汉诺塔问题的非递归新解法

汉诺塔问题的非递归新解法
汉诺塔问题的非递归新解法

汉诺塔问题的非递归算法

计算机科学与技术学院

计11-1 班

张春颖(组长)37 号

刘丹(组员)22 号

汉诺塔问题的非递归新解法

计11-1 张春颖37号

刘丹22号

摘要:汉诺塔问题是计算机算法设计中经常被大家引用来说明递归算法的一个经典问题,长期以来,很多人一直认为这个问题只能用递归方法求解,从讨论汉诺塔问题的几个基本特性入手,通过分析和归纳总结,提出了一种全新的解决汉诺塔问题的简洁而又高效的非递归解法,并用具体的实例对其进行了验证。

关键词:汉诺塔;非递归;对称性;形式不变性

一.汉诺塔问题及其特性

汉诺塔问题可以一般地表述为:有3根针A,B,C,在A针上有n个大小互不相同的盘子,大盘在下,小盘在上,现在要将这n个盘子全部移到C针上,规则是:每次只能移一个盘子,任何时候在每根针上都要保持大盘在下面小盘在上;移动过程可以利用针 B.请问该怎么移?

汉诺塔问题是一个古典的数学问题,一般的参考文献中都认为汉诺塔问题是一个只能用递归方法解决的问题。

汉诺塔问题具有递归性,但并不是说它就只能用递归方法来解决,为了寻求其非递归新解法,下面先来讨论一下汉诺塔问题的几个基本特性。

1.汉诺塔问题的递归性

将这n个盘子由小到大依次编号为:1,2,3,......N.为了将这n个盘子按照规则从针A 移动到针C.可以分3步走:

第1步:将前n-1个盘子按照规则从针A移动到针B;

第2步:将第n个盘子直接从针A移动到针C;

第3步:将前n-1个盘子按照规则从针B移动到针C;

这样一来,n个盘子的汉诺塔问题就转化成了n-1个盘子的汉诺塔问题,而它们之间只是盘子的数目以及起点和终点有别而已。而n-1个盘子的汉诺塔问题又可以进一步地转化成n-2个盘子的汉诺塔问题。如此转化下去,最终结果是:n个盘子的汉诺塔问题转化成了一序列1个盘子的汉诺塔问题。

2汉诺塔问题的对称性

由上述分析可见,n个盘子的汉诺塔问题可以转化为两个n-1个盘子的汉诺塔问题和一个1个盘子的汉诺塔问题,并且这1个盘子的汉诺塔问题正好处于那两个n-1个盘子的汉诺塔问题的中间,因此,解决n个盘子的汉诺塔问题所需要的最少操作步数应该是奇数,而且所有操作步的操作对象按照顺序应该是中心对称的,对称中心就是N号盘。

3.汉诺塔问题的形式不变性

一般地,设X,Y,Z为3根针,S为将n个盘子按照给定的规则从针X移到针Y所需的所有操作步的集合,如果用A,B,C的任意一个全排列K1,K2,K3去对应替换S中的X,Y,Z:K1替换X,K2替换Y,K3替换Z,则得到的是将n个盘子按照同样的规则从针K1移到K2所需的所有操作步集合。

4.汉诺塔问题的轮换性

设S为将n个盘子按照给定的规则从针A移到针B所需的所有操作步的集合,按照形式不变性,如果将S中的A全部换成B,B全部换成C,C全部换成A,则得到的是将N个盘子按照同样的规则从针B移到针C所需的所有操作步的集合。同样,如果将S中的A全部换成C,C全部换成A,B保持不变,则得到的是将n个盘子按照同样的规则从针C移到针B所需的所有操作步的集合。

5.递归算法如下

Void hanoi(int n,char x,char y,char z)上按

//将塔座x上按直径由小到大且自上而下编号为1至nde 个圆盘按规则搬到塔

//座z上,y可用作辅助塔座。搬动操作move(x,n,z)可定义为(c是初值为0的 //全局变量,对搬动计数);

1{

2 if(n==1)

3 move(x,1,z);

4 else

5 hanoi(n-1,x,z,y);

6 move(x,n,z);

7 hanoi(n-1,y,x,z);

8 }

9 }

但是递归看似简洁,但是递归算法解题的运行,效率较低,在递归调用的过程中系统为每层的返回点、局部量等开辟了栈来存储递归次数过多容易造成栈溢出,汉诺塔问题会多次用到递归,所以会发生栈溢出

二.非递归解法的几个基本问题

根据递归性,我们很容易写出汉诺塔问题的递归解,关于这一点,很多高级语言的教科书都有涉及,下面我们专门来讨论其非递归解问题。

为了找到其非递归解,我们需要而且只需要解决下列3个问题:

(1)至少需要多少步操作?

(2)每一步的操作对象是谁?

(3)每一步操作的起点和终点又是谁?

1.操作步数问题

设将n个盘子按照规则从第1根针移动到第3根针所需要的最少操作步数为An,则根据汉诺塔问题的递归性和对称性,数列{An}满足:

A1=1,而当n>=2时有An=2An_1+1 由An=2An_1+1可得:An+1=2(An_1+1) 这说明数列(An+1)是以2为公比而以A1+1即2为首项的等比例数,所以:An+1=2*2^n-1(n>=1) 即:An=2^n-1(n>=1)

所以,解决n个盘子的汉诺塔问题至少需要2^n-1步操作。

2.每步的操作对象问题

根据汉诺塔问题的对称性和递归性,在n个盘子的汉诺塔问题所需要的2^n-1步操作中,处于中心位置的那一步的操作对象是N号盘,前一半操作和后一半操作的操作对象关于中心位置对称,因此只要确定出前一半操作的操作对象,那么后一半操作的操作对象也就随之确

定了,而前一半操作又是解决前n-1个盘子的汉诺塔问题的,因此处于这一半的中心位置的那一步的操作对象就应该是N-1号盘,如此继续下去,每一步的操作对象都可以确定下来,下面给出n=1,2,3,4,5时,每一步的操作对象:

1个盘:1

2个盘:1 2 1

3个盘:1 2 1 3 1 2 1

4个盘:1 2 1 3 1 2 1 4 1 2 1 3 1 2 1

5个盘:1 2 1 3 1 2 1 4 1 2 1 3 1 2 1

5

1 2 1 3 1 2 1 4 1 2 1 3 1 2 1

……

3.每步的起点和终点问题

根据汉诺塔问题的对称性和递归性,在n个盘子的汉诺塔问题所需要的2^n-1步操作中,处于中心位置的那一步的操作对象N号盘,起点是针A,终点是针C;前一半操作是将前n-1个盘子从针A移到针B的。因此,处于这一半的中心位置的那一步的操作对象是N-1号盘,起点是针A,终点是针B;后一半操作是将前n-1个盘子从针B移到针C的。因此,处于这一半的中心位置的那一步的操作对象是N-1号盘,起点是针B,终点是针C,按照这种方式,从中心位置开始,逐渐向两端扩展,最终能够确定所有操作步的起点和终点。

至此,前面提出的3个问题都得到了解决,可直接按照上述思想来设计汉诺塔问题的非递归算法却不是一件很容易的事情,且算法的效率也不太理想。

三.汉诺塔问题的几个基本理论

任何递归问题都可以很容易地通过函数的递归调用来求解,但其效率却比较底下,比较而言,递归问题的的、非递归解法实现起来要困难一些,但其执行效率却比较高。那么,有没有既容易实现而且效率又较高的非递归解法呢?答案是肯定的,那就是递推!

事实上,根据前面所述的分析,我们可以得到以下几个结论:

(1)解决n个盘子的汉诺塔问题所需要的最少操作步数为2^n-1;

(2)在解决n个盘子的汉诺塔问题所需要的2^n-1步操作中,处于中心位置的第2^n-1步的操作对象是N号盘,且操作的起点是针A,终点是针C;

(3)在解决n个盘子的汉诺塔问题所需要的2^n-1步操作中,除了中心点之外的前一半操作可以由解决n-1个盘子的汉诺塔问题所需要的2^n-1-1步操作得到:将解决n-1个盘子的汉诺塔问题所需要的2^n-1-1步操作中的B换成C,C换成B,而A保持不变。

(4)在解决n个盘子的汉诺塔问题所需要的2^n-1步操作中,除了中心点之外的后一半操作可以由前一半操作得到,将前一半操作中的A换成B,B换成C,C换成A.

至此,汉诺塔问题的递归算法就产生了,其实,递归递推只是同一类问题的两种不同求解策略而已。因此,任何递归问题都可以采用递推方法求解,只不过难易程度有别而已。

四.递推算法

下面用C语言给出利用上述4点结论的非递归解法的计算机算法——递推算法。

重要数据结构:S——2n行3列的二维数组,存放所有的操作步。其中,第i行(i=1,2,3,...)表示第i步,而且S[i]{[1]表示操作的起点,S[i][2]表示操作的终点,算法如下:

for(K=1;K<=N;K++)

{

for(X=1,M=1,M<=K-1,M++)X=X*2;

S[X][0]=K;

S[X][1]=’A’;

S[X][2]=’C’;

for(L=1;L<=X-1;L++)

{

if (S[L][1]==’B’)S[L][1]=’C’;

else if (S[L][1]==’C’)S[L][1]=’B’

if(S[L][2]==’B’)S[L][2]=’C’;

else if(S[L][2]==’C’)S[L][2]=’B’;

}

for(L=X+1;L<=2*X-1;L++)

{

S[L][0]=S[L-X][0];

if(S[L-X][1]==‘A’) (S[L-X][1]==‘B’);

else if(S[L-X][1]==‘B’) (S[L][1]==‘C’);

else S[L][1]=‘A’;

if(S[L-X][2]==‘A’) S[L][2]=‘B’;

else if(S[L-X][2]==‘B’) S[L][2]=‘C’;

else S[L][2]=‘A’;

}

}

实际上,为解决n个盘子的汉诺塔问题,数组S只需要2^n-1行即可;先求出n-1个盘子的汉诺塔问题的解,然后根据S的内容输出n个盘子的汉诺塔问题的解,这样,空间开销句降低了一半,时间开销也有所改善。

五.结语

目前,已经见诸文章的解决汉诺塔问题的非递归算法为数不多而且多数都是利用二叉树甚至是三叉树做为逻辑数据结构并通过树的构造和遍历来实现的.这类算法虽然思想基础较简单,但空间开销和时间开销都比较大,另有一些算法虽然空间和时间开销大有改善,但其导出过程比较复杂,一般人难以领悟。

比较而言,本文介绍的递推算法不仅简单易行,而且其思想基础人人都能把握。

参考文献:

[1]李永新,汉诺塔问题的非递归算法实现[J].荆州师范学院学报(自然科学版),2000,22(6):43~47.

[2]王颖,王正洲,汉诺塔问题迭代算法实现和分析[J].合肥联合大学学报。1999,9(3):84~87.

《递归算法与递归程序》教学设计

递归算法与递归程序 岳西中学:崔世义一、教学目标 1知识与技能 (1) ?认识递归现象。 (2) ?使用递归算法解决冋题往往能使算法的描述乘法而易于表达 (3) ?理解递归三要素:每次递归调用都要缩小规模;前次递归调用为后次作准备:递归调用必须有条件进行。 (4) ?认识递归算法往往不是咼效的算法。 (5) ? 了解递归现象的规律。 (6) ?能够设计递归程序解决适用于递归解决的问题。 (7) ?能够根据算法写出递归程序。 (8) ? 了解生活中的递归现象,领悟递归现象的既有重复,又有变化的特点,并且从中学习解决问题的一种方法。 2、方法与过程 本节让同学们玩汉诺塔的游戏,导入递归问题,从用普通程序解决斐波那契的兔子问题入手,引导学生用自定义了一个以递归方式解决的函数过程解决问题,同时让同学们做三个递归练习,巩固提高。然后让学生做练习(2) 和练习(3)这两道题目的形式相差很远,但方法和答案却是完全相同的练习,体会其中的奥妙,加深对递归算法的了解。最后用子过程解决汉诺塔的经典问题。 3、情感态度和价值观 结合高中生想象具有较强的随意性、更富于现实性的身心发展特点,综合反映出递归算法的特点,以及递归算法解答某些实践问题通常得很简洁,从而激发学生对程序设计的追求和向往。 二、重点难点 1、教学重点 (1) 了解递归现象和递归算法的特点。 (2) 能够根据问题设计出恰当的递归程序。 2、教学难点 (1) 递归过程思路的建立。 (2) 判断冋题是否适于递归解法。 (3) 正确写出递归程序。 三、教学环境 1、教材处理 教材选自《浙江省普通高中信息技术选修:算法与程序设计》第五章,原教材的编排是以本节以斐波那契的兔子问题引人,导出递归算法,从而自 定义了一个以递归方式解决的函数过程。然后利用子过程解决汉诺塔的经典问题。 教材经处理后,让同学们玩汉诺塔的游戏,导入递归问题,从用普通程序解决斐波那契的兔子问题入手,引导学生用自定义了一个以递归方式解决的函数过程解决问题,同时让同学们做三个递归练习,巩固提高。然后让学生做练习⑵ 和练习

递归算法和非递归算法的区别和转换

递归算法向非递归算法转换 递归算法实际上是一种分而治之的方法,它把复杂问题分解为简单问题来求解。对于某些复杂问题(例如hanio塔问题),递归算法是一种自然且合乎逻辑的解决问题的方式,但是递归算法的执行效率通常比较差。因此,在求解某些问题时,常采用递归算法来分析问题,用非递归算法来求解问题;另外,有些程序设计语言不支持递归,这就需要把递归算法转换为非递归算法。 将递归算法转换为非递归算法有两种方法,一种是直接求值,不需要回溯;另一种是不能直接求值,需要回溯。前者使用一些变量保存中间结果,称为直接转换法;后者使用栈保存中间结果,称为间接转换法,下面分别讨论这两种方法。 1. 直接转换法 直接转换法通常用来消除尾递归和单向递归,将递归结构用循环结构来替代。 尾递归是指在递归算法中,递归调用语句只有一个,而且是处在算法的最后。例如求阶乘的递归算法: long fact(int n) { if (n==0) return 1; else return n*fact(n-1); } 当递归调用返回时,是返回到上一层递归调用的下一条语句,而这个返回位置正好是算法的结束处,所以,不必利用栈来保存返回信息。对于尾递归形式的递归算法,可以利用循环结构来替代。例如求阶乘的递归算法可以写成如下循环结构的非递归算法: long fact(int n) { int s=0; for (int i=1; i<=n;i++) s=s*i; //用s保存中间结果 return s; } 单向递归是指递归算法中虽然有多处递归调用语句,但各递归调用语句的参数之间没有关系,并且这些递归调用语句都处在递归算法的最后。显然,尾递归是单向递归的特例。例如求斐波那契数列的递归算法如下: int f(int n) {

汉诺塔c++程序

void Hanoi(int platesCount, int from, int dest, int by) { if (platesCount==1) { printf( "Move the plate from %d to %d through %d" , from, dest, by); }else { Hanoi(platesCount -1, from, by, dest); Hanoi(1, from, dest, by); Hanoi(platesCount -1, by, dest, from); } } // Advance one step to solve Hanoi void HanoiDrawer::SolveNextStep() { int platesCount , source , destination , intermediate; if(listSavedState.size()==0) { this->Hanoi(this->iPlatesCount, HanoiDrawer::SOURCE , HanoiDrawer::DESTINATION, HanoiDrawer::INTERMEDIATE); } if(listSavedState.size() % 4 != 0 ) { return; } platesCount = listSavedState.front(); listSavedState.pop_front(); source = listSavedState.front(); listSavedState.pop_front(); destination = listSavedState.front(); listSavedState.pop_front(); intermediate = listSavedState.front(); listSavedState.pop_front();

汉诺塔非递归算法C语言实现

汉诺塔非递归算法C语言实现 #include #include #define CSZL 10 #define FPZL 10 typedef struct hanoi { int n; char x,y,z; }hanoi; typedef struct Stack { hanoi *base,*top; int stacksize; }Stack; int InitStack(Stack *S) { S->base=(hanoi *)malloc(CSZL*sizeof(hanoi)); if(!S->base) return 0; S->top=S->base; S->stacksize=CSZL; return 1; } int PushStack(Stack *S,int n,char x,char y,char z) { if(S->top-S->base==S->stacksize) { S->base=(hanoi *)realloc(S->base,(S->stacksize+FPZL)*sizeof(hanoi)); if(!S->base) return 0; S->top=S->base+S->stacksize; S->stacksize+=FPZL; } S->top->n=n; S->top->x=x; S->top->y=y; S->top->z=z; S->top++; return 1; } int PopStack(Stack *S,int *n,char *x,char *y,char *z) { if(S->top==S->base)

汉诺塔问题的三种实现

// test_project.cpp : 定义控制台应用程序的入口点。//汉诺塔问题的 // //递归实现 /*#include "stdafx.h" #include using namespace std; int count=0;//记录移动到了多少步 void Move(int n,char From,char To); void Hannoi(int n,char From, char Pass ,char To); //把圆盘从From,经过pass,移动到To int main() { int n_count=0; cout<<"请输入圆盘个数:"; cin>>n_count; Hannoi(n_count,'A','B','C'); } void Move(int n,char From,char To)

{ count++; cout<<"第"<

/*后来一位美国学者发现一种出人意料的简单方法,只要轮流进行两步操作就可以了。首先把三根柱子按顺序排成品字型,把所有的圆盘按从大到小的顺序放在柱子A上,根据圆盘的数量确定柱子的排放顺序:若n为偶数,按顺时针方向依次摆放A B C; 若n为奇数,按顺时针方向依次摆放A C B。 ()按顺时针方向把圆盘从现在的柱子移动到下一根柱子,即当n为偶数时,若圆盘在柱子A,则把它移动到B;若圆盘在柱子B,则把它移动到C;若圆盘在柱子C,则把它移动到A。 ()接着,把另外两根柱子上可以移动的圆盘移动到新的柱子上。即把非空柱子上的圆盘移动到空柱子上,当两根柱子都非空时,移动较小的圆盘。这一步没有明确规定移动哪个圆盘,你可能以为会有多种可能性,其实不然,可实施的行动是唯一的。 ()反复进行()()操作,最后就能按规定完成汉诺塔的移动。 所以结果非常简单,就是按照移动规则向一个方向移动金片: 如阶汉诺塔的移动:A→C,A→B,C→B,A→C,B→A,B→C,A→C 汉诺塔问题也是程序设计中的经典递归问题,下面我们将给出递归和非递归的不同实现源代码。*/ /*#include "stdafx.h" #include #include

n!非递归算法的设计与实现

n!非递归算法的设计与实现 1 课题描述 尽管递归算法是一种自然且合乎逻辑的解决问题的方式,但递归算法的执行效率通常比较差。因此在求解许多问题时常采用递归算法来分析问题,用非递归方法来求解问题;另外一些程序不支持递归算法来求解问题,所以我们都会用非递归算法来求解问题。 本次课程设计主要内容是:用非递归算法实现n!的计算,由于计算机中数据的存储范围有限,而又要求出尽可能大的n的阶乘的值,用数组构造n的运算结果的存储结构,用栈的存储方式,最后输出n!的运算结果。 本次课程设计的目的是:通过本次课程设计,可以使大家了解缓存中数据的存储范围,提高自学能力,增强团队合作意识。

2 需求分析 本次n!非递归算法的课程设计中主要用到的知识有:数组、函数、栈,选择条件中的结构语句(if…else),和循环结构语句中的语句while()语句、do…while()语句和for()语句,选择语句if的运用。 对n!的非递归的算法,主要是运用非递归的算法实现n的阶乘。 限制条件: (1).要求的n必须是整数; (2). n的范围; (3). 数据类型和表数范围。

递归和非递归算法是相通的,递归是一种直接或间接调用自身的算法,而非递归不调用自身函数递推采用的是递归和归并法,而非递推只采用递归法。递推法一般容易溢出,所以一般都采用递推法分析,而用非递推法设计程序。 将n定义为float型,便于查看n是否为整数; 本次试验分为两个模块: (1).当n小于都等于12时,实现阶乘的模块m(n): 直接用sum*=i;实现求n的阶乘,相对简单,容易就算。 (2).当n大于12时,如果用long型结果就会溢出,所以实现阶乘需调用的模块f(n): 采用数组存放计算的结果,用队列输出运行结果。由于计算结果较大,将结果除以数组最大存储位数,将高位结果存放在数组的起始地址上,将低位的结果存放在数组的末端地址上,最后采用队列输出运行结果。 (3).模块调用关系如图3.1所示 图3.1 模块调用图

汉诺塔问题与递归思想教学设计

一、教学思想(包括教学背景、教学目标) 1、教学背景 本课程“递归算法”,属于《数据结构与算法》课程中“栈和队列”章节的重点和难点。数据结构与算法已经广泛应用于各行各业的数据存储和信息处理中,与人们的社会生活密不可分。该课程是计算机类相关专业核心骨干课程,处于计算机学科的核心地位,具有承上启下的作用。不仅成为全国高校计算机类硕士研究生入学的统考科目,还是各企业招聘信息类员工入职笔试的必考科目。数据结构与算法课程面向计算机科学与技术、软件工程等计算机类学生,属于专业基础课。 2、教学大纲 通过本课程的学习,主要培养学生以下几个方面的能力: 1)理解递归的算法; 2)掌握递归算法的实现要素; 3)掌握数值与非数值型递归的实现方法。 根据学生在学习基础和能力方面的差异性,将整个课程教学目标分成三个水平:合格水平(符合课标的最低要求),中等以上水平(符合课标的基本要求),优秀水平(符合或超出课标提出的最高要求)。具体如下表:

二、课程设计思路(包括教学方法、手段) “递归算法”课程以故事引入、案例驱动法、示范模仿、启发式等多元化教学方法,设计课程内容。具体的课堂内容如下所示:

1 1 2 3 3 7 4 15 5 31 count = 2n-1 思考:若移动速度为1个/秒,则需要 (264-1)/365/24/3600 >= 5849亿年。 四、总结和思考 总结: 对于阶乘这类数值型问题,可以表达成数学公式,然后从相应的公式入手推导,解决这类问题的递归定义,同时确定这个问题的边界条件,找到结束递归的条件。 对于汉诺塔这类非数值型问题,虽然很难找到数学公式表达,但可将问题进行分解,问题规模逐渐缩小,直至最小规模有直接解。 思考: 数值型问题:斐波那契数列的递归设计。 非数值型问题:八皇后问题的递归设计。阐述总结知识拓展 三、教学特色(总结教学特色和效果) 递归算法课程主要讨论递归设计的思想和实现。从阶乘实例入手,由浅入深,层层深入介绍了递归的设计要点和算法的实现。从汉诺塔问题,通过“边提问,边思考”的方式逐层深入地给出算法的分析和设计过程。通过故事引入、案例导入、实例演示、PPT展示、实现效果等“多元化教学方式”,努力扩展课堂教学主战场。加上逐步引导、问题驱动,启发学生对算法的理解,并用实例演示展示算法的分析过程,在编译环境下实现该算法,加深对算法实现过程的认识。 1、知识点的引入使用故事诱导法讲授 通过“老和尚讲故事”引入函数的递归调用,并通过“世界末日问题” 故事引入非数值型问题的递归分析,激发学习积极性,挖掘学生潜能。

汉诺塔 java 程序

汉诺塔java 程序 import java.awt.*; import java.awt.event.*; import javax.swing.*; public class AutoMoveDisc extends JDialog implements ActionListener{ int amountOfDisc=3; TowerPoint [] pointA,pointB,pointC; char [] towerName; Container con; StringBuffer moveStep; JTextArea showStep; JButton bStart,bStop,bContinue,bClose; Timer time; int i=0,number=0; AutoMoveDisc(Container con){ setModal(true); setTitle("自动演示搬盘子过程"); this.con=con; moveStep=new StringBuffer(); time=new Timer(1000,this); time.setInitialDelay(10); showStep=new JTextArea(10,12); bStart=new JButton("演示"); bStop=new JButton("暂停"); bContinue=new JButton("继续"); bClose=new JButton("关闭"); bStart.addActionListener(this); bStop.addActionListener(this); bContinue.addActionListener(this); bClose.addActionListener(this); JPanel south=new JPanel(); south.setLayout(new FlowLayout()); south.add(bStart); south.add(bStop); south.add(bContinue); south.add(bClose); add(new JScrollPane(showStep),BorderLayout.CENTER); add(south,BorderLayout.SOUTH); setDefaultCloseOperation(JFrame.DO_NOTHING_ON_CLOSE); towerName=new char[3]; addWindowListener(new WindowAdapter(){ public void windowClosing(WindowEvent e){ time.stop(); setVisible(false);

汉诺塔问题的非递归算法分析

汉诺塔递归与非递归算法研究 作者1,作者2,作者33 (陕西师范大学计算机科学学院,陕西西安 710062) 摘要: 摘要内容(包括目的、方法、结果和结论四要素) 摘要又称概要,内容提要.摘要是以提供文献内容梗概为目的,不加评论和补充解释,简明,确切地记述文献重要内容的短文.其基本要素包括研究目的,方法,结果和结论.具体地讲就是研究工作的主要对象和范围,采用的手段和方法,得出的结果和重要的结论,有时也包括具有情报价值的其它重要的信息.摘要应具有独立性和自明性,并且拥有与文献同等量的主要信息,即不阅读全文,就能获得必要的信息. 关键词:关键词1; 关键词2;关键词3;……(一般可选3~8个关键词,用中文表示,不用英文 Title 如:XIN Ming-ming , XIN Ming (1.Dept. of ****, University, City Province Zip C ode, China;2.Dept. of ****, University, City Province Zip C ode, China;3.Dept. of ****, University, City Province Zip C ode, China) Abstract: abstract(第三人称叙述,尽量使用简单句;介绍作者工作(目的、方法、结果)用过去时,简述作者结论用一般现在时) Key words: keyword1;keyword2; keyword3;……(与中文关键词对应,字母小写(缩略词除外)); 正文部分用小5号宋体字,分两栏排,其中图表宽度不超过8cm.。设置为A4页面 1 引言(一级标题四号黑体加粗) 这个问题当时老和尚和众僧们,经过计算后,预言当所有的盘子都从基柱A移到基座B上时,世界就将在一声霹雳中消灭,而梵塔、庙宇和众生也都将同归于尽。其实,不管这个传说的可信度有多大,如果考虑把64个盘子,由一个塔柱上移到另一根塔柱上,并且始终保持上小下大的顺序。假设有n个盘子,移动次数是f(n).显然f(1)=1,f(2)=3,f(3)=7,且f(k+1)=2*f(k)+1。此后不难证明f(n)=2n-1。n=64时, f(64)= 2^64-1=18446744073709551615 假如每秒钟一次,共需多长时间呢?一年大约有 31536926 秒,计算表明移完这些金片需要5800多亿年,比地球寿命还要长,事实上,世界、梵塔、庙宇和众生都早已经灰飞烟灭。 对传统的汉诺塔问题,目前还有不少的学者继续研究它的非递归解法,本文通过对递归算法的研究……. 提示:(1)可以定义问题的规模n,如盘子的数量;(2)塔柱的数量(目前有部分理论可以支撑,不妨用计算机实现)分析规模的变化与算法的复杂度比较。(3)可以对经典的汉诺塔问题条件放松、加宽,如在经典的汉诺塔问题中大盘只能在小盘下面,放松其他条件可以定义相邻两个盘子必须满足大盘只能在小盘下面。其它盘子不作要求。 2 算法设计 2.1 汉诺塔递归算法描述(二级标题小五黑体加粗) 用人类的大脑直接去解3,4或5个盘子的汉诺塔问题还可以,但是随着盘子个数的增多,问题的规模变的越来越大。这样的问题就难以完成,更不用说吧问题抽象成循环的机器操作。所以类似的问题可用递归算法来求解。下面n个盘的汉

汉诺塔程序设计报告

数据结构 学院:信息学院 班级:计科高职13-2 姓名:曲承玉 学号:201303014044

汉诺塔程序设计报告 一、题目 汉诺塔(Towers of Hanoi)问题 二、设计要求 1、在窗口中画出初始时塔和碟子的状态。 2、可以以自动或手动两种方式搬移碟子。 3、自动搬移可以通过定时器或多线程的方法,每一次移动的时间间隔可以自定,以人眼观察比较舒服为宜,每一次的移动过程如能实现动画最好。 4、定义塔的描述类和碟子的描述类。 5、在程序中,碟子的数目及每次移动的时间间隔可以通过对话框设置(也应该有默认值)。 6、支持暂停功和继续的功能(在自动搬移过程中可以暂停,并继续)。 7、暂停后,可以将当前的状态保存(碟子和塔的组合关系)。 8、可以从7中保存的文件中读出某个状态,并继续移动。 三、问题分析 1、已知有三个塔(1、 2、3)和n个从大到小的金碟子,初始状态时n个碟子按从大到小的次序从塔1的底部堆放至顶部。 2、要求把碟子都移动到塔2(按从大到小的次序从塔2的底部堆放至顶部)。 3、每次移动一个碟子。

4、任何时候、任何一个塔上都不能把大碟子放到小碟子的上面。 5、可以借助塔3。(图1-1) 图1-1 首先考虑a杆下面的盘子而非杆上最上面的盘子,于是任务变成了: 1、将上面的63个盘子移到b杆上; 2、将a杆上剩下的盘子移到c杆上; 3、将b杆上的全部盘子移到c杆上。 将这个过程继续下去,就是要先完成移动63个盘子、62个盘子、61个盘子....1个盘的工作。 四、算法选择 汉诺塔程序设计算法的实质就是递归递归思想的运用。现将其算法简述如下: 为了更清楚地描述算法,可以定义一个函数hanoi(n,a,b,c)。该函数的功能是:将n个盘子从塔a上借助塔b移动到塔c上。这样移动n 个盘子的工作就可以按照以下过程进行: 1) hanoi(n-1,a,c,b);//将n-1个金盘由a借助c移到b 2) 将最下面的金盘从a移动到c上;

汉诺塔问题非递归算法详解

Make By Mr.Cai 思路介绍: 首先,可证明,当盘子的个数为n 时,移动的次数应等于2^n - 1。 然后,把三根桩子按一定顺序排成品字型(如:C ..B .A ),再把所有的圆盘按至上而下是从小到大的顺序放在桩子A 上。 接着,根据圆盘的数量确定桩子的排放顺序: 若n 为偶数,按顺时针方向依次摆放C ..B .A ; 若n 为奇数,按顺时针方向依次摆放B ..C .A 。 最后,进行以下步骤即可: (1)首先,按顺时针方向把圆盘1从现在的桩子移动到下一根桩子,即当n 为偶数时,若圆盘1在桩子A ,则把它移动到B ;若圆盘1在桩子B ,则把它移动到C ;若圆盘1在桩子C ,则把它移动到A 。 (2)接着,把另外两根桩子上可以移动的圆盘移动到新的桩子上。 即把非空桩子上的圆盘移动到空桩子上,当两根桩子都非空时,移动较小的圆盘。 (3)重复(1)、(2)操作直至移动次数为2^n - 1。 #include #include using namespace std; #define Cap 64 class Stake //表示每桩子上的情况 { public: Stake(int name,int n) { this->name=name; top=0; s[top]=n+1;/*假设桩子最底部有第n+1个盘子,即s[0]=n+1,这样方便下面进行操作*/ } int Top()//获取栈顶元素 { return s[top];//栈顶 } int Pop()//出栈 { return s[top--];

} void Push(int top)//进栈 { s[++this->top]=top; } void setNext(Stake *p) { next=p; } Stake *getNext()//获取下一个对象的地址 { return next; } int getName()//获取当前桩子的编号 { return name; } private: int s[Cap+1];//表示每根桩子放盘子的最大容量 int top,name; Stake *next; }; void main() { int n; void hanoi(int,int,int,int); cout<<"请输入盘子的数量:"; cin>>n; if(n<1) cout<<"输入的盘子数量错误!!!"<

汉诺塔问题实验报告

1.实验目的: 通过本实验,掌握复杂性问题的分析方法,了解汉诺塔游戏的时间复杂性和空间复杂性。 2.问题描述: 汉诺塔问题来自一个古老的传说:在世界刚被创建的时候有一座钻石宝塔(塔A),其上有64个金碟。所有碟子按从大到小的次序从塔底堆放至塔顶。紧挨着这座塔有另外两个钻石宝塔(塔B和塔C)。从世界创始之日起,婆罗门的牧师们就一直在试图把塔A 上的碟子移动到塔C上去,其间借助于塔B的帮助。每次只能移动一个碟子,任何时候都不能把一个碟子放在比它小的碟子上面。当牧师们完成任务时,世界末日也就到了。 3.算法设计思想: 对于汉诺塔问题的求解,可以通过以下三个步骤实现: (1)将塔A上的n-1个碟子借助塔C先移到塔B上。 (2)把塔A上剩下的一个碟子移到塔C上。 (3)将n-1个碟子从塔B借助于塔A移到塔C上。 4.实验步骤: 1.用c++ 或c语言设计实现汉诺塔游戏; 2.让盘子数从2 开始到7进行实验,记录程序运行时间和递 归调用次数; 3.画出盘子数n和运行时间t 、递归调用次数m的关系图, 并进行分析。 5.代码设计: Hanio.cpp #include"stdafx.h" #include #include #include void hanoi(int n,char x,char y,char z) { if(n==1) { printf("从%c->搬到%c\n",x,z); } else { hanoi(n-1,x,z,y); printf("从%c->%c搬到\n",x,z); hanoi(n-1,y,x,z); }

汉诺塔问题

实验二知识表示方法 梵塔问题实验 1.实验目的 (1)了解知识表示相关技术; (2)掌握问题规约法或者状态空间法的分析方法。 2.实验内容(2个实验内容可以选择1个实现) (1)梵塔问题实验。熟悉和掌握问题规约法的原理、实质和规约过程;理解规约图的表示方法; (2)状态空间法实验。从前有一条河,河的左岸有m个传教士、m个野人和一艘最多可乘n人的小船。约定左岸,右岸和船上或者没有传教士,或者野人数量少于传教士,否则野人会把传教士吃掉。搜索一条可使所有的野人和传教士安全渡到右岸的方案。 3.实验报告要求 (1)简述实验原理及方法,并请给出程序设计流程图。 我们可以这样分析: (1)第一个和尚命令第二个和尚将63个盘子从A座移动到B座; (2)自己将底下最大的盘子从A移动到C; (3)再命令第二个和尚将63个盘子从B座移动到C;(4)第二个和尚命令第三个和尚重复(1)(2)(3);以此类推便可以实现。这明显是个递归的算法科技解决的问

题。 (2)源程序清单: #include #include using namespace std; void main() { void hanoi(int n,char x,char y,char z);

int n; printf("input the number of diskes\n"); scanf("%d",&n); hanoi(n,'A','B','C'); } void hanoi(int n,char p1,char p2,char p3) { if(1==n) cout<<"盘子从"<

马踏棋盘非递归算法

#include struct point { int x,y;//马的位置 int dir;//这一次马行走的方向 }; struct stack { point p[64];//存储马的位置,方便回溯 }; int board [8][8]; int Htry1[8]={-2,-1,1,2,2,1,-1,-2}; int Htry2[8]={1,2,2,1,-1,-2,-2,-1}; bool chech[8][8]={0};//标记位置是否已经被占用 int main() { int i,j; int top=0; int z; cout<<"请输入马的初始位置"; cin>>i; cin>>j; stack sta; sta.p[top].x=i; sta.p[top].y=j; board [i][j]=top; chech [i][j]=true; int nx; int ny; for(int u=0;u<64;u++) sta.p[u].dir=0;//把每个结点的dir清零 for(z=0;;) { if(sta.p[top].x+Htry1[z]>=0&&sta.p[top].x+Htry1[z]<8&& sta.p[top].y+Htry2[z]>=0&&sta.p[top].y+Htry2[z]<8&& !chech [sta.p[top].x+Htry1[z]][sta.p[top].y+Htry2[z]]//检查要走的下个位置是否可行 ) { nx=sta.p[top].x+Htry1[z];

ny=sta.p[top].y+Htry2[z]; sta.p[top].dir=z; top++; sta.p[top].x=nx; sta.p[top].y=ny; board [nx][ny]=top; chech [nx][ny]=true; z=-1; } else if(z==7)//如果不可行,而且是最好一次检查 { chech [sta.p[top].x][sta.p[top].y]=false; top--; while(1) { z=sta.p[top].dir; if(z!=7) break; else { chech [sta.p[top].x][sta.p[top].y]=false; top--; } } } if(top==-1||top==63)break;//如果回溯到-1,或者栈满,则退出循环 z++; } for(i=0;i<8;i++) { for(j=0;j<8;j++) cout<

汉诺塔程序实验报告

实验题目: Hanoi 塔问题 一、问题描述: 假设有三个分别命名为 A , B 和C 的塔座,在塔座 B 上插有n 个直径大小各不相同、从小到 大编号为1, 2,…,n 的圆盘。现要求将塔座 B 上的n 个圆盘移至塔座 A 上并仍按同样顺序 叠排,圆盘移动时必须遵守以下规则: (1 )每次只能移动一个圆盘; (2)圆盘可以插在 A , B 和C 中任一塔上; ( 3)任何时刻都不能将一个较大的圆盘压在较小的圆盘之上。 要求: 用程序模拟上述问题解决办法,并输出移动的总次数, 圆盘的个数从键盘输入; 并想 办法计算出程序运行的时间。 二、 算法思路: 1 、建立数学模型: 这个问题可用递归法解决,并用数学归纳法又个别得出普遍解法: 假设塔座B 上有3个圆盘移动到塔座 A 上: (1) "将塔座B 上2个圆盘借助塔座 A 移动到塔座C 上; (2) "将塔座B 上1个圆盘移动到塔座 A 上; (3) "将塔座C 上2个圆盘借助塔座 B 移动到塔座A 上。 其中第 2步可以直接实现。第 1步又可用递归方法分解为: 1.1"将塔座B 上1个圆盘从塔座 1.2"将塔座B 上1个圆盘从塔座 1.3"将塔座A 上1个圆盘从塔座 第 3 步可以分解为: 3.1将塔座C 上1个圆盘从塔座 3.2将塔座C 上1个圆盘从塔座 3.3将塔座B 上1个圆盘从塔座 综上所述:可得到移动 3 个圆盘的步骤为 B->A,B->C, A->C, B->A, C->B, C->A, B->A, 2、算法设计: 将n 个圆盘由B 依次移到A , C 作为辅助塔座。当 n=1时,可以直接完成。否则,将塔 座B 顶上的n-1个圆盘借助塔座 A 移动到塔座C 上;然后将圆盘B 上第n 个圆盘移到塔 座A 上;最后将塔座 C 上的n-1个圆盘移到塔座 A 上,并用塔座B 作为辅助塔座。 三、原程序 #include #include #include int times = 0; void move(char a, char b) { printf("%c > %c \n", a,b); } void hno(int n,char a , char b, char c) { if (n==1) { move(a,c); times ++; } X 移动到塔座 A ; X 移动到塔座 C ; Z 移动到塔座 C 。 Y 移动到塔座 Y 移动到塔座 X 移动到塔座 B ; A ;

课程实践报告_汉诺塔

课程实践报告 题目:汉诺塔 姓名: 学号: 班级: 日期:

一实践目的 1、初步具备根据应用需求选择合理数据结构并进行算法设计的能力; 2、进一步提升C语言的应用能力; 3、初步掌握软件开发过程的问题分析、系统设计、程序编码、测试等基本方法和技能; 4、提高综合运用所学的理论知识和方法独立分析和解决问题的能力; 5、训练用系统的观点和软件开发一般规范进行软件开发,培养软件工作者所应具备的科学的工作方法和作风; 6、提升文档写作能力。 二问题定义及题目分析 汉诺塔(又称河内塔)问题是印度的一个古老的传说。开天辟地的神勃拉玛在一个庙里留下了三根金刚石的棒,第一根上面套着64个圆的金片,最大的一个在底下,其余一个比一个小,依次叠上去,庙里的众僧不倦地把它们一个个地从这根棒搬到另一根棒上,规定可利用中间的一根棒作为帮助,但每次只能搬一个,而且大的不能放在小的上面。这是一个著名的问题,几乎所有的教材上都有这个问题。由于条件是一次只能移动一个盘,且不允许大盘放在小盘上面,所以64个盘的移动次数是:18,446,744,073,709,551,615 这是一个天文数字,若每一微秒可能计算(并不输出)一次移动,那么也需要几乎一百万年。我们仅能找出问题的解决方法并解决较小N值时的汉诺塔,但很难用计算机解决64层的汉诺塔。后来,这个传说就演变为汉诺塔游戏: 1.有三根杆子A,B,C。A杆上有若干圆盘。2.每次移动一块圆盘,小的只能叠在大的上面。3.把所有圆盘从A杆全部移到C杆上。经过研究发现,汉诺塔的破解很简单,就是按照移动规则向一个方向移动圆盘:如3阶汉诺塔的移动:A→C,A→B,C→B,A→C,B→A,B→C,A→C。 程序所能达到的功能: 用户只需要输入所需的层数即可,程序会自动计算出最终需要的步骤,并同时给出中间移动的过程。 三概要设计 1、设计思想 如果盘子为1,则将这个盘子从塔座A移动到塔座C;如果不为1,则采用递归思想。将塔座A的前n-1个盘子借助C盘(即目的盘)移到塔座B,移后,此时C为空座,那我们就可以将塔座A的第n个盘子移到塔座C了。接下来就将塔座B的n-1个盘子借助A移到塔座C,从而完成盘子的移动。 2、数据类型 结构体:用来存放盘子的栈。同时,在函数的参数中还用到了结构体类型的引用。 其他类型:基本的数据类型,包括整形,字符型。用来存放临时变量。 3、主要模块

后序遍历的非递归算法.doc

第六章树二叉树 后序遍历的非递归算法。在对二叉树进行后序遍历的过程中,当指针p 指向某一个结点时,不能马上对它进行访问,而要先遍历它的左子树,因而要将此结点的地址进栈保存。当其左子树遍历完毕之后,再次搜索到该结点时(该结点的地址通过退栈得到) ,还不能对它进行访问,还需要遍历它的右子树,所以,再一次将此结点的地址进栈保存。为了区别同一结点的两次进栈,引入一个标志变量nae,有0 表示该结点暂不访问 1 表示该结点可以访问标志flag 的值随同进栈结点的地址一起进栈和出栈。因此,算法中设置两个空间足够的堆栈,其中, STACKlCM] 存放进栈结点的地址, STACK2[M] 存放相应的标志n 昭的值, 两个堆栈使用同一栈顶指针top , top 的初值为— 1 。 具体算法如下: #defineH 100 /?定义二叉树中结点最大数目。/ voidPOSTOiRDER(BTREET) { / *T 为二叉树根结点所在链结点的地址。/ BTREESTACKl[H] , p=T ;intSTACK2[M] , flag,top= —1;if(T!=NULL) d0{ while(p!=NULL){ STACK/[++top]=p ; /?当前p所指结点的地址进栈?/ STACK2[top]= 0 ; /,标志0 进栈?/ p=p->lchild ;/?将p 移到其左孩子结点x/ } p=STACKl[top) ;flag=STACK2[top--] ;if(flag==0){ STACKl[++top]=p ; /,当前p所指结点的地址进栈。/ STACK2[toP]=1 ; /?标志1 进栈?/ p=p->rchild ; /x将p移到其右孩子结点o/ } else{ VISIT(p) ; /x访问当前p所指的结点x/ p=NULL ; } }while(p!=NULLtttop!=-1) ; } 不难分析,上述算法的时间复杂度同样为O(n) 7.6.3 二叉树的线索化算法 对--X 树的线索化,就是把二叉树的二叉链表存储结构中结点的所有空指针域改造成指向某结点在某种遍历序列中的直接前驱或直接后继的过程, 因此, 二叉树的线索化过程只能 在对二叉树的遍历过程中进行。 下面给出二叉树的中序线索化的递归算法。算法中设有指针pre,用来指向中序遍历过 程中当前访问的结点的直接前驱结点,pre的初值为头结点的指针;T初始时指向头结点, 但在算法执行过程中,T总是指向当前访问的结点。voldlNTHREAD(TBTREET) { TBTREE pre ; if(T!=Null){ INTHREAD(T —>lchild); if(T —>rchild==NULL)

用递归和非递归算法实现二叉树的三种遍历

○A ○C ○D ○B ○E○F G 《数据结构与算法》实验报告三 ——二叉树的操作与应用 一.实验目的 熟悉二叉链表存储结构的特征,掌握二叉树遍历操作及其应用 二. 实验要求(题目) 说明:以下题目中(一)为全体必做,(二)(三)任选其一完成 (一)从键盘输入二叉树的扩展先序遍历序列,建立二叉树的二叉链表存储结构;(二)分别用递归和非递归算法实现二叉树的三种遍历; (三)模拟WindowsXP资源管理器中的目录管理方式,模拟实际创建目录结构,并以二叉链表形式存储,按照凹入表形式打印目录结构(以扩展先序遍历序列输入建立二叉链表结构),如下图所示: (基本要求:限定目录名为单字符;扩展:允许目录名是多字符组合) 三. 分工说明 一起编写、探讨流程图,根据流程图分工编写算法,共同讨论修改,最后上机调试修改。 四. 概要设计 实现算法,需要链表的抽象数据类型: ADT Binarytree { 数据对象:D是具有相同特性的数据元素的集合 数据关系R: 若D为空集,则R为空集,称binarytree为空二叉树;

若D不为空集,则R为{H},H是如下二元关系; (1)在D中存在唯一的称为根的数据元素root,它在关系H下无前驱; (2)若D-{root}不为空,则存在D-{root}={D1,Dr},且D1∩Dr为空集; (3)若D1不为空,则D1中存在唯一的元素x1,∈H,且存在D1上的关系H1是H的子集;若Dr不为空集,则Dr中存在唯一的元素 Xr,∈H,且存在Dr上的关系Hr为H的子集;H={,,H1,Hr}; (4) (D1,{H1})是一颗符合本定义的二叉树,称为根的左子树,(Dr,{Hr}) 是一颗符合本定义的二叉树,称为根的右子树。 基本操作: Creatbitree(&S,definition) 初始条件:definition给出二叉树S的定义 操作结果:按definition构造二叉树S counter(T) 初始条件:二叉树T已经存在 操作结果:返回二叉树的总的结点数 onecount(T) 初始条件:二叉树T已经存在 操作结果:返回二叉树单分支的节点数 Clearbintree(S) 初始条件:二叉树S已经存在 操作结果:将二叉树S清为空树 Bitreeempty(S) 初始条件:二叉树S已经存在 操作结果:若S为空二叉树,则返回TRUE,否则返回FALSE Bitreedepth(S,&e) 初始条件:二叉树S已经存在 操作结果:返回S的深度 Parent(S) 初始条件:二叉树S已经存在,e是S中的某个结点 操作结果:若e是T的非根结点,则返回它的双亲,否则返回空Preordertraverse(S) 初始条件:二叉树S已经存在,Visit是对结点操作的应用函数。 操作结果:先序遍历S,对每个结点调用函数visit一次且仅一次。 一旦visit失败,则操作失败。 Inordertraverse (S,&e) 初始条件:二叉树S已经存在,Visit是对结点操作的应用函数。

相关文档
最新文档