砾岩油藏平均地层压力计算方法研究

砾岩油藏平均地层压力计算方法研究
砾岩油藏平均地层压力计算方法研究

地层压力预测方法(DOC)

地震地层压力预测 摘要 目前,地震地层压力预测方法归纳起来可以分为图解法和公式计算法两大类10余种。本文对各种地震地层压力预测方法进行了系统地归纳和总结,并对各种方法的特点、适用性以及存在的问题进行分析和讨论.在此基础上,就如何提高压力预测的精度,提出了一种简单适用的改进措施,经J1.K地区的实测资料的验证,效果良好。 主题词地层压力地震预测正常压实异常压实 引言 众所周知,油气层的压力是油气层能量的反映,是推动油气在油层中流动的动力,是油气层的“灵魂”。因此,在石油和天然气的勘探开发中,研究油气层的压力具有十分重要的意义。 首先,在油气田勘探中,研究油气层压力特别是油气层异常压力的分布,以及预测和控制油气层压力的方法,不仅可以保证安全快速地钻进,而且可以正确地设计泥浆比重和工程套管程序;同时也可以帮助选择钻井设备类型和有效安全正确的完井方法等。这些都直接关系到钻井的成功率以及油气田的勘探速度等问题。其次,在油气田开发过程中,准确的压力预测以及认真而系统的油气层压力分布规律的研究,不仅可以帮助我们认识和发现新的油气层,而且对于了解地下油气层能量、控制油气层压力的变化,并合理地利用油气层能量最大限度地采出地下油气均具有十分重要的意义。 多少年来,人们在异常地层压力(这里主要指异常高压或超压)预测方面进行了种种尝试,然而直到本世纪70年代以来,随着岩石物理研究的不断深人以及地震技术的不断提高,才真正使得地层压力的地震预测成为现实。 对于异常高压地层,一般表现为高孔隙率、低密度、低速度、低电阻率等特点,因此,凡是可以反映这些特点的各种地球物理方法均可用于检测地层压力。但是,由于各种测井方法均为“事后”技术,这就使得在初探区内利用地震方法进行钻前预测显得尤为重要。与此同时,地震地层压力预测还可以提供较测井方法更为丰富的空间压力分布信息。 利用地震资料进行地层压力预测,主要是利用了超压层的低速特点,因为在正常情况下,速度随深度的增加而增加,当出现超压带时,将伴随出现层速度的降低。可见,取准层速度资料是预测地层压力的关键之一,而选择合适的地层压力预测方法同样是一个十分重要的环节。 到目前为止,地震地层压力预测的方法名目繁多,但就总体而言,大致可分为图解法和公式计算法两大类。本文将对各种地震地层压力预测方法的内容、特点、应用效果以及存在的问题等作一系统全面的叙述。在前人研究工作的基础上,就如何提高地震地层压力预测的精度,本文提出一种简单而实用的改进措施,经JLK(吉拉克)地区实际资料的计算,效果良好。 地震地层压力预测方法综述 图解法 在所有地震地层压力预测方法中,最为直观简便的方法莫过于图解法了。按照判定超压层方式的不同,又可细分为等效深度图解法、比值法和量板法三种。 等效深度图解法 等效深度图解法(或可形象地称之为直接趋势线判别法)是以页岩压实概念为基础

盾构土压力计算

城市地铁盾构施工土压力选择 随着北京2008年申奥成功,我国的城市地铁施工必将走向了一个崭新的一页。城市地铁盾构施工具有快速、安全、对地面建筑物影响小等诸多优点,已经被越来越多的人们所认可。在城市地铁盾构施工中,如何设置合理的土压,对于控制地表沉降有着至关重要的意义。 一、土压平衡复合式盾构机三种工况的简要介绍土压平衡复合式盾构有三种工况,即敞开式、半敞开式、土压平衡三种掘进模式。地层围岩条件较好时,螺旋输送机伸入土仓,螺旋输送机的卸料口完全打开,土仓内不保持土压,维持刀盘、土仓、螺旋输送机之间的完全敞开,实现敞开式模式掘进。当围岩稳定性变坏,工作面有坍塌时或有坍塌的可能,或地下涌水不能得到有效控制时,缩回螺旋输送机,关闭螺旋输送机的卸料口,压入压缩空气,土仓会被压力封闭,控制地下水的涌出,防止坍塌的进一步发生,即可实现半敞开式掘进模式;若水压力大或工作面不能达到稳定状态,则先停止螺旋输送机的出碴,切削下来的碴土充满土仓。与此同时,用螺旋输送机排土机构,进行与盾构推进量相应的排土作业,掘进过程中,始终维持开挖土量与排土量的平衡来维持仓内碴土的土压力。以土仓内的碴土压力抗衡工作面的土体压力和水压力,以保持工作面的土体的稳定,防止工作面的坍塌和地下水的涌出,从而使盾构机在不松动的围岩中掘进,确保不产生地层损失,实现土压平衡掘进模式。 二、掘进土压力的设定 在选择掘进土压力时主要考虑地层土压,地下水压(孔隙水压),预先考虑的预备压力地层施工土压 在我国铁路隧道设计规范中,根据大量的施工经验,在太沙基土压力理论的基础上,提出以岩体综合物性指标为基础的岩体综合分类法,根据隧道的埋资深度不同,将隧道分为深埋隧

地层压力公式

地层压力公式 1.静液压力Pm (1)静液压力是由静止液柱的重量产生的压力,其大小只取决于液体密度和液柱垂直高度。在钻井中钻井液环空上返速度较低,动压力可忽略不计,而按静液压力计算钻井液环空液柱压力。 (2)静液压力Pm计算公式: Pm=0.0098ρmHm (2—1) 式中 Pm——静液压力,MPa; ρm——钻井液密度,g/cm3; Hm——液柱垂直高度,m。 (3)静液压力梯度Gm计算公式: Gm=Pm/Hm=0.0098ρm(2—2) 式中 Gm——静液压力梯度,MPa/m。 2.地层压力Pp (1)地层压力是指地层孔隙中流体具有的压力,也称地层孔隙压力。 (2)地层压力Pp计算公式: Pp=0.0098ρpHp(2—3) 式中 Pp——地层压力,MPa; ρp——地层压力当量密度,g/cm3; Hm——地层垂直高度,m。 (3)地层压力梯度Gp计算公式: Gp=Pp/Hp=0.0098ρp(2—4) 式中 Gp——静液压力梯度,MPa/m。 (4)地层压力当量密度ρp计算公式: ρp=Pp/0.0098Hm=102Gp(2-5) 在钻井过程中遇到的地层压力可分为三类: a.正常地层压力:ρp=1.0~1.07g/cm3; b.异常高压:ρp>1.07g/cm3; c.异常低压:ρp<1.0g/cm3。 3.地层破裂压力Pf 地层破裂压力是指某一深度处地层抵抗水力压裂的能力。当达到地层破裂压力时,使地层原有的裂缝扩大延伸或使无裂缝的地层产生裂缝。从钻井安全方面讲,地层破裂压力越大越好,地层抗破裂强度就越大,越不容易被压漏,钻井越安全。一般情况下,地层破裂压力随着井深的增加而增加。所以,上部地层(套管鞋处)的强度最低,易于压漏,最不安全。 (1)地层破裂压力Pf计算公式:

现场地层压力计算

六、地层压力计算 1、地层孔隙压力与压力梯度 (1)地层孔隙压力 式中,P p—-地层孔隙压力(在正常压实状态下,地层孔隙压力等于静液柱压力),MPa; ρf-—地层流体密度,g/cm3; g—-重力加速度,9、81m/s2; H—-该点到水平面得重直高度(或等于静液柱高度),m、 在陆上井中,H为目得层深度,起始点自转盘方钻杆补心算起,液体密度为钻井液密度ρm,则, 式中,p h——静液柱压力,MPa; ρm—-钻井液密度,g/cm3; H-—目得层深度,m; g——重力加速度,9.81m/s2。 在海上钻井中,液柱高度起始点自钻井液液面(出口管)高度算起,它与方补心高差约为0、6~3、3m,此高差在浅层地层孔隙压力计算中要引起重视,在深层可忽略不计。 (2)地层孔隙压力梯度 式中Gp—-地层孔隙压力梯度,MPa/m、 其它单位同上式。 2、上覆岩层压力及上覆岩层压力梯度 (1)上覆岩层压力 式中 P o-—上覆岩层压力,MPa; H-—目得层深度,m; Φ——岩石孔隙度,%; ρ——岩层孔隙流体密度,g/cm3; ρm—-岩石骨架密度,g/cm3。 (2)上覆岩层压力梯度 式中,G o--上覆岩层压力梯度,MPa/m; P o——上覆岩层压力,MPa; H——深度(高度),m。 (3)压力间关系 式中,Po-—上覆岩层压力,MPa; P p—-地层孔隙压力,MPa; σz--有效上覆岩层压力(骨架颗粒间压力或垂直得骨架应力),MPa。 3、地层破裂压力与压力梯度 (1)地层破裂压力(伊顿法) 式中, Pf-—地层破裂压力(为岩石裂缝开裂时得井内流体压力),MPa; μ——地层得泊松比;

土压力计算方法.

第五章土压力计算 本章主要介绍土压力的形成过程,土压力的影响因素;朗肯土压力理论、库仑土压力理论、土压力计算的规范方法及常见情况的土压力计算;简要介绍重力式挡土墙的设计计算方法。 学习本章的目的:能根据实际工程中支挡结构的形式,土层分布特点,土层上的荷载分布情况,地下水情况等计算出作用在支挡结构上的土压力、水压力及总压力。 第一节土压力的类型 土体作用在挡土墙上的压力称为土压力。 一、土压力的分类 作用在挡土结构上的土压力,按挡土结构的位移方向、大小及土体所处的三种平衡状态,可分为静止土压力E o,主动土压力E a和被动土压力E p三种。 1.静止土压力 挡土墙静止不动时,土体由于墙的侧限作用而处于弹性平衡状态,此时墙后土体作用在墙背上的土压力称为静止土压力。 2.主动土压力 挡土墙在墙后土体的推力作用下,向前移动,墙后土体随之向前移动。土体内阻止移动的强度发挥作用,使作用在墙背上的土压力减小。当墙向前位移达主动极限平衡状态时,墙背上作用的土压力减至最小。此时作用在墙背上的最小土压力称为主动土压力。 3.被动土压力 挡土墙在较大的外力作用下,向后移动推向填土,则填土受墙的挤压,使作用在墙背上的土压力增大,当墙向后移动达到被动极限平衡状态时,墙背上作用的土压力增至最大。此时作用在墙背上的最大土压力称为被动土压力。 大部分情况下作用在挡土墙上的土压力值均介于上述三种状态下的土压力值之间。 二、影响土压力的因素 1.挡土墙的位移 挡土墙的位移(或转动)方向和位移 量的大小,是影响土压力大小的最主要的因 素,产生被动土压力的位移量大于产生主动 土压力的位移量。 2.挡土墙的形状 挡土墙剖面形状,包括墙背为竖直或是 倾斜,墙背为光滑或粗糙,不同的情况,土压力的计算公式不同,计算结果也不一样。 3.填土的性质 挡土墙后填土的性质,包括填土的松密程度,即重度、干湿程度等;土的强度指标内摩擦角和粘聚力的大小;以及填土的形状(水平、上斜或下斜)等,都

(整理)土主动、被动土压力概念及计算公式

主动土压力 挡土墙向前移离填土,随着墙的位移量的逐渐增大,土体作用于墙上的土压力逐渐减小,当墙后土体达到主动极限平衡状态并出现滑动面时,这时作用于墙上的土压力减至最小,称为主动土压力P a 。 被动土压力 挡土墙在外力作用下移向填土,随着墙位移量的逐渐增大,土体作用于墙上的土压力逐渐增大,当墙后土体达到被动极限平衡状态并出现滑动面时,这时作用于墙上的土压力增至最大,称为被动土压力P p 。上述三种土压力的移动情况和它们在相同条件下的数值比较,可用图6-2来表示。由图可知P p >P o >P a 。 朗肯基本理论 朗肯土压力理论是英国学者朗肯(Rankin )1857年根据均质的半无限土体的应力状态和土处于极限平衡状态的应力条件提出的。在其理论推导中,首先作出以下基本假定。 (1)挡土墙是刚性的墙背垂直; (2)挡土墙的墙后填土表面水平; (3)挡土墙的墙背光滑,不考虑墙背与填土之间的摩擦力。 把土体当作半无限空间的弹性体,而墙背可假想为半无限土体内部的铅直平面,根据土体处于极限平衡状态的条件,求出挡土墙上的土压力。 如果挡土墙向填土方向移动压缩土体,σz 仍保持不变,但σx 将不断增大并超过σz 值,当土墙挤压土体使σx 增大到使土体达到被动极限平衡状态时,如图6-4的应力园O 3,σz 变为小主应力,σx 变为大主应力,即为朗肯被动土压力(p p )。土体中产生的两组破裂面与水平面的夹角为2 45?- ?。 朗肯主动土压力的计算 根据土的极限平衡条件方程式 σ1=σ3tg 2 (45°+2?)+2c ·tg(45°+2?) σ3=σ1tg 2(45°-?)-2c ·tg(45°-?)

地层平均压力影响因素及分析方法

地层平均压力影响因素及分析方法 摘要:介绍了地层压力在试井分析过程中的解释方法、分析特征及影响因素,结合实际,并讨论了对地层压力的影响程度和解决办法。 关键词:地层压力;影响因素;解释方法 地层压力是油田动态分析的参数之一,反映油藏的开采能力,在油田开发中用于描述油、水井生产状况。当油井生产处于无限大流动期时,在实际解释过程中用计算外推压力来代替地层平均压力,外推压力的确定是当油井流动进人拟稳期才存在,它是由试井分析求解的一个重要参数。所谓油藏平均压力是油藏开发过程中总体的平均压力。而试井分析的平均压力的概念是指所测试的井周围地层压力传播范围供油区宏观平均压力。在多井油藏中,通过某种方法将各单井供油区平均压力给以叠加,才能得到油藏系统的平均压力。目前,地层平均压力的分析方法主要有:霍纳分析法和MDH法。 一、分析方法 1.1霍纳分析法 霍纳法的使用条件:当生产时间不是很长的时候,测试过程中流体为径向流时,可以用下式计算平均地层压力: 式中:—地层平均压力,MPa;—外推地层压力;q—产(注)量;u—流体粘度MPa.s;B—体积系数,无因次;K—地层渗透率,h—地层厚度;—生产时间;△t —测试时间。 一般在解释过程中用半对数分析中后期段外推压力与半对数压力拟合进行比较,取得检验的平均压力值。在某厂进行的油井压力恢复试井,大多数为投产2年及以上的井,因此在某厂中,采用霍纳法来求取地层压力,所测试的井次还是比较少的。 1.2 MDH分析法 如果测试前的生产时间远大于测试时间△t,即》△t时,则:≈△t时,于是霍纳公式可近似为: 上式中呈线性关系,由式可作半对数图,由径向流段确定地层参数,压力恢

土压力计算

本工程场地平坦,经过与类似工程的比较,土体上部底面超载20kPa;假定支护墙面垂直光滑,故采用郎肯土压力理论计算,计算土压力时首先要确定土压力系数,主动土压力系数和被土压力系数的计算分式分别如下[2]:

主动土压力系数: o 2a tan (45/2)K ?=- 被动土压力系数: 2p (tan 45/2)K ?=?+ 其中: a K ——主动土压力系数; p K ——被动土压力系数; ?——土的摩擦角。

()12210111011222222 218tan 45tan 450.756 2220 20.756202015.12 2200 1.50.75620 15.1210tan 45tan 450.704 222K kPa P K c kPa P K z c kPa K P K z c ?σσγ?γ???? ?=?-=?-= ? ???? ?==-=?-?==-=+??-?=???? ?=?-=?-= ? ????? =-()()()222 3223 331332 200.70421511.09 2200 1.5 00.60.704215 11.0921.5tan 45tan 450.463 222200 1.500.60.463211 5.722kPa P K z c kPa K P K z c kPa P K z γ?γγ+?-?=-=-=+?+??-?=-???? ?=?-=?-= ? ????? =-=+?+??-?-=-4224441442223.082118.09825tan 45tan 450.406 22249.850.406227.514.796288.610.406227.50.94c kPa K P K z c kPa P K z c kPa ?γγ=-?=???? ?=?-=?-= ? ????? =-=?-?=-=-=?-?=

油藏工程基本名词解释

六、掌握常用的油藏工程基本名词解释。 1.油田勘探开发过程: (1)区域勘探(预探):在一个地区(盆地或坳陷)开展的油气勘探工作。 (2)工业勘探(详探):在区域勘探所选择的有利含油构造上进行的钻探工作。 (3)全面开采 2.油藏(Oil Reservior):指油在单一圈闭中具有同一压力系统的基本聚集。 3.油气藏分类: (1)构造油气藏:油气聚集在由于构造运动而使地层变形(褶曲)或变位(断层)所形成的圈闭中。 (2)地层油气藏:油气聚集在由于地层超覆或不整合覆盖而形成的圈闭中。 (3)岩性油气藏:油气聚集在由于沉积条件的改变导致储集层岩性发生横向变化而形成的岩性尖灭和砂岩透镜体圈闭中。 4.油田地质储量:N=100Ah?1?S wiρ0/B oi 5.气田地质储量:G=0.01Ah?S gi/B gi 6.油气储量:探明储量、控制储量、预测储量 7.油藏驱动方式(Flooding Type): (1)弹性驱动(Elastic Drive):在油藏无边水或底水,又无气顶,且原始油层压力高于饱和压力时,随着油层压力的下降,依靠油层岩石和流体的弹性膨胀能驱动的方式。 (2)溶解气驱(Solution Gas Drive):在弹性驱动阶段,当油层压力下降至低于饱和压力时,随着油层压力的进一步降低,原来处于溶解状态的气体将分离出来,气泡的膨胀能将原油驱向井底。 (3)水压驱动(Water Drive):当油藏与外部的水体相连通时,油藏开采后由于压力下降,使周围水体中的水流入油藏进行补给。 (4)气压驱动(Elastic Drive):气压驱动的油藏存在一个较大的气顶为前提,在开采过程中,从油藏中采出的油量由气顶中气体的膨胀而得到补给。 (5)重力驱动(Gravity Drive):靠原油自身的重力将原油驱向井底的驱油方式。 8.划分开发层系:把特征相近的油(气)层组合在一起,用单独的一套生产井网进行开发,并以此为基础进行生产规划,动态研究和调整。 9.注水(Water Injection):为了保持油层能量,通过注水井把水注入油层的工艺措施称为注水。 (1)早期注水:在油田投产的同时进行注水,或是在油层压力下降到饱和压力之前就及时进行注水,使油层压力始终保持在饱和压力以上,或保持在原始油层压力附近。 (2)晚期注水:油田利用天然能量开发时,在天然能量枯竭以后进行注水。

地层破裂压力

第四节地层破裂压力 一、地层破裂压力的重要性 为了合理进行井身结构设计(套管层次、下入深度)和制定钻井施工措施,除了掌握地层压力梯度剖面外,还应了解不同深度处地层的破裂压力。在钻井中,合理的钻井液密度不仅要略大于地层压力,还应小于地层破裂压力,这样才能有效地保护油气层,使高低压油气层不受钻井液损害,避免产生漏、喷、塌、卡等井下复杂情况,为全井顺利钻进创造条件,以获得高速、低成本、安全高效钻井。地层破裂压力还是确定关井极限套压的重要依据之一。 二、影响地层破裂压力的主要因素 地层的破裂压力首先取决于其自身的特性。这些特性主要包括地层中天然裂缝的发育情况,他的强度(主要是抗拉伸强度)及其弹性常数(主要是泊松比)的大小。 地层中孔隙压力的大小也对其破裂压力有很大的影响。一般来说,地层的孔隙压力越大,其破裂压力也越高。 从力学角度看来,地层的破裂是地层受力作用的结果,除了流体压力的作用外,也和地层中存在的地应力大小有很大的关系。 在地下埋藏着的岩层中,由于受其上方覆盖岩层的重力作用和构造运动的影响,作用着地应力。这种地应力在不同的地区和不同的油田构造断块里是不同的。 通常,三个主方向上的地应力是不相等(如图1-4-1)。即有: σx≠σy≠σz (4-1) 1、上覆岩层压力 表示),它是由深度H以上岩层的重力产生的。如果地层孔图中σz表示上覆岩层压力(有时也用P 隙压力是P ,则有 p (4-2) σz=σz′+P p 式中,σz′称为“有效上覆岩层压力”。它表示扣除孔隙压力的影响后,直接作用在岩层骨架颗粒上的应力。也称为骨架应力。 2、水平地应力 根据该地区有无受到构造运动的影响以及构造运动的形态,可将水平地应力分为三种情况。 (1)未受到地质构造运动扰动过的沉积较新的连续沉积盆地,属于水平均匀地应力状态。其水平地应力只来源于上覆岩层的重力作用。 设地下岩层为各向同性,均质的弹性体,则根据地层在水平方向上的应变受到约束的条件可以导出:бx′=бy′=μ*бz′/(1-μ) (4-3) 式中:бx′、бy′—水平方向的两个有效的主地应力,且有 бx′=бx-Pp (4-4) бy′=бy-Pp (4-5) 式中:бz′—有效地上覆岩层压力,MPa

破裂压力计算概述

破裂压力计算概述 1引言 1.1破裂压力概念 地层破裂压力(P B)定义为使地层产生水力裂缝或张开原有裂缝时的井底压力,要实现水力加砂压裂的前提条件是应该有足够的地面泵压使井底目的层地层开裂。实际生产中通常用破裂压力梯度G B(地层破裂压力P B与地层深度H的比值)表示破裂压力的大小,破裂压力梯度值G B一般由压裂实践统计得出。地层破裂压力与岩石弹性性质、孔隙压力、天然裂缝发育情况以及该地区的地应力等因素有关。在压裂施工中的地层破裂压力还可以这样来理解就是裂缝即将开启而未开启时的井底压力;在压裂施工作业中,如果起泵初期压力有比较明显的降落时,那么我们就可以确定出破裂压力来这一数值可用下面这一关系式来描述:地层破裂压力=裂施工作业初期的最高套管压力+层中部的液柱压力 1.2破裂压力的获取途径 水力压裂是油气井最常用的一种增产措施,而地层破裂压力是压裂设计和施工工艺的一项重要参数,确定该参数正确与否,将关系到能否保证压开地层等问题。 该参数的获取有两种途径:一是进行室内岩石力学实验或井场水力压裂施工;二是从测井资料中提取。目前,用测井资料估算砂泥岩剖面地层破裂压力的方法与技术较为成熟。由于碳酸盐岩地层原生孔隙很小,次生孔隙的发育使岩石的刚性大大减弱,并呈现出明显的非均质性与各向异性,同时不同的构造部位受构造应力作用的强度难以确定,最小水平主应力和岩体抗张强度的度量较难,造成用测井资料计算的地层破裂压力精度较低。碳酸盐岩地层破裂压力与测井响应具有密切的关系。利用能够反映碳酸盐岩地层基本特性和岩石力学性质的测井信息,预测碳酸盐岩地层的破裂压力是一种经济、简便的可靠途径。 1957年,Hubbert和Willis根据三轴压缩试验,首先提出了地层破裂压力预测模式即H-W模式。到目前为止,国内外提出了许多预测地层破裂压力的方法。比较常用的有Eaton法,Stephen法,黄荣樽法等。1997年Holbrook发表了适于预测张性盆地裂缝扩展压力的一种方法。现场应用表明,修正后的模型具有较高的精度。 以上方法需要确定地层的泊松比、地层的构造应力系数、抗拉强度、室内岩心三轴试验和现场典型的破裂压力试验。

(完整版)土力学土压力计算

第六章 挡土结构物上的土压力 第一节 概述 第五章已经讨论了土体中由于外荷引起的应力,本章将介绍土体作用在挡土结构物上的土压力,讨论土压力性质及土压力计算,包括土压力的大小、方向、分布和合力作用点,而土压力的大小及分布规律主要与土的性质及结构物位移的方向、大小等有关,亦和结构物的刚度、高度及形状等有关。 一、挡土结构类型对土压力分布的影响 定义:挡土结构是一种常见的岩土工程建筑物,它是为了防止边坡的坍塌失稳,保护边坡的稳定,人工完成的构筑物。 常用的支挡结构结构有重力式、悬臂式、扶臂式、锚杆式和加筋土式等类型。 挡土墙按其刚度和位移方式分为刚性挡土墙、柔性挡土墙和临时支撑三类。 1.刚性挡土墙 指用砖、石或混凝土所筑成的断面较大的挡土墙。 由于刚度大,墙体在侧向土压力作用下,仅能发身整体平移或转动的挠曲变形则可忽略。墙背受到的土压力呈三角形分布,最大压力强度发生在底部,类似于静水压力分布。 2.柔性挡土墙 当墙身受土压力作用时发生挠曲变形。 3.临时支撑 边施工边支撑的临时性。 二、墙体位移与土压力类型 墙体位移是影响土压力诸多因素中最主要的。墙体位移的方向和位移量决定着所产生的土压力性质和土压力大小。 1.静止土压力(0E ) 墙受侧向土压力后,墙身变形或位移很小,可认为墙不发生转动或位移,墙后土体没有破坏,处于弹性平衡状态,墙上承受土压力称为静止土压力0E 。 2.主动土压力(a E ) 挡土墙在填土压力作用下,向着背离填土方向移动或沿墙跟的转动,直至土体达到主动平衡状态,形成滑动面,此时的土压力称为主动土压力。 3.被动土压力(p E ) 挡土墙在外力作用下向着土体的方向移动或转动,土压力逐渐增大,直至土体达到被动极限平衡状态,形成滑动面。此时的土压力称为被动土压力p E 。 同样高度填土的挡土墙,作用有不同性质的土压力时,有如下的关系: p E >0E > a E 在工程中需定量地确定这些土压力值。 Terzaghi (1934)曾用砂土作为填土进行了挡土墙的模型试验,后来一些学者用不同土作为墙后填土进行了类似地实验。 实验表明:当墙体离开填土移动时,位移量很小,即发生主动土压力。该位移量对砂土

泥浆各类计算公式

※各重压力的计算 注:1MPa(兆帕)=(千克力)/厘米2 =1000Kpa(千帕) 粗略计算时可认为 Map = 1Kgf/厘米 2 = 100 Kpa 一.地层·井筒内·地层孔隙, (千克力)Kgf/厘米2 =重力加速度,×地层(井筒内) 液体密度, g/cm3×井深/m (1~2)举例:某井深2000米, 所用泥浆密度为1.20;求井底的静液 柱压力·地层 静液柱压力·井筒内静液柱压力·地层孔隙压力 解:1. 井底静液柱压力,MPa =××2000= MPa 2.地层·井筒内静液柱压力·地层孔隙压力, 千克力Kgf /厘米2 =××2000=235千克力/厘米2 二.压力梯度-地层的各种随压力地层所处的垂直深度的增加而升高,垂 直深度每增加1米(或其他长度单位)压力增加的数值称为压 力梯度;通常以千克力/厘米2·米(Kg/cm2·m)作单位; 计算: a.压力梯度, 千克力(Kgf) /厘米2·米=压力, 千克/厘米2÷深(高)度/米; b1.压力梯度, KPa/米=静液压力KPa÷液柱高度/m b2.压力梯度, KPa/米=液体密度× ※泥浆加重剂用量的计算 泥浆加重剂用量/吨={原浆体积/m3×重晶石密度× (欲加重泥浆密度-原浆密度)} ÷(加重剂密度-欲加重泥浆密度)

※混浆密度计算 混浆密度g/cm3 =(原浆密度×原浆体积m3 +混浆密度×混浆体积m3)÷(原浆体积m3+混浆体积m3) ※聚合物胶液的配制 列:欲配制水:大分子:中(小)分子:=100 m3::的聚合物胶液40m3, 大.小分子各需多少 计算: 一.大分子量=40m3×%(吨)﹦(吨) 二.小分子量﹦40 m3×%=(吨) ※压井时泥浆密度的计算: 1.地层压力,MPa=关井立管压力,MPa+(重力加速度,×泥浆密度,g/cm3×井 深,m) 2. 压井时的泥浆密度,g/cm3=(原泥浆密度+ 安全附加泥浆密 度,g/cm3 )+( 100×关井立管压力/MPa÷井深/m) 例:某井用密度的泥浆钻至1000米时发生井喷, 关井后观察, 立管压力=,P套=,若取安全附加泥浆密度=1.67 g/cm3 问:关井时应采用泥浆密度为多大合适 解:+{100×(+)}÷1000=1.56 g/cm3的泥浆密度合适

油藏工程在线考试

课程编号: 中国石油大学(北京)远程教育学院 期末考核《油藏工程》 一、简述题(每小题10分,共60分) 1.简述油田开发的程序。 1.合理的油田开发程序就是正确的处理好认识油田和开发油田的矛盾,把勘探和开发油田的工作很好的结合起来,分阶段、有步骤的开发油田。其开发程序为: (1)在以见油的构造和构造带上,根据构造形态合理布置探井,迅速控制含有面积。(2)在以控制含有面积内打一批资料井,全面了解油层的物理性质在纵向和横向的变化情 况。 (3)采用分区分层的试油试采方法,求得油层生产能力的参数。(4)在以控制含有面积内开辟生产试验区。 (5)根据岩心、测井和试油试采等进行综合的研究,做出油层分层对比图、构造图和断层 分布图,确定油层类型,然后做出油田开发设计。(6)根据最可靠最稳定的油层钻一套基础井网。 (7)在生产井和注水井投产后收集实际的产量和压力资料进行研究,修改原来的设计指标,定出具体的各开发时期的配产配注方案。 2.井网密度对开发效果的好坏起决定性的作用,对非均质油层稀井网将使储量损失增加,这可在剩余油饱和度高的部分钻加密井,改善开发效果⑤对均质油藏,井网密度的影响是不大。 (2) 布置井网时应满足的条件: ①能提供所需要的采油能力 ②提供足够的注水速度,以确保所需要的采油能力③以最小的产水量达到最大的采收率 ④设法利用油藏的非均质性的差异、地层裂缝、倾角等方面的因素⑤能适合现有的井网,打最少的新井与邻近各区的注水方案相协调。 3.解释常规试井分析方法早期、晚期资料偏离直线段的各种原因。 (1)早期段:主要反映井筒或近井地层影响 ①井筒储存效应,井筒储存流体或续流对井底压力的影响,主要是由地面开关井造成的;②表皮效应,钻井与完井过程中,由于泥浆渗入,黏土分散,泥饼及水泥的存在,以及地 层部分打开,射孔不足,孔眼堵塞等,使井筒附近地层中存在污染带,造成井筒附近地层渗透率下降,在渗流过程中存在附加的压力降。 (2)晚期段:外边界作用阶段 ①如果为无限大油藏,径向流动阶段一直延续下去。②若有封闭边界:

土体主动、主动土压力概念及计算公式

[指南]土体主动、主动土压力概念及计算公式主动土压力 挡土墙向前移离填土,随着墙的位移量的逐渐增大,土体作用于墙上的土压力逐渐减小,当墙后土体达到主动极限平衡状态并出现滑动面时,这时作用于墙上的土压力减至最小,称为主动土压力P。 a 被动土压力 挡土墙在外力作用下移向填土,随着墙位移量的逐渐增大,土体作用于墙上的土压力逐渐增大,当墙后土体达到被动极限平衡状态并出现滑动面时,这时作用于墙上的土压力增至最大,称为被动土压力P。上述三种土压力的移动情况和它们在相同条件下的数值比较,p 可用图6-2来表示。由图可知P,P,P。 poa 朗肯基本理论 朗肯土压力理论是英国学者朗肯(Rankin)1857年根据均质的半无限土体的应力状态和土处于极限平衡状态的应力条件提出的。在其理论推导中,首先作出以下基本假定。 (1)挡土墙是刚性的墙背垂直; (2)挡土墙的墙后填土表面水平; (3)挡土墙的墙背光滑,不考虑墙背与填土之间的摩擦力。 把土体当作半无限空间的弹性体,而墙背可假想为半无限土体内部的铅直平面,根据土体处于极限平衡状态的条件,求出挡土墙上的土压力。 如果挡土墙向填土方向移动压缩土体,ζ仍保持不变,但ζ将不断增大并超过ζ值,zxz当土墙挤压土体使ζ增大到使土体达到被动极限平衡状态时,如图

6-4的应力园O,ζx3z变为小主应力,ζ变为大主应力,即为朗肯被动土压力(p)。土体中产生的两组破裂面与xp

,45:,水平面的夹角为。 2 朗肯主动土压力的计算 根据土的极限平衡条件方程式 ,,2ζ=ζtg(45?+)+2c?tg(45?+) 1322 ,,2ζ=ζtg(45?-)-2c?tg(45?-) 3122 土体处于主动极限平衡状态时,ζ=ζ=γz,ζ=ζ=p,代入上式得 1z3xa 1)填土为粘性土时 填土为粘性土时的朗肯主动土压力计算公式为 ,,2,ap=γztg(45?-)-2c?tg(45?-)=γzK-2c (6-3) aa22 由公式(6-3),可知,主动土压力p沿深度Z呈直线分布,如图6-5所示。a (一)Z 0 ZH-H30 HZPa-3 H γ2cHKa?Ka 图5,5粘性土主动土压力分布图 当z=H时p=γHK-2cK aaa 在图中,压力为零的深度z,可由p=0的条件代入式(6-3)求得 0a 2cz, (6-4) 0,Ka 在z深度范围内p为负值,但土与墙之间不可能产生拉应力,说明在z深度范围内,0a0 填土对挡土墙不产生土压力。墙背所受总主动土压力为P,其值为土压力分布图中的阴影部分面积,即a 1aaa0,,,,P(HK2cK)(Hz)2 (6-5) 212c2,,,,aaHK2cHK,2

油藏重点

第一章 ★P6 油藏是指油在单一圈闭中具有同一圈闭压力系统的基本聚集。如果在一个圈闭中只聚集了石油,称为油藏。只聚集了天然气,称为气藏。 油藏由含油岩石和油藏流体两部分组成。 油水过渡带:指含油边缘与含水边缘之间的地带。 边水和底水:在含油边缘内的下部支托着油藏的水,称为底水。而在含油边缘以外衬托着油藏的水,称为边水。 含油(气)高度:指油、水接触面与油藏最高点的海拔高差。 ★P7 图1-1 背斜油藏中油气水分布示意图 P8 储量计算 ★P10 计算油田地质储量 油田地质储量表示为:N=100Ah(1-Swi)o/Boi N-----原油地质储量,104t A-----油田含油面积,km2 h------平均有效厚度,m ------平均有效孔隙度,小数 S wi------油层平均原始含水饱和度,小数 平均地面原有密度,t/ m3 o--------- B oi------原始的原油体积系数,m3/m3 地层原油中原始溶解气的地质储量表示为:G s=10-4N·R si G s----溶解气的地质储量,108 m3 原油溶解汽油比,m3/m3 R si------- 油田的储量丰度(Ω )单储系数(SNF)分别表示为: o Ωo=N/A=100h(1-S wi)o/B oi SNF= N/(Ah)=100(1-S wi)o/B oi ★p13 油藏的驱动方式及其开采特征 ?弹性驱动 在油藏无边水或底水,又无气顶,且原始油层压力高于饱和压力时,随着油层压力下降,依靠油层岩石和流体的弹性膨胀能驱油的方式称为弹性驱油。 这类油藏一般为封闭油藏或断块油藏。这类油藏在开采时,随着油层压力的降低,底层将不断的释放出弹性能将油驱向井底。如果保持井底流亚不变,油井产量将不断下降。 ?溶解气驱 在弹性驱阶段,当油层压力下降至低于饱和压力时,随着油层压力进一步降低,原来处于溶解状态的气体将分离出来,气泡的膨胀能将原油驱向井底。 就驱油机理来说,溶解气驱属于弹性驱的一种,但其弹性能主要来自气泡的膨

地层压力

地层压力(formation pressure)是指由于沉积物的压实作用,地层中孔隙流体(油、气、水)所承受的压力,又称之孔隙流体压力(pore fluid pressure)或孔隙压力(pore pressure)。正常压实情况下,孔隙流体压力与静水压力一致,其大小取决于流体的密度和液柱的垂直高度,凡是偏离静水压力的流体压力即称之为异常地层压力(abnormal pres.sure),简称异常压力。孔隙流体压力低于静水压力时称为异常低压或欠压,这种现象主要发现于某些致密气层砂岩和遭受较强烈剥蚀的盆地。孔隙流体压力高于静水压力时称为异常高压或超压,其上限为地层破裂压力(相当于最小水平应力),可接近甚至达到上覆地层压力。地层压力分类常用的指标是地层压力梯度(单位长度内随深度的地层压力增量,单位为MPa/km)和压力系数(实际地层压力与静水压力之比)。 本文来自: 博研石油论坛详细出处参考https://www.360docs.net/doc/d63782068.html,/thread-27166-1-5-1.html 压力系数: 指实测地层压力与同深度静水压力之比值。压力系数是衡量地层压力是否正常的一个指标。压力系数为0.8~1.2为正常压力,大于1.2称高压异常,低于0.8为低压异常。摘自《油气田开发常用名词解释》 压力梯度: 首先理解什么是梯度:假设体系中某处的物理参数(如温度、速度、浓度等)为w,在与其垂直距离的dy处该参数为w+dw,则其变化称为该物理参数的梯度,也即该物理参数的变化率。如果参数为速度、浓度或温度,则分别称为速度梯度、浓度梯度或温度梯度。 当涉及到压力的变化率时,即为压力梯度。 区别之处就在于,压力系数为衡量地层压力是否正常的一个指标,压力梯度为压力的变化率。 压力系数就是实际地层压力与同深度静水压力之比。 压力梯度即地层压力随深度的变化率。 地层的压力系数等于从地面算起,地层深度每增加10米时压力的增量。 压力梯度是指地层压力随地层深度的变化率。

采油工程习题(1)

第一章 油井流入动态与井筒多相流动计算 复习思考题 1.1 何谓油井流入动态?试分析其影响因素。 1.2 何谓采油(液)指数?试比较单相液体和油气两相渗流采油(液)指数计算方法。 1.3 试分析Vogel 方法、Standing 方法、Harrison 方法的区别与联系。 1.4 试推导油气水三相流入动态曲线[]max max ,t o q q 段近似为直线时的斜率。 1.5 试述多层合采井流入动态曲线的特征及转渗动态线的意义。 1.6 试比较气液两相流动与单相液流特征。 1.7 何谓流动型态?试分析油井生产中各种流型在井筒中的分布和变化情况。 1.8 何谓滑脱现象和滑脱损失?试述滑脱损失对油井井筒能量损失的影响。 1.9 试推导井筒气液多相混合物流动的管流通用的压力梯度方程。 1.10 综述目前国内外常用的井筒多相流动计算方法。 习题 1.1 某井位于面积245000m A =的矩形泄油面积中心,矩形的长宽比为2:1,井径m r w 1.0=,原油体积系数 2.1=o B ,原油粘度s mPa o ?=4μ,地面原油密度3 /860m kg o =ρ,油井表皮系数2=s 。试根据表1-1中的测试资料绘制IPR 曲线,并计算采油指数J 和油层参数h k o ,推算油藏平均压力r P 。 表1-1 某井测试数据表 井底流压MPa P wf ,, 20.11 16.91 14.37 12.52 油井产量d t Q o /, 24.4 40.5 53.1 62.4

1.2 某井位于面积2 1440000m A =的正方形泄油面积中心,井径m r w 1.0=,原油体积系数4.1=o B ,原油粘度s mPa o ?=2μ,地面原油密度2/850m kg o =ρ,油井表皮系数3?=s ,油层为胶结砂岩。试根据表1-2中的测试资料用非达西渗流二项式求油层渗透率及有效厚度。(油藏平均地层压力MPa P r 40=) 表1-2 某井测试数据表 井底流压MPa P wf , 34.22 28.36 22.42 16.39 油井产量d m Q o /,3 60 120 180 240 1.3已知某井的油藏平均压力MPa P r 15=,当井底流压MPa P wf 12=时对应产量d m q o /6.253=。试利用Vogel 方程计算该井的流入动态关系并绘制IPR 曲线。 1.4某溶解气驱油藏一口油井测试平均油藏压力MPa P r 0.21=,产量 d t Q o /60=,9.0=FE ,MPa P wf 15=。试根据Standing 方法计算和绘制此井 的IPR 曲线。 1.5 某溶解气驱油藏压力MPa P r 30=,流动效率8.0=FE ,在流压 MPa P wf 20=时,油井产量为d t /20,试绘制该井IPR 曲线,并求出流压为MPa 15时的油井产量。 1.6某井平均油藏压力MPa P r 0.20=,MPa P b 15=,测试得产量 d t Q o /30=时对应的井底流压MPa P wf 13=,1=FE ,试计算和绘制此井的IPR 曲线。 1.7已知平均油藏压力MPa P r 0.20=,流动效率8.0=FE ,在某一产量下实

地层压力计算

地层压力快速测试解释技术 1.地层压力分布原理: 常规的地层压力是严格遵循达西定律,对于油井的分布曲线应 该是这个规律的。 在不同的压力点其恢复曲线也不同,但最终的地层压力在影响 半径处是相同的。 p r 由上图表明流动过程中如果确定不同的初始压力点,也可以计算出地层re(影响半径)处的地层压力 2压力恢复曲线的测试: 压力恢复曲线的测试是油田油井常用的测压手段,起测试的压力数据是压力-时间变化曲线。常规的测试一般测试地层压力需要3天

以上的时间,而低渗透油藏需要10多天甚至一个月以上的时间来判断和计算地层压力。 P t 3地层压力快速计算的原理: 由地层压力分布曲线和压力测试曲线,看,在同一个井底压力的初始点,测试曲线稍微滞后一点。但压力趋势是一致的,也就是说压力恢复曲线的测试实际就是压力分布曲线的测试。 在这个基础上,我们将t时刻的井底测试压力认为是距生产井r 处的压力传递过来的反应。于是就有了 pt=pr pt----t时刻的井底测试压力 pr---r处的压力于t时刻传递到井筒

基于上述原理,我们就可以利用短时间内的压力恢复曲线来计算地层re处的压力了。 4测试时间要求: 因为地层恢复过程有一些不可预料的因素,而且,测试仪器的精度等一些客观因素,在分析计算的时候,需要大量的数据来修正计算误差。所以低渗透游藏一般测试时间安排至少一天,如果是常规油藏,测试时间4-6小时就可。 测试数据密度点要求:因为是短时间测试,需要高密度和高精度的压力传感器,一般设置为30秒一个测试压力点即可。 5低渗透油藏的新的测试方法: 由于油井恢复速度慢,至少一天的时间,担心影响产量,可以测试对应水井,但要求是水井的注水压力高。在地面用压力传感器和计算机自动化采集压降数据4-6小时即可。这样是以水井的影响半径处的地层压力来替代油井的测试。以减少测试时间。 6 技术优点: 不占大量的生产时间,快速动态的分析地层压力变化。计算方法合理,利用测试密度点是为了得到地层压力分布曲线的曲率,尤其适应低渗透油藏的测试计算。因为老油田具备一些大孔道,其低渗透层的压力恢复规律反而被掩盖了。必须通过分层解释技术来分析。 7 技术要求: 要求开放式测试数据,不下封隔器,常规的测压数据就可以,水

油藏工程第三章

第三章 1.分析对比均质油藏具有有限导流能力裂缝的直井与水平井的流动形态有什么相同点与不同点? 2分析对比由两个生产层组成的油藏和双重介质油藏生产时的渗流特点。 3由试井分析方法、,测井方法及试验方法得到的渗透率值各代表什么意义? 4无限大层状油藏中水平井有哪几种流动形态? 5用井间示踪方法确定油藏井间参数的步骤是什么? 6分析图3—63中产液剖面变化情况及对开发效果的影响? 7有一生产井位于直线断层附近,该井到直线断层的距离为d,它以定产量q生产tp时间后停产,试推导生产时间t(t~tp)时井底压力表达式及停产Δt时的井底压力恢复公式. 8.在已开发的油藏中有一口井以44.52m3/d的产量自喷生产了10天后关井测压力恢复。在生产期间发现油管压力大约0.169MPa/d的速度下降。油藏性质如下:Ct=1.76X10(-4)MPa(-1);h=12.2m;Bo=1.31;rw=10cm;u0=2,0mpa.s。压力恢复数据见表3所示。 表3 求渗透率k及表皮系数s。 9.某断块一口新井投产,恒定产量q=62.8m3/d; u0=3.93mPa.s; B=1.243; 油层厚度h=39.5m. 投产后,井底压力资料如表4所示。 试求地层参数kh及表皮系数s。 10.某探井油层中部实测压力恢复数据如表5所示。 油井数据:关井前稳定产量Q=28t/d,地面原油相对密度γo=0.85,原油体积系数为Bo =1.12,地下原油粘度u0=9mPa?s,油层综合压缩系数为Ct二3,75X10(-4)MPa(-l),油层

厚度为8.6m,油井半径rw=10cm,孔隙度为声Ф=0.2,求: (1)油层流动系数及有效渗透率; (2)导压系数; (3)折算半径。 11对某一油井进行关井测试,关井前的油井稳定日产量q=45m3/d,累积生产时间T=230小时,体积系数B=1.31,油层有效厚度h=12m,地下原油粘度uo=2mPa.s,综合弹性压缩系数Ct=2.2X10(-4)atm(-1),孔隙度Ф=0.1,供油面积A=0.12km2,油井半径rw=10cm,测试数据如表6所示。 求:(1)油层流动系数及有效渗透率; (2)导压系数; (3)平均地层压力。 12.叙述双重介质油藏的压力降特征. 13.叙述均质油藏压裂井试井时不同时期的井底压力动态。 14.对某一区块气井进行测试,数据如表7所示。 又已知:rw=9cm,气层温度T=93℃,试井时地层平均压力198atm,关井前井底流压 165atm,关井前稳定产量为85 000m3/d,累积产气量3.54X100000m3,天然气地层条件下压缩因子为Z=0.809,地层厚度25.5m。求: (1)地层流动系数及有效渗透率; (2)确定原始地层压力. 15.简述试井分析方法的分类及其优缺点.

相关文档
最新文档