2004. 30 ( 9 ):883-887.

[8] Price AH. Young EM. Tomos AD. Quantitative trait loce associated with stomatal conducance leaf rolling and heading date mapped in upland rice (Oryza sativa L.) [J]. New Phytologist,2007,12:132-138.

[9]Hoshikawa K. Leaf in The growing rice plant[J]. Nobunkyo.1989, 34(7)123-125.

[10]Sinclair TR, Sheehy JE. Erect leaves and photosynthesis in rice.Science[J].1999, 283,12:1455-1458.

[11]Sakamoto T, Morinaka Y, Ohnishi T, et al. Erect leaves caused by brassinosteroid deficiency increase biomass production and grain yield in rice[J]. Nature Biotechnology ,2006,24: 105-109.

[12]Li ZK, Paterson AH, Pinson SRM, Khush G. A major gene, Tal and QTLs affecting tiller and leaf angles in rice[J]. Rice Genetics Newsletter.1998,15:79–84.

[13]Tanaka A, Nakagawa H, Tomita C, et al. BRASSINOSTEROID UPREGULATED1, encoding a helix–loop–helix protein, is a novel geneinvolved in brassinosteroid signaling and controls bending of the lamina joint in rice[J]. Plant Physiology2009,151:669-680.

[14]Zhang LY, Bai MY, Wu J, et al. Antagonistic HLH/Bhlh transcription factors mediate brassinosteroid regulation of cell elongation and plant development in rice and Arabidopsis[J]. The Plant Cell2009,21:3767-3780.

[15]Zhao SQ, Hu J, Guo LB, Qian Q, Xue HW. Rice leaf inclination 2,a VIN3-like protein, regulates leaf angle through modulating cell division of the collar[J]. Cell Research. 2010,20:935-947.

[16]Ning J, Zhang B, Wang N, Zhou Y, Xiong L. Increased leaf angle1, a Raf-like MAPKKK that interacts with a nuclear protein family, regulates mechanical tissue formation in the lamina joint of rice[J]. The PlantCell 2011,23:4334-4347.

[17]Wada K, Marumo S, Ikekawa N, Morisaki M, Mori K. Brassinolide and homobrassinolide promotion of lamina inclination of rice seedlings[J]. Plant and Cell Physiology 1981,22:323–325.

[18]Yamamuro C, Ihara Y, Wu X, Noguchi T, Fujioka S, Takatsuto S,Ashikari M, Kitano H, Matsuoka M Loss of function of a rice brassinosteroid insensitive1 homolog prevents internode elongation and bending of the lamina joint[J]. Plant Cell 2000,12: 1591-1606.

[19]Hong Z, Ueguchi-Tanaka M, Fujioka S, Takatsuto S, Yoshida S, HasegawaY, Ashikari M, Kitano H, Matsuoka M The rice brassinosteroid deficient dwarf2 mutant, defective in the rice homolog of Arabidopsis DIMINUTO/DWARF1, is rescued by the endogenously accumulated alternative bioactive brassinosteroid[J].Plant Cell 2005,17: 2243-2254.

[20]Bai MY, Zhang LY, Gampala SS, Zhu SW, Song WY, Chong K, Wang ZY.Functions of OsBZR1 and 14-3-3 proteins in brassinosteroid signaling in rice[J]. Proc Natl Acad Sci USA 2005,104: 13839-13844.

[21]Xiangqian Zhan. Epigenetic Mutation of RA V6 Affects Leaf Angle and Seed Size in Rice[J].Plant Physiology, November 2015,169:2118-2128.

[22] He Y, Sun H-L, Meng G-Y. Advances in Rice leaf morphology[J]. Crop Res, 2008, 22(5):378-380.

[23] Yamamuro C, Ihara Y, Wu X, Noguchi T, Fujioka S, Takatsuto S,Ashikari M, Kitano H, Matsuoka M. Loss of function of a rice brassinosteroid insensitive1 homolog prevents internode elongation and bending of the lamina joint[J]. Plant Cell, 2000,12:1591-1605.

[24] Tanaka A, Nakagawa H, Tomita C, Shimatani Z, Ohtake M, Nomura T, Jiang C J, Dubouzet J G, Kikuchi S, Sekimoto H, Yokota T, Asami T, Kamakura T, Mori M. BRASSINOSTEROID UPREGULATED1, encoding a Helix-Loop-Helix protein, is a novel gene involved in brassinosteroid signaling and controls bending of the lamina joint in rice[J]. Plant Physiol, 2009,151:669-680.

[25] Zhao S Q, Hu J, Guo L B, Qian Q, Xue H W. Rice leaf inclination2, a VIN3-like protein, regulates leaf angle through modulating cell division of the collar[J]. Cell Res, 2010,20: 935-947.

[26] Ning J, Zhang B C, Wang N L, Zhou Y H, Xiong L Z. Increased Leaf Angle1, a Raf-Like MAPKKK that interacts with a nuclear protein family, regulates mechanical tissue formation in the lamina joint of rice[J]. Plant Cell, 2011,23: 4334-4347.

[27] Zhang C, Xu Y Y, Guo S Y, Zhu J J, Huan Q, Liu H H, Wang L, Luo G Z, Wang X J, Chong K. Dynamics of brassinosteroid response modulated by negative regulator LIC in Rice[J]. 2012,8(4):102-186.

[28]hang S W, Li C H, Cao J, Zhang Y C, Zhang S Q, Xia Y F, Sun Y, Sun Y. Altered architecture and enhanced drought tolerance in rice via the down-regulation of indole-3-acetic acid by TLD1/OsGH3.13 activation[J]. Plant Physiol, 2009,151:1889–1901.

[29] Cao H P, Chen S K. Brassinosteroid-induced rice lamina joint inclination and its relation to indole-3-acetic acid and ethylene[J]. Plant Growth Regul, 1995,16: 189-196.

[30]翟虎渠,曹树青,万建民,等.超高产杂交稻灌浆期光合功能与产量的关系[J]. 中国科学,2002,32,3:211-217.

水稻产量的形成产量构成因素物质积累与分配教学内容

水稻产量的形成产量构成因素物质积累与 分配

水稻产量的形成/产量构成因素/物质积累与分配 (一)水稻的产量构成因素及其形成 水稻的产量是由每亩穗数、每穗粒数(颖花数)、结实率及粒重(千粒重)四 个因素组 成的。它们之间是相互联系、相互制约和相互补偿的,并不是每亩穗数愈多,或每穗粒数,或结实率,或粒重愈高,产量就愈高。而是当每亩有效穗数超过某一定数量时,每穗粒数、结实率和粒重并不增加,反而有所下降或减轻,反之穗数不足时,虽能穗大粒多,但因穗数不足,也不能高产。因此只有各个因素协调增长,当全田总实粒数达到最高时,粒重相对稳定或有所提高的情况下,才能获得高产,产量构成因素中穗数是由群体发展所决定的,而群体是由个体所组成,群体的发展反过来又影响了个体发育,影响到各个体的每穗粒数和粒重。因此,它们之间的关系也是群体与个体对立统一关系的反映。 从双季稻千斤高产田的构成因素来看,可分三种类型:第一种类型,每亩穗 数与粒数 并重,每亩35一40万左右,每穗粒数50一60粒左右,高产田块多属于这一 类型,多数是 在基本苗中等时产生的。第二种类型:每亩穗数多,但每穗粒数少。每亩穗数 40万以上, 每穗实粒数在40一50粒,大多是在基本苗较多时产生的。第三种类型:以大 穗为主。每 亩穗数以35万以下,每穗实粒数60粒以上,大多是基本苗较少时产生的。

由此可见,高产水稻不同群体各产量因素的组成不是一成不变的,而是根据品 种类型、 生育期长短、环境和栽培条件的不同以及施肥水平的高低等而转移的,并对水 稻产量的形 成过程和各因素的组合都有不同程度的影响。因此,必须因地制宜地制定栽培 管理措施, 在生长过程中不断协调各因素间的相互关系,从而达到合理的产量构成因素。 水稻的各产量因素是水稻一生的不同生育期形成的,它与不同生育期的器官 建成过程 有着密切相关联系,见图2。 以江苏省沿江地区为例:早稻(中熟品种)4月初播种,5月初移栽,5月上 中旬始 蘖,5月下旬进入分蘖盛期,7月上旬始穗,7月底8月初成熟。双季晚稻(沪 选19)于 6月中旬播种,7月底8月初移栽,8月中旬始蘖,9月上中旬抽穗, 10月底 11月初成熟。 由于不同生育时期生长不同器官,对产量的作用也不同,所以采取的措施也 不相同。 1.秧苗期是夺取水稻高产的基础时期。在秧苗素质较好的条件下,基本苗 多,穗数也 多。适龄壮秧,穗大粒多,超龄秧苗(即秧龄过长),穗型变小,秧龄过短(指后季稻)常不能正常授粉结实。总之,秧苗素质的好坏对穗数、粒数和粒

哪些因素影响大米品质

从以下图中四个方面对比,影响大米品质主要有4个方面: 1、加工储存; 2、稻谷品种; 3、产地环境; 4、种植方式。 其中,品种与环境,两个因素,都对稻禾的生长周期有影响。生长周期越长,米质越好。一般来说,晚熟品种的米质比早熟品种的米质更好。而同样的品种,在气温高的情况下,成熟得就快。因此,只种一季的,播种时间晚(一般在6月份)的,米质要更好。 新米与陈米,只是在少量营养成分与口感上的差别。有少许米虫,但未发霉,对健康没什么影响,也谈不上危害,这就看个人经济条件,自行选择了。当然,有些不良商家,通过抛光处理,将陈米冒充新米销售,甚至用一些有害的化学药剂对低质米进行处理,以次充好,那要受到法律的严惩! ——关于转基因品种以及农药残留等问题,显而易见,这不仅仅是品质高低差别的问题,而是关乎安全问题了。 能吃饱,但如果有危害,那就是“饮鸩止渴”。随着人们生活条件的不断改善,为解决吃饱,而选择明知有害的食物,这应该不太可能——除非不知情。 从上图看出,安全,是比温饱还更低级的要求!如果为安全,而去选择某些天价大米,听信某些商家关于安全问题耸人听闻的恐吓,实在没有多大的必要。我们要相信国家政府的监管,相信绝大多数进入市场的产品,还是安全可靠的。 在温饱之上的需求,就是要“吃好”。所以,你可以挑剔不吃陈米,而要选新米。你可以不吃普通米,而要选优质米(指优质品种)。再挑剔一些,你追求的就不只是植物蛋白营养成分含量的高低,口感或软或硬、或香或不香的区别,此时,某些富含特种“微量元素”

的稀土产地大米,可能可以满足你更多健康需求。 对米最高级别的追求,将不只是“可检测”的营养成分或者可感知的口感、气味差别,而是探寻更高级别的天然活性能量。——这个时候,你就会选择纯天然的生态大米。

长江中下游水稻种植影响因素及变化分析

摘要简要分析了长江中下游水稻种植的影响因素及变化特点,结合近年水稻种植变化特点,分析相关研究工作的研究思路。 关键词长江中下游;水稻种植;影响因素;变化分析 中图分类号 s511 文献标识码 a 文章编号 1007-5739(2016)06-0054-02 水稻是我国重要粮食作物,2012年我国水稻播种面积3 013.7万hm2,稻谷产量20 423.6万t,占全国粮食总产量的34.64%。研究表明,我国稻谷产量大部分用于人们的口粮(约67%),50%以上的人口以稻米为主食,水稻在我国粮食生产中占据了无可替代的重要作用。水稻的生产能力直接影响我国的粮食安全。目前我国南方稻区约占水稻播种面积的94%,长江中下游的水稻播种面积约为全国总面积的59%。长江中下游地区属于我国水稻种植的核心区域,稳定该区域的水稻播种面积,对稳定全国水稻生产总量具有重要意义。 近年,南方稻区水稻播种面积逐年减少,导致全国水稻总播种面积仍有逐年减少现象。纵观多年数据,长江中下游水稻双季稻种植面积1984―1997年保持相对稳定,1997年之后随着总种植面积的逐年下降,水稻总产量也随之逐年下降,而近5年又有回升趋势。长江中下游地区的水稻生产能力自2008年以后连续多年达到9 000万t以上的较高水平[1]。据国家统计局数据,1997―2013年,水稻播种面积平均减少9.4%,而总产量增加了16%。为更好了解长江中下游水稻种植的演变,展开如下分析。 1 长江中下游水稻种植影响因素分析 长江中下游地区虽然属于我国水稻种植的核心区,产量较高,但是水稻生产情况极其不稳定,生产年纪间波动明显,变化幅度强烈,波动周期不规律,稳定性不够强。影响该区域水稻种植业变化的主要因素具体如下。 1.1 播种面积是产业规模核心因素 以浙江省为例,1997年的稻谷播种面积为208.59万hm2,2013年减少到82.87万hm2,其稻谷产量也从1 238万t下降到580.2万t;种植面积减幅巨大造成了产量的巨大减少。长江中下游地区的双季稻改种单季稻是区域总种植面积下降的重要原因。随着长江中下游地区的双季稻种植面积不断下降,双季稻的总产在1997年之后出现多年产量大幅度的下降[2-8]。 1.2 单产提高促进总产量提升 近年随着水稻种植科技水平的提高,水稻生产中通过杂交稻应用与品种改良、施肥与农药应用等措施应用,水稻平均产量出现多年逐步提高趋势。以浙江为例:稻谷单产量从1997年的5 935 kg/hm2增长到2013年的7 001 kg/hm2,单产增幅达18%。水稻单产提高成为总产量提升的重要因素。 1.3 种植净收益影响产业规模 种植户的种植选择取决于水稻收购价格、水稻投入成本、种植政策补贴力度3个因素的综合净收益。生产中用工成本高、农资投入高等问题导致生产总成本高、种植比较效益不断下降。从社会层面看,水稻种植户规模偏小、科技水平低、高效生产技术应用不足等因素在一定程度上限制了水稻生产净收益的提高。种植户的最终净收益,影响了水稻种植的积极性,进而影响种植户是否种植水稻。通过种植群体的总体性选择影响了整体产业规模。 1.4 种植比较收益影响农户种植选择 长江中下游地区气候资源优越,雨热同季,适宜作物多样。随着市场需求的多元化,比较收益较高的果蔬类作物对种植户的吸引力更高。笔者调查,种植葡萄、西瓜等果蔬作物的收益为水稻种植的8~20倍。于是更多种植户将水稻用地转种较高收益作物,导致水稻的种植空间被挤占[1-2]。 1.5 城市化挤占耕地面积,影响水稻种植规模

遮光对水稻生长发育及稻米品质的影响

2019年2月Feb.2019 第43卷第1期 V ol.43, No.1热 带 农 业 工 程 TROPICAL AGRICULTURAL ENGINEERING - 19 - 水稻是我国主要的粮食作物之一,主要生长在亚热带地区[1],以南方居多。水稻喜温喜光,在积温高、光照充足的条件下生长良好。前人对遮光条件下水稻的生长状况进行了研究和分析,不同研究的结论存在较大差异。本文以连粳15号为研究对象,探讨了遮光对水稻生长发育及稻米质量的影响,为促进水稻栽培技术发展,提高我国粮食生产水平提供技术支持。 1?材料与方法 1.1?试验材料 以连粳15号水稻为材料开展遮光试验[2]。1.2?试验设计 试验于2018年进行。4月11日将连粳15号水稻用凉水浸泡处理。4月18日播种,播种量为 遮光对水稻生长发育及稻米品质的影响①徐?波1)②?王宝祥1)?邢运高1)?孙志广1)?杨?波1)?刘?艳1)?卢百关1)?徐大勇2)③(1?江苏徐淮地区连云港农业科学研究所?江苏连云港?222001; 2?江苏省现代作物生产协同创新中心?江苏连云港?222001) 摘?要?植物的正常生长都离不开光照。光照强度对水稻的生长发育影响显著,本文以连粳15号水稻为研究对象,采用盆栽试验,通过测定水稻的株高、产量及品质等指标,探讨了遮光处理对水稻的生长发育以及稻米品质的影响。结果表明:经过遮光处理之后的水稻,株高、叶片数、产量均明显下降,稻米的营养品质和食味品质均较差。 关键词?遮光;水稻;生长发育;稻米品质 中图分类号?S511 Effects of Shading on Rice Growth and Development and Rice Quality XU Bo1) WANG Baoxiang1) XING Yungao1) SUN Zhiguang1) YANG Bo1) LIU Yan1) LU Baiguan1) XU Dayong2) (1 Lianyungang Institute of Agricultural Sciences,Xuhuai Region,Jiangsu Province,Lianyungang,Jiangsu 222001; 2 Jiangsu Modern Crop Production Co-innovation Center,Lianyungang,Jiangsu 222001) Abstract The normal growth of any plant depends on the light.The light intensity has a significant effect on the growth and development of rice. The pot experiment was used to determine the plant height,yield and quality of rice. The effects of shading on the growth and development of rice and its quality were discussed. The results showed that the plant height,number of leaves and yield of rice after shading treatment decreased obviously,and the nutritional quality and taste quality of rice were poor. Key words shading ;rice ;growth and development ;rice quality ①基金项目:连云港市财政专项支持(No.QNJJ1912);现代农业技术体系建设专项资金资助;高产优质多抗耐盐(碱)水稻新种质创 制(No.BE2016370-3);清香软粳的水稻基因发掘、育种材料创制(No.BE2017323)。 收稿日期:2018-12-28;责任编辑:王云云;E-mail:rdnygcbjb@https://www.360docs.net/doc/d41478637.html,。 ②徐波(1989~),男,江苏赣榆人,硕士,助理研究员,主要从事水稻遗传育种工作。 ③通信作者。

浅谈影响水稻产量的相关因素及对策 (1)

安徽农业大学 毕业论文 论文题目浅谈影响水稻产量的相关因素及对策姓名学号 院系安徽农业大学专业 指导老师职称 中国?合肥 二〇一九年三月

目录 摘要 (1) 1 绪论 (3) 1.1研究背景 (3) 1.2选题意义 (3) 1.3国内外研究现状 (3) 2 影响我国水稻产量的因素 (4) 2.1气候因素 (4) 2.2育苗方式 (5) 2.3施肥比列 (5) 2.4种植条件和管理技术不到位 (5) 2.5外界因素 (6) 3 提高水稻种植产量的对策 (6) 3.1因地制宜进行水稻种植 (6) 3.2水稻品种的选取 (7) 3.3对水稻种植的科学管理 (7) 3.4病虫害防治和预防极端天气 (7) 3.5增加惠民政策,科学化、产业化种植 (8) 4 结论 (8) 参考文献 (9) 谢辞 (11)

浅谈影响水稻产量的相关因素及对策 作者: 指导老师: 安徽农业大学学院专业 摘要 水稻是我国主要粮食作物,在粮食生产和消费中历来处于重要地位,水稻生产状况的好坏对全球经济的发展和整个社会的安定和我国粮食安全产生重要影响。本文主要对影响水稻产量的因素进行分析,并从栽培,施肥,科学管理等多个方面对水稻进行相应的措施,提出解决水稻生产存在问题的相关对策和建议。 关键词:水稻;产量;影响因素

Factors affecting rice yield and Countermeasures Abstract Rice is the main grain crop in China. It has always played an important role in grain production and consumption. The quality of rice production has an important impact on the development of global economy and the stability of the whole society. In this paper, the factors affecting rice yield were analyzed, and the corresponding measures were taken from cultivation, fertilization, scientific management and other aspects, and the countermeasures and suggestions were put forward to solve the problems existing in rice production. Key words:Rice; yield; influencing factors

水稻产量的形成产量构成因素物质积累与分配

水稻产量的形成/产量构成因素/物质积累与分配 (一)水稻的产量构成因素及其形成 水稻的产量是由每亩穗数、每穗粒数(颖花数)、结实率及粒重(千粒重)四个因素组 成的。它们之间是相互联系、相互制约和相互补偿的,并不是每亩穗数愈多,或每穗粒数,或结实率,或粒重愈高,产量就愈高。而是当每亩有效穗数超过某一定数量时,每穗粒数、结实率和粒重并不增加,反而有所下降或减轻,反之穗数不足时,虽能穗大粒多,但因穗数不足,也不能高产。因此只有各个因素协调增长,当全田总实粒数达到最高时,粒重相对稳定或有所提高的情况下,才能获得高产,产量构成因素中穗数是由群体发展所决定的,而群体是由个体所组成,群体的发展反过来又影响了个体发育,影响到各个体的每穗粒数和粒重。 因此,它们之间的关系也是群体与个体对立统一关系的反映。 从双季稻千斤高产田的构成因素来看,可分三种类型:第一种类型,每亩穗数与粒数 并重,每亩35一40万左右,每穗粒数50一60粒左右,高产田块多属于这一类型,多数 是 在基本苗中等时产生的。第二种类型:每亩穗数多,但每穗粒数少。每亩穗数40万以上,每穗实粒数在40一50粒,大多是在基本苗较多时产生的。第三种类型:以大穗为主。每亩穗数以35万以下,每穗实粒数60粒以上,大多是基本苗较少时产生的。 由此可见,高产水稻不同群体各产量因素的组成不是一成不变的,而是根据品种类型、 生育期长短、环境和栽培条件的不同以及施肥水平的高低等而转移的,并对水稻产量的形成过程和各因素的组合都有不同程度的影响。因此,必须因地制宜地制定栽培管理措施,在生长过程中不断协调各因素间的相互关系,从而达到合理的产量构成因素。 水稻的各产量因素是水稻一生的不同生育期形成的,它与不同生育期的器官建成过程 有着密切相关联系,见图2。 以江苏省沿江地区为例:早稻(中熟品种)4月初播种,5月初移栽,5月上中旬始蘖,5月下旬进入分蘖盛期,7月上旬始穗,7月底8月初成熟。双季晚稻(沪选19)于6月中旬播种,7月底8月初移栽,8月中旬始蘖,9月上中旬抽穗, 10月底11月初成熟。 由于不同生育时期生长不同器官,对产量的作用也不同,所以采取的措施也不相同。 1.秧苗期是夺取水稻高产的基础时期。在秧苗素质较好的条件下,基本苗多,穗数也多。适龄壮秧,穗大粒多,超龄秧苗(即秧龄过长),穗型变小,秧龄过短(指后季稻)常不能正常授粉结实。总之,秧苗素质的好坏对穗数、粒数和粒重的形成有根大影响。因此,要夺取水稻高产,必须狠抓足苗、适龄、壮秧这一环。 2.分蘖期是决定每亩穗数的关键时期。每亩穗数是由主茎穗和分蘖穗所组成,适当增 加基本苗数和提高单株成穗率是增加每亩有效穗数的两个方面。主茎穗决定于基本苗的多少,有时弱苗也不能成穗,壮秧足苗才能达到相应数量的主茎穗。分蘖穗决定于分蘖成穗率,分蘖成穗率以该品种的分蘖特性、移栽叶龄、苗体壮弱以及栽培与气候条件有关,移栽时叶龄决定有效分蘖的起始节位,栽培与气候条件在相当程度上决定分蘖发生的迟早和快慢,从而影响分蘖的有效性。增穗措施要下在有效分蘖期,在分蘖初期施肥增穗效果显著,过了分蘖高峰期施肥,增穗效果就不明显,分蘖期已过再进行施肥,几乎看不出对增穗的效果。因此,分蘖期的要求是促进早发和防止迟发,在积极促进早发的基础上,控制分蘖发生过多,协调群体与个体的生长关系,达到足蘖壮株,为足穗大穗奠定基础。 3.长穗期是决定每穗粒数的关键时期,也是培育壮秆为粒重奠定基础的时期。每穗粒 数的多少,既决定于每穗的分化颖花数,也受退化颖花数的影响。分化颖花数多是增加粒

影响水稻产量的因素及解决途径

影响水稻产量的因素及解决途径 摘要系统分析了影响水稻产量的因素,包括自然因素、人为因素和社会因素,并有针对性地提出有效的解决途径,包括保护耕地、加强农田基础建设、健全农技队伍、继续加强新品种和新技术引进等,从而稳定和发展粮食生产,保持粮食生产能力。 关键词水稻;产量;影响因素;解决途径 随着水稻高产新品种(杂交新组合)的育成推广和栽培新技术的实施,水稻单产有了新的突破,改变了长期徘徊不前的局面。就杭嘉湖地区晚稻产量而言,20世纪90年代单产6 750~7 500kg/hm2,21世纪以来的7a,单产水平已跃升7 875~9 000kg/hm2。但在新品种的推广中,同区域、同品种,因种栽培技术水平的高低,单产差异往往十分明显。 1影响水稻产量的因素 1.1自然因素 土、水、光、温、气是水稻生长中基本的生态环境因素。发生灾害性气候往往是一个或几个因素的综合作用,从范围上是区域性和阶段性的。例如:水稻生长期间三个生育敏感阶段受灾后的症状及危害性表现:①播种至育秧阶段的暴雨、低温、干旱,会发生烂种烂芽、青稞死苗,影响种植计划;如果补播又延误生产季节,导致晚稻营养生长量不足,造成产量基础差。②孕穗至扬花阶段的低温阴雨、高温,造成空壳率增加,产量水平下降。③灌浆至成熟阶段的暴风雨、秋旱和寒潮秋霜,有可能发生倒伏、青枯卷叶、灌浆不足,品质下降某阶段的突发性病虫害,有可能造成减产或绝收。 1.2人为因素 种子选用、肥料配比、播种时间、移栽密度和对自然因素中土、水、光、温、气的科学调节以及病虫灾害发生的防治,均由人为控制,直接影响水稻的产量。如2005年10月上中旬江、浙、沪稻区,晚稻五代褐稻虱大暴发造成了大面积减产,幅度至少在10%以上,还出现了部分绝收的田块。在这些绝收的田块中,又表现为两种不同的征状:一种是防治不力造成虫灾后的绝收;另一种是防治过程用药过量造成药害后的绝收。究其原因:客观上受前期连续2次台风的影响,主观上因思想麻痹大意,对稻虱的危害缺乏正确的估计和科学的防治策略。就本县当年晚稻生产结果调查:在干窑镇新星村,一种粮户承包种植3hm2晚稻品种秀水09因褐稻虱的危害而绝收,血本无归;而隔河相望、相隔不到2km的西塘镇

浅谈影响水稻产量的相关因素及对策

成人高等教育毕业论文(设计) 毕业论文(设计)题目 浅谈影响水稻产量的相关因素及对策 年级 专业农学 层次 学号 17280220 学生姓名王媛媛 指导教师 完成时间:2018年10月

摘要 水稻是我国主要粮食作物,在粮食生产和消费中历来处于重要地位,水稻生产状况的好坏对全球经济的发展和整个社会的安定和我国粮食安全产生重要影响。本文主要对影响水稻产量的因素进行分析,并从栽培,施肥,科学管理等多个方面对水稻进行相应的措施,提出解决水稻生产存在问题的相关对策和建议。 关键词:水稻;产量;影响因素

Factors affecting rice yield and Countermeasures Abstract Rice is the main grain crop in China. It has always played an important role in grain production and consumption. The quality of rice production has an important impact on the development of global economy and the stability of the whole society. In this paper, the factors affecting rice yield were analyzed, and the corresponding measures were taken from cultivation, fertilization, scientific management and other aspects, and the countermeasures and suggestions were put forward to solve the problems existing in rice production. Key words:Rice; yield; influencing factors

水稻出米率原因分析

水稻出米率原因分析 水稻品种是决定品质、出米率低的因素。据从稻米加工厂收水稻者调查散穗空育131、紧穗空育131.散穗空育131出米率53-69%,紧穗空育131出米率59-73%。正宗的空育131是紧穗,种植时间长了就分离出了散穗,人们田间穗选后繁殖起来,就成了人们俗称的散穗空育131,这个系选的株系没经过审定,属于品系。该品系比较混乱,出现了几个不同的散穗空育131类型(如9801等)。现在的散穗空育131出米率、抗病性、抗倒伏性等方面明显不如紧穗空育131。 通过调查种植紧穗空育131的出米率和整精米率都好于其他品种,并且出米率超过67%的几乎全部是空育131。由于近两年来我场种植的紧穗空育131、鞘腐病、褐变穗发生较重,去年很多种植户部分或全部种植空育131而改种,产量高发病轻的品系和越区的品种。忽视品质片面地追求产量指标是导致品质下降,出米率下降的主要原因。 其次是栽培技术特别是施肥、栽插密度、管水方式、农时标准、综合防治病虫害、收脱方法等都严重影响着水稻的品质。并且不同的品种采取相应的水稻栽培技术。 1、施肥不按比例严重影响了水稻品质:通过调查对得出在相同栽培管理条件下:①施用复合肥和复混肥生产的水稻出米率都低于应用二铵、尿素、钾肥的应用复合肥生产的水稻品质普遍低于用二铵、尿素、钾肥的现象,原因是复合肥中氮肥偏多,磷、钾含量不足,并且其氮、磷、钾的比例是固定的,不能满足水稻生长需要。春季到初夏地温上升缓慢,苗期生长也慢,因此种植户往往多施氮肥催苗,等到7月,土温上升,土壤中微生物分解出大量土壤肥力,施用的化肥和土壤释放的肥力加在一起,在温度高的情况下稻体短时间内大量吸收氮素,植株生长较快苗不健壮。 ②氮肥施用过大,氮肥的比例要适宜,过去我们施肥NPK的比例是2:1:0.8,现在就调查到2:1:1.5,N肥比例过大易感染病害、贪青晚熟和倒伏。提高K肥的比例,有利于抗病壮植促早熟。③叶面肥对品质影响也很明显,有的叶面肥是氮肥(如尿素)、激素和微肥混配的,施用后显效快,如果七月份后施用,极易造成倒伏和贪青晚熟,此期应施用主要含P、K的叶面肥。 因此,测土施肥,优化配方施肥是优质稻栽培技术的核心,直接关系到产量与质量。优质水稻施肥措施不应追求过高的产量,比如种植空育131的目标产量就应定在600公斤,要以产定量,采取氮磷钾硅肥配合施用的施肥原则。 2、水层管理。按照水层管理要求,停止灌水时间是8月底(蜡熟末期),排干时间是9月初(黄熟初期)。此期水稻由于前期生育滞后,三类苗还没有达到腊熟末期就停灌了,有的水稻户在水稻齐穗后就把座机抬回去了。去年9月上旬降水和历年持平,中旬降水仅为6.6mm,比历年少19.5mm,9月中旬以后天气持续高温,9月中、下旬气温分别比历年高1.2、3.0度。这样过早停灌,仅靠自然降水不能满足水稻生理、生态需求,浪费了积温而导致水稻根叶早衰,三类苗以及主穗下部和二次枝梗一部分子粒灌浆不足,虽然产量高了但千粒重偏低,出米率降低而品质下降。如果气温持续偏高可延长灌水时期,推迟停灌时间,继续进行间歇灌溉、养根保叶,否则仅靠自然降水往往不能满足水稻正常需水要求。水稻结实期长期深水淹灌易倒伏,水稻倒伏,影响了空气和光线的通透性,从而影响光合作用,而导致品质下降。

水稻产量的影响因素与保障技术

龙源期刊网 https://www.360docs.net/doc/d41478637.html, 水稻产量的影响因素与保障技术 作者:张庆林 来源:《农村经济与科技》2016年第12期 [摘要]本文主要从分析水稻产量的主要影响因素入手,并在理解其影响机制、了解其影响作用的基础上,针对水稻产量的保障和优化制定相应措施和实施相关技术。 [关键词]水稻;影响因素;保障技术 [中图分类号]S233.71 [文献标识码]A 1 绪论 根据国家统计局数据,我国2014年人口数量为13.68亿。作为这样一个拥有庞大人口基 数的国家,与之相对应的则是同样巨大的粮食需求量和消耗量。水稻作为全球三分之一人类的主食,同时也是我国的三大主要粮食作物之一,为保证其作物产量的持续增长而对水稻生长过程中的各项影响因素和其影响运作机制进行充分地了解和掌握则具有十分积极的意义。本文主要从分析水稻产量的主要影响因素入手,并在理解其影响机制、了解其影响作用的基础上,针对水稻产量的保障和优化制定相应措施和实施相关技术。 2 水稻产量的影响因素 水稻作为一种原产于中国的农作物,其产量的高低离不开水、土、光等自然因素的影响,也离不开栽培密度、施肥量与肥料配比、病虫害防治等人为因素的变化。 2.1 水稻产量的自然影响因素 2.1.1 光照因素对水稻产量的影响 水稻属于喜光型作物,其的整个生长发育过程中都对光照条件有着较高的要求。一方面,光照条件充足可以更有效地促进农作物体内的光合作用地进行,促进有机物质的转化生成,同时将光能转化为农作物体内的有机物化学能量,从而促使水稻更好地完成分蘖、拔节、抽穗、灌浆、结实等一系列生长过程。而在水稻的灌浆时期,稻粒内部的充实物中有大约90%是通过水稻叶片进行光合作用转化有机物质来完成的。水稻的单片叶片的光饱和强度在3-5万勒克斯左右,但其群体光饱和强度却可以随着叶片面积指数的增大而升高。此外,在充足的光合作用帮助水稻作物高效转化有机物质的同时,也帮助其体内生成各类所需的营养物质,并促进根系位置对于土壤养分的吸收,通过保持水稻植株的健壮长势来保证其的稻粒产量与质量。 2.1.2 土壤岩性因素对于水稻产量的影响

环境因子对水稻品质形成的影响

环境因子对水稻品质形成的影响 发表时间:2017-05-22T15:58:44.770Z 来源:《基层建设》2017年4期作者:王小林 [导读] 本篇文章主要向我们讨论了关于环境因子对水稻品质形成的影响。 湖南农业大学生物科学技术学院湖南长沙 410007 摘要:环境会影响作物生长,有些环境污染的发生,会造成减产;农作物可能会吸收和富集某种污染物,影响农产品质量,给农业生产带来巨大的经济损失;长期食用受污染的农产品可能严重危害身体健康。本篇文章主要向我们讨论了关于环境因子对水稻品质形成的影响。 关键词:环境因子;水稻品质;影响 引言:随着社会的发展,环境控制在当前的控制中占据的位置比较重要。在国家水稻的发展中,环境的控制尤为重要,相关产值人员应该需要考虑影响健康的各类因素,并制定到政策中;同时要加强科研能力,开发污染修复、污染防护能力,降低环境危害因子在水稻中的暴露水平。 1 酸性土壤环境 由于气候变化、环境污染导致酸雨增加,土壤酸化,在酸性增强的条件下,土壤中的活性也随之增强,更易被水稻等作物吸收。 2环境因子对水稻品质形成的影响 2.1水稻环境容易积累重金属 在重金属污染点或污染区周边,水稻环境比旱作环境多了一条重金属积累途径,比起旱作更容易积累重金属。原因在于水稻生长在水作环境中,水里含有重金属,重金属随着水流进入稻田中而积累。根据日本学者伊藤研究,当水体中含有0.1微克/升时,90%左右的镉会被水稻土壤所吸附,开始积累重金属。通常情况下一亩地种一季稻需要1500吨水,河水中的镉浓度为0.05-0.1微克/升,如果以标准0.01毫克/升的标准计算,每亩地每季计入的镉可达15克,以每亩土壤150吨计算,理论上可以使得土壤镉浓度上升至0.1毫克/公斤。 水作不同于旱作,水稻生长需要一个平整的田面并覆盖水层,以形成淹水环境,由于重金属主要吸附在土壤中极细的黏粒部分,田块在整平和灌水过程中,极细部分形成泥浆积累于表层,导致整地后播种前稻田土壤表面3厘米中的重镉含量会高于其下土层一倍或者以上,因此污染的稻田此时就对水稻的重金属吸收埋下了“隐患”。 2.2当外源镉遇到酸化的土壤 中国的农田有数千年的耕作历史,近千年来,先民们不断施用塘泥、动物性肥料、绿肥进行轮作,虽然每年为了培肥外加的物质不少,但在工业污染之前,这些物质含有害重金属极少,土壤越来越肥沃,土壤却越来越安全。在“六五”期间调查4095个土壤点,中国土壤的镉很低,仅仅0.097毫克/千克。 大量化肥的施用,使得土壤因缺乏高分子有机质而降低了吸收重金属的能力,另一方面也导致了土壤的板结,根系难以向下生长,根系几乎生长在土壤表层。研究表明当表层土中镉浓度为5毫克/千克时,水稻籽粒中的镉含量则为0.264毫克/千克,超过国家粮食卫生标准(0.2毫克/千克);表层土壤未污染时,即使当深层土壤镉浓度为10毫克/千克时,水稻籽粒中镉含量也仅为0.032毫克/千克,低于国家粮食卫生标准。 2.3水稻生长环境对重金属“敏感” 水稻生长于淹水环境中,土壤中的氧化还原电位可低到在-100毫伏,在这样环境下可以让镉、铅等重金属转化为溶解性很低的金属硫化物而不被水稻吸收。很多科研工作者在进行淹水种植水稻时,都发现被污染的农田在长期淹水的情况下大米的镉、铅不容易超标。Bingham 等在1976年研究了在淹水和落干的条件下,镉对水稻经济产量的影响。在淹水的还原状态下, 土壤中镉含量为320毫克/千克,对水稻产量并没有产生影响;而在落干的氧化条件下,土壤中镉的浓度17毫克/千克,却会造成水稻减产,可见长期淹水的效果。 淹水管理也因此成为日本控制大米镉积累的重要措施,在2007年实施了近60万亩耕地的淹水管理,总结其效果为在不淹水情况下大米镉含量可达0.58毫克/千克,而有效的水分管理下大米镉含量可达0.08毫克/千克。 为了促进长期淹水下的养分转化和控制分蘖,在农作上,水稻有个中干排水的过程,此外后期由于天气因素常常缺水,土壤从还原状态转化为氧化态,还原环境下形成的硫化镉等迅速溶解,本来土壤中的锌和铁等可以通过根系的吸收竞争抑制镉的吸收。有研究表明,在硫化物溶解过程中,硫化锌等的溶出慢了半拍,导致土壤溶液中的镉锌比和镉铁比提高,镉被根系的吸收因变得“畅通无阻”而容易被吸收,而这个时期根系吸收的镉容易直接进入籽粒,从而导致稻米的镉含量的快速提高。 淹水环境对镉、铅的控制有着很好的作用,但如果有汞、砷的污染存在时,还原环境则强化了水稻的砷和汞的吸收,这是因为在淹水条件下,砷以亚砷酸存在,汞在还原条件下容易被还原成甲基汞,这两类物质变得更毒,且更容易被吸收,因此在污染的条件下,稻米就容易积累这两个元素(甲基汞和砷)。 2.4大米的安全性与生态环境高度相关 进入稻米中的重金属并不仅土壤一条途径。有人于2008年研究了离高速公路不同距离10米、40米、100米、200米、300米和450米的大气污染对大米中的重金属含量的影响,并以铅同位素为研究对象,比较曝露与不曝露于高速公路污染下两种情形。结果发现,叶片中的铅、镉、锌、茎中的锌以及谷物中的铅和镉在两种曝露情形下差别很大,谷物中约46%的铅和 41%的镉可以归因于叶面从大气的吸收,而对于铬、锌和铜,大气源对籽粒中的这三个重金属则没有明显的贡献。可见大气污染对稻米安全也有着显著的影响,同时也表明生长于繁忙的高速公路两侧的作物的安全性需要更多的关注。 近年来,对镉大米的关注让我们发现大米的安全性与其生态环境高度相关。数年来我们也测定到很多重金属含量很低的大米,分析发现,这些大米大都产自环境优美的乡村中。一方面,乡村的重金属源较少,另一方面乡村的有机肥在肥料施用中的比例相对较高,有机肥的安全性也较高,土壤也不易板结等等。 2.5湿度和风的环境因素 影响稻米品质的湿度和风的因素相对湿度和降雨量对稻米品质也有一定的影响。相对湿度与糊化温度、胶稠度和垩白面积一般呈正相关,而与直链淀粉含量呈负相关,但品种间不一致。不同雨量环 境对米粒延伸性、直链淀粉含量、糙米率及蛋白质含量有显著影响,且环境与品种之间存在着显著地互作用。此外,抽穗吹风处理会

关于水稻产量影响因素的多元回归分析

目录 摘要 1、研究背景及意义 2、问题的提出 3、模型的建立和求解 3.1相关分析—简单散点图 3.2多元回归分析—参数估计 3.3三种检验 3.3.1回归方程的拟合优度检验 3.3.2回归方程的显著性检验—F检验 3.3.3参数显著性检验—t检验 4、多重共线性检验分析 5、自相关分析 6、模型的修正 6.1逐步修正法 关于水稻产量影响因素的多元线性回归分析 摘要

本文的主要内目的是对影响水稻产量的因素进行分析,主要运用了SPSS18,采用多元线性回归分析的方法对我国最近18年影响水稻产量的主要因素进行了分析,建立了以水稻产量为因变量,水稻播种面积、化肥施用量、生猪存栏量和降水量四种影响因素为自变量的多元线性回归模型,利用模型对各个因素进行了统计分析,并且对模型进行了修正检验,在此基础上提出一些提高水稻产量的合理化建议。 关键词:SPSS18 水稻产量多元回归线性分析 1、研究背景及意义 我国是一个人口大国,众所周知,很多偏远地方的人们仍然处在饥饿的边缘,水稻产量的提高首先可以很好的改善部分地区的粮食紧张问题,为我国经济的发展和社会的稳定提供有效的保障,其次,水稻产量的提高有利于稳定粮食的价格。因此,对影响水稻产量的因素进行多元回归线性分析可以得出各个因素的影响程度,从而采取正确的措施,以最少的投入得到最大的产量,这对于农业的科学发展是十分必要的。 2、问题的提出 下面的表格给出了我国最近18年来水稻产量与影响和制约水稻产量的主要因素的有关数据。 表1 18年来水稻产量和相关影响数据 水稻播种面积(万亩)化肥施用量(万 公斤) 生猪存栏量(万 口) 降水量 (10mm) 水稻总产量(万 公斤) 147.00 2.00 15.00 27.00 154.50 148.00 3.00 26.00 38.00 200.00

关于水稻产量影响因素的多元回归分析

创作编号: GB8878185555334563BT9125XW 创作者:凤呜大王* 目录 摘要 1、研究背景及意义 2、问题的提出 3、模型的建立和求解 3.1相关分析—简单散点图 3.2多元回归分析—参数估计 3.3三种检验 3.3.1回归方程的拟合优度检验 3.3.2回归方程的显著性检验—F检验 3.3.3参数显著性检验—t检验 4、多重共线性检验分析 5、自相关分析 6、模型的修正 6.1逐步修正法

关于水稻产量影响因素的多元线性回归分析 摘要 本文的主要内目的是对影响水稻产量的因素进行分析,主要运用了SPSS18,采用多元线性回归分析的方法对我国最近18年影响水稻产量的主要因素进行了分析,建立了以水稻产量为因变量,水稻播种面积、化肥施用量、生猪存栏量和降水量四种影响因素为自变量的多元线性回归模型,利用模型对各个因素进行了统计分析,并且对模型进行了修正检验,在此基础上提出一些提高水稻产量的合理化建议。 关键词:SPSS18 水稻产量多元回归线性分析 1、研究背景及意义 我国是一个人口大国,众所周知,很多偏远地方的人们仍然处在饥饿的边缘,水稻产量的提高首先可以很好的改善部分地区的粮食紧张问题,为我国经济的发展和社会的稳定提供有效的保障,其次,水稻产量的提高有利于稳定粮食的价格。因此,对影响水稻产量的因素进行多元回归线性分析可以得出各个因素的影响程度,从而采取正确的措施,以最少的投入得到最大的产量,这对于农业的科学发展是十分必要的。 2、问题的提出 下面的表格给出了我国最近18年来水稻产量与影响和制约水稻产量的主要因素的有关数据。 表1 18年来水稻产量和相关影响数据 水稻播种面积(万亩)化肥施用量(万 公斤) 生猪存栏量(万 口) 降水量 (10mm) 水稻总产量(万 公斤) 147.00 2.00 15.00 27.00 154.50 148.00 3.00 26.00 38.00 200.00 154.00 5.00 33.00 20.00 227.50 157.00 9.00 38.00 99.00 260.00 153.00 6.50 43.00 208.00

相关文档
最新文档