物理层标准

物理层标准
物理层标准

机械特性:DTE和DCE之间的接口首先涉及从机械上分界的问题,即规定机械上分界的方法,DTE、DCE作为两种分立的不同设备通常采用连接器实现机械上的互连,即一种设备的引出导线连接插头、另一种设备的引出导线连接插座,然后通过插头、插座将两种设备连接起来。为了使不同厂家生产的DTE、DCE设备便于连接,物理层的机械特性对插头和插座的几何尺寸、插针或插孔芯数及其排列方式、锁定装置形式等作了详细的规定。图2.2列出了各类已被ISO 标准化了的DCE连接器的几何尺寸及插孔芯数和排列方式。一般来说,DTE的连接器常用插针形式,其几何尺寸与DCE连接器相配合,插针芯数和排列方式与DCE连接器成镜象对称。25芯接头:ISO-2110标准,EIARS-232C和EIARS-366A等标准均与之相兼容。这种25芯的连接器可用于串/并行音频调制解调器、公用数据网络接口、电报(包括用户电报)接口和自动呼叫设备中。34芯接头:ISO -2593标准,这种连接器可用于CCITT V.25建议的宽带调制解调器中。虽然还没有一个EIA标准与之对应,但这种标准在美国已获应用。37芯及9芯接头:ISO-4902标准,用于串行音频和宽带调制解调器中,与EIARS-449标准兼容。15芯接头:ISO-4903标准,这种连接器可用于CCITT X.20、X.21和X.22建议中规定的公用数据网接口中。

电气特性:DTE与DCE之间有多根导线相连,这组导线中除了地线是无方向性的以外,其它信号线均有方向性。物理层的电气特性

规定了这组导线的电气连接及有关电路的特性,一般包括:接收器和发送器电路特性的说明、表示信号状态的电压/电流电平的识别、最大数据传输的说明,以及与互连电缆相关的规则等。DTE与DCE接口的各根导线(也称电路)的电气连接方式有非平衡方式、采用差动接收器的非平衡方式和平衡方式三种。

以太网标准和物理层及数据链路层专题

资料编码产品名称 使用对象产品版本 编写部门资料版本 以太网标准和物理层、数据链路层专题 拟制:日期: 审核:日期: 审核:日期: 批准:日期: 华为技术有限公司 版权所有侵权必究 修订记录 日期修订版本作者描述

目录 1 以太网标准 5 1.1 以太网标准 5 1.2 IEEE标准 5 1.3 物理层 8 1.3.1 以太网接口类型 8 1.3.2 电口 8 1.3.3 光口 11 1.4 FE自协商 12 1.4.1 自协商技术的功能规范 13 1.4.2 自协商技术中的信息编码 14 1.4.3 自协商功能的寄存器控制 16 1.4.4 GE自协商 18 1.5 物理层芯片和MAC层芯片接口简介 19 1.5.1 MII 19 1.5.2 MDIO管理寄存器 20 1.5.3 RMII 20

1.5.4 SMII 21 1.5.5 SS-SMII 21 1.5.6 GMII 22 1.5.7 TBI 22 2 以太网数据链路层 23 2.1 以太网的帧格式 23 2.2 以太网的MAC地址 25 2.3 CSMA/CD算法 26 2.3.1 CSMA/CD发送过程 27 2.3.2 CSMA/CD如何接收 28 2.4 半双工以太网的限制 31 2.5 以太网流量控制 34 2.5.1 反压(Backpressure) 34 2.5.2 PAUSE 流控 34 关键词: 以太网物理层数据链路局域网城域网协议标准祯结构

摘要: 本文详细地阐述了以太网的标准,以太网在各个传输层面的具体结构和工作方式以及控制方式。 缩略语清单: 无。 参考资料清单 无。 以太网标准和物理层、数据链路层专题 1 以太网标准 1.1 以太网标准 局域网(LAN)技术用于连接距离较近的计算机,如在单个建筑或类似校园的集中建筑中。城市区域网(MAN)是基于10-100Km的大范围距离设计的,因此需要增强其可靠性。但随着通信的发展,从技术上看,局域网和城域网有融合贯通的趋势。 1.2 IEEE标准 IEEE是电气和电子工程师协会(Institute of Electrical and Electronics Engineers)的简称,IEEE组织主要负责有关电子和电气产品的各种标准的制定。IEEE于1980年2月成立了IEEE 802委员会,专门研究和指定有关局域网的各种标准。IEEE 802委员会由6个分委员会组成,其编号分别为802.1

无线通信系统中基于物理层安全的安全通信

无线通信系统中基于物理层安全的安全通信由于无线媒质的开放性与广播性,使得恶意用户可以截获在无线媒介中传送的信息,从而对无线通信的安全性带来很大的挑战。无线通信系统中基于物理层的安全着眼于OSI模型的物理层,利用无线通信理论、信息处理、随机处理、博弈论及信息论等领域的知识来解决这一问题,通过对物理层通信进行了适当的设计,提高或增进网络的安全性能。 基于物理层的安全方法一般利用了无线媒质的特征,比如信道衰落、信号干扰、多节点合作以及多维信息发送等。基于无线通信物理层的安全问题是当前无线通信中的研究热点之一,尽管文献中已经有了众多的研究成果,但无线通信中的安全问题仍然存在许多亟需解决的问题。 在本论文中,我们将主要从信息论的角度研究无线网络的安全问题,力图进一步提高无线通信的安全性。本论文的主要创新点如下:1.针对无线广播信道经历瑞利衰落的情形,分析了全双工系统的安全性能,理论推导出了非零安全容量和安全中断概率的闭式解。 理论分析结果以及仿真结果都表明,如果具有全双工功能的接收机在接收信号的同时可以发送一个辅助的人工噪声,那么与仅发送端发送人工噪声的情形相比,系统的安全等级可以得到提高。即便对于窃听节点距离信息源非常近,合法接收机距离信息源较远的情形,依然可以达到安全传输的效果。 2.针对蜂窝通信系统,论文提出了一种利用保护节点提高安全性的方法。该方法通过部署一些保护节点来防止窃听者截获合法发送端和接收端之间传送的信息。 这些保护节点专门发送额外的人工噪声来使窃听信道的质量恶化。论文中同

时考虑了上行通信和下行通信的情形。 结果表明,采用这种方法可以实现蜂窝系统的安全性和健壮性。3.为了改善中继系统的安全性能,提出了一种改进的次优干扰方案。 在此方案中,信噪比最好的中继节点转发信息,信噪比最差的中继节点发送干扰信号,并且仅当这两个信道满足一定条件时发送机密信息,否则发送普通信息。仿真结果表明,由于机密信息仅在对合法接收机有利的情形下传输,这使得窃听者获取发送信息的难度加大,从而使系统的安全性得以提高。 4.为了改善点到点双向通信中信息被截获的概率,提出了一种基于随机线性编码的安全传输方案。在此方案中,随机线性编码的生成多项式由接收方控制,编码的构造方式使得窃听者除非完整截获双向通信的所有数据,否则无法破解发送端发送的任何一个数据包。 因此,通过加长编码长度,或者降低发送功率,就可以使窃听者破解机密消息的截获概率变得非常低。

TD-LTE系统物理层基本过程资料

第六章TD-LTE系统物理层基本过程 6.1小区搜索与同步 小区搜索过程是指UE获得与所在eNodeB的下行同步(包括时间同步和频率同步),检测到该小区物理层小区ID。UE基于上述信息,接收并读取该小区的广播信息,从而获取小区的系统信息以决定后续的UE操作,如小区重选、驻留、发起随机接入等操作。 当UE完成与基站的下行同步后,需要不断检测服务小区的下行链路质量,确保UE能够正确接收下行广播和控制信息。同时,为了保证基站能够正确接收UE发送的数据,UE 必须取得并保持与基站的上行同步。 6.1.1配置同步信号 在LTE系统中,小区同步主要是通过下行信道中传输的同步信号来实现的。下行同步信号分为主同步信号(Primary Synchronous Signal,PSS)和辅同步信号( Secondary Synchronous Signal,SSS)。TD-LTE中,支持504个小区ID,并将所有的小区ID划分为 168 N(1) ID 和辅 个小区组,每个小区组内有504/168=3个小区ID。小区ID号由主同步序列编号 N(2) ID 共同决定,具体关系为N I cDell 3N I(D2) N(1) 。小区搜索的第一步是检测 ID 同步序列编号 出PSS,在根据二者间的位置偏移检测SSS,进而利用上述关系式计算出小区ID。采用 PSS 和SSS两种同步信号能够加快小区搜索的速度。下面对两种同步信号做简单介绍。 1) PSS序列 为进行快速准确的小区搜索,PSS序列必须具备良好的相关性、频域平坦性、低复杂度 [1] 等性能,TD-LTE的PSS序列采用长度为63的频域Zadoff-Chu(ZC)序列。ZC序列广泛应 用于LTE中,除了PSS,还包括随机接入前导和上行链路参考信号。ZC序列可以表示为 a exp[ j2 q n(n 1)/ 2 nl ] q N ZC 其中,a{1,...N1}是ZC序列的根指数,n{1,...N1},l N,l可以是任何整q ZC ZC 数,为了简单在LTE中设置l=0。 为了标识小区内ID,LTE系统中包含包含3个PSS序列,,分别对应不同的小区组内ID。 被选择的3个ZC序列的根指数分别为M 29,34,25。对于根指数为M,频率长度为 63 的序列可以表示为 ZC63(n) exp[ j Mn(n 1)],n 0,1,...,62 M63 设置ZC序列的根指数是为了具有良好的周期自相关性和互相性。从UE的角度来看, 选择的PSS根指数组合可以满足时域的根对称性,可以通过单相关器检测,使得复杂度降

物理层

1 物理信道与传输信道 1.11.逻辑信道、传输信道和物理信道的区别、联系和功能 下行

上行 逻辑信道是MAC子层向上层提供的服务,表示承载的内容是什么(what),,按信息内容划分,分为两大类:控制信道和业务信道。https://www.360docs.net/doc/d44754294.html,! ^: q1 n' y" E 传输信道表示承载的内容怎么传,以什么格式传,分为两大类:专用传输信道和公用传输信道. 逻辑信道定义传送信息的类型,这些信息可能是独立成块的数据流,也可能是夹杂在一起但是有确定起始位的数据流,这些数据流是包括所有用户的数据。 传输信道是在对逻辑信道信息进行特定处理后再加上传输格式等指示信息后的数据流,这些数据流仍然包括所有用户的数据。 物理信道则是将属于不同用户、不同功用的传输信道数据流分别按照相应的规则确定其载频、扰码、扩频码、开始结束时间等进行相关的操作,并在最终调制为模拟射频信号发射出去;不同物理信道上的数据流分别属于不同的用户或者是不同的功用。 链路则是特定的信源与特定的用户之间所有信息传送中的状态与内容的名称,比如说某用户与基站之间上行链路代表二者之间信息数据的内容以及经历的一起操作过程。链路包括上行、下行等。 简单来讲, 逻辑信道={所有用户(包括基站,终端)的纯数据集合} 传输信道={定义传输特征参数并进行特定处理后的所有用户的数据集合} 物理信道={定义物理媒介中传送特征参数的各个用户的数据的总称} 打个比方,某人写信给朋友,

逻辑信道=信的内容 传输信道=平信、挂号信、航空快件等等 物理信道=写上地址,贴好邮票后的信件 1.1 2. 逻辑信道、传输信道和物理信道分别有哪些? 8 逻辑信道通常可以分为两类:控制信道和业务信道。控制信道用于传输控制平面信息,而业务信道用于传输用户平面信息。 控制信道包括: 广播控制信道(BCCH):广播系统控制信息的下行链路信道。 寻呼控制信道(PCCH):传输寻呼信息的下行链路信道。 专用控制信道(DCCH ):传输专用控制信息的点对点双向信道,该信道在UE 有RRC 连接时建立。 公共控制信道(CCCH ):在RRC 连接建立前在网络和UE 之间发送控制信息的双向信道。 多播控制信道(MCCH ): 从网络到UE 的MBMS 调度和控制信息传输使用点到多点下行信道。 业务信道包括: 专用业务信道(DTCH ):专用业务信道是为传输用户信息的,专用于一个UE 的点对点信道。该信道在上行链路和下行链路都存在。 多播业务信道(MTCH ):点到多点下行链路 下行物理信道有:。 ● PDSCH : 下行物理共享信道,承载下行数据传输和寻呼信息。 ● PBCH : 物理广播信道,传递UE 接入系统所必需的系统信息,如带宽天 线数目、小区ID 等 ● PMCH : 物理多播信道,传递MBMS (单频网多播和广播)相关的数据 ● PCFICH :物理控制格式指示信道,表示一个子帧中用于PDCCH 的OFDM 符号数目 ● PHICH :物理HARQ 指示信道, 用于NodB 向UE 反馈和PUSCH 相关的 ACK/NACK 信息。 ● PDCCH : 下行物理控制信道,用于指示和PUSCH ,PDSCH 相关的格式, 资源分配,HARQ 信息,位于每个子帧的前n 个OFDM 符号,n<=3。 上行物理信道有: ● PUSCH :物理上行共享信道 ● PRACH :物理随机接入信道,获取小区接入的必要信息进行时间同步和小区 搜索等 ● PUCCH :物理上行控制信道,UE 用于发送ACK/NAK ,CQI ,SR ,RI 信息。 1.1 传输信道到物理信道的基本处理流程(不分上下行) 输入:TBS(transport block size),也叫码字,可能有一个或者两个码字-----调度决定 给UE 多少个RB ,让然后根据‘CQI 或者加上其他因素‘算出M C S I ,根据M CS I 算

无线通信中物理层安全问题及其解决方案

无线通信中物理层安全问题及其解决方 案 篇一:无线通信系统物理层的传输方案设计 (无线局域网场景) 一、PBL问题二: 试设计一个完整的无线通信系统物理层的传输方案,要求满足以下指标: 1. Data rate :54Mbps, Pe 3. Channel model :设系统工作在室内环境,有4条径,无多普勒频移,各径的相对时延为:[0 2 4 6],单位为100ns ,多径系数服从瑞利衰落,其功率随时延变化呈指数衰减:[0 -8 -16 -24]。 请给出以下结果: A. 收发机结构框图,主要参数设定 B. 误比特率仿真曲线(可假定理想同步与信道估计) 二、系统选择及设计设计 1、系统要求 20MHz带宽实现5GHz频带上的无线通信系统;速率要求: R=54Mbps;误码率要求: Pe 2、方案选取根据参数的要求,选择作为方案的基准,并在此基础上进行一些改进,使实际的系统达到设计要求。 中对于数据速率、调制方式、编码码率及OFDM子载波数目的确定如表 1 所示。 与时延扩展、保护间隔、循环前缀及OFDM符号的持

续时间相关的参数如表 2 所示。 的参数 参考标准选择OFDM系统来实现,具体参数的选择如下述。 3、OFDM简介 OFDM的基本原理是将高速信息数据编码后分配到并行的N个相互正交的子载波上,每个载波上的调制速率很低(1/N),调制符号的持续间隔远大于信道的时间扩散,从而能够在具有较大失真和突发性脉冲干扰环境下对传输的数字信号提供有效的保护。OFDM系统对多径时延扩散不敏感,若信号占用带宽大于信道相干带宽,则产生频率选择性衰落。OFDM的频域编码和交织在分散并行的数据之间建立了联系,这样,由部分衰落或干扰而遭到破坏的数据,可以通过频率分量增强的部分的接收数据得以恢复,即实现频率分集。 OFDM克服了FDMA和TDMA的大多数问题。OFDM把可用信道分成了许多个窄带信号。每个子信道的载波都保持正交,由于他们的频谱有1/2重叠,既不需要像FDMA那样多余的开 销,也不存在TDMA 那样的多用户之间的切换开销。 过去的多载波系统,整个带宽被分成N个子信道,子信道之间没有交叠,为了降低子信道之间的干扰,频带与频带之间采用了保护间隔,因而使得频谱利用率降低,为了克

5G-NR物理层过程(控制)

同步过程 小区搜索 小区搜索过程是UE获得和小区时间和频率同步,并检测物理层小区ID的过程。 为进行小区搜索,UE需接收下列同步信号:主同步信号(PSS)和辅同步信号(SSS)。主辅同步信号在TS38.211中定义。 UE应假设PBCH、PSS和SSS在连续的OFDM符号内接收,并且形成SS/PBCH块。对于半帧中的SS/PBCH块,候选SS/PBCH块的OFDM符号索引号和第1个OFDM 符号索引根据下列情况确定: o15KHz子载波间隔:候选SS/PBCH块的第1个OFDM符号有索引{2,8}+ 14*n。对于载波频率小于等于3GHz,有n=0,1。对于载波频率大于3GHz 且小于6GHz,有n=0,1,2,3。 o30KHz子载波间隔:候选SS/PBCH块的第1个OFDM符号有索引{4,8,16,20} +28*n。对于载波频率小于等于3GHz,有n=0。对于载波频率大于3GHz 且小于6GHz,有n=0,1。 o30KHz子载波间隔:候选SS/PBCH块的第1个OFDM符号有索引{2,8}+ 14*n。对于载波频率小于等于3GHz,有n=0,1。对于载波频率大于3GHz 且小于6GHz,有n=0,1,2,3。

o120KHz子载波间隔:候选SS/PBCH块的第1个OFDM符号有索引{4,8,16, 20}+28*n。对于载波频率大于6GHz,有n=0,1,2,3,5,6,7,8,10,11,12, 13,15,16,17,18。 o240KHz子载波间隔:候选SS/PBCH块的第1个OFDM符号有索引{8,12,16, 20,32,36,40,44}+56*n。对于载波频率大于6GHz,有n=0,1,2,3,5,6,7, 8。 一个半帧中的候选SS/PBCH块在时域上以升序从0到L?1]L?1]进行编号。对于L=4L=4或L>4L>4,UE应根据与每个半帧内SS/PBCH块索引一一对应的PBCH 中传输的DM-RS序列索引,分别确定SS/PBCH块索引的2或3个LSB比特。对于L=64L=64,UE应根据高层参数[SSB-index-explicit]确定每个半帧内SS/PBCH块索引的3个MSB比特。 注:DM-RS序列索引在TS38.211中定义。 UE可通过参数[SSB-transmitted-SIB1]被配置,SS/PBCH块索引对于与SS/PBCH块对应重叠的REs,UE不应接收其他信号或信道。UE也可通过高层参数[SSB-transmitted]在每个服务小区被配置,SS/PBCH块索引对于与SS/PBCH块对应重叠的REs,UE不应接收其他信号或信道。[通过[SSB-transmitted]配置优先于通过[SSB-transmitted-SIB1]配置。] 注:May be removed and captured in38.211。

以太网物理层信号测试与分析报告

以太网物理层信号测试与分析 1 物理层信号特点 以太网对应OSI七层模型的数据链路层和物理层,对应数据链路层的部分又分为逻辑链路控制子层(LLC)和介质访问控制子层(MAC)。MAC与物理层连接的接口称作介质无关接口(MII)。物理层与实际物理介质之间的接口称作介质相关接口(MDI)。在物理层中,又可以分为物理编码子层(PCS)、物理介质连接子层(PMA)、物理介质相关子层(PMD)。根据介质传输数据率的不同,以太网电接口可分为10Base-T,100Base-Tx和1000Base-T三种,分别对应10Mbps,100Mbps和1000Mbps三种速率级别。不仅是速率的差异,同时由于采用了不同的物理层编码规则而导致对应的测试和分析方案也全然不同,各有各的章法。下面先就这三种类型以太网的物理层编码规则做一分析。 1、1 10Base-T 编码方法 10M以太网物理层信号传输使用曼彻斯特编码方法,即“0”=由“+”跳变到“-”,“1”=由“-”跳变到“+”,因为不论是”0”或是”1”,都有跳变,所以总体来说,信号是DC平衡的, 并且接收端很容易就能从信号的跳变周期中恢复时钟进而恢复出数据逻辑。 图1 曼彻斯特编码规则 1、2100Base-Tx 编码方法 100Base-TX又称为快速以太网,因为通常100Base-TX的PMD是使用CAT5线传输,按TIA/EIA-586-A定义只能达到100MHz,而当PCS层将4Bit编译成5Bit时,使100Mb/s数据流变成125Mb/s数据流,所以100Base-TX同时采用了MLT-3(三电平编码)的信道编码方法,目的是使MDI的5bit输出的速率降低了。MLT-3定义只有数据是“1”时,数据信号状态才跳变,“0”则保持状态不变,以减低信号跳变的频率,从而减低信号的频率。

DDR SDRAM物理层的SSTL接口电路设计

硕士学位论文 DDR SDRAM物理层的SSTL接口电路设计 SSTL INTERFACE CIRCUIT DESIGN OF DDR SDRAM PHY 张海良 哈尔滨工业大学 2010年7月

国内图书分类号:TN432 学校代码:10213国际图书分类号:621.3.049.774 密级:公开 工学硕士学位论文 DDR SDRAM物理层的SSTL接口电路设计 硕士研究生 :张海良 导 师 :叶水驰教授 申请学位 :工学硕士 学科 :微电子学与固体电子学 所在单位 :航天学院 答辩日期 :2010年7月 授予学位单位 :哈尔滨工业大学

Classified Index: TN432 U.D.C.: 621.3.049.774 Dissertation for the Master's Degree of Engineering SSTL INTERFACE CIRCUIT DESIGN OF DDR SDRAM PHY Candidate:Hailiang Zhang Supervisor:Prof. Shuichi Ye Academic Degree Applied for:Master of Engineering Speciality:Microelectronics and Solid-State Electronics Affiliation:School of Astronautics Date of Defence:July, 2010 Degree-Conferring-Institution:Harbin Institute of Technology

最新 5G无线通信网络物理层关键技术要点-精品

5G无线通信网络物理层关键技术要点 摘要:21世纪已经是一个信息社会,各个行业对信息的需求量已经越来越大。国与国之间也不断展开信息之间的较量,而信息的传播速度以及质量离不开无线通信技术的发展。第五代无线通信技术对各国的实质性发展都起到一定的作用。本文将会对5G无线通信网络物理层关键技术,即毫米波通信技术以及大规模MIMO技术进行一定的研究。关键词:5G无线通信;物理层技术;毫米波通信技术;大规模MIMO技术中图分类号:TN929.5 文献标识码:A 文章编号:1007-9416(2017)05-0030-01 无线通信技术的发展一直影响着人们的生活,从最初的模拟调制通信技术到数字调制通信技术,再到2G、3G 移动通信时代,直到今天的4G移动通信,无线通信技术一直不断发生着重大的变革。 1 毫米波通信技术通信技术的发展离不开对频谱资源的利用,目前对频谱资源的利用主要集中在300MHz到3GHz的?l段,对毫米波的利用非常有限,毫米波中包含大量的频谱资源。对毫米波中的频段资源进行利用也是5G无线通信技术的重要内容。其中,对毫米波的研究内容主要包括:路径损耗、建筑物穿透损耗以及雨衰等。 1.1 路径损耗发射功率的敷设扩散以及信道对传输的影响作用是导致路径损耗的主要原因。这也是无线通信技术中不可避免的问题,遇到干扰、噪声以及其他信号的影响都会造成一定程度的损耗情况,除此之外,信号的自身情况也会造成一定的损耗。研究表明,频率越高,损耗越严重,这就意味着相对于其他波段,毫米波的损耗情况更严重,这也是毫米波研究过程中的一个困难。在实际中,在高频段通过使用大规模的接受发射天线,可以对能量进行一定的聚集,获得较好的增益情况,进而改善毫米波损耗过大的情况。 1.2 建筑物穿透损耗在对通信技术进行研究时,发现当信号通过建筑物时,会发生一定的损耗,并且这种损耗跟频率有关,通常低频段的信号可以在穿透建筑物时,保留较好的信号强度。毫米波在这方面的损耗要更大些。这就意味着使用毫米波进行信号传输时,很可能由于信号损耗过大导致失真,不过目前随着无线网络的不断普及,可以在室内的有效范围之内使用WIFI增加信号强度,保证信号质量。 1.3 雨衰 对传播特性的研究也是毫米波研究的重要内容,其中雨衰作为一个重要因素不得不提。雨衰能够对无线系统的传播路径长度进行影响,进而使信号的可靠性下降,这样就会对高频段的微波链路造成一定的限制。随着雨量的增大,对毫米波系统的干扰效果会越来越明显。其中雨滴的作用还会使信号发生散射,使信号的质量严重下降。 2 大规模MIMO技术作为5G无线通信网络物理层的另外一个关键技术,大规模MIMO技术对于无线通信技术的发展具有重要的作用。对该技术的研究主要会通过对大规模MIMO技术的简单介绍,该技术的信道状态信息的获取方式以及大规模MIMO在高频段的应用进行。 2.1 大规模MIMO简介不同于传统的MIMO技术,大规模的MIMO技术可以降低硬件的复杂程度、提高信息处理效率以及降低能量损耗,同时还可以降低租赁成本。随着互联网技术以及云计算大数据技术的不断发展,传统的MIMO技术已经面临淘汰的边缘。当前对信息的需求量以及信息的处理效率都有了明显的提升。基于大规模MIMO的几大优势如:提高系统容量、降低成本以及增强抗干扰能力,对该项技术的研究已经成为5G无线通信技术的重要工作。 2.2 信道状态信息的获取大规模MIMO技术尽管具备一定的优势,但在研究过程

无线通信系统物理层的传输方案设计

(无线局域网场景) 一、PBL问题二: 试设计一个完整的无线通信系统物理层的传输方案,要求满足以下指标: 1. Data rate :54Mbps, Pe<=10-5 with Eb/N0 less than 25dB 2. 20 MHz bandwidth at 5 GHz frequency band 3. Channel model :设系统工作在室内环境,有4条径,无多普勒频移,各径的相对时延为:[0 2 4 6],单位为100ns ,多径系数服从瑞利衰落,其功率随时延变化呈指数衰减:[0 -8 -16 -24]。 请给出以下结果: A. 收发机结构框图,主要参数设定 B. 误比特率仿真曲线(可假定理想同步与信道估计) 二、系统选择及设计设计 1、系统要求 20MHz带宽实现5GHz频带上的无线通信系统; 速率要求: R=54Mbps; 误码率要求: Pe <=10^ (-5)。 2、方案选取 根据参数的要求,选择802.11a作为方案的基准,并在此基础上进行一些改进,使实际的系统达到设计要求。 802.11a中对于数据速率、调制方式、编码码率及OFDM子载波数目的确定如表1 所示。

与时延扩展、保护间隔、循环前缀及OFDM符号的持续时间相关的参数如表2 所示。 关的参数 参考标准选择OFDM系统来实现,具体参数的选择如下述。 3、OFDM简介 OFDM的基本原理是将高速信息数据编码后分配到并行的N个相互正交的子载波上,每个载波上的调制速率很低(1/N),调制符号的持续间隔远大于信道的时间扩散,从而能够在具有较大失真和突发性脉冲干扰环境下对传输的数字信号提供有效的保护。OFDM系统对多径时延扩散不敏感,若信号占用带宽大于信道相干带宽,则产生频率选择性衰落。OFDM的频域编码和交织在分散并行的数据之间建立了联系,这样,由部分衰落或干扰而遭到破坏的数据,可以通过频率分量增强的部分的接收数据得以恢复,即实现频率分集。 OFDM克服了FDMA和TDMA的大多数问题。OFDM把可用信道分成了许多个窄带信号。

LTE物理层总结(强烈推荐)

LTE物理层总结 目录 1、物理层综述 (4) 1.01. 3G标准向4G演进的路线: (4) 1.02. 什么是LONG TERM? (4) 1.03. LONG TERM的需求指标 (4) 1.04 .与LONG TERM物理层相关的协议编号及内容 (5) 1.05 LONG TERM一共有几层?各自的功能是什么? (5) 1.06. LONG TERM物理层是如何工作的? (6) 1.07 . LONG TERM各层之间的接口是什么样的? (11) 1.08 .物理层的作用 (11) 1.09. 与物理层相关的无线接口协议架构? (12) 1.10 . 物理层功能 (12) 1.11.逻辑信道、传输信道和物理信道的区别、联系和功能 (13) 1.12. 逻辑信道、传输信道和物理信道分别有哪些? (14) 1.13 传输信道是如何映射到物理信道的? (15) 1.14 LONG TERM的网络结构 (16) 1.15 LONG TERM的关键技术 (16) 1.16 宏分集的取舍 (16) 1.17 什么是多址技术,都有哪些? (17) 2、物理层相关参数: (17) 2.1. 帧结构 (19) 2.2 物理信道的划分及其传输信息 (20) 3、各种物理信道结构及简介 (21) 3.1上行共享信道PUSCH (21) 3.1.1概述: (21) 3.1.2 PUSCH系统结构 (21) 3.1.3 编码的方法和参数: (22) 3.1.4 基带处理过程 (24) 3.1.5 上变频和下变频 (25) 3.1.6 A/D和D/A (25) 3.2 物理上行控制信道PUCCH (25) 3.2.1 概述25 3.2.2 PUCCH结构图 (26) 3.2.3 PUCCH多格式综述 (26) 3.2.4PUCCH各模块方法和参数 (28) 3.3 物理随机接入信道PRACH (28) 3.3.1 概述28

MOCA技术的物理层分析

MoCA技术的物理层分析 代刚xgdaigang@https://www.360docs.net/doc/d44754294.html, 概述 MoCA网络有一组网络节点组成,互相之间可以进行广播或点对点通信。与传统的同轴电缆数据传输系统不一样,比如DOCSIS,典型的点对点之间的通道响应变化非常大。因此,为了保证通信的性能,物理层和MAC层都要有自适应各种链路并进行周期性的调整。另外,由于视频通信对包错率(PER),延迟等非常敏感,就要求网络能够支持高的QOS的能力。 ?MoCA频道带宽为50MHZ,分为256个子载波。数据由大量的窄带调制的载波来携带,因此,子通道的频率响应是非常平的。 ?采用预均衡(Pre-Equlization)和多音调制(multi-tone modulation),预均衡可以用于补偿发射机中的线性和非线性失真,以获得优化发射信号质量。这样一来,使用简单的FEC(forward error correction)就可以得到视频质量的BER(bit error rate)。 ?在每对节点之间创建调制简表(modulation profile)的过程称为调制简表化(modulation profiling)。调制简表在特定的时间特别适合对应的节点对。MOCA设备不断地更新调制简表,使其最适合特定的情况。 ?对于控制包,使用分集模式(diversity mode)。 ?动态发射功率控制(dynamic transmitter power control)用来优化发射功率。 ?物理层采用先进的自适应星座图多载波调制(ACMT)方式,即正交频分调制(OFDM),子载波上的调制制式在BPSK、QPSK、16-256 QAM自动选择,而且子载波频率以25MHz步长捷变,故抗干扰能力极强。 MoCA网络的基础是下面的关键特性: 1.使用多载波,每个载波上的通信由时分多址(TDMA)按照时分双工(TDD)的方式来完成。 2.完全的网格互连。 3.网络许可和通信完全有网络协同器(NC)来协同。NC是可变的(也就是说,网络是自愈性的,当一个NC与网络的连接断开时,其它的节点就承担NC的职责)。 NC不仅要管理媒介的访问,还要完成许可功能,就是节点许可功能和链路维护功能。网络上的其它节点配置成客户,通过NC分配的时间槽与其它的节点进行通信。进一步,NC通过通信协议的一组算法来进一步优化系统参数(比如循环前缀长度)。在运行这些算法的时候,链路层消息(比如,许可请求,保留请求和通道带宽分配消息,MAP)使用特别的包来进行交换。某些算法需要节点周期性地发送特殊的检测消息来收集通道上的信息,用来辅助系统进行优化。这些算法在下一节中详细讨论。 物理层主要由RF子系统和基带数字信号处理(DSP)子系统组成。由于实际使用CA TV环境的特性是不确定的,一种对信道、频率和信号强度的估计和补偿算法(estimation and compensation algorithm)是DSP的主要部分,用来减轻网络的各种多径环境,从而可以在高阶QAM调制的情况下提高解调的准确性。

计算机网络课后习题答案:第2章物理层

第二章物理层 2-01 物理层要解决哪些问题?物理层的主要特点是什么? 答:物理层要解决的主要问题: (1)物理层要尽可能地屏蔽掉物理设备和传输媒体,通信手段的不同,使数据链路层感觉不到这些差异,只考虑完成本层的协议和服务。 (2)给其服务用户(数据链路层)在一条物理的传输媒体上传送和接收比特流(一般为串行按顺序传输的比特流)的能力,为此,物理层应该解决物理连接的建立、维持和释放问题。(3)在两个相邻系统之间唯一地标识数据电路。 物理层的主要特点: ①由于在OSI之前,许多物理规程或协议已经制定出来了,而且在数据通信领域中,这些物理规程已被许多商品化的设备所采用,加之,物理层协议涉及的范围广泛,所以至今没有按OSI的抽象模型制定一套新的物理层协议,而是沿用已存在的物理规程,将物理层确定为描述与传输媒体接口的机械、电气、功能和过程特性。 ②由于物理连接的方式很多,传输媒体的种类也很多,因此,具体的物理协议相当复杂。 2-02 归层与协议有什么区别? 答:规程专指物理层协议。 2-03 试给出数据通信系统的模型并说明其主要组成构建的作用。 答:源点:源点设备产生要传输的数据。源点又称为源站。 发送器:通常源点生成的数据要通过发送器编码后才能在传输系统中进行传输。 接收器:接收传输系统传送过来的信号,并将其转换为能够被目的设备处理的信息。 终点:终点设备从接收器获取传送过来的信息。终点又称为目的站。 传输系统:信号物理通道。 2-04 试解释以下名词:数据,信号,模拟数据,模拟信号,基带信号,带通信号,数字数据,数字信号,码元,单工通信,半双工通信,全双工通信,串行传输,并行传输。 答:数据:是运送信息的实体。 信号:则是数据的电气的或电磁的表现。 模拟数据:运送信息的模拟信号。 模拟信号:连续变化的信号。 基带信号(即基本频带信号):来自信源的信号。像计算机输出的代表各种文字或图像文件的数据信号都属于基带信号。 带通信号:把基带信号经过载波调制后,把信号的频率范围搬移到较高的频段以便在信道中传输(即仅在一段频率范围内能够通过信道)。 数字数据:取值为不连续数值的数据。 数字信号:取值为有限的几个离散值的信号。 码元(code):在使用时间域(或简称为时域)的波形表示数字信号时,代表不同离散数值的基本波形。 单工通信:即只有一个方向的通信而没有反方向的交互。 半双工通信:即通信和双方都可以发送信息,但不能双方同时发送(当然也不能同时接收)。这种通信方式是一方发送另一方接收,过一段时间再反过来。 全双工通信:即通信的双方可以同时发送和接收信息。

浅谈TD物理层过程

浅谈TD物理层过程 为了更好的理解TD物理层的重点过程,重点掌握几个基本概念,本文用通俗易懂的语言以实际案例为索引,详细介绍几个步骤的基本原理,帮助理解其中的基本概念,为TD的深入学习打下基础。 本文涉及的主要物理过程有:CRC校验、信道编码、交织、速率匹配、物理层的映射等,同时为了过程的完整性还简要介绍了数字调制、扩频和加扰等。涉及基本概念有:Ri(有用速率)、Rb(编码速率)、编码率、打孔、填充、Rs(调制速率)和Rc(码片速率)等。 一、基本流程的举例 1、基本流程介绍 TD物理层过程输入为MAC发下来的数据块,经过物理层处理最后上射频从空口输出。 为了对整个过程有一个感性的认识,下图举例说明64K业务和3.4K信令复用情况下物理层过程,需要注意的是图中的处理过程只到物理信道映射,包括数字调制之后的过程都没有在图上反映。 图上所示物理层主要过程包括:CRC校验、传输块的级联和分段、信道编码、帧间交织、无线帧的分割、速率匹配、传输信道的复用、帧内交织、物理层的映射。

2、详细流程阐述 详细的物理层处理过程比较复杂,具体如下:MAC层下发传输数据块、数据块加CRC校验bit、数据块的级联/分段、信道编码、无线帧均衡、帧间交织、无线帧分割(分帧)、速率匹配、传输信道复用、帧内交织、bit加扰、物理信道分段、子帧分段、物理信道映射、数字调制、扩频、加扰、上中频射频、脉冲成形、射频调制。 1)MAC层下发传输数据块 MAC层每隔TTI时间向物理层下发一个数据块,根据高层业务不同数据块的大小和TTI时间间隔有所不同,其中TTI就有10ms、20ms、40ms、80ms等。 2)数据块加CRC校验bit 目的:接收端检查传送过来的数据块是否正确。 方法:数据块后面加校验bit。 特点:只有校验作用,不具备纠错能力。 涉及基本概念:误块率。 3)数据块的级联/分段 目的:为获得较高的信道编码效率,对输入数据块大小也有一定要求。所以在信道编码前将加了CRC校验bit数据块进行级联或分段。 方法:数据块级联/分段。

第二章 计算机网络 物理层 (1)

(答案仅供参考如有不对请自己加以思考) 第二章计算机网络物理层 一、习题 1.电路交换的优点有()。 I 传输时延小 II 分组按序到达 III 无需建立连接 IV 线路利用率高 A I III B II III C I III D II IV 2 下列说法正确的是()。 A 将模拟信号转换成数字数据称为调制。 B 将数字数据转换成模拟信号称为调解。 C 模拟数据不可以转换成数字信号。 D 以上说法均不正确。 3 脉冲编码调制(PCM)的过程是()。 A 采样,量化,编码 B 采样,编码,量化 C 量化,采样,编码 D 编码,量化,采样 4 调制解调技术主要使用在()通信方式中。 A 模拟信道传输数字数据 B 模拟信道传输模拟数据 C 数字信道传输数字数据 D 数字信道传输模拟数据 5 在互联网设备中,工作在物理层的互联设备是()。 I 集线器 II 交换机 III 路由器 IV 中继器 A I II B II IV C I IV D III IV 6一个传输数字信号的模拟信道的信号功率是0.26W,噪声功率是0.02W,频率范围为3.5 ~ 3.9MHz,该信道的最高数据传输速率是()。 A 1Mbit/s B 2Mbit/s C 4Mbit/s D 8Mbit/s 7 在采用1200bit/s同步传输时,若每帧含56bit同步信息,48bit控制位和4096bit数据位,那么传输1024b需要()秒。 A 1 B 4 C 7 D 14 8 为了是模拟信号传输的更远,可以采用的设备室()。 A中继器 B放大器 C 交换机 D 路由器 9 双绞线由螺旋状扭在一起的两根绝缘导线组成,线对扭在一起的目的是()。 A 减少电磁辐射干扰 B 提高传输速率 C 减少信号衰减 D减低成本 10 英特网上的数据交换方式是()。 A 电路交换 B 报文交换 C 分组交换 D异步传输 11 ()被用于计算机内部的数据传输。 A 串行传输 B 并行传输 C同步传输 D 异步传输 12 某信道的信号传输速率为2000Baud,若想令其数据传输速率达到8kbit/s,则一个信号码元所取的有效离散值个数应为()。 A 2 B 4 C 8 D 16

LTE物理过程系统框图及物理层简单介绍

一般下行过程详细流程 图1:LTE 的一般下行过程的详细流程 图1是我根据LTE 物理层协议专门画的LTE 的一般下行过程的详细流程。旨在让大家明白物理层是怎么工作的。有以下两点说明:

1、 上行过程很相似,只是上行中UE 的能力比较小,调度信息等是基站通过下行控制信息指定的。36.302中可以看到如图2所示的一些较详细信息,是上行过程的部分流程。 Node B UE Error 图2:上行共享信道的物理模型 2、 这里是一般下行过程,是下行共享信道的整个物理过程,下行还有控制信道、广播信道等。那些的过程可能只有其中的部分。或者还有些没有提到的。详细内容可以参考36.212.和36.302. 3、 本人水平有限,难免有错误和遗漏,发现请指出。 下面详细点介绍图1中的相关内容。分成4个部分:1、红色所示的物理信道与调制(36.211);2、蓝色所示的复用与信道编码(36.212);3、橙色所示的物理层测量(36.214);以及物理层过程相关内容(36.213)。 四个部分的关系如图3所示。物理信道与调制(36.211)直接与最下面的空中接口交互信息。是离发射端和接收端最近的。然后复用与信道编码(36.212)是在211的上面一点点。可以认为有一个逻辑信道,在这部分要做信道编码等,与211有个映射关系。213是高层和最后发射端的一个联系着。高层通过213给

211发命令等。214是高层为了获得信道等信息而设置的。 To/From Higher Layers 图3、物理层协议间以及与高层间关系 1、211物理信道与调制:该部分包括图1中的红色部分。 物理信道有很多种,如下表1和2中的红色部分就是部分物理信道。 表1、下行传输信道与物理信道映射 表2、上行传输信道和物理信道的映射 表1和2就是212中的,是上/下行传输信道和物理信道的映射关系。在我画的图中就是第四点数控复用部分提到的映射到物理信道。可以看到,有好几种传输信道对应几种物理信道。另外的上/下行控制信息与物理信道映射在212中。 在物理信道与调制部分要对逻辑信道映射来的信息做处理,如下图4和5 所示,分别是下行和上行的处理流程。要加扰,调制预处理,资源映射等。下行可能用MIMO,所以要分层。当然不同的物理信道的处理过程会不一样。比如调制方式一般有QPSK、16QAM和64QAM。但是不同物理信道可用的调制方式不

无线通信系统中物理层安全技术探讨

移动通信│MOBILE COMMUNICATION 18 2018年第1期无线通信系统中物理层安全技术探讨 高宇鑫 中兴通讯股份有限公司,广东惠州518000 摘要:随着无线通信技术的发展,通信设备逐渐呈现小型化、多样化发展,在一定程度上提升了数据传播速率。由于无线传输通道具备广播特点,因此对通信保密有了更加严格的要求。最近几年,在物理层安全技术中,主要采取了传输链路物理特点,在物理层编码、调制以及传输方式的基础上实现了安全性通信,在各个学术界中受到了广泛关注和应用。因此,主要论述了传统安全传输技术和物理层安全技术存在的不同性,然后研究了物理层中的多天线分集技术、协作干扰技术以基于信道物理层安全技术,最后提出了物理层安全技术未来发展范围。 关键词:无线通信系统;物理层安全技术;未来发展范围 中图分类号:TN929.5文献标识码:A Discussion on Physical Layer Security Technology in Wireless Communication System Gao Yuxin ZTE Corporation, Guangdong Huizhou 518000 Abstract:With the development of wireless communication technology, communication devices have gradually become smaller and more diverse, which has improved the data transmission rate to some extent. Because the wireless transmission channel has broadcast characteristics, there is a stricter requirement for confidentiality of communication. In recent years, in the physical layer security technology, the physical characteristics of the transmission link have been adopted, and security communication has been implemented on the basis of physical layer coding, modulation, and transmission methods. It has attracted wide attention in various academic circles and application. Therefore, it mainly discusses the differences between the traditional security transmission technology and the physical layer security technology. Then it studies the multi-antenna diversity technology and cooperative interference technology in the physical layer based on the channel physical layer security technology, and finally proposes the future development scope of the physical layer security technology. Keywords:wireless communication system; physical layer security technology; future development range 无线通信技术的出现,在一定程度上丰富了人们的生活水平,尤其是在通信应用区域内,极大地增强了通信水平和整体能力。可是,在无线通信信道中,由于受到固有广播性、开放性以及传输链路不稳定性等因素的影响,因此无线通信系统与传统的有限通信系统相比较而言,更容易受到非法用户的监听和侦察,从而引发传输数据流失等现象。最近几年,出现的小米移动云泄露等情况,都说明了信息安全在无线通信领域中起到的重要性。所以,设计安全、高效稳定的无线通信系统在国家安全、商业机密等内容中,占据十分重要的地位。创新安全通信,可以增强国际现代化水平,提升我国的竞争力。1 无线通信系统中物理层安全技术发展背景 传统的安全技术主要采取密钥管理、身份确认等方式,其安全机制建立在计算机密码学方法的基础上,在应用计算机网络上层协议的设计中增强信息的准确性。传统安全技术一般依靠破解生成密钥需要较高的计算复杂度来提高加密算法的有效性,但是在计算能力不断提升和信息运输场景呈现多样化的背景下,传统密钥体系面临着严峻的挑战。其中存在的不足主要表现在以下几点: 第一,随着计算水平的不断提高,尤其是量子计算的出现,以计算复杂度为基本理论基础设计的现代

相关文档
最新文档