电脑主板电路分析

电脑主板电路分析
电脑主板电路分析

电脑主板电路分析

摘要:触发电路、供电电路、时钟电路、复位电路是主板上最主要的电路。通过学习和了解四大电路的基本工作原理,逐步分析其电路特性,提高对主板电路的认识和分析能力。

Abstract: Trigger circuit, power supply circuit, clocking circuit and reset circuit are the main circuits on the main board. We learn the basic working principles and analyze the characteristics of the circuits, which enhanced our ability to realize and analyze the circuits of the main board.

关键词:主板电路架构触发供电时钟复位

Key words: main board circuit structure trigger power supply clock reset

随着个人计算机(PC-Personal Computer)在各领域的普及,它的内部结构已被人们广泛的认识和了解。作为构成计算机的重要部件——主板,更成为了人们关注的焦点。主板是一台PC的基石,是连接计算机各部件的桥梁,它的稳定性往往决定了一台整机的稳定性。研究和分析主板电路是认识和了解主板功能特性如何实现的重要途径。

下面通过对主板的架构、触发电路、供电电路、时钟电路和复位电路来研究和分析主板电路。

主板架构原理

了解主板架构是掌握主板布局的重要方法,也是分析主板各部分单元电路的基础。分析主板架构的重要依据是主板所采用的芯片组,芯片组是主板的灵魂,是CPU与周边设备联系的桥梁,它决定了主板的速度、性能。早期芯片组由二至四枚芯片组成,现在基本上由两枚芯片组成(一体化芯片主板除外),分别由北桥(South Bridge)和南桥(North Bridge)组成。目前主板芯片组的主要生产厂商有英特尔(Intel)、威盛(VIA)、矽统(SIS)、扬智(ALI)等。下面分别以几款较为典型的芯片组来分析主板的架构。

Intel 440LX、440BX与VIA 693、693A系列芯片组主板架构

图1

此系列芯片组由北桥作为控制芯片,控制和管理高速传输设备,负责内存、图形加速接口(AGP)与CPU的通讯,同时控制位于北桥与南桥之间的PCI总线。由南桥作为系统输入/输出芯片,控制和管理低速设备,如IDE、USB、ISA等外部设备,并通过I/O芯片间接控制键盘、鼠标、串口、并口等外部设备。

Intel 810系列芯片组主板架构

图2

Intel 810系列芯片组增加了图形和内存控制中心(GMCH-Graphics & Memory Controller Hub)、I/O控制中心(ICH-I/O Controller Hub)及固件中心(FWH-Firmware Hub)三个部件。从图1与图2的比较可以看出, Intel 810系列芯片组主板在对PCI总线的控制上发生了变化,GMCH与ICH之间采用了加速中心总线(AHA)进行通讯,其带宽是PCI总线带宽的两倍,ISA总线在这里已不在使用。

Intel 845系列芯片组主板架构

图3

Intel 845系列芯片组,承袭了Intel 8xx系列芯片组的架构,它由内存控制单元(MCH-Intel Memory Controller Hub)以及I/O控制中心(ICH2-Intel I/O Controller Hub 2)组成。MCH和ICH2之间通过Hub Link总线接口进行数据传输。由此芯片组架构的硬件平台搭配Intel Pentium4处理器可实现AGP4X、PC133 SDRAM/DDRAM、Ultra ATA/100 IDE、LAN、USB等功能。

主板触发电路

主板触发电路即开机电路,它的触发方式与电源供应器(简称电源)的结构密切相关。因此,有必要对电源的供电方式进行了解。电源可分为AT和ATX两种结构,目前普遍采用的是ATX结构电源。ATX结构电源有20条引脚,引脚定义与颜色、电压的对应关系见图4:

图4

其中,8引脚为PG(Power Good)信号。9引脚为待机供电。14引脚为PW-ON(Power-On)信号,14引脚与GND(Ground)短接后即可触发电源工作,未触发前9、14引脚输出电压均为+5V,其它引脚无输出电压。

根据电源的两种结构,主板触发也采用两种方式。AT结构电源采用硬开机方式(触发后PW-ON 为常闭状态),ATX结构电源采用软开机方式(触发后PW-ON为常开状态)。由于软开机是目前绝大多数主板采用的触发方式,因此我们主要针对这种触发方式进行分析。

触发原理与目的分析:

通过PW-ON触发主板开机电路,开机电路将触发信号进行处理,最终发出低电位信号,将电源14引脚(绿)高电位拉低,触发电源工作,使电源各引脚输出相应电压,为其它设备提供正常供电。

尽管在主板各部分电路的设计与应用中元件及芯片的组合布局方式不完全相同,但是实现的原理与目的始终是一致的。因此,分析典型的电路原理是掌握主板各部分电路知识的重要手段与途径。

触发电路分析:

1.经过南桥的触发电路(见图5-1、图5-2)

图5-1

分析:在触发电路中凡是参加开机的元件均由电源9引脚(紫)提供+5V供电。+5V高电位经电阻R1、R2,在PW-ON非接地端形成+3.3V高电位。当PW-ON被触发(即闭合)瞬间,+3.3V 高电位信号被拉低,变为低电位,南桥接收到低电位信号向电源14引脚(绿)发出低电位信号,将POWER(14)+5V高电位拉低,触发电源工作,实现开机。

图5-2

分析:当PW-ON被触发(即闭合)瞬间,+3.3V高电位信号经反向器(如7404等)转换为低电位,南桥接收到低电位信号向电源14引脚(绿)发出低电位信号,将POWER(14)+5V高电位拉低,触发电源工作,实现开机。

2.经过I/O芯片的触发电路(如图5)

图6

分析:过程与经过南桥相似,只是由南桥控制I/O芯片,通过I/O芯片发出低电位信号将POWER(14)+5V高电位拉低,触发电源工作。

虽然各主板厂商采用的触发方式不尽相同,但最终实现的目的却是一致的。通过分析上述几种触发方式,可以用触类旁通的方法对采用其它方式触发开机的主板进行剖析。此外,还有部分品牌的主板有自己专门的开机复位芯片,如华硕(ASUS)。

主板供电电路

这里所指的主板供电是指为CPU供电,最终目的是为CPU电源输入端提供CPU正常运行时所需的电压和电流,是通过ATX电源输出电压经DC→DC(直流→直流)降压转换后实现的。

随着CPU性能的不断提升,CPU对供电的要求也越来越高,高频率、大电流的供电要求已成为CPU供电的基本趋势。这样也使这部分电路成为主板上信号强度较强的区域,为了避免对主板中其它信号较弱的数字电路产生串扰效应(Cross Talk),这就对CPU供电电路提出了更高的设计和制造要求。观察和分析CPU供电电路的设计方法与制造工艺也是我们判断一款主板品质优劣的重要依据。

图7为单相CPU供电电路示意图,也是主板供电电路的基本原理图。

图7

基本供电原理分析:获得ATX电源输出的+5V或+12供电后,为CPU提供供电(此时未达到CPU核心供电要求),CPU电压自动识别引脚发出电压识别信号(VID-Voltage Identification Code)给电源控制器(PMW control),电源控制器通过控制两个场效应管(MOSFET)导通的顺序和频率,使其输出的电压与电流达到CPU核心供电要求,实现为CPU供电的目的。

从图7可以看出,单相供电需要两个场效应管,此外还需要两只电解电容。在电源输入端使用大容量电解电容进行退耦,在输出端使用大容量电解电容进行滤波就可以得到比较平滑稳定的电压曲线,使输出端达到CPU供电电压要求。

电源控制器是CPU供电的核心,其功能特性也是我们研究的重点。在CPU供电电路中最为常见的是Intersil公司设计的电源控制器芯片(PMW Control IC),其中以HIP630x最为典型。现以HIP6302为例分析CPU供电电路。

HIP6302是一款多相电源控制器芯片(multi-phase PMW Control IC),其引脚功能描述如图8。

图8

引脚1-5为电压自动识别引脚,信号由CPU根据电压识别原理提供,是CPU获得核心供电的依据和基础。电压识别信号一般由4-5位数字编码组成,位数越多识别精度越高。

电压识别信号遵循VRM规范,VRM(Voltage Reference Model)是Intel公司设计的供电标准。目前应用较多的供电标准为VRM 9.0,支持电压范围为1.1V-1.85V。VRM 9.0对应的电压识别信号编码组合见附表1。

图9是利用HIP6302为CPU提供供电的简易方框图描述。

图9

从图9中可以看出这是一款两相供电电路,其基本工作原理与单相供电电路原理相似,可以看作由两个单相供电电路并联构成。图10给出了两相供电电路图。

图10

从图10中可以发现为主控芯片(HIP6302)专门搭配的两个从属驱动芯片(HIP6601),其引脚功能描述如图11。

图11

驱动芯片的作用是在获得电源控制器相位控制信号的同时向场效应管发出脉冲信号,各场效应管再遵循一定的顺序进行轮流导通截止,最终经滤波输出核心电压。

现在,多数主板的供电电路都采用了两相甚至多相设计,用以满足CPU高功耗的需求,使功率达到80W,工作电流达到50A。采用多相供电不仅可以为CPU提供足够可靠的电能,还可以通过分流作用使每相场效应管的负载减少,从而使供电电路的热损耗降低,为主板的稳定运行创造一个良好的环境。

图12

图12为三相供电电路图,它采用了Intersil公司设计的HIP6301芯片作为电源控制器。HIP6301可支持二、三、四各相供电,支持VRM 9.0规范,被许多主板生产厂商所采用。

对于多相供电电路每相之间是有相位差的,相位差的大小为360度除以活动脉冲控制端数。有多少相供电就有多少个脉冲控制端,相应的也就有多少路电流反馈(ISEN)。在多相供电电路中要对电流进行均衡处理,将各通道的电流反馈与总电流除以相数的平均值之差送入电源控制器的比较器中,经过调整后使各通道的电流值等于电流平均值,最终实现各相电流及场效应管负载的均衡。在电压调整方面,通过与电压反馈(VSEN)信号的比较对电压进行调整,实现过欠电压保护和过流保护。

主板时钟电路

主板上多数部件的时钟信号由时钟发生器提供,它是通过晶振产生振荡,然后分频为各部件提供不同时钟频率。时钟发生器是主板时钟电路的核心,如同主板的心脏。

图13

图13为时钟电路方框图,从图中可以看出时钟发生器直接或间接为各总线及部件提供不同的时钟信号,即时钟频率。例如,时钟发生器通过PCI总线为周边元件扩展接口(PCI)部件提供33MHz的时钟信号。其中,前端总线(FSB)与图形加速接口(AGP)总线的时钟频率是经北桥时钟倍频后间接获得。

我们经常提到的数据传输速率与时钟频率有着密切的关系。它们的关系式为:

数据传输速率=时钟频率×带宽÷8

常见总线参数比较见附表2。

主板复位电路

主板复位的主要目的是使主板及其它部件进入初始化状态,对主板进行复位的过程就是对主板及其它部件进行初始化的过程。它是在供电、时钟正常时才开始工作的。其基本工作原理图,如图14。

图14

从图14可以看出复位电路与触发电路较为相似。在复位电路中由电源(红)提供+5V供电,在进行复位之前南桥必须收到时钟(Clock)信号以及由电源8引脚(灰)发送的PG信号才能进

行复位。当RESET被触发(即闭合)瞬间,+3.3V高电位信号被拉低,经门电路芯片向南桥发出复位信号,最终再由南桥向各部件发出复位信号,使各部件进行复位。

图15

由于各部件的复位引脚并联相接(如图15),当某一部件的复位线路出现问题,就很容易造成其它部件的复位信号出现故障。例如,当PCI复位引脚接地时,会造成整个复位线路接地,使其它部件无法进行复位。这种情况在复位电路故障中较为常见。

前面所述的触发电路、供电电路、时钟电路、复位电路是主板上最主要的电路,同时这个顺序也是整个主板电路的启动工作顺序,其中供电、时钟、复位是主板上各部件正常工作时所必须获得的信号。我们必须从了解四大电路的工作原理开始,通过逐步分析来掌握主板电路。理论结果有时对于实际应用来说只是一种理想状态,在主板设计时通常要考虑现实中元件的电能转换效率及热稳定性等因素,不同的主板厂商会采用不同的元件、方式及布局等手段来解决上述问题。因此,结合实践多观察多分析是我们解决主板电路问题的重要方法。

附表1 电压识别信号编码

附表2常见总线参数比较

下图是一个典型的三相供电电路。一般来说,判断标准是一个线圈、两个场效应管和一个电容构成一相电路。图中上面三个是电容(左边那个不算),中间两个脚的是场效应管,下面三个是线圈,大家要认准了。

再看一个两相供电电路,可以看到有两个电容(中间有一个竖的线圈,这个是一级电感),四个场效应管。

总结来说,电容的个数并不一定。看到一个电感加上两个场效应管就认为是一相。但是近来也有并联多个电感或者多个场效应管的情况发生,这个时候就要综合考虑,挑数目少的那种元器件来判断。顺便说一句,因为很多情况第一级电感线圈也做在附近,所以一般也有线圈数目-1=相数的说法。

两相供电已经走到了生命的尽头。新一代的AMD和Intel处理器都对供电提出了更高的要求,所以现在基本上是三相供电和四相供电成为标配的主板了。

教你学会看手机电路图轻松修手机

第一篇、教你学会看电路图轻松修手机 一、一套完整的主板电路图,是由主板原理图和主板元件位置图组成的。 1.主板原理图,如图: 2.主板元件位置图,如图:

主板元件位置图的作用:是方便用户找到相应元件所在主板的正确位置。而主板原理图是让用户对主板的电路原理有所了解,知道各个芯片的功能,及其线路的连接。 二、相关名词解释 电路图中会涉及到许多英文标识,这些标识主要起到了辅助解图的作用,如果不了解它们,根本不知道他们的作用,也就根本不可能看得懂原理图。所以在这里我们会将主要的英文标识进行解释。希望大家能够背熟记熟,同时希望大家多看电路图,对不懂的英文及时查找记熟。 如图:

以上英文标识在电路图上会灵活出现,比如“扬声器”是“SPEAKER” ,它的缩写就是“SPK”,“正极”是“positive” ,缩写是“P” ,那么如果在图中标记SPKP,那么就证明它是扬声器正极。所以当有英文不明白的时候,可以将它们拆开后再进行理解,请大家灵活运用。

第二节主板元件位置图 一、元件编号 每一个元件在主板元件位置图中,都有一个唯一的编号。这个编号由英文字母和数字共同组成。编号规则可以分成以下几类: 芯片类:以U 为开头,如CPU U101 接口类:以J 为开头,如键盘接口J1202 三极管类:以Q 为开头,如三极管Q1206 二级管类:以D 为开头,如二极管D1102 晶振类:以X 为开头,如26M 晶体X901 电阻类:以R 或VR(压敏电阻)为开头,如电阻R32 VR211 电容类:以C 为开头,如电容C101 电感类:以L 为开头,如电感L1104 侧键类:以S 为开头,如侧键S1201 电池类:以 B 为开头,如备用电池B201 屏蔽罩:以SH 为开头,如屏蔽罩SH1 振动器:以M 为开头,如振子M201 还有一部分标号是主板上的测试点,以TP 为开头。 二、查找元件功能 用户可以根据相应的元件编号去查找主板原理图,从而了解此元件的作用。随便拿块主板作为示例。 如果想了解某一个元件的主要功能(图中红圈内元件) 如图:

电脑主板供电电路图分析

电脑主板供电电路图分 析 集团档案编码:[YTTR-YTPT28-YTNTL98-UYTYNN08]

1、结合m s i-7144主板电路图分析主板四大供电的产生 一、四大供电的产生 1、CPU供电: 电源管理芯片: 场馆为6个N沟道的Mos管,型号为06N03LA,此管极性与一般N沟道Mos管不同,从左向右分别是SDG,两相供电,每相供电,一个上管,两个下管。 CPU供电核心电压在上管的S极或者电感上测量。 2、内存供电: DDR400内存供电的测量点: (1)、VCCDDR(7脚位):VDD25SUS MS-6控制两个场管Q17,Q18产生VDD25SUS电压,如图: VDD25SUS测量点在Q18的S极。 (2)、总线终结电压的产生 (3)参考电压的产生 VDD25SUS经电阻分压得到的。 3、总线供电:通过场管Q15产生VDD_12_A. 4、桥供电:VCC2_5通过LT1087S降压产生,LT1087S1脚输入,2脚输出,3脚调整,与常见的1117稳压管功能相同。 5、其他供电 (1)AGP供电:A1脚12V供电,A64脚:VDDQ 2、结合跑线分析intel865pcd主板电路 因找不到intel865pcd电路图,只能参考865pe电路图,结合跑线路完成分析主板的电路。 一、Cpu主供电(Vcore) cpu主供电为2相供电,一个电源管理芯片控制连个驱动芯片,共8个场管,每相4个场管,上管、下管各两个,cpu主供电在测量点在电感或者场管上管的S极测量。 二、内存供电 1、内存第7脚,场管Q6H1S脚测量2.5v电压 参考电路图: 在这个电路图中,Q42D极输出2.5V内存主供电,一个场管的分压基本上在 0.4-0.5V,两个场管分压0.8V,3.3-0.8=2.5V

主板教程(呕心沥血的经典)

主板知识(经典) 目录: 第一课主板架构 第二课3VSB电路 第三课CMOS电路 第四课触发电路 第五课线性电源 第六课开关电源 第七课时钟CLK电路 第八课复位(RST)电路 第九课BIOS和代码卡 第十课接口电路 第十一课主板的维修方法 第一课主板架构

常见主板类型: 华硕(ASUS)、技嘉(GIGABYTE) 、精英(ECS)、微星(MSI)、升技(ABIT)、磐正(EPOX)、双敏(UNIKA)、映泰(BIOSTAR)、华擎(ASRock)、硕泰克(SOLTEK)、捷波(JETW AY) 、钻石(DFI)、青云(Albatron)、奥兰治ORA 、承启(CHAINTECH)、顶神(ASMART)、建基(AOpen) 、科迪亚(QDI) 、捷锐、超微(Supermicro)、浩鑫(Shuttle) 、顶星(Topstar)、佰钰、昂达(ONDA) 、佰钰acorp(台湾)、富士康(FOXCONN)、斯巴达克(SPARK)、梅捷(SOYO)、艾崴(Iwill)、小影霸、七彩虹(colorful)、天机、维博特、信步、创能(CUANON) 、三帝(DDD)、硕菁(soking)、博登(xfx)、微升(MIMSUN) 、数码通(PcDigicom)、倍嘉、冠盟、盈通(YESTON)、磐碁、隽星、数码键、冠誉、翔升、联冠(LK)、天朗、华杰、优俪、美达、磐英(hasee) 、赛科、铧基、先锋、华鑫、红苹果、天擎、金字塔PYRAMID)、奔迅(BENXUN)、百时通(BESTCOM) 、钛硕、祥瑞、科盟、科脑、普锐(Pretech)、众可、祺祥、众成、杰微、万邦龙、红船、风速、搏鹰、佰特、艾美、技星(ST STAr) 、昂迪、新华盛、威钻、建邦、天虹、奔驰、技鑫、泰安(TYAN)、杰灵(ZILLION)、火龙王、亚瑟伟业、磐志、卓越、奥美嘉(aomg)、枫叶、宏嘉、追钰、首通(SOTIME) 、双捷、思普、阳光、跆基(Twkey)、中硕、大众、中凌、讯崴、先冠、亚帝伦、拓嘉、台讯、盛邦至尊、宝捷亚特、群升(PCQS)、铭世、蓝天(LANTIAN) 、源兴、新泰(SYNTAX)、华英、红旗、众星、海讯(sunstar)、恒钛、致铭(cthim) 、台众、白鲨王(SHARKING)、凌峰、宇擎、双硕、鑫驰、速霸、华佳、宏迅、迪兰恒进、慧星、金凤凰(GPHOENIX)、帝鲨(DESHARK)、PCCHIPS 、联强(Lemel)、金正。

笔记本电脑供电电路故障的诊断方法

笔记本电脑供电电路故障的诊断方法 笔记本电脑的主板供电电路是笔记本电脑不可或缺的一部分,其出现问题通常会导致不能开机、自动重启以及死机等种种故障现象的产生。 学习笔记本电脑主板供电电路故障的诊断与排除,首先应掌握其基本工作原理,其次要对主板供电电路出现问题后导致的常见故障现象进行了解,最后要不断总结和学习主板供电电路的检修经验和方法。 1 笔记本电脑主板供电电路基本知识 笔记本电脑主板的供电方式有两种,一种是笔记本电脑采用的专用可充电电池供电,另一种是能够将220V市电转换为十几伏或二十几伏供电的电源适配器供电。笔记本电脑的专用可充电池提供的供电电压通常要低于电源适配器的输入供电电压。 无论是笔记本电脑的专用可充电电池还是电源适配器,其输入笔记本电脑主板上的供电并不能被所有芯片、电路以及硬件设备等直接采用,这是因为笔记本电脑主板上的各部分功能模块和硬件设备对电流和电压的要求不同,其必须经过相应的供电转换后才能被采用。所以,笔记本电脑主板上的各种供电转换电路,成为了笔记本电脑不可或缺的一部分。同时,笔记本电脑的主板供电电路出现问题后,就会导致不能开机、自动重启以及死机等种种故障现象的产生。 学习笔记本电脑主板供电电路故障的诊断与排除方法,必须首先掌握其工作原理和常见故障现象,这样才能够在笔记本电脑的检修过程中做到故障分析合理、故障排除迅速且准确。 1.1笔记本电脑主板供电机制 笔记本电脑主板上的供电转换电路主要采用开关稳压电源和线性稳压电源两种。 开关稳压电源是笔记本电脑主板中应用最为广泛的一种供电转换电路。笔记本电脑主板上的系统供电电路、CPU供电电路、芯片组供电电路以及内存和显卡供电电路中,都广泛采用了开关稳压电源。 开关稳压电源利用现代电子技术,通过电源控制芯片发送控制信号控制电子开关器件(如场效应管)的“导通”和“截止”,对输入供电进行脉冲调制,从而实现供电转换以及自动稳压和输出可调电压的功能。 笔记本电脑主板上应用的开关稳压电源电路通常由电源控制芯片、场效应管、滤波电容器、储能电感器以及电阻器等电子元器件组成。

主板供电电路图解说明

主板供电电路图解说明 主板的CPU供电电路最主要是为CPU提供电能,保证CPU在高频、大电流工作状态下稳定地运行,同时也是主板上信号强度最大的地方,处理得不好会产生串扰 cross talk 效应,而影响到较弱信号的数字电路部分,因此供电部分的电路设计制造要求通常都比较高。简单地说,供电部分的最终目的就是在CPU 电源输入端达到CPU对电压和电流的要求,满足正常工作的需要。但是这样的设计是一个复杂的工程,需要考虑到元件特性、PCB板特性、铜箔厚度、CPU插座的触点材料、散热、稳定性、干扰等等多方面的问题,它基本上可以体现一个主板厂商的综合研发实力和经验。 主板上的供电电路原理 图1 图1是主板上CPU核心供电电路的简单示意图,其实就是一个简单的开关电源,主板上的供电电路原理核心即是如此。+12V是来自A TX电源的输入,通过一个由电感线圈和电容组成的滤波电路,然后进入两个晶体管(开关管)组成的电路,此电路受到PMW Control(可以控制开关管导通的顺序和频率,从而可以在输出端达到电压要求)部分的控制输出所要求的电压和电流,图中箭头处的波形图可以看出输出随着时间变化的情况。再经过L2和C2组成的滤波电路后,基本上可以得到平滑稳定的电压曲线(Vcore,现在的P4处理器Vcore=1.525V),这个稳定的电压就可以供CPU“享用”啦,这就是大家常说的“多相”供电中的“一相”。 单相供电一般可以提供最大25A的电流,而现今常用的处理器早已超过了这个数字,P4处理器功率可以达到70~80W,工作电流甚至达到50A,单相供电无法提供足够可靠的动力,所以现在主板的供电电路设计都采用了两相甚至多相的设计。图2就是一个两相供电的示意图,很容易看懂,其实就是两个单相电路的并联,因此它可以提供双倍的电流,理论上可以绰绰有余地满足目前处理器的需要了。 图2

主板CPU供电电路原理图

CPU供电电路原理图 相信大家看主板导购文章的时候经常听到说这块主板是三相供电,那块是两相供电的说法,而且一般总是推荐三相供电的主板。那么两相三相到底代表什么,对于普通消费者来说应该怎么选择呢?本文将就这个问题展开,尽量让大家能够自己分辨出主板到底几相供电,并且提供一点购买建议。 ● CPU供电电路原理图 我们知道CPU核心电压有着越来越低的趋势,我们用的ATX电源供给主板的12V,5V直流电不可能直接给CPU供电,所以我们要一定的电路来进行高直流电压到低直流电压的转换,这种电路不仅仅用在CPU的供电上,但是今天我们把注意力集中在这里。我们先简单介绍一下供电电路的原理,以便大家理解。 一般而言,有两种供电方式。 1. 线性电源供电方式:通过改变晶体管的导通程度来实现,晶体管相当于一个可变电阻,串接在供电回路中。 上图只要是学过初中物理的都懂,通过电阻分压使得负载(这里想像为CPU)上的电压降低。虽然方法简单,但由于可变电阻与负载流过相同的电流,要消耗掉大量的能量并导致升温,电压转换效率非常低,

一般主板不可能用这种方法。 2. 开关电源供电方式:我们平时用的主板基本都用这种方式,原理图如下。 其工作原理比刚刚的电路复杂很多,笔者只能简单说说:ATX供给的12V电通过第一级LC电路滤波(图上L1,C1组成),送到两个场效应管和PWM控制芯片组成的电路,两个场效应管在PWM控制芯片的控制下轮流导通,提供如图所示的波形,然后经过第二级LC电路滤波形成所需要的Vcore。 上图中的电路就是我们说的“单相”供电电路,使用到的元器件有输入部分的一个电感线圈、一个电容,控制部分的一个PWM控制芯片、两个场效应管,还有输出部分的一个线圈、一个电容。强调这些元器件是为了后文辨认几相供电做准备。 由于场效应管工作在开关状态,导通时的内阻和截止时的漏电流都较小,所以自身耗电量很小,避免了线性电源串接在电路中的电阻部分消耗大量能量的问题。 多相供电的引入 单相供电一般能提供最大25A的电流,而现今常用的处理器早已超过了这个数字,单相供电无法提供足够可靠的动力,所以现在主板的供电电路设计都采用了两相甚至多相的设计。

(完整版)电脑主板各个电路检修方法.doc

主板维修思路 首先主板的维修原则是先简后繁, 先软后硬 , 先局部后具体到某元器件。 一.常用的维修方法: 1.询问法:询问用户主板在出现故障前的状况以及所工作的状态?询问是由什么原因造成的故障? 询问故障主板工作在何种环境中等等。 2.目测法:接到用户的主板后,一定要用目测法观察主板上的电容是否有鼓包、漏液或严重损坏, 是否有被烧焦的芯片及电子元器件,以及少电子元器件或者PCB板断线等。还有各插槽有无明显损坏。3.电阻测量法:也叫对地测量阻值法。可以用测量阴值大小的方法来大致判断芯片以及电子元器件 的好坏,以及判断电路的严重短路和断路的情况。如:用二极管档测量晶体管是否有严重短路、断 路情况来判断其好坏,或者对ISA 插槽对地的阻值来判断南桥好坏情况等。 4.电压测量法:主要是通过测量电压,然后与正常主板的测试点比较,找出有差异的测试点,最后 顺着测试点的线路(跑电路)最终找到出故障的元件,更换元件。 二.主板维修的步骤: 1.首先用电阻测量法,测量电源、接口的5V、 12V、 3.3V 等对地电阻,如果没有对地短路,再进行 下一步的工作。 2.加电(接上电源接口,然后按POWER开关)看是否能开机,若不能开机,修开机电路,若能开机 再进行下一步工作。 3.测试 CPU主供电、核心电压、只要CPU主供电不超过 2.0V ,就可以加 CPU(前提是目测时主板上没 有电容鼓包、漏液),同时把主板上外频和倍频跳线跳好(最好看一下CMOS),看看 CPU是否能工作到 C,或者 D3( C1或 D3为测试卡代码,表示CPU已经工作),如果不工作进行下一步。 4.暂时把 CPU取下,加上假负载,严格按照资料上的测试点,测试各项供电是否正常。 如:核心电压 1.5V , 2.5V 和 PG的 2.5V 及 SLOT1的 3.3V 等,如正常再进行下一小工作。 5.根据资料上的测试点测试时钟输出是否正常, 时钟输出为 1.1-1.9V ,如正常进行下一步。 6.看测试卡上的RESET灯是否正常(正常时为开机瞬间,灯会闪一下,然后熄灭,当我们短接RESET 跳线时,灯会随着短接次数一闪一闪,如灯常亮或者常来均为无复位。),如果复位正常再进行下 一步。 7.首先测 BIOS的 CS片选信号(为 CPU第一指令选中信号),低电平有效,然后测试 BIOS的 CE信号(此信号表示 BIOS把数据放在系统总线上)低电平有效。 8.若以上步骤后还不工作,首先目测主板是否有断线,然后进行BIOS程序的刷新,检查CPU插座接 触是否良好。 9.若以上步骤依然不管用,只能用最小系统法检修。步骤为:更换I/O南桥北桥 - 1 -

电脑主板电源线路图

电脑主板电源线路图 全程图解:手把手教你主板各种插针接口与机箱(电源)的接法 组装电脑的过程并不复杂,我们只需要按照顺序将CPU、内存、主板、显卡以及硬盘等装入机箱中即可,详细的攒机方法请参见:《菜鸟入门必修!图解DIY高手组装电脑全过程》。在组装电脑的过程中,最难的是机箱电源接线与跳线的设置方法,这也是很多入门级用户非常头疼的问题。如果各种接线连接不正确,电脑则无法点亮;特别需要注意的是,一旦接错机箱前置的USB接口,事故是相当严重的,极有可能烧毁主板。由于各种主板与机箱的接线方法大同小异,这里笔者借一块Intel平台的主板和普通的机箱,将机箱电源的连接方法通过图片形式进行详细的介绍,以供参考。由于目前大部分主板都不需要进行跳线的设置,因此这部分不做介绍。 一、机箱上我们需要完成的控制按钮 开关键、重启键是机箱前面板上不可缺少的按钮,电源工作指示灯、硬盘工作指示灯、前置蜂鸣器需要我们正确的连接。另外,前置的USB接口、音频接口以及一些高端机箱上带有的IEEE1394接口,也需要我们按照正确的方法与主板进行连接。

机箱前面板上的开关与重启按钮和各种扩展接口 首先,我们来介绍一下开关键、重启键、电源工作指示灯、硬盘工作指示灯与前置蜂鸣器的连接方法,请看下图。 机箱前面板上的开关、重启按钮与指示灯的连线方法 上图为主板说明书中自带的前置控制按钮的连接方法,图中我们可以非常清楚的看到不同插针的连接方法。其中PLED即机箱前置电源工作指示灯插针,有“+”“-”两个针脚,对应机箱上的PLED接口;IDE_LED即硬盘工作指示灯,同样有“+”“-”两个针脚,对应机箱上的IDE_LED接口;PWRSW为机箱面板上的开关按钮,同样有两个针脚,由于开关键是通过两针短路实现的,因此没有“+”“-”之分,只要将机箱上对应的PWRSW接入正确的插针即可。RESET是重启按钮,同样没有“+”“-”之分,以短路方式实现。SPEAKER是前置的蜂鸣器,分为“+”“-”相位;普通的扬声器无论如何接都是可以发生的,但这里比较特殊。由于“+”相上提供了+5V的电压值,因此我们必须正确安装,以确保蜂鸣器发声。

主板电路详解

主板电路详解 主板可是一台电脑的基石,但是在茫茫主板海洋当中要选择一款好的主板实属难事!一款主板如果要想能够稳定的工作,那么主板的供电部分的用料和做工就显得极为的重要。相信大家对于许多专业媒体上经常看到在介绍主板的时候都在介绍主板的是几相电路设计的,那么主板的几相电路到底是怎样区分的呢?其实这个问题也是非常容易回答的!用一些基本的电路知识就可以解释的清楚。 其实主板的CPU供电电路最主要是为CPU提供电能,保证CPU在高频、大电流工作状态下稳定的运行,同时它也是主板上信号强度最大的地方,处理得不好会产生串扰(cross talk)效应,而影响到其它较弱信号的数字电路部分,因此供电部分的电路设计制造要求通常都比较高。简单来说,供电部分的最终目的就是在CPU电源输入端达到CPU 对电压和电流的要求,就可以正常工作了。但是这样的设计是一个复杂的工程,需要考虑到元件特性、PCB板特性、铜箔厚度、CPU插座的触点材料、散热、稳定性、干扰等等多方面的问题,它基本上可以体现一个主板厂商的综合研发实力和技术经验。 图1是主板上CPU核心供电电路的简单示意图,其实就是一个简单的开关电源,主板上的供电电路原理核心即是如此。+12V是来自ATX电源的输入,通过一个由电感线圈和电容组成的滤波电路,然后进入两个晶体管(开关管)组成的电路,此电路受到PMW control(可以控制开关管导通的顺序和频率,从而可以在输出端达到电压要求)部分的控制可以输出所要求的电压和电流,图中箭头处的波形图可以看出输出随着时间变化的情况。再经过L2和C2组成的滤波电路后,基本上可以得到平滑稳定的电压曲线(Vcore,现在的P4处理器Vcore=1.525V),这个稳定的电压就可以供CPU“享用”啦,这就是大家常说的“多相”供电中的“一相”。看起来是不是很简单呢!只要是略微有一点物理电路知识的人都能看出它的工作原理。 单相供电一般可以提供最大25A的电流,而现今常用的CPU早已超过了这个

主板电源接口详解(图解)

计算机的ATX电源脱离主板是需要短接一下20芯接头上的绿色(power on)和黑色(地)才能启动的。启动后把万用表拨到主流电压20V档位,把黑表笔插入4芯D型插头的黑色接线孔中,用红表笔分别测量各个端子的电压。楼上列的是20芯接头的端子电压,4芯D型插头的电压是黄色+12V,黑色地,红色+5V。 主板电源接口图解 20-PIN ATX主板电源接口 4-PIN“D”型电源接口

主板20针电源插口及电压: 在主板上看: 编号输出电压编号输出电压 1 3.3V 11 3.3V 2 3.3V 12 -12V 3地 13地 4 5V 14 PS-ON 5地 15地 6 5V 16地 7地 17地 8 PW+OK 18 -5V 9 5V-SB 19 5V 10 12V 20 5V

在电源上看 编号输出电压编号输出电压 20 5V 10 12V 19 5V 9 5V-SB 18 -5V 8 PW+OK 17地 7地 16地 6 5V 15地 5地 14 PS-ON 4 5V 13地 3地 12 -12V 2 3.3V 11 3.3V 1 3.3V 可用万用电表分别测量 另附:24 PIN ATX电源电压对照表

百度有人说CPU供电4P接口可以和20P接口一起接在24P主板接口上,本人没试过,但根据理论试不可以的,如果你相信的话可以试试,后果是很严重的…… ATX电源几组输出电压的用途 +3.3V:最早在ATX结构中提出,现在基本上所有的新款电源都设有这一路输出。而在AT/PSII电源上没有这一路输出。以前电源供应的最低电压为+5V,提供给主板、CPU、内存、各种板卡等,从第二代奔腾芯片开始,由于CPU的运算速度越来越快,INTEL公司为了降低能耗,把CPU 的电压降到了3.3V以下,为了减少主板产生热量和节省能源,现在的电源直接提供3.3V电压,经主板变换后用于驱动CPU、内存等电路。 +5V:目前用于驱动除磁盘、光盘驱动器马达以外的大部分电路,包括磁盘、光盘驱动器的控制电路。 +12V:用于驱动磁盘驱动器马达、冷却风扇,或通过主板的总线槽来驱动其它板卡。在最新的P4系统中,由于P4处理器能能源的需求很大,电源专门增加了一个4PIN的插头,提供+12V电压给主板,经主板变换后提供给CPU和其它电路。所以P4结构的电源+12V输出较大,P4结构电源也称为ATX12V。 -12V:主要用于某些串口电路,其放大电路需要用到+12V和-12V,通常输出小于1A.。 -5V:在较早的PC中用于软驱控制器及某些ISA总线板卡电路,通常输出电流小于1A.。在许多新系统中已经不再使用-5V电压,

电脑主板原理图

1.主板上的英文字母都代表什么 1.L----电感.电感线圈 2.C----电容. 3.BC---贴片电容 4.R----电阻 5.9231 芯片-----脉宽 6.74 门电路-----它在主板南桥旁边 7.PQ----场效应管 8.VT 、Q、V----三级管 9.VD 、D---二级管 10.RN----排阻 11. ZD----稳压二极管 12.W-----电位器 13.IC---稳压块 14.IC 、N、U----集成电路 15.X 、Y、G、Z----晶振 16.S-----开关 17.CM----频率发生器(一般在晶振14.31818 旁边) 2. 计算机开机原理 开机原理:插上ATX 电源后,有一个静态5V 电压送到南桥,为南桥里面的ATX 开机电路提 供工作条件(ATX 电源的开机电路是集成南桥里面的),南桥里面的ATX 开机电路将开始 工作,会送一个电压给晶体,晶体起振工作,产生振荡,发出波形。同时ATX 开机电路会 送出一个开机电压到主板的开机针帽的一个脚,针帽的另一个脚接地。当打开开机开关时, 开机针帽的两个脚接通,而使南桥送出开机电压对地短路,拉低南桥送出的开机电压,而使 南桥里的开机电路导通,拉低静态5V 电压,使其变为0 电位。使电源开始工作,从而达到 开机目的。(ATX 电源里还有一个稳压部分,它需要静态5V 变为0 电位才能工作)。 3. 主板时钟电路工作原理 时钟电路工作原理:3.5 电源经过二极管和电感进入分频器后,分频器开始工作,和晶体一 起产生振荡,在晶体的两脚均可以看到波形。晶体的两脚之间的阻值在450---700 欧之间。 在它的两脚各有1V 左右的电压,由分频器提供。晶体两脚常生的频率总和是14.318M 。 总频(OSC )在分频器出来后送到PCI 槽的B16 脚和ISA 的B30 脚。这两脚叫OSC 测试脚。 也有的还送到南桥,目的是使南桥的频率更加稳定。在总频OSC 线上还电容。

芯片级主板故障诊断和维修技巧(doc 7页)

芯片级主板故障诊断与维修技巧 051609232 张宏伟 主板架构就主板的板型以及布局等,有很多种。主板是电脑的关键部分,它连接了芯片组、各种I/O控制芯片、扩展槽、电源插座等部件。主板的发展史经历了:AT,Baby AT, ATX, Mciro ATX, LPX, NLX, Flex ATX 等多种结构规范。分析主板构架的重要依据是主板所采用的芯片组,芯片组是主板的灵魂,是cpu 与周边设备联系的桥梁,它决定了主板的速度,性能。早期芯片组由二至四枚芯片组成,现在基本上由两枚芯片组成(一体化芯片主板除外),分别由北桥(South Bridge)和南桥(North Bridge)组成。 主板电路主要有,主板的开机电路、CMOS电路、CPU供电电路、内存供电电路、芯片组供电电路、扩展槽供电电路、时钟电路、复位电路、各种接口电路,主板触发电路,经过南桥的触发电路和经过I/O芯片的触发电路。主板BIOS和CMOS电路。 开机电路主要由:ATX电源插座,南桥芯片I/O,门电路,开机键(PW-ON)开机芯片(只有华硕主板有),电阻、电容、三极管等器件。开机电路根据主板的设计不同,开机电路的控制方式也不同,有通过南桥直接控制的,有通过I/O 芯片控制的,也有通过门电路控制的。不管开机电路控制方式如何,开机电路的功能都是相同的,即通过开机键实现电脑的开机和关机。通过控制ATX电源给

主板输出工作电压,使主板开始工作。 主板复位电路:复位信号是主板工作必需的三大信号之一,主板复位电路的主要目的是产生复位信号使主板及其他部件复位,进入初始化状态。实际上对主板进行复位的过程就是对主板及其他部件进行初始化的过程。复位电路要在主板的供电、时钟正常后才开始工作。复位电路的主要元件有:ATX电源第8脚,复位开关,74门电路,南桥,电阻和电容等。 在复位电路中,南桥内部的系统复位控制模块是整个复位电路的核心,当南桥内部的系统复位控制模块被复位后,会产生硬件所需的复位信号,复位信号再交给门电路芯片处理,产生足够强的复位信号。再送给主板各硬件的复位信号引脚。因此整个复位电路实际上就是对复位信号进行放大、传递的电路。 主板供电电路是主板的重要单元电路,其作用是将ATX电源输出的电压进行转换处理,使其满足不同设备的需求。主板供电电路主要包括:CPU供电电路,内存供电电路,芯片组供电电路,AGP槽供电电路,PCI-E槽供电电路等。 主板供电电路这里所指的主板供电是指为CPU供电,最终目的是为CPU电源输入端提供CPU正常运行时所需的电压和电流,是通过ATX电源输出电压经DC→DC(直流→直流)降压转换后实现的。它的原理主要是:获得ATX电源输出的+5V或+12供电后,为CPU提供供电(此时未达到CPU核心供电要求),CPU电压自动识别引脚发出电压识别信号(VID-Voltage Identification Code)给电源控制器(PMW control),电源控制器通过控制两个场效应管(MOSFET)导通的顺序和频率,使其输出的电压与电流达到CPU核心供电要求,实现为CPU 供电的目的。 主板触发电路即开机电路,它的触发方式与电源供应器(简称电源)的结构密切相关。因此,有必要对电源的供电方式进行了解。电源可分为AT和ATX 两种结构,目前普遍采用的是ATX结构电源。ATX结构电源有20条引脚。 主板时钟电路主要由:时钟发生器芯片,14.318MHz晶振,电容、电阻和电感等。主板上多数部件的时钟信号由时钟发生器提供,它是通过晶振产生振荡,然后分频为各部件提供不同时钟频率。时钟发生器是主板时钟电路的核心,如同主板的心脏。

主板开机电路分析及故障检修13页word

主板开机电路分析及故障检修 主板开机电咱分析 根据主板的设计不同,主板的开机电路控制方式也不同,有通过南桥直接控制的,有通过I/O直接控制的,也有通过电路控制的,不管开机电路控制方式如何,开机电路的功能都是相同的,即通过开机键实现电脑的开机和关机. 主板开机电路工作机制 主板开机电路是主板中的重要单元电路,它的主要任务是控制ATX电源给主板输出工作电压,使主板开始工作. 主板开机电路通过电源开关(PW-ON)触发主板开机电路,开机电路中的南桥芯片或I/O芯片对触发信号进行处理后,最终发出控制信号,控制开机控制三极管或门电路将ATX电源的第16针脚(24针电源插头)或第14针脚(20针电源插头)的高电位拉低(ATX电源关闭状态下此脚的电压为3.5V以上),以触发ATX电源主电源电路开始工作,使ATX电源各针脚输出相应工作电压,为主板等设备提供工作电压. 尽管在主板各部分电路的设计与应用中元器件及芯片的组合布局方式不完全相同.但是实现的原理与目的始终是一致的,即通过控制的PSON针脚,(第16针脚或第14针脚)的电位高低来控制ATX电源的开启与关闭,继而控制主板的开启与关闭.当PSON针脚电压为高电平时,ATX电源中的主电源电路处于关闭状态,当PSON针脚的电压变为低电平时,ATX电源中的主电源电路便启动,开如输出各种电压,因此通过控制PSON针脚夫的电压高低,就控制了主板的开启与关闭.

主板开机电路组成 主板的开杨电路主要由ATX电源插座、南桥芯片、I/O芯片(有的没有)、门电路、开机键、开机芯片(只有华硕主板有)和一些电阻、电容、三极管、二极管等元器件组成。 1、ATX电源接口 其中第9针脚和第14针或第16针与开机电路有关联。ATX电源中包括两种电源电路:待机电源电路和主电源电路。 2、南桥芯片 南桥内部开机触发电路正常工作和条件是: 为南桥提供供电。主供电为2。5-3。3V,一般是ATX电源待机电压通过稳压器1117或1084等转换后向南桥供电,或直接由CMOS电池供电。 提供32。768kHz的时钟信号。南桥内部内置振荡器,外部连接了一个32。768kHz的晶振,在得到ATX电源供电或CMOS电池供电后,向南桥提供时钟信号。 开机触发信号。在按下电源开关键后,由开机键直接或通过非门电路发送给南桥一个触发电压信号。 在满足上面的3个条件后,南桥内部的触发电路就会工作,实现控制ATX 电源第14针脚或第16针脚电压的功能。 3、门电路 在主板开机电路中使用的门电路主要包括逻辑门电路和非门电路. 逻辑门电路 逻辑门电路在开机电路中实际上就是触发器,主要包括74HCT74、74HC14、

主板供电全解析

主板供电全解析 首先来认识一下CPU供电电路的器件,找一片技嘉X48做例子。 上图中我们圈出了一些关键部件,分别是PWM控制器芯片(PWM Controller)、MOSFET驱动芯片(MOSFET Driver)、每相的MOSFET、每相的扼流圈(Choke)、输出滤波的电解电容(Electrolytic Capacitors)、输入滤波的电解电容和起保护作用的扼流圈等。下面我们分开来看。

(图)PWM控制器(PWM Controller IC) 在CPU插座附近能找到控制CPU供电电路的中枢神经,就是这颗PWM主控芯片。主控芯片受VID的控制,向每相的驱动芯片输送PWM的方波信号来控制最终核心电压Vcore的产生。 MOSFET驱动芯片(MOSFET Driver) MOSFET驱动芯片(MOSFET Driver)。在CPU供电电路里常见的这个8根引脚的小芯片,通常是每相配备一颗。每相中的驱动芯片受到PWM主控芯片的控制,轮流驱动上桥和下桥 MOS管。很多PWM控制芯片里集成了三相的Driver,这时主板上就看不到独立的驱动芯片了。

早一点的主板常见到这种14根引脚的驱动芯片,它每一颗负责接收PWM控制芯片传来的两相驱动信号,并驱动两相的MOSFET的开关。换句话说它相当于两个8脚驱动芯片,每两相电路用一个这样的驱动芯片。 MOSFET,中文名称是场效应管,一般被叫做MOS管。这个黑色方块在供电电路里表现为受到栅极电压控制的开关。每相的上桥和下桥轮番导通,对这一相的输出扼流圈进行充电和放电,就在输出端得到一个稳定的电压。每相电路都要有上桥和下桥,所以每相至少有两颗MOSFET,而上桥和下桥都可以用并联两三颗代

新手如何看懂主板电路图

新手如何看懂主板电路图 新手如何看懂主板电路图 看懂主板电路图是维修人员进一步提高的一个门槛,必须具备一定的基础知识才行,论坛上的知识都很散乱,我把论坛上的知识归纳了一下,并结合自己看图的心得。 看图前需要准备的知识: 一、模拟电子技术 张先生的《模拟电子技术(推荐)》的doc版 https://www.360docs.net/doc/d510017431.html,/viewt ... 7%D7%D3%BC%BC%CA%F5 二、数字电子技术 跟我学数字电子技术 https://www.360docs.net/doc/d510017431.html,/viewt ... 7%D7%D3%BC%BC%CA%F5 三、主板上各种信号说明 https://www.360docs.net/doc/d510017431.html,/thread-59765-1-1.html 四、主板维修中常用到的VDD,VTT,CS等含义 VCC--为直流电压。在主板上为主供电电压或一般供电电压。例如一般电路VCC3--+3V供电。VCC3: 3.3V VCC25: 2.5V VCC333: 3.3V VCC5: 5V VCC12: 12V VCORE: CPU核心电压(视CPU OR 电压治具而定) VDD--只是一个通称。普通的IC电源,可能+3V, +1.5V之类,例如数字电路正电压、门电路的供电等。 VDDQ--需要经过滤波的电源,稳定度要求比VDD更高, VSS--指供电的负极,一般是0伏电压或电压参考点 GND--地 供电电压一般都标为Vdd,Vcc VCORE--CPU核心电压。 VID--是CPU电压识别信号。以前的老主板有VID跳线,现在的一般没有,CUP工作电压就是由VID来定义。通过控制电源IC输出额定电压给CPU。 VTT--是参考电压(有VTT1.5V、VTT2.5V),针对不同型号的CPU有1.8V,1.5V,1.125.测量点在cpu插座旁边,有很多56 的排阻,就是它了。 VTT--是AGTL总线终端电压。 CS--片选 CAS--行选通 RAS--列选通

笔记本风扇控制电路详解

笔记本风扇控制电路详解 如图3-5-1所示,是整个笔记本电脑CPU散热风扇基本控制系统示意图。它构成的几个要件有CPU内部温度传感器、主板温度控制芯片、主板电源管理芯片、CPU散热风扇供电线路和CPU散热风扇散热模组。整个系统的组成,最终还是为了实现CPU降温来服务的。现在分步来看。 电脑家园 1

图 3-5-1 典型CPU散热风扇控制模型 ■CPU内部温度传感器 集成在CPU芯片内部一个热敏二极管的电气特性会随着CPU内核的温度变化而变化。二极管传感器的变化信息,将通过CPU的两个引脚传递到主板上CPU底座附近温控芯片的两个引脚上去。 ■主板温度控制芯片 该温控芯片的主要职责就是将CPU内部温度传感器引脚传递来温度信息转换成符合SMBUS总线规范的数字信息,并最终传递给主板上的电源管理芯片。不仅如此,当CPU温度升高到CPU规格限定值时,温控芯片通常能够直接去控制系统电源部分,关闭整个主机电源,避免CPU和其他相关模块因温度过高而损坏。如图3-5-2所示,典型CPU温控芯片主板视图。 图 3-5-2 典型温控芯片视图 电脑家园 2

■主板电源管理芯片 电源管理芯片通过温控芯片侦测到CPU温度信息,并通过EC BIOS内部CPU温度控制列表,发出相应的控制信号,来控制CPU散热风扇工作电压进而实现风扇转速的调节。下图3-5-3所列,为典型笔记本电脑机型CPU散热风扇转速控制信息清单。 图 3-5-3 典型风扇转速控制清单 电脑家园 3

■ CPU散热风扇散热模组及其供电线路 CPU散热风扇散热模组自身运转与否及其转速高低,最终还是由加在风扇引脚上面电压的高低决定。普通可调节CPU散热风扇都是3PIN的,它们分别是电源、转速控制和接地脚。当CPU散热风扇电源脚工作电压被电源管理芯片发出来的控制信号关闭后,风扇将停止运转。在CPU散热风扇工作电压开启的情况下,可以通过连接到电源管理芯片上的转速控制脚来实现风扇的转速调节。该引脚信号是一个矩形方波,EC通过调节方波电压信号的占空比,来实现CPU散热风扇工作的电压差。不同占空比的控制信号可以实现CPU散热风扇的低、中及高速运转。https://www.360docs.net/doc/d510017431.html, 如图3-5-4所示,典型笔记本电脑CPU散热风扇散热模组温控及供电线路原理图。 电脑家园 4

电脑主板CPU供电电路原理图解

电脑主板CPI 供电电路原理图解 .多相供电模块的优点 1. 可以提供更大的电流,单相供电最大能提供25A 的电流,相对现在主流的处 理器来说,单相供电无法提供足够可靠的动力, 所以现在主板的供电电路设计都 采用了两相甚至多相的设计,比如 K7、K8多采用三相供电系统,而LGA755的 Pentium 系列多采用四相供电系统。 2. 可以降低供电电路的温度。因为多了一路分流,每个器件的发热量就减少了。 3. 利用多相供电获得的核心电压信号也比两相的来得稳定。 一般多相供电的控 制芯片(PWM 芯片)总是优于两相供电的控制芯片,这样一来在很大程度上保证 了日后升级新处理器的时候的优势。 .完整的单相供电模块的相关知识 该模块是由输入、输出和控制三部分组成。输入部分由一个电感线圈和一个电容 组成;输出部分同样也由一个电感线圈和一个组成; 控制部分则由一个PW 控制 芯片和两个场效应管(MOS-FE )组成(如图1)。 0丁1艸 ------ 1 中国旭日电器 輸入气分I ::控制部分中国旭日电器符栋梁 CPU 供电外,还要给其它设备的供电,如果做成 单相电路,需要采用大功率的管,发热量很大,成本也比较高。所以 各大主板厂商都采用多相供电回路。多相供电是将多个单相电路 XX 而成的,它可以提供N 倍的电流。 小知识 场效应管:是一种单极性的晶体管,最基本的作用是开关,控制电流,输出部分 i ? I Vcor^

其应用比较广泛,可以放大、恒流,也可以用作可变电阻。 PWM^片:PWM 卩 Pulse Width Modulation (脉冲宽度调制),该芯 片是供电电路的主控芯片,其作用为提供脉宽调制,并发出脉冲信号, 使得两个场效应管轮流导通。 图2主板上的电感线圈和场效应管 了解了以上知识后,我们就可以轻松判断主板的采用了几相供电了。 三.判断方法 1. 一个电感线圈、两个场效应管和一个电容构成一相电路。 这是最标准的供电系统,很多人认为:判定供电回路的相数与电容的 个数无关。这是因为在主板供电电路中电容很富裕,所以,一个电感 实际电感线圈、电容和场效应管位于 CPU 插槽的周围(如图2)。 管 应 J 场

(新)教你学会看电路图轻松修手机

第一篇、教你学会看电路图轻松修手机 既然是教程就不能保证100%是原创,难免会引用老师们的宝贵经验,请您别介意哦! 只要您认真学习完这些教程,就可以正式步入“专业手机维修”行业成为一名优秀的维修员喽!目的很简单,就是让新会员们、新手们,您加入帅虎论坛是正确的。在这里你可以学习到一些实实在在的维修知识,向更高的一个层次迈进、稳步成长。。。 言归正传!有兴趣的朋友往下看,学习一下: 第一节了解电路图 一、一套完整的主板电路图,是由主板原理图和主板元件位置图组成的。 1.主板原理图,如图:

2.主板元件位置图,如图: 主板元件位置图的作用:是方便用户找到相应元件所在主板的正确位置。而主板原理图是让用户对主板的电路原理有所了解,知道各个芯片的功能,及其线路的连接。

二、相关名词解释 电路图中会涉及到许多英文标识,这些标识主要起到了辅助解图的作用,如果不了解它们,根本不知道他们的作用,也就根本不可能看得懂原理图。所以在这里我们会将主要的英文标识进行解释。希望大家能够背熟记熟,同时希望大家多看电路图,对不懂的英文及时查找记熟。 如图:

以上英文标识在电路图上会灵活出现,比如“扬声器”是“SPEAKER” ,它的缩写就是“SPK”,“正极”是“positive” ,缩写是“P” ,那么如果在图中标记SPKP,那么就证明它是扬声器正极。所

以当有英文不明白的时候,可以将它们拆开后再进行理解,请大家灵活运用。 第二节主板元件位置图 一、元件编号 每一个元件在主板元件位置图中,都有一个唯一的编号。这个编号由英文字母和数字共同组成。编号规则可以分成以下几类: 芯片类:以U 为开头,如CPU U101 接口类:以J 为开头,如键盘接口J1202 三极管类:以Q 为开头,如三极管Q1206 二级管类:以D 为开头,如二极管D1102 晶振类:以X 为开头,如26M 晶体X901 电阻类:以R 或VR(压敏电阻)为开头,如电阻R32 VR211 电容类:以C 为开头,如电容C101 电感类:以L 为开头,如电感L1104 侧键类:以S 为开头,如侧键S1201 电池类:以 B 为开头,如备用电池B201 屏蔽罩:以SH 为开头,如屏蔽罩SH1 振动器:以M 为开头,如振子M201 还有一部分标号是主板上的测试点,以TP 为开头。 二、查找元件功能 用户可以根据相应的元件编号去查找主板原理图,从而了解此元件的作用。随便拿块主板作为示例。

笔记本电脑电路结构

笔记本电脑电路结构 Company Document number:WUUT-WUUY-WBBGB-BWYTT-1982GT

1、笔记本电脑电路结构框图 笔记本电脑的结构图所示,整体上分为五大部分。 (1)以CPU为核心连接了CPU的温度控制电路、CPU核心电压供给电路、CPU散热风扇控制电路。 (2)以内存控制器为核心连接了内存、显卡、CPU、I/O,起着承上启下的作用。 (3)以I/O控制器为核心分别连接了IDE(光驱和硬盘)、USB、网卡、声卡、PCI总线和扩展坞等器件的控制电路和接口电路。 (4)以LPC总线为核心分别连接了SIO(超级输入输出控制器)和SMC/KBC(系统管理控制器/键盘控制器)、FWH(固件集线器),而SIO又包括了串口、并口、红外、软驱的控制电路。SMC/KBC 又包括了键盘和鼠标的控制电路和系统管理控制器。 (5)电源供给电路和电池充电电路。 2、笔记本电脑主板单元电路综述 、下面我们就以支持迅驰的Intel的855GM芯片组的整套电路结构做一个简单的介绍。 Pentium M处理器CPU是计算机的大脑,是司令。它管理和控制其他部件进行数据传输和处理。 Pentium M处理器是Intel专门为笔记本电脑设计的一款CPU,它以低频率、低电压和多种节能模式工作,达到了很高的节电水平和很好的性能。它的一些特点如下: 1、片内集成32KB一级缓存和1MB二级缓存; 2、支持SSE2指令集; 3、支持增强的SpeedStep技术,可以调整核心电压和核心频率; 4、400MHz的CPU总线频率。 Pentium M引出CPU总线,也称前端总线,连接北桥芯片组。其频率为400MHz,这其实是通过在100MHz时钟周期内采样四次实现的。CPU总线信号使用AGTL+逻辑,这是一种信号的电器特性,它可以改善信号的质量,并降低功耗。 、IP-IV核心电压控制 IMVP-IV是为CPU提供核心供电的电路,由于Pentium M核心电压可调(有32种),所以要有一个能精确调整电压的电路。除此以外,CPU还有一些关于电源管理的信号,也由IMVP-IV负责。它帮助电脑实现了SpeedStep技术。 3 温度传感器 将一个测温二极管安放在CPU下面,接到CPU相应管脚上,CPU内部的电路便可感知其自身的温度,并对一旦发生的高温提供保护。测温二极管还常提供给其他控制芯片如1023,实现温度监控,并完成一定的系统控制如风扇启动等。 4 Intel 855GM GMCH 图形内存控制集线器(Graphics & Memory Controller Hub,GMCH),俗称北桥。它内部集成了图形控制器(显示卡),内存控制器,被提供相应的接口连接显示设备和内存,同时它还连接Pentium M

相关文档
最新文档