4 离心力的理解--迈达斯

4 离心力的理解--迈达斯

考虑离心力的情况有2种:1 上部结构主梁计算2 墩柱。对于主梁计算将PK转化为均布荷载,和qk相加再乘以离心力系数。对于墩柱,转化为竖向均布荷载后计算墩柱的承受的竖向力再乘以离心力系数。

midas入门教程

目录 建立模型○1 设定操作环境 (2) 定义材料 (4) 输入节点和单元 (5) 输入边界条件 (8) 输入荷载 (9) 运行结构分析 (10) 查看反力 (11) 查看变形和位移 (11) 查看内力 (12) 查看应力 (14) 梁单元细部分析(Beam Detail Analysis) (15) 表格查看结果 (16) 建立模型○2 设定操作环境 (19) 建立悬臂梁 (20) 输入边界条件 (21) 输入荷载 (21) 建立模型○3 建模 (23) 输入边界条件 (24) 输入荷载 (24) 建立模型○4 建立两端固定梁 (26) 输入边界条件 (27) 输入荷载 (28) 建立模型○5○6○7○8

简要 本文来自:中国范文网【https://www.360docs.net/doc/d51652977.html,/】详细出处参考: https://www.360docs.net/doc/d51652977.html,/275.html 本课程针对初次使用MIDAS/Civil 的技术人员,通过悬臂梁、简支梁等简单的例题,介绍了MIDAS/Civil 的基本使用方法和一些基本功能。包含的主要内容如下。 1. MIDAS/Civil 的构成及运行模式 2. 视图(View Point)和选择(Select)功能 3. 关于进行结构分析和查看结果的一些基本知识(GCS, UCS, ECS 等) 4. 建模和分析步骤(输入材料和截面特性、建模、输入边界条件、输入荷载、结构分析、查看结果) 使用的模型如图1所示包含8种类型,为了了解各种功能分别使用不同的方法输入。 图1. 分析模型 ○1 ○2 ○3 ○4 ○5 ○6 ○ 7 ○ 8 6@2 = 12 m 截面 : HM 440×300×11/18 材料 : Grade3 悬臂梁、两端固定梁 简支梁

水平地震作用计算

上海市工程建设规《建筑抗震设计规程》(DGJ08-9-2013)强制性条文 3 抗震设计的基本要求 3.1.1 抗震设防的所有建筑应按现行标准《建筑工程抗震设防分类标准》GB 50223 确定其抗震设防类别及其抗震设防标准。 3.3.1选择建筑场地时,应根据工程需要和地震活动情况、工程地质和地震地质的有关资料,对抗震有利、一般、不利和危险地段做出综合评价。对不利地段,应提出避开要求,当无法避开时应采取有效的措施。对危险地段,禁建造甲、乙类的建筑,不应建造丙类的建筑。 3.4.1建筑设计应根据抗震概念设计的要求明确建筑形体的规则性。不规则的建筑应按规定采取加强措施;特别不规则的建筑应进行专门研究和论证,采取特别的加强措施;重不规则的建筑不应采用。 注:形体指建筑平面形状和立面、竖向剖面的变化。 3.5.2结构体系应符合下列各项要求: 1应具有明确的计算简图和合理的地震作用传递途径。 2应避免因部分结构或构件破坏而导致整个结构丧失抗震能力或对重力荷载的承载能力。 3应具备必要的抗震承载力,良好的变形能力和消耗地震能量的能力。 4对可能出现的薄弱部位,应采取措施提高其抗震能力。 3.7.1 非结构构件,包括建筑非结构构件和建筑附属机电设备,自身及其与结构主体的连接,应进行抗震设计。 3.7.4框架结构的围护墙和隔墙,应估计其设置对结构抗震的不利影响,避免不合理设置而导致主体结构的破坏。 3.9.1抗震结构对材料和施工质量的特别要求,应在设计文件上注明。 3.9.2 结构材料性能指标,应符合下列要求: 1 砌体结构材料应符合下列规定: 1)普通砖和多砖的强度等级不应低于MU10,其砌筑砂浆强度等级不应低于M5; 2)混凝土小型空心砌块的强度等级不应低于MU7.5,其砌筑砂浆强度等级不应 低于Mb7.5。 2混凝土结构的材料应符合下列规定: 1) 混凝土的强度等级,框支梁、框支柱及抗震等级为一级的框架梁、柱、节点核 芯区,不应低于C30;构造柱、芯柱、圈梁及其它各类构件不应低于C20; 2) 抗震等级为一级、二级、三级的框架和斜撑构件(含梯段),其纵向受力钢筋采 用普通钢筋时,钢筋的抗拉强度实测值与屈服强度实测值的比值不应小于 1.25;钢筋的屈服强度实测值与屈服强度标准值的比值不应大于1.3,且钢筋 在最大拉力下的总伸长率实测值不应小于9%。 3钢结构的钢材应符合下列规定: 1) 钢材的屈服强度实测值与抗拉强度实测值的比值不应大于0.85; 2) 钢材应有明显的屈服台阶,且伸长率不应小于20%; 3) 钢材应有良好的焊接性和合格的冲击韧性。 3.9.4 在施工中,当需要以强度等级较高的钢筋替代原设计中的纵向受力钢筋时,应按照钢筋受拉承载力设计值相等的原则换算,并应满足最小配筋率要求。

迈达斯教程及使用手册

01-材料的定义 通过演示介绍在程序中材料定义的三种方法。 1、通过调用数据库中已有材料数据定义——示预应力钢筋材料定义。 2、通过自定义方式来定义——示混凝土材料定义。 3、通过导入其他模型已经定义好的材料——示钢材定义。 无论采用何种方式来定义材料,操作顺序都可以按下列步骤来执行:选择设计材料类型(钢材、混凝土、组合材料、自定义)→选择的规→选择相应规数据库中材料。 对于自定义材料,需要输入各种控制参数的数据,包括弹性模量、泊松比、线膨胀系数、容重等。 钢 材 规 范 混 凝 土 规 范 图1 材料定义对话 框

02-时间依存材料特性定义 我们通常所说的混凝土的收缩徐变特性、混凝土强度随时间变化特性在程序里统称为时间依存材料特性。 定义混凝土时间依存材料特性分三步骤操作: 1、定义时间依存特性函数(包括收缩徐变函数,强度发展函数)(图1,图2); 2、将定义的时间依存特性函数与相应的材料连接(图3); 3、修改时间依存材料特性值(构件理论厚度或体积与表面积比)(图4);

图1 收缩徐变函数 图2 强度发展函数

定义混凝土时间依存材料特性时注意事项: 1)、定义时间依存特性函数时,混凝土的强度要输入混凝土的标号强度; 2)、在定义收缩徐变函数时构件理论厚度可以仅输入一个非负数,在建立模型后通过程序自动计算来计算构件的真实理论厚度; 3)、混凝土开始收缩时的材龄在收缩徐变函数定义中指定,加载时的混凝土材龄在施工阶段定义中指定(等于单元激活时材龄+荷载施加时间); 4)、修改单元时间依存材料特性值时要对所有考虑收缩徐变特性的混凝土构件修改其构件理论厚度计算值。计算公式中的a 代表在空心截面在构件理论厚度计算时,空心部分截面周长对构件与大气接触的周边长度计算的影响系数; 5)、当收缩徐变系数不按规计算取值时,可以通过自定义收缩徐变函数来定义混凝土的收缩徐变特性; 6)、如果在施工阶段荷载中定义了施工阶段徐变系数,那么在施工阶段分析中将按施 图3 时间依存材料特性连接 图4 时间依存材料特性值修改

第八章水平地震作用下的内力和位移计算

第8章 水平地震作用下的内力和位移计算 8.1 重力荷载代表值计算 顶层重力荷载代表值包括:屋面恒载:纵、横梁自重,半层柱自重,女儿墙自重,半层墙体自重。其他层重力荷载代表值包括:楼面恒载,50%楼面活荷载,纵、横梁自重,楼面上、下各半层柱及纵、横墙体自重。 8.1.1第五层重力荷载代表值计算 层高H=3.9m ,屋面板厚h=120mm 8.1.1.1 半层柱自重 (b ×h=500mm ×500mm ):4×25×0.5×0.5×3.9/2=48.75KN 柱自重:48.75KN 8.1.1.2 屋面梁自重 ()()kN m m m kN m m m kN m m m kN 16.1472 )25.06.6(/495.145.06.616.3)3.03(/495.123.06.7/16.3=?-?+?-?+ +?+?-? 屋面梁自重:147.16KN 8.1.1.3 半层墙自重 顶层无窗墙(190厚):()KN 25.316.66.029.3202.02019.025.14=??? ? ??-???+? 带窗墙(190厚): ()()KN 98.82345.002.02019.025.1428.15.16.66.029.3202.02019.025.14=??? ??? ???????-?+???-???? ??-???+? 墙自重:114.23 KN 女儿墙:()KN 04.376.66.1202.02019.025.14=????+? 8.1.1.4 屋面板自重 kN m m m m kN 78.780)326.7(6.6/5.62=+???

8.1.1.5 第五层重量 48.75+147.16+114.23+37.04+780.78=1127.96 KN 8.1.1.6 顶层重力荷载代表值 G 5 =1127.96 KN 8.1.2 第二至四层重力荷载代表值计算 层高H=3.9m ,楼面板厚h=100mm 8.1.2.1半层柱自重:同第五层,为48.75 KN 则整层为48.75×2=97.5 KN 8.1.2.2 楼面梁自重: ()()kN m m m kN m m m kN m m m kN 3.1542)25.06.6(/6.145.06.63.3)3.03(/6.123.06.7/3.3=?-?+?-?+ +?+?-? 8.1.2.3半墙自重:同第五层,为27.66KN 则整层为2×27.66×4=221.28 KN 8.1.2.4楼面板自重:4×6.6×(7.6+3+7.6)=480.48 KN 8.1.2.5第二至四层各层重量=97.5+154.3+221.28+480.48=953.56 KN 8.1.2.6第二至四层各层重力荷载代表值为: ()KN G 61.111336.65.326.76.65.2%5056.9534-2=??+????+= 活载:Q 2-4=KN 05.160%5036.65.326.76.65.2=???+???)( 8.1.3 第一层重力荷载代表值计算 层高H=4.2m ,柱高H 2=4.2+0.45+0.55=5.2m ,楼面板厚h=100mm 8.1.3.1半层柱自重: (b ×h=500mm ×500mm ):4×25×0.5×0.5×5.2/2=65 KN 则柱自重:65+48.75=113.75 KN 8.1.3.2楼面梁自重:同第2层,为154.3 KN 8.1.3.3半层墙自重(190mm ): ()()KN 14.3145.002.02019.025.142 8 .15.16.66.02 2.4202.02019.025.14=-?+???-??? ? ??-???+? 二层半墙自重(190mm ):27.66 KN 则墙自重为:(31.14+27.66)×4=235.2 KN

迈达斯教程及使用手册

迈达斯教程及使用手册 IMB standardization office【IMB 5AB- IMBK 08- IMB 2C】

01-材料的定义 通过演示介绍在程序中材料定义的三种方法。 1、通过调用数据库中已有材料数据定义——示范预应力钢筋材料定义。 2、通过自定义方式来定义——示范混凝土材料定义。 3、通过导入其他模型已经定义好的材料——示范钢材定义。 无论采用何种方式来定义材料,操作顺序都可以按下列步骤来执行:选择设计材料类型(钢材、混凝土、组合材料、自定义)→选择的规范→选择相应规范数据库中材料。 对于自定义材料,需要输入各种控制参数的数据,包括弹性模量、泊松比、线膨胀系数、容重等。 02-时间依存材料特性定义 我们通常所说的混凝土的收缩徐变特性、混凝土强度随时间变化特性在程序里统称为时间依存材料特性。 定义混凝土时间依存材料特性分三步骤操作: 1、定义时间依存特性函数(包括收缩徐变函数,强度发展函数)(图1,图2); 2、将定义的时间依存特性函数与相应的材料连接(图3); 3、修改时间依存材料特性值(构件理论厚度或体积与表面积比)(图4); 钢 材 规范 混凝土规范 图1 材料定义对话框 图1 收缩徐变函数

定义混凝土时间依存材料特性时注 意事项: 1)、定义时间依存特性函数时,混凝土的强度要输入混凝土的标号强度; 2)、在定义收缩徐变函数时构件理论厚度可以仅输入一个非负数,在建立模型后通过程序自动计算来计算构件的真实理论厚度; 3)、混凝土开始收缩时的材龄在收缩徐变函数定义中指定,加载时的混凝土材龄在施工阶段定义中指定(等于单元激活时材龄+荷载施加时间); 4)、修改单元时间依存材料特性值时要对所有考虑收缩徐变特性的混凝土构件修改其构件理论厚度计算值。计算公式中的a 代表在空心截面在构件理论厚度计算时,空心部分截面周长对构件与大气接触的周边长度计算的影响系数; 5)、当收缩徐变系数不按规范计算取值时,可以通过自定义收缩徐变函数来定义混凝土的收缩徐变特性; 6)、如果在施工阶段荷载中定义了施工阶段徐变系数,那么在施工阶段分析中将按施工阶段荷载中定义的徐变系数来计算。 03-截面定义 截面定义有多种方法,可以采用调用数据库中截面(标准型钢)、用户定义、采用直接输入截面特性值的数值形式、导入其他模型中已有截面(图1~图3)。 图3 时间依存材料特性连接 图4 时间依修

混凝土简支梁桥桥墩地震内力计算过程

混凝土简支梁桥桥墩地震内力计算过程 、桥梁基本概况: (1)跨径布置:5*20m简支板梁桥; (2)桥面宽度:0.5m (防撞栏)+6.5m (行车道)+0.5m (防撞栏) =7.5m; (3)支承体系:每跨结构一端设置固定支座,一端设置板式橡胶支座; (4)桥面铺装:C40防水混凝土,平均厚度为13cm; (5)材料:主梁为C50混凝土,盖梁、墩柱、防撞栏均为C30混凝土; (6)地震设防:场地地震动加速度峰值为0.1g,地震动反应特征周期为 0.4s,抗震设防类别为B类,抗震设防烈度为7度,场地条件为川类总体 布置图见图1。 U Q U 图 1桥梁立面布置图 、结构尺寸: 上部结构:主梁梁高0.9m,具体尺寸参见图2 a)主梁横断面图

图3柱式墩地震内力计算简图 图2上部结构具体尺寸图 图3桥墩尺寸图 、桥墩地震内力计算过程(不考虑地基变形): (1)柱式墩地震内力的计算简图如图 3所示: b )中板断面图 r < r L :」i ix 丄?」 c )边板断面图 F 部结构:采用独柱式桥墩,墩高 7.5m ,桥墩直径1.8m ,见图3. a )平面图 b )立面图

1 (2) 顺桥向水平地震力的计算公式为: 本算例根据《公路桥梁抗震设计细则》规定属于柱式墩的规则桥梁。其顺 桥向水平地震力可按照6.7.3之规定来计算。具体计算步骤如下: E htp = Shi G t / g ① G t 的确定:G t = G sp ■ G cp ■ G p ; 一跨主梁重量=20 3 6872 2 7960「10000 26.5 = 1936.4kN 桥面铺装重量=°.!3 6.5 20 26 =439.4kN 防撞栏重量=2 4081.21 “10000 20 25 =408.12kN 一孔梁的重力 G sp -1936.4 439.4 408.12 =2783.92kN 盖梁重力 G cp =25 2 6.783 =339.15kN 墩身重力 G p =7.5 3.14 0.92 25 = 476.89kN 因此 =0.16 516 1 =0.21 由此可求得 G t =2783.92 339.15 0.21 476.89= 3223.22kN ② S h1的确定 该值的确定与结构的基本周期相关。本算例桥墩的自振周期计算公式为 ⑴飞为结构在顺桥向或横桥向作用于支座顶面或上部结构质量重心上单 墩身重力换算系数n =0.16 Xf 汉2X 2 2 .二1 +X f X 1 +X 1 +1 f- f- f- 2 2 2 J 由于不考虑地基变形,即 X f =0,X 1可根据静力挠度曲线求得: f- 2 悬臂梁 的静力挠度曲线为:y x 二 2 x x - 3丨 . .. ' 丿,当x=l/2时, 6EI 5 yi 「药。由此可知,X f2詁2?耳。 5l 3 y 2 _ 48EI ; 丨3 1 f- 2

迈达斯civil使用手册

Civil使用手册 01-材料的定义 通过演示介绍在程序中材料定义的三种方法。 1、通过调用数据库中已有材料数据定义——示范预应力钢筋材料定义。 2、通过自定义方式来定义——示范混凝土材料定义。 3、通过导入其他模型已经定义好的材料——示范钢材定义。 无论采用何种方式来定义材料,操作顺序都可以按下列步骤来执行:选择设计 材料类型(钢材、混凝土、组合材料、自定义)→选择的规范→选择相应规范数据 库中材料。 对于自定义材料,需要输入各种控制参数的数据,包括弹性模量、泊松比、线 膨胀系数、容重等。 02- 时 间 依 存 材 料 特 性 定 义 我 们 通 常 所 说 的 混 凝 土的收缩徐变特性、混凝土强度随时间变化特性在程序里统称为时间依存材料特性。 定义混凝土时间依存材料特性分三步骤操作: 1、定义时间依存特性函数(包括收缩徐变函数,强度发展函数)(图1,图2); 2、将定义的时间依存特性函数与相应的材料连接(图3);

3、修改时间依存材料特性值(构件理论厚度或体积与表面积比)(图4); 定义混凝土时间依存材料特性时注意事项: 1)、定义时间依存特性函数时,混凝土的强度要输入混凝土的标号强度; 2)、在定义收缩徐变函数时构 件 图1收缩徐变函数 图2强度发展函数 图3时间依存材料特性图4 时间依存

理论厚度可以仅输入一个非负数,在建立模型后通过程序自动计算来计算构件的真实理论厚度; 3)、混凝土开始收缩时的材龄在收缩徐变函数定义中指定,加载时的混凝土材龄在施工阶段定义中指定(等于单元激活时材龄+荷载施加时间); 4)、修改单元时间依存材料特性值时要对所有考虑收缩徐变特性的混凝土构件修改其构件理论厚度计算值。计算公式中的a 代表在空心截面在构件理论厚度计算时,空心部分截面周长对构件与大气接触的周边长度计算的影响系数; 5)、当收缩徐变系数不按规范计算取值时,可以通过自定义收缩徐变函数来定义混凝土的收缩徐变特性; 6)、如果在施工阶段荷载中定义了施工阶段徐变系数,那么在施工阶段分析中将按施工阶段荷载中定义的徐变系数来计算。 03-截面定义 截面定义有多种方法,可以采用调用数据库中截面(标准型钢)、用户定义、采用直接输入截面特性值的数值形式、导入其他模型中已有截面(图1~图3)。 在这个例题中分别采用这四种方式定义了几个截面,采用调用数据库中标准截面定义角钢截面;采用用户输入截 面形状参数定义箱形截面;用户输入截面特性值定义矩形截面;通过导入其他模型中的PSC 截面来形 成当前模型中的两个新的截面。 对于在截面数据库中没有的截面类型,还可以通过程序提供的截面特性计算器来生成截 面数据,截面特性计算器的使用方法有相关文件说明,这里就不赘述。 04-建立节点 节点是有限元模型最基本的单位,节点的建立可以采用捕捉栅格网、输入 调用数据库中标准截面 输入截 面控制 参数定义截面 图2数值型截面定义对话框 图2数值型截面定义对话框

桥墩系梁对抗震计算结果影响

桥墩系梁对抗震计算结果影响探讨[摘要]本文以高速公路桥梁中常见的30m跨径圆柱式简支梁桥为例,通过空间有限元仿真分析,探讨系梁的不同处理方式对抗震计算结果的影响,对完善桥梁抗震计算方法有参考意义。 [关键词]简支梁桥;系梁;抗震计算;有限元; abstract : this paper takes simply supported girder bridge of 30m-span, cylindrical pier as example, which is common in highway design, to investigate theinfluences on earthquake-resistant calculation by different processing mode of surport beamthrough the analyse offea,to perfect the way of calculating earthquake-resistant ability. key words : surport beam, earthquake-resistant calculation, fea 中图分类号:u448.21+8 文献标识码:a 文章编号: 桥梁工程为生命线工程之一,生命线工程的破坏会造成震后救灾工作的巨大困难[1]。这使得桥梁工程的防灾减灾研究不容忽视。汶川地震的警示也对现今桥梁工程设计里的抗震设计范畴提出了 更高的要求——要能够更准确更真实地反映出地震响应情况。 本文以30m跨径圆柱式简支梁桥为研究对象,结合土木工程专用有限元分析软件midas civil 2010[2],通过比较桥墩系梁在有限元仿真分析中,采用不同处理方式时所得到的结果,从而为完善桥梁抗震计算方法提供参考。

迈达斯建模

北京迈达斯技术有限公司

目录 建立模型○1 设定操作环境 (2) 定义材料 (4) 输入节点和单元 (5) 输入边界条件 (8) 输入荷载 (9) 运行结构分析 (10) 查看反力 (11) 查看变形和位移 (11) 查看内力 (12) 查看应力 (14) 梁单元细部分析(Beam Detail Analysis) (15) 表格查看结果 (16) 建立模型○2 设定操作环境 (19) 建立悬臂梁 (20) 输入边界条件 (21) 输入荷载 (21) 建立模型○3 建模 (23) 输入边界条件 (24) 输入荷载 (24) 建立模型○4 建立两端固定梁 (26) 输入边界条件 (27) 输入荷载 (28) 建立模型○5○6○7○8

摘要 本课程针对初次使用MIDAS/Civil 的技术人员,通过悬臂梁、简支梁等简单的例题,介绍了MIDAS/Civil 的基本使用方法和功能。包含的主要内容如下。 1. MIDAS/Civil 的构成及运行模式 2. 视图(View Point)和选择(Select)功能 3. 关于进行结构分析和查看结果的一些基本知识(GCS, UCS, ECS 等) 4. 建模和分析步骤(输入材料和截面特性、建模、输入边界条件、输入荷载、结构分析、查看结果) 使用的模型如图1所示包含8种类型,为了了解各种功能分别使用不同的方法输入。 图1. 分析模型 悬臂梁、两端固定梁 简支梁 ○ 1 ○ 2 ○ 3 ○ 4 ○ 5 ○ 6 ○ 7 ○ 8 6@2 = 12 m 截面 : HM 440×300×11/18 材料 : Grade3

坝体地震惯性力计算

坝体地震惯性力计算 采用拟静力法计算,由《水工建筑物抗震设计规范》知,一般情况下,水工建筑物可只考虑水平向地震作用。沿水平面的地震惯性力代表值: g a G a F i Ei h i ξ= (1) 式中:i F ——作用在质点i 的水平向地震惯性力代表值,KN ; h a ——水平向设计地震加速度代表值,m/s 2; ξ——地震作用的效应折减系数; Ei G ——集中在质点i 的重力作用标准值,KN ; i a ——质点i 的动态分布系数,由下式计算: ∑=++=n j j E Ej i i H h G G H h a 14 4 )/(41)/(414.1 (2) 式中:n ——坝体计算质点总数; H ——坝高,m ; i h 、j h ——分别为质点i 、j 相对坝基面的高度,m ; E G ——产生地震惯性力的建筑物总重力作用标准值,KN 由《水工建筑物抗震设计规范,DL5073-2000》知,一般情况下,水工建筑物可只考虑水平向地震作用。根据设计资料,本设计可取设计烈度等于基本烈度,即为7度,由《水工建筑物抗震设计规范,DL5073-2000》表4.3.1查得:水平向设计地震加速度代表值h a =0.1g ,地震作用的效应折减系数ξ=0.25,则i Ei i a G F 025.0= 关于分块,可以参照下图分成3块,n=3,H=坝高, 第一块:坝顶至1-1剖面为矩形;GE1,h1为第一块矩形形心至坝基面(3-3)的高度。 第二块:1-1剖面至2-2剖面为梯形;GE2, h2为第二块梯形形心至坝基面(3-3)的高度。 第三块:2-2剖面至3-3剖面为梯形;GE3, h3为第三块梯形形心至坝基面(3-3)的高度。 i a ——质点i 的动态分布系数,由下式计算: 43134 114(/)1.414(/)Ej j j E h H a G h H G =+=+∑

Midas零基础教程

Midas零基础教程

目录 建立模型○1 设定操作环境 (4) 定义材料 (7) 输入节点和单元 (8) 输入边界条件 (11) 输入荷载 (12) 运行结构分析 (13) 查看反力 (14) 查看变形和位移 (14) 查看内力 (15) 查看应力 (18) 梁单元细部分析(Beam Detail Analysis) (19) 表格查看结果 (20) 建立模型○2 设定操作环境 (23) 建立悬臂梁 (24) 输入边界条件 (25) 输入荷载 (25) 建立模型○3 建模 (27) 输入边界条件 (28) 输入荷载 (28) 建立模型○4 建立两端固定梁 (30) 输入边界条件 (31) 输入荷载 (32) 建立模型○5○6○7○8

简要 本课程针对初次使用MIDAS/Civil 的技术人员,通过悬臂梁、简支梁等简单的例题,介绍了MIDAS/Civil 的基本使用方法和一些基本功能。包含的主要内容如下。 1. MIDAS/Civil 的构成及运行模式 2. 视图(View Point)和选择(Select)功能 3. 关于进行结构分析和查看结果的一些基本知识(GCS, UCS, ECS 等) 4. 建模和分析步骤(输入材料和截面特性、建模、输入边界条件、输入荷载、结构分析、查看结果) 使用的模型如图1所示包含8种类型,为了了解各种功能分别使用不同的方法输入。 图1. 分析模型 ○1 ○2 ○3 ○4 ○5 ○6 ○7 ○8 6@2 = 12 m 截面 : HM 440×300×11/18 材料 : Grade3 悬臂梁、两端固定梁 简支梁

2.7水平地震作用内力计算

2.7 水平地震作用内力计算 设计资料: 根据《建筑抗震设计规范》(GB50011—2001)第5.1.3条: 屋面重力荷载代表值Gi =屋面恒载+屋面活荷载+纵横梁自重+楼面下半层的柱及纵横墙 自重; 各楼层重力荷载代表值G i =楼面恒荷载+50%楼面活荷载+纵横梁自重+楼面上下各半层的 柱及纵横墙自重; 总重力荷载代表值∑== n i i G G 1 。 主梁与次梁截面尺寸估算: 主梁截面尺寸的确定:当跨度取8000L mm =,主梁高度应满足: 1111 (~)(~)8000667~1000812812 h L mm mm ==?=,考虑到跨度较大,取700h mm =, 则:1111 (~)(~)700233~3502323 b h mm mm ==?=,取350b mm =。 当跨度取6000L mm =,主梁高度应满足: 1111 (~)(~)6000500~750812812 h L mm mm ==?=,考虑到跨度较大,取500h mm =, 则:1111 (~)(~)500167~2502323 b h mm mm ==?=,取250b mm =。 一级次梁截面尺寸的确定:跨度取4800L mm =,次梁高度应满足: 1111 (~)(~)4800320~40012181218h L mm mm ==?=,考虑到跨度较大,取350h mm =,则: 1111 (~)(~)350117~1752323 b h mm mm ==?=,取200b mm =。 二级次梁截面尺寸的确定:跨度取3000L mm =,次梁高度应满足: 1111 (~)(~)3000167~25012181218h L mm mm ==?=,考虑到跨度较大,取300h mm =,则: 1111 (~)(~)300100~1502323 b h mm mm ==?=,取200b mm =。

MIDASGen入门教程

例题钢筋混凝土静力弹塑性推覆分析 本文来自:中国范文网【https://www.360docs.net/doc/d51652977.html,/】详细出处参考:https://www.360docs.net/doc/d51652977.html,/post/216.html相关文章在网站其他栏目里面。 2

例题钢筋混凝土静力弹塑性推覆分析M I D A S/G e n 例题5. 钢筋混凝土静力弹塑性推覆分析概要 此例题介绍使用MIDAS/Gen 的反应谱分析功能来进行组合结构分析的方法。 此例题的步骤如下: 1.简要 2.设定操作环境及设定材料截面 3.用建模助手建立模型 4.建立框架柱及剪力墙 5.楼层复制及生成层数据文件定义组阻尼比 6.定义边界条件 7.输入楼面及梁单元荷载 8.输入风荷载 9.定义质量 2

例题钢筋混凝土静力弹塑性推覆分析 10.运行分析 11.荷载组合 12.一般设计参数 13.钢筋混凝土构件设计参数 14.钢筋混凝土构件设计 15.静力弹塑性分析 1.简要 本例题介绍使用Midas/Gen 的静力弹塑性分析功能来进行抗震设计的方法。例题模型为六层钢筋混凝土框-剪结构。(该例题数据仅供参考) 基本数据如下: 轴网尺寸:见平面图 柱: 500x500 主梁:250x600 混凝土:C30 剪力墙:250 3

例题钢筋混凝土静力弹塑性推覆分析 图2. 分析模型 4

例题 钢筋混凝土静力弹塑性推覆分析 5 2.设定操作环境及定义材料和截面 1 主菜单选择 文件>新项目 文件>保存: 输入文件名并保存 2 主菜单选择 工具>单位体系: 长度 m, 力 kN 图3. 定义单位体系 3 主菜单选择 模型>材料和截面特性>材料: 添加:定义C30混凝土 材料号:1 名称:C30 规范:GB(RC) 混凝土:C30 材料类型:各向同性 注:也可以通 过程序右下角 随时更改单位。

地震荷载计算

地震荷载计算

4.6.1荷载的确定 a 恒载 屋面板重力值: 3.6 6.0710.8118.012 G kN =?? =屋面 楼 面板重力值:3.6 3.64.58.7 6.66 2.195.6522 G kN =?? +??=楼面 梁 重 力值 : 3.6 3.6 4.0210.8 4.023 2.204129.5422 G kN =?+? ?+?=梁 每层柱重力值: 5.3693348.32G kN =??=柱1 墙重力值: 3.6 3.6910.8+3.69253.142 G kN =?? ?=女儿墙 3.6 3.610.3510.8210.282186.0522G kN ? ?=?+?+??= ??? 标墙 b 活载 3.6 0.510.89.722Q kN =??=屋面 3.6210.838.892 Q kN =??=楼面 重力荷载代表值:6 G G G G G =+++屋面板 梁 柱 女儿墙 118.01129.5448.3253.14349kN =+++= 5 G G G G G =+++梁 柱 楼面板 标墙 95.65129.5448.32186.05459.56kN =+++= 125 459.56G G G G G kN =====34

1 各层水平地震作用力的确定 根据设计资料,设防烈度为7度,h<30m ,建筑场地类别为Ⅱ类,故地震特征周期0.4 g T =,框架结 构基本自振周期1 T 按下公式计算: 1(0.08~0.1)T N = 自振周期:1 0.10.160.6T N ==?=s 1 1.4 1.40.40.56g T T s >=?= 则有顶部附加地震作用 则水平地震影响系数最大值 max 0.08 α= 水平地震影响系数 2max 1 ( )g T T γαηα= 建筑结构的阻尼比取值 0.05 ξ= 则有0.9γ= 2 1.0 η = 0.9 2max 1 0.4( )( ) 1.00.080.0560.6 g T T γαηα==??= 各层水平地震作用力的确定 1 0.850.85(459.565349)2249.78eq i G G KN ==??+=∑ 0.0562249.78126.0EK eq F G KN α==?= 因为1 1.4g T T >所以顶部附加地震作用系数 n 1=0.08T +0.01=0.058? 6 1 459.563+6+9+12+15+3491826962i i G H kN =??=∑()

迈达斯civil使用手册.

Civil 使用手册 01-材料的定义 通过演示介绍在程序中材料定义的三种方法。 1、通过调用数据库中已有材料数据定义——示范预应力钢筋材料定义。 2、通过自定义方式来定义——示范混凝土材料定义。 3、通过导入其他模型已经定义好的材料——示范钢材定义。 无论采用何种方式来定义材料,操作顺序都可以按下列步骤来执行:选择设计材料类型(钢材、混凝土、组合材料、自定义→选择的规范→选择相应规范数据库中材料。对于自定义材料,需要输入各种控制参数的数据,包括弹性模量、泊松比、线膨胀系数、容重等。 混

凝土规范 图 1 材料定义对话 框 02-时间依存材料特性定义 我们通常所说的混凝土的收缩徐变特性、混凝土强度随时间变化特性在程序里统称为时间依存材料特性。 定义混凝土时间依存材料特性分三步骤操作: 1、定义时间依存特性函数(包括收缩徐变函数,强度发展函数 (图 1,图 2 ; 2、将定义的时间依存特性函数与相应的材料连接(图 3 ; 3、修改时间依存材料特性值(构件理论厚度或体积与表面积比 (图 4 ;

图 1 收缩徐变函数图 2 强度发展函数

定义混凝土时间依存材料特性时注意事项: 1 、定义时间依存特性函数时,混凝土的强度要输入混凝土的标号强度; 2 、在定义收缩徐变函数时构件理论厚度可以仅输入一个非负数,在建立模型后通过程序自动计算来计算构件的真实理论厚度; 3 、混凝土开始收缩时的材龄在收缩徐变函数定义中指定,加载时的混凝土材龄在施工阶段定义中指定(等于单元激活时材龄 +荷载施加时间 ; 4 、修改单元时间依存材料特性值时要对所有考虑收缩徐变特性的混凝土构件修改其构件理论厚度计算值。计算公式中的 a 代表在空心截面在构件理论厚度计算时,空心部分截面周长对构件与大气接触的周边长度计算的影响系数; 5 、当收缩徐变系数不按规范计算取值时,可以通过自定义收缩徐变函数来定义混凝土的收缩徐变特性; 6 、如果在施工阶段荷载中定义了施工阶段徐变系数,那么在施工阶段分析中将按施工阶段荷载中定义的徐变系数来计算。

波浪力对深水桥墩结构在地震和冰荷载作用下的响应影响分析

波浪力对深水桥墩结构在地震和冰荷载作用 下的响应影响分析 1 贾玲玲 (河南工业大学土木建筑学院,郑州 450052) 摘要 考虑到波浪力对深水桥墩地震响应和冰振响应的影响,本文基于非线性Morision 方程,同 时考虑附加质量效应和流固耦合效应,通过建立深水桥墩结构有限元分析模型及动力平衡方程, 对深水桥墩结构进行了波浪、冰荷载、地震3种环境激励荷载单独作用下,以及不同组合形式共 同作用下的数值分析;进而对计算结果进行了比较,探讨了动水压力对深水桥墩结构响应的影响 程度,可为今后深水桥墩抗震以及抗冰设计提供一定的借鉴和参考。 关键词:波浪力 地震作用 冰荷载 深水桥墩 结构响应 引言 考虑到一些寒冷区域常年处于结冰期,对于位于这些高寒地区的深水桥墩进行结构设计时,需要考虑冰荷载的影响;同时,考虑到近几年来频繁发生的地震荷载作用,对于深水桥墩,在二者的共同作用下,水体会产生一定的波动,这种波动不仅会改变桥墩的动力特性,还将会直接形成墩柱的附加荷载,进一步对这类桥梁结构的动力响应产生一定的影响,这种影响便被称为动水压力效应。因此,在对这类寒冷区域的深水桥墩结构进行地震和冰振作用下的响应特性分析时,需要考虑动水压力效应,也即是波浪力的影响。 目前,国内外一些学者针对动水压力对深水桥墩结构地震反应影响的研究已取得了一定的成果(高学奎等,2006a ;李玉成等,2002;Anthony ,1986),其中,基于Morision 方程的附加水质量分析方法已经得到了较为广泛的应用(Sundar 等,1998;Suchithra 等,1995;郑海荣,1992),其主要研究方向集中于地震作用下Morision 方程在深水桥墩结构动力反应分析上的应用。但是,在对以上问题进行数值分析研究时,采用的是在一定程度上经过简化处理的Morision 方程,大都没有考虑到流固耦合效应的影响;此外,当应用流体理论求解时,建立的运动方程解析式比较复杂,不便于实际工程应用。 考虑到上述因素,同时考虑到在地震以及冰荷载等环境外荷载激励下,影响深水桥墩振动响应的因素较多,桥墩与流体之间的动力相互作用是一个很复杂的问题;即使是进行室内 1 基金项目 国家自然科学基金(50678033) [收稿日期] 2010-03-09 [作者简介] 贾玲玲,女,生于1981年。博士。主要研究方向:结构损伤、桥梁结构抗震、抗冰分析。E-mail: jll8123@https://www.360docs.net/doc/d51652977.html, 第5卷 第2期 2010年6月 震灾防御技术 Technology for Earthquake Disaster Prevention V ol. 5, No. 2Jun., 2010贾玲玲,2010. 波浪力对深水桥墩结构在地震和冰荷载作用下的响应影响分析. 震灾防御技术,5(2):263—269.

毕业设计桥墩抗震设计参考

第7章 桥梁抗震设计示例 目前,桥梁工程的抗震设计一般有两种思路:一是采用“抗震”对策进行设计,致力于为结构提供较强的抵抗地震作用的能力;二是采用减隔震的概念进行设计,致力于减小结构的地震反应,以保证结构的安全。 本章将采用上述两种对策对一座四跨连续梁桥进行纵桥向的抗震设计,着重介绍计算设计部分。其中,“抗震”设计部分采用两种方法进行,即根据现行《公路工程抗震设计规范》(以下称“规范”)进行设计,和采用能力设计方法进行延性设计。最后,对采用两种对策的抗震设计进行比较分析。 7.1 桥梁结构简介 某一四跨连续梁桥,跨径组合为m 254?(见图7.1)。上部结构为预应力混凝土连续箱梁,宽12m ,高1.25m 。箱梁的混凝土用量为0.6m 3/(m 2桥面),桥面铺装厚13cm ,三道防撞栏杆质量共2.6t/m 。采用双柱式桥墩,墩柱采用1.2?1.05m 的实心钢筋混凝土截面,横向间距 桥梁上部结构的质量为: t m s 14601006.14100)6.25.21208.05.21227.0(=?=?+??+??= 根据“规范”,所有墩柱质量可换算为墩顶的集中质量,为: t m p 6.82680625.524.0)]5.6476(5.235.15.1[24.0=??=?+?????=η 可见,p m η仅为s m 的2.1%,所以在地震反应分析中,墩身惯性力可以忽略不计。

7.2 地震动输入 本桥可采用反应谱法进行地震反应分析,因此采用地震加速度反应谱作为地震动输入。 根据《中国地震动参数区划图》的规定,该桥址场地的地震加速度峰值为0.2g ,即水平地震系数为0.2。 本连续梁桥为城市高架桥中的一联,结构重要性系数取1.3。 桥址场地属于“规范”II 类场地,反应谱曲线见图3.8,特征周期为0.3s ,下降段的反应谱值为: 98 .03.025.2? ? ? ???=T β 7.3 “抗震”设计 在静力设计中,多跨连续梁桥常采用的梁墩连接方式为:仅在中墩设固定支座,其余墩上均设滑动支座。但是,在地震力作用下,这种连接方式一般会导致固定墩承担绝大部分的上部结构惯性力,而其它墩分担得很少(仅为滑动摩擦力)。因此,对这种桥梁进行“抗震”设计,主要任务就是设法提高固定墩的抗震能力。 根据 “规范”进行抗震设计,和采用能力设计方法进行延性设计,在墩柱(延性构件)的设计地震力计算以及墩柱的抗弯强度验算方面,是相同的。最大的区别在于对墩柱剪切强度的需求,以及支座、基础等能力保护构件的强度需求。此外,“规范”没有要求对墩柱的延性能力进行检算。 7.3.1 设计地震力计算 对于只有一个固定墩的连续梁桥,当跨数不多、而且桥墩的地震惯性力可以忽略时,固定墩的设计地震力可以采用单自由度的计算简图(图7.4),根据下式进行近似计算: )(∑-=i id s h z i R G K C C P μβ 上式忽略了滑动支座的摩擦阻尼影响,但考虑了各滑动支座的摩阻力。式中,id μ,i R 分别为第i 号滑动支座 的动摩阻系数和恒载反力。 图7.3中,K 为固定墩的抗推刚度,m s 为桥梁上部结构的质量。 m kN l EI K /1035.138 125.135.10.33232433 3?=?? ??== (I 偏安全考虑,不折减) 体系的自振周期为: s K m T s 657.010 35.131460 224=??=? =ππ 反应谱值: 91.0)657 .03.0( 25.298 .0=?=β m s 图7.4 自振特性计算简图

迈达斯教程及使用手册

01-材料的定义 通过演示介绍在程序中材料定义的三种方法。 1、通过调用数据库中已有材料数据定义——示范预应力钢筋材料定义。 2、通过自定义方式来定义——示范混凝土材料定义。 3、通过导入其他模型已经定义好的材料——示范钢材定义。 无论采用何种方式来定义材料,操作顺序都可以按下列步骤来执行:选择设计材料类型(钢材、混凝土、组合材料、自定义)→选择的规范→选择相应规范数据库中材料。 对于自定义材料,需要输入各种控制参数的数据,包括弹性模量、泊松比、线膨胀系数、容重等。 钢 材 规 范 混 凝 土 规 范 图1 材料定义对话 框

02-时间依存材料特性定义 我们通常所说的混凝土的收缩徐变特性、混凝土强度随时间变化特性在程序里统称为时间依存材料特性。 定义混凝土时间依存材料特性分三步骤操作: 1、定义时间依存特性函数(包括收缩徐变函数,强度发展函数)(图1,图2); 2、将定义的时间依存特性函数与相应的材料连接(图3); 3、修改时间依存材料特性值(构件理论厚度或体积与表面积比)(图4);

图1 收缩徐变函数 图2 强度发展函数

定义混凝土时间依存材料特性时注意事项: 1)、定义时间依存特性函数时,混凝土的强度要输入混凝土的标号强度; 2)、在定义收缩徐变函数时构件理论厚度可以仅输入一个非负数,在建立模型后通过程序自动计算来计算构件的真实理论厚度; 3)、混凝土开始收缩时的材龄在收缩徐变函数定义中指定,加载时的混凝土材龄在施工阶段定义中指定(等于单元激活时材龄+荷载施加时间); 4)、修改单元时间依存材料特性值时要对所有考虑收缩徐变特性的混凝土构件修改其构件理论厚度计算值。计算公式中的a 代表在空心截面在构件理论厚度计算时,空心部分截面周长对构件与大气接触的周边长度计算的影响系数; 5)、当收缩徐变系数不按规范计算取值时,可以通过自定义收缩徐变函数来定义混凝土的收缩徐变特性; 6)、如果在施工阶段荷载中定义了施工阶段徐变系数,那么在施工阶段分析中将按施工阶段荷载中定义的徐变系数来计算。 图3 时间依存材料特性连接 图4 时间依存材料特性值修改

相关文档
最新文档