关于几个常见数字滤波器的设计

关于几个常见数字滤波器的设计
关于几个常见数字滤波器的设计

实验一 信号、系统及系统响应

1、 编写常用信号的程序:

(1):单位采样序列δ(n)。 程序如下:

function [x,n]=impseq(n0,ns,nf) n0=0; ns=-5; nf=5; n=[ns:nf]; x=[(n-n0)==0] stem(n,x) grid

title('单位采样序列') xlabel('n') ylabel('x(n)')

运行结果如下:

-5

-4

-3

-2

-1

01

2

3

4

5

00.10.20.30.40.50.6

0.70.80.91单位采样序列

n

x (n )

(2):单位阶跃序列u(n)。

程序如下:

function [x,n]=stepseq(n0,ns,nf) n0=0; ns=-5; nf=5; n=[ns:nf]; x=[(n-n0)>=0] stem(n,x) grid

title('单位阶跃序列') xlabel('n') ylabel('u(n)')

运行结果如下:

-5

-4

-3

-2

-1

01

2

3

4

5

00.10.20.30.40.50.6

0.70.80.91单位阶跃序列

n

u (n )

(3):单位矩形序列{ EMBED Equation.3 |)(n R N 。 程序如下:

function [x,n]=juxingseq(n0,ns,nf) n0=4;

ns=0; nf=9; n=[ns:nf];

x=[((n-ns)>=0)&((n-nf)<=0)] stem(n,x) grid

title('单位矩形序列') xlabel('n') ylabel('R(n)') end

运行结果如下:

1

2

3

4

5

6

7

8

9

00.10.20.30.40.50.6

0.70.80.91单位矩形序列

n

R (n )

(4)正弦序列。

程序如下:

function [x,n]=sin(w,n) w=0.2*pi; n=(0:0.2:10); x=sin(w*n); stem(n,x)

title('正弦序列') xlabel('n')

ylabel('x(n)')

运行结果如下:

1

2

3

4

56

7

8

9

10

-1-0.8-0.6-0.4-0.200.2

0.40.60.81正弦序列

n

x (n )

(5):。

程序如下:

function x=exp(n) n=(0:0.0001:0.01); x=exp(-1000*abs(n)) stem(n,x,'.')

运行结果如下:

0.0010.0020.0030.0040.0050.0060.0070.0080.009

0.01

00.10.20.30.40.50.60.70.80.91

(6):。 程序如下: function x=rs(n) n=(0:0.1:10); A=1;c=2;w=2*pi;

x=A*exp(-c*n).*sin(w*n) stem(n,x,'.')

运行结果如下:

1

2

3

4

5

6

7

8

9

10

-0.3

-0.2-0.100.10.20.30.40.50.60.7

2、认真复习采样理论、 离散信号与系统、 线性卷积、 序列的傅里叶变换及性质等有关内容, 阅读本实验原理与方法。

(1)观察并分析采用不同频率时,对函数的频谱影响。 (a):以,对其进行采样得到。 (b):以,对其进行采样得到。

(c):对、采用理想内插函数重建原始信号。

程序如下:

function x=exp(n) n1=(0:0.0002:0.01); x=exp(-1000*abs(n1)) subplot(2,1,1) stem(n1,x,'.') grid on

n2=(0:0.001:0.01); x=exp(-1000*abs(n2)) subplot(2,1,2) stem(n2,x,'.') grid on

运行结果如下:

0.0010.002

0.0030.004

0.0050.0060.007

0.0080.009

0.01

00.20.40.60.81

0.0010.002

0.0030.004

0.0050.0060.007

0.0080.009

0.01

00.20.40.60.81

(2)实现两序列的卷积。利用y=conv(x,h).例如:求解

试求:.

程序如下: x=[5,9,3,6,-8];

h=[18,7,5,20,11,14,9]; y=conv(x,h) n=-4:6; stem(n,y,'b') hold on grid on

运行结果如下:

-4

-3-2-10123456

-100

-50050100150200250300

(3)系统单位脉冲响应序列产生子程序。 本实验要用到两种FIR 系统。 a. h a (n)=R 10(n);

b. h b (n)=δ(n)+2.5δ(n-1)+2.5δ(n-2)+δ(n-3) h b (n)信号的程序如下: function [x,n]=impseq(n0,ns,nf) n0=0; ns=-5; nf=5; n=[ns:nf];

x0=[(n-n0)==0]

x1=2.5*[(n-1)==0] x2=2.5*[(n-2)==0] x3=[(n-3)==0] x=x0+x1+x2+x3 stem(n,x) grid

title('单位采样序列') xlabel('n') ylabel('x(n)')

运行结果如下:

-5

-4-3-2-1

012345

00.511.5

2

2.5

单位采样序列

n

x (n )

3.时域离散信号、 系统和系统响应分析。

观察信号x b (n)和系统h b (n)的时域和频域特性; 利用线性卷积求信号x b (n)通过系统h b (n)的响应y(n), 比较所求响应y(n)和h b (n)的时域及频域特性, 注意它们之间有无差别, 绘图说明, 并用所学理论解释所得结果。

b. 观察系统h a (n)对信号x c (n)的响应特性。 程序如下:

w=(-3*pi:0.001:3*pi)+eps; Xa=1;

Xb=1+2.5*exp(-j*w)+2.5*exp(-2*j*w)+exp(-3*j*w);

subplot(2,1,1)

plot(w/pi,abs(Xa),'b') xlabel('w/pi') ylabel('|Xa|')

title('Xa 频域特性') hold on grid on

subplot(2,1,2) plot(w/pi,abs(Xb)) xlabel('w/pi') ylabel('|Xb|')

title('Xb 频域特性') hold on grid on

运行结果如下:

-3

-2-1

0123

00.511.5

2w/pi |X a |

X a 频域特性

-3

-2

-1

01

2

3

0246

8w/pi

|X b |

X b 频域特性

程序如下:

function [x,n]=impseq(n0,ns,nf) n0=0; ns=0; nf=3;

n1=[ns:nf];

x0=[(n1-n0)==0]; xb=[(n1-n0)==0]; x1=2.5*[(n1-1)==0]; x2=2.5*[(n1-2)==0]; x3=[(n1-3)==0]; hb=x0+x1+x2+x3; y=conv(xb,hb) n=0:6;

stem(n,y,'b') grid

title('线性卷积') xlabel('n') ylabel('y(n)')

运行结果如下:

12

3456

00.511.5

2

2.5

线性卷积

n

y (n )

-3

-2-1

0123

01234

5

6

7

w/pi

|X b |

y 频域特性

通过观察响应的y(n)和h b (n)的时域及频域特性,发现两者的时域及频域特

性完全相同,说明h b (n)和单位抽样响应相卷积得到的还是h b (n)本身。用数学表达式为y(n)=h b (n)*δ(n)=h b (n)。

b.程序如下:

function [x,n]=juxingseq(n0,ns,nf) n0=4; ns=0; nf=9; n=[ns:nf];

x=[((n-ns)>=0)&((n-nf)<=0)] y=conv(x,x) n=0:18; stem(n,y)

运行结果如下:

2

4

6

8

10

12

14

16

18

012345678910

系统h a (n)对信号x c (n)的响应特性:

-3

-2

-1

01

2

3

0102030405060

708090100w/pi

|y |

y 频域特性

对时域进行采样,频域发生周期延拓。

思考题

在分析理想采样序列特性的实验中,采样频率不同时,相应理想采样序列的傅里叶变换频谱的数字频率度量是否都相同? 它们所对应的模拟频率是否相同? 为什么?

答:采样频率不同时,相应理想采样序列的傅里叶变换频谱的数字频率度量相同,

实验二用FFT作谱分析

1、复习DFT的定义、性质和用DFT作频谱分析的有关内容。用matlab函数dfs(dft)和idfs(idft)实现dfs(dft)正反变换。

(1)function [Xk]=dfs(xn,N)

function [Xk]=dfs(xn,N)

n=0:N-1;

k=0:N-1;

WN=exp(-j*2*pi/N);

nk=n'*k;

Xk=xn*WN.^nk;

(2)function [xn]=idfs(Xk,N)

n=0:N-1;

k=0:N-1;

WN=exp(-j*2*pi/N);

nk=-n'*k;

Xk=xn*WN.^nk;

2、计算周期序列的DFS.

N=16;

xn=[4 5 6 7 4 5 6 7 4 5 6 7 4 5 6 7];

n=0:N-1;

Xk=dfs(xn,N);

stem(n,abs(Xk))

ylabel('X(k)')

grid on

051015

102030405060708090X (k )

3、为了说明高密度频谱和高分辨率频谱之间的区别,考察序列x(n)有限个样本的频谱。

当时,求x(n)的DFT. 当时,求x(n)的DFT.

程序如下:

N=11;

xn=cos(0.48*pi*n)+cos(0.52*pi*n); n=0:N-1;

Xk=dfs(xn,N); stem(n,abs(Xk)) xlabel('n'); ylabel('X(k)') title('N=11') grid on

运行结果如下:

1

2

3

4

56

7

8

9

10

0123456

78910n

X (k )

N=11

N=101;

xn=cos(0.48*pi*n)+cos(0.52*pi*n); n=0:N-1;

Xk=dfs(xn,N); stem(n,abs(Xk),'.') xlabel('n'); ylabel('X(k)') title('N=101') grid on

010203040

5060708090100

10

20

30

40

50

60

n

X (k )

N=101

4、利用矩阵相乘计算循环卷积。

设计算其5点、6点、7点、8点、9点循环卷积。并分析线性卷积与循环卷积的关系。

(1)自定义圆周移位函数cirshift.m

function y=cirshift(x,m,N)

if length(x)>N

error('N必须>=x的长度')

end

x=[x zeros(1,N-length(x))];

n=[0:1:N-1];

n=mod(n-m,N);

y=x(n+1);

(2)自定义圆周卷积函数

function y=circonvt(x1,x2,N)

%check for length of x1

if length(x1)>N

error('N必须>=x1的长度')

end

%check for length of x2

if length(x2)>N

error('N必须>=x2的长度')

end

x1=[x1 zeros(1,N-length(x1))];

x2=[x2 zeros(1,N-length(x2))];

m=[0:1:N-1];

x2=x2(mod(-m,N)+1);

H=zeros(N,N);

for n=1:1:N

H(n,:)=cirshift(x2,n-1,N);

end

y=x1*H'

(3)命令窗口输入:

①5点圆周卷积

x1=[1 2 3 4 5];

x2=[6 7 8 9];

y=circonvt(x1,x2,5)

输出

y =

100 95 85 70 100

②6点圆周卷积

x1=[1 2 3 4 5]; x2=[6 7 8 9];

y=circonvt(x1,x2,6) 输出: y =

82 64 40 70 100 94 ③7点圆周卷积 x1=[1 2 3 4 5]; x2=[6 7 8 9];

y=circonvt(x1,x2,7) 输出: y =

51 19 40 70 100 94 76 ④8点圆周卷积 x1=[1 2 3 4 5]; x2=[6 7 8 9];

y=circonvt(x1,x2,8) 输出: y =

6 19 40 70 100 94 76 45 ⑤9点圆周卷积 x1=[1 2 3 4 5]; x2=[6

7

8 9];

y=circonvt(x1,x2,9) 输出: y =

6 19 40 70 100 94 76 45 0

6、编制信号产生子程序, 产生以下典型信号供谱分析用:

1423()()

1,03()847

403()347

0x n R n n n x n n n n n x n n n =?+≤≤?

=-≤≤???-≤≤??

=-≤≤???

(1)x1(n)=R4(n)

function [x,n]=juxingseq(n0,ns,nf) n0=1.5; ns=0; nf=3; n=[ns:nf];

x=[((n-ns)>=0)&((n-nf)<=0)]; stem(n,x);

xlabel('采样时间n');

ylabel('单位矩形序列R4(n )'); title('单位矩形序列') grid on

0.5

1

1.52

2.5

3

00.10.20.30.40.50.60.70.8

0.91采样时间n

单位矩形序列R 4(n )

单位矩形序列

(2) X2(n)=

function [x,n]=fenduan(n0,n1,n2,n3)

456()cos 4()sin 8

()cos8cos16cos20x n n

x n n

x n t t t

π

π

πππ===++

n0=0;n1=3;n2=4;n3=7; n=[n0:n1]; xn=n+1; n_0=[n2:n3]; xn_0=8-n_0; stem(n,xn) hold on

stem(n_0,xn_0)

xlabel('采样时间n'); ylabel('x2(n)'); grid on

012

34567

0.511.522.5

33.54采样时间n

x 2(n )

(3) X3(n)=

function [x,n]=fenduan1(n0,n1,n2,n3) n0=0;n1=3;n2=4;n3=7; n=[n0:n1]; xn=4-n;

n_0=[n2:n3]; xn_0=n_0-3; stem(n,xn)

hold on

stem(n_0,xn_0)

xlabel('采样时间n'); ylabel('x3(n)'); grid on

012

34567

0.511.522.5

33.54采样时间n

x 3(n )

(4)x4(n)=cosn

function [x,n]=cos(w,n) w=pi/4; n=(0:0.4:8); x=sin(w*n); stem(n,x)

xlabel('采样时间n'); ylabel('余弦序列x(n)'); title('余弦序列') grid on

滤波器设计步骤及实现程序

数字滤波器的设计步骤及程序实现 湖南理工学院信息与通信工程学院 一、IIR 脉冲响应不变法设计步骤 1、已知实际数字指标as s ap p ,,,ωω 2、将数字指标化为原型模拟指标As s Ap p ,,,ΩΩ,可设T=pi, T /ω=Ω 3、求原型模拟滤波器的c N Ω,,其中:??? ???ΩΩ--=)/lg(2)]110/()110lg[(10/10/s p A A s p N N A p cp p 210 /1 10 -Ω= Ω N A s cs s 210 /1 10 -Ω= Ω ][cs cp c ΩΩ∈Ω, 4、根据N 写出归一化原型系统函数)(p G a 5、用c s p Ω=/代入得原型系统函数c s p a a p G s H Ω==/)()( 6、将)(s H a 化为部分分式展开形式∑-=k k a s s A s H )( 7、写出)(z H 的极点T s k k e z =,并写出)(z H 的部分分式展开形式∑--?= 11)(z z A T z H k k 8、将)(z H 化为分子分母形式,验证设计结果。 二、IIR 双线性变换法设计步骤 1、已知实际数字指标as s ap p ,,,ωω 2、将数字指标化为原型模拟指标As s Ap p ,,,ΩΩ,可设T=2, 2 tan 2ω?= ΩT 3、求原型模拟滤波器的c N Ω,,其中:?? ? ???ΩΩ--=)/lg(2)]110/()110lg[(10/10/s p A A s p N N A p cp p 210 /1 10 -Ω= Ω N A s cs s 210 /1 10 -Ω= Ω ][cs cp c ΩΩ∈Ω, 4、根据N 写出归一化原型系统函数)(p G a 5、用c s p Ω=/代入得原型系统函数c s p a a p G s H Ω==/) ()( 6、用11 112--+-?=Z Z T s 代入原型系统函数)(s H a 得1 1 112)()(--+-? ==Z Z T s a s H z H 8、将)(z H 整理成分子分母形式,验证设计结果。

巴特沃斯数字低通滤波器

目录 1.题目.......................................................................................... .2 2.要求 (2) 3.设计原理 (2) 3.1 数字滤波器基本概念 (2) 3.2 数字滤波器工作原理 (2) 3.3 巴特沃斯滤波器设计原理 (2) 3.4脉冲响应不法 (4) 3.5实验所用MA TLAB函数说明 (5) 4.设计思路 (6) 5、实验内容 (6) 5.1实验程序 (6) 5.2实验结果分析 (10) 6.心得体会 (10) 7.参考文献 (10)

一、题目:巴特沃斯数字低通滤波器 二、要求:利用脉冲响应不变法设计巴特沃斯数字低通滤波器,通带截止频率100HZ,采样频率1000HZ ,通带最大衰减为0.5HZ ,阻带最小衰减为10HZ ,画出幅频、相频相应相应曲线。并假设一个信号x(t)=sin(2*pi*f1*t)+sin(2*pi*f2*t),其中f1=50HZ,f2=200HZ 。用此信号验证滤波器设计的正确性。 三、设计原理 1、数字滤波器的基本概念 所谓数字滤波器,是指输入、输出均为数字信号,通过数值运算处理改变输入信号所含频率成分的相对比例,或者滤波器除某些频率成分的数字器件或程序,因此,数字滤波的概念和模拟滤波相同,只是的形式和实现滤波方法不同。正因为数字滤波通过数值运算实现滤波,所以数字滤波处理精度高、稳定、体积小、质量轻、灵活、不存在阻抗匹配问题,可以实验模拟滤波器无法实现的特殊滤波功能。如果要处理的是模拟信号,可通过A\DC 和D\AC,在信号形式上进行匹配转换,同样可以使用数字滤波器对模拟信号进行滤波。 2、数字滤波器的工作原理 数字滤波器是一个离散时间系统,输入x(n)是一个时间序列,输出y(n)也是一个时间序列。如数字滤波器的系统函数为H(Z),其脉冲响应为h(n),则在时间域内存在下列关系 y(n)=x(n) h(n) 在Z 域内,输入输出存在下列关系 Y(Z)=H(Z)X(Z) 式中,X(Z),Y(Z)分别为输入x(n)和输出y(n)的Z 变换。 同样在频率域内,输入和输出存在下列关系 Y(jw)=X(jw)H(jw) 式中,H(jw)为数字滤波器的频率特性,X(jw)和Y(jw)分别为x(n)和y(n)的频谱。w 为数字角频率,单位rad 。通常设计H(jw)在某些频段的响应值为1,在某些频段的响应为0.X(jw)和H(jw)的乘积在频率响应为1的那些频段的值仍为X(jw),即在这些频段的振幅可以无阻碍地通过滤波器,这些频带为通带。X(jw)和H(jw)的乘积在频段响应为0的那些频段的值不管X(jw)大小如何均为零,即在这些频段里的振幅不能通过滤波器,这些频带称为阻带。 一个合适的数字滤波器系统函数H(Z)可以根据需要输入x(n)的频率特性,经数字滤波器处理后的信号y(n)保留信号x(n)中的有用频率成分,去除无用频率成分。 3、巴特沃斯滤波器设计原理 (1)基本性质 巴特沃斯滤波器以巴特沃斯函数来近似滤波器的系统函数。巴特沃斯滤波器是根据幅频特性在通频带内具有最平坦特性定义的滤波器。 巴特沃思滤波器的低通模平方函数表示1 () ΩΩ+ =Ωc N /22 a 11 ) (j H

常用的8种数字滤波算法

常用的8种数字滤波算法 摘要:分析了采用数字滤波消除随机干扰的优点,详细论述了微机控制系统中常用的8种数字滤波算法,并讨论了各种数字滤波算法的适用范围。 关键词:数字滤波;控制系统;随机干扰;数字滤波算法 1 引言 在微机控制系统的模拟输入信号中,一般均含有各种噪声和干扰,他们来自被测信号源本身、传感器、外界干扰等。为了进行准确测量和控制,必须消除被测信号中的噪声和干扰。噪声有2大类:一类为周期性的,其典型代表为50 Hz 的工频干扰,对于这类信号,采用积分时间等于20 ms整倍数的双积分A/D转换器,可有效地消除其影响;另一类为非周期的不规则随机信号,对于随机干扰,可以用数字滤波方法予以削弱或滤除。所谓数字滤波,就是通过一定的计算或判断程序减少干扰信号在有用信号中的比重,因此他实际上是一个程序滤波。 数字滤波器克服了模拟滤波器的许多不足,他与模拟滤波器相比有以下优点: (1)数字滤波器是用软件实现的,不需要增加硬设备,因而可靠性高、稳定性好,不存在阻抗匹配问题。 (2)模拟滤波器通常是各通道专用,而数字滤波器则可多通道共享,从而降低了成本。 (3)数字滤波器可以对频率很低(如0.01 Hz)的信号进行滤波,而模拟滤波器由于受电容容量的限制,频率不可能太低。 (4)数字滤波器可以根据信号的不同,采用不同的滤波方法或滤波参数,具有灵活、方便、功能强的特点。 2 常用数字滤波算法 数字滤波器是将一组输入数字序列进行一定的运算而转换成另一组输出数字序列的装置。设数字滤波器的输入为X(n),输出为Y(n),则输入序列和输出序列之间的关系可用差分方程式表示为: 其中:输入信号X(n)可以是模拟信号经采样和A/D变换后得到的数字序列,也

实验五:FIR数字滤波器设计与软件实现

实验五:FIR数字滤波器设计与软件实现 一、实验指导 1.实验目的 (1)掌握用窗函数法设计FIR数字滤波器的原理和方法。 (2)掌握用等波纹最佳逼近法设计FIR数字滤波器的原理和方法。 (3)掌握FIR滤波器的快速卷积实现原理。 (4)学会调用MATLAB函数设计与实现FIR滤波器。 2.实验容及步骤 (1)认真复习第七章中用窗函数法和等波纹最佳逼近法设计FIR数字滤波器的原理; (2)调用信号产生函数xtg产生具有加性噪声的信号xt,并自动显示xt及其频谱,如图1所示; 图1 具有加性噪声的信号x(t)及其频谱如图 (3)请设计低通滤波器,从高频噪声中提取xt中的单频调幅信号,要求信号幅频失真小于0.1dB,将噪声频谱衰减60dB。先观察xt的频谱,确定滤波器指标参数。 (4)根据滤波器指标选择合适的窗函数,计算窗函数的长度N,调用MATLAB函数fir1设计一个FIR低通滤波器。并编写程序,调用MATLAB快速卷积函数fftfilt实现对xt的滤波。绘图显示滤波器的频响特性曲线、滤波器输出信号的幅频特性图和时域波形图。 (4)重复(3),滤波器指标不变,但改用等波纹最佳逼近法,调用MATLAB函数remezord 和remez设计FIR数字滤波器。并比较两种设计方法设计的滤波器阶数。 提示:○1MATLAB函数fir1的功能及其调用格式请查阅教材; ○2采样频率Fs=1000Hz,采样周期T=1/Fs; ○3根据图1(b)和实验要求,可选择滤波器指标参数:通带截止频率fp=120Hz,阻带截

至频率fs=150Hz ,换算成数字频率,通带截止频率p 20.24p f ωπ=T =π,通带最大衰为0.1dB ,阻带截至频率s 20.3s f ωπ=T =π,阻带最小衰为60dB 。 ○ 4实验程序框图如图2所示,供读者参考。 图2 实验程序框图 4.思考题 (1)如果给定通带截止频率和阻带截止频率以及阻带最小衰减,如何用窗函数法设计线性相位低通滤波器?请写出设计步骤. (2)如果要求用窗函数法设计带通滤波器,且给定通带上、下截止频率为pl ω和pu ω,阻带上、下截止频率为sl ω和su ω,试求理想带通滤波器的截止频率cl cu ωω和。 (3)解释为什么对同样的技术指标,用等波纹最佳逼近法设计的滤波器阶数低? 5.信号产生函数xtg 程序清单(见教材) 二、 滤波器参数及实验程序清单 1、滤波器参数选取 根据实验指导的提示③选择滤波器指标参数: 通带截止频率fp=120Hz ,阻带截至频率fs=150Hz 。代入采样频率Fs=1000Hz ,换算成数字频率,通带截止频率p 20.24p f ωπ=T =π,通带最大衰为0.1dB ,阻带截至频率

实验四IIR数字滤波器的设计(1)(2)课案

实验四 IIR 数字滤波器的设计及网络结构 一、实验目的 1.了解IIR 数字滤波器的网络结构。 2.掌握模拟滤波器、IIR 数字滤波器的设计原理和步骤。 3.学习编写数字滤波器的设计程序的方法。 二、实验内容 数字滤波器:是数字信号处理技术的重要内容。它的主要功能是对数字信号进行处理,保留数字信号中的有用成分,去除信号中的无用成分。 1.数字滤波器的分类 滤波器的种类很多,分类方法也不同。 (1)按处理的信号划分:模拟滤波器、数字滤波器 (2)按频域特性划分;低通、高通、带通、带阻。 (3)按时域特性划分:FIR 、IIR 2.IIR 数字滤波器的传递函数及特点 数字滤波器是具有一定传输特性的数字信号处理装置。它的输入和输出均为离散的数字信号,借助数字器件或一定的数值计算方法,对输入信号进行处理,改变输入信号的波形或频谱,达到保留信号中有用成分去除无用成分的目的。如果加上A/D 、D/A 转换,则可以用于处理模拟信号。 设IIR 滤波器的输入序列为x(n),则IIR 滤波器的输入序列x(n)与输出序列y(n)之间的关系可以用下面的方程式表示: 1 ()()() M N i j i j y n b x n i a y n j ===-+-∑∑ (5-1) 其中,j a 和i b 是滤波器的系数,其中j a 中至少有一个非零。与之相对应的差分方程为: 10111....()()()1....M M N N b b z b z Y z H Z X z a z a z ----++== ++ (5-2) 由传递函数可以发现无限长单位冲激响应滤波器有如下特点: (1) 单位冲激响应h(n)是无限长的。

IIR数字滤波器的设计流程图讲课讲稿

目录 目录 0 前言 (1) 1.1数字滤波器简介 (1) 1.2使用数字滤波器的原因 (1) 1.3设计的原理和内容 (1) 工程概况 (2) 正文 (2) 3.1 设计的目的和意义 (2) 3.2 目标和总体方案 (2) 3.3 设计方法和内容 (3) 3.4 硬件环境 (3) 3.5软件环境 (3) 3.6IIR数字滤波器设计思路 (3) 3.7 IIR数字滤波器的设计流程图 (3) 3.8 IIR数字滤波器设计思路 (4) 3.9设计IIR数字滤波器的两种方法 (4) 3.10双线性变换法的基本原理 (5) 3.11用双线性变换法设计IIR数字滤波器的步骤 (6) 3.12程序源代码和运行结果 (6) 3.12.1低通滤波器 (6) 3.12.3带通滤波器 (10) 3.12.4带阻滤波器 (13) 3.13结论 (15) 3.13.1存在的问题 (15) 3.13.2解决方案 (16) 致谢 (16)

参考文献 (16) 前言 1.1数字滤波器简介 数字滤波器是一种用来过滤时间离散信号的数字系统,通过对抽样数据进行数学处理来达到频域滤波的目的。可以设计系统的频率响应,让它满足一定的要求,从而对通过该系统的信号的某些特定的频率成分进行过滤,这就是滤波器的基本原理。如果系统是一个连续系统,则滤波器称为模拟滤波器。如果系统是一个离散系统,则滤波器称为数字滤波器。 信号通过线性系统后,其输出信号就是输入信号和系统冲激响应的卷积。从频域分析来看,信号通过线性系统后,输出信号的频谱将是输入信号的频谱与系统传递函数的乘积。除非为常数,否则输出信号的频谱将不同于输入信号的频谱,某些频率成分较大的模,因此,中这些频率成分将得到加强,而另外一些频率成分的模很小甚至为零,中这部分频率分量将被削弱或消失。因此,系统的作用相当于对输入信号的频谱进行加权。 1.2使用数字滤波器的原因 数字滤波器具有比模拟滤波器更高的精度,甚至能够实现后者在理论上也无法达到的性能。数字滤波器相比模拟滤波器有更高的信噪比。数字滤波器还具有模拟滤波器不能比拟的可靠性。根据其冲击响应函数的时域特性可将数字滤波器分为IIR(有限长冲击响应)和FIR(无限长冲击响应)。 1.3设计的原理和内容 在windows环境下进行语言信号采集,通过IIR数字滤泼器的设计,数字带滤波器就是用软件来实现上面的滤波过程,可以很好的克服模拟滤波器的缺点,数字带滤波器的参数一旦确定,就不会发生变化。IIR型有较好的通带与阻带特性,所以,在一般的设计中选用IIR 型。IIR型又可以分成Butterworth型滤波器,ChebyshevII型滤波器和椭圆型滤波器等。 IIR数字滤波器的设计一般是利用目前已经很成熟的模拟滤波器的设计方法来进行设计,通常采用模拟滤波器原型有butterworth函数、chebyshev函数、bessel函数、椭圆滤波器函数等。 IIR数字滤波器的设计步骤: (1)按照一定规则把给定的滤波器技术指标转换为模拟低通滤波器的技术指标; (2)根据模拟滤波器技术指标设计为响应的模拟低通滤波器; (3)很据脉冲响应不变法和双线性不变法把模拟滤波器转换为数字滤波器;

切比雪夫1型数字低通滤波器

目录 1. 数字滤波器的设计任务及要求 (2) 2. 数字滤波器的设计及仿真 (2) 2.1数字滤波器的设计 (3) 2.2数字滤波器的性能分析 (3) 3. 数字滤波器的实现结构对其性能影响的分析 (8) 3.1数字滤波器的实现结构一及其幅频响应 (10) 3.2数字滤波器的实现结构二及其幅频响应 (12) 3.3 数字滤波器的实现结构对其性能影响的小结 (12) 4. 数字滤波器的参数字长对其性能影响的分析 (13) 4.1数字滤波器的实现结构一参数字长及幅频响应特性变化 4.2数字滤波器的实现结构二参数字长及幅频响应特性变化 4.3 数字滤波器的参数字长对其性能影响的小结 (16) 5. 结论及体会 (16) 5.1 滤波器设计、分析结论 (16) 5.2 我的体会 (16) 5.3 展望 (16)

1.数字滤波器的设计任务及要求 1. 设计说明 每位同学抽签得到一个四位数,由该四位数索引下表确定待设计数字滤波器的类型及其设计方法,然后用指定的设计方法完成滤波器设计。 要求:滤波器的设计指标: 低通: (1)通带截止频率πrad (id) pc 32 ln = ω (2)过渡带宽度πrad ) (i d 160 10log tz ≤?ω (3)滚降dB αroll 60= 其中,i d — 抽签得到那个四位数(学号的最末四位数),本设计中i d =0201。 2. 滤波器的初始设计通过手工计算完成; 3. 在计算机辅助计算基础上分析滤波器结构对其性能指标的影响(至少选择两种以上合适的滤波器 结构进行分析); 4. 在计算机辅助计算基础上分析滤波器参数的字长对其性能指标的影响; 5. 以上各项要有理论分析和推导、原程序以及表示计算结果的图表; 6. 课程设计结束时提交设计说明书。 2.数字滤波器的设计及仿真 2.1数字滤波器(编号0201)的设计 数字滤波器是数字信号处理的重要工具之一,它通过数值运算处理改变输入信号所含频率成分的相对比例或者滤出某些频率成分的数字器件或程序,而数字滤波器处理精度高、体积小、稳定、重量轻、灵活、不存在阻抗匹配问题,可以实现模拟滤波器无法实现的特殊功能。 本次课程设计使用MATLAB 信号处理箱和运用切比雪夫法设计数字滤波器,将手工计算一个切比雪夫I 型的IIR 的低通模拟滤波器的系统函数,并在MATLAB 的FDATool 设计工具分析其性能指标。

IIR数字滤波器的设计实验报告

IIR数字滤波器的设计 一、实验目的: 掌握冲激相应不变法和双线性变换法设计IIR数字滤波器的原理和方法; 观察冲激相应不变法和双线性变换法设计IIR数字滤波器的频率特性; 了解冲激相应不变法和双线性变换法的特点和区别。 二、实验原理: 无限长单位冲激响应(IIR)数字滤波器的设计思想: a)设计一个合适的模拟滤波器 b)利用一定的变换方法将模拟滤波器转换成满足预定指 标的数字滤波器 切贝雪夫I型:通带中是等波纹的,阻带是单调的

切贝雪夫II型:通带中是单调的,阻带是等波纹的 1.用冲击响应不变法设计一个低通切贝雪夫I型数字滤波器通带上限截止频率为400Hz 阻带截止频率为600Hz 通带最大衰减为0.3分贝 阻带最小衰减为60分贝 抽样频率1000Hz 2.用双线性变换法设计切贝雪夫II型高通滤波器 通带截止频率2000Hz 阻带截止频率1500Hz 通带最大衰减0.3分贝 阻带最小衰减50分贝 抽样频率20000Hz 四、实验程序:

1) Wp=2*pi*400; Ws=2*pi*600; Rp=0.3; Rs=60; Fs=1000; [N,Wn]=cheb1ord(Wp,Ws,Rp,Rs,'s'); [Z,P,K]=cheb1ap(N,Rp); [A,B,C,D]=zp2ss(Z,P,K); [At,Bt,Ct,Dt]=lp2lp(A,B,C,D,Wn); [num1,den1]=ss2tf(At,Bt,Ct,Dt); [num2,den2]=impinvar(num1,den1,Fs); [H,W1]=freqs(num1,den1); figure(1) subplot(2,1,1); semilogx(W1/pi/2,20*log10(abs(H)));grid; xlabel(' 频率/ Hz'); ylabel(' 模拟滤波器幅值(db)'); [H,W2]=freqz(num2,den2,512,'whole',Fs); subplot(2,1,2); plot(W2,20*log10(abs(H)));grid; xlabel(' 频率/ Hz');

FIR数字滤波器设计与使用

实验报告 课程名称:数字信号处理指导老师:刘英成绩:_________________实验名称: FIR数字滤波器设计与使用同组学生姓名:__________ 一、实验目的和要求 设计和应用FIR低通滤波器。掌握FIR数字滤波器的窗函数设计法,了解设计参数(窗型、窗长)的影响。 二、实验内容和步骤 编写MATLAB程序,完成以下工作。 2-1 设计两个FIR低通滤波器,截止频率 C =0.5。 (1)用矩形窗,窗长N=41。得出第一个滤波器的单位抽样响应序列h 1(n)。记下h 1 (n) 的各个抽样值,显示h 1 (n)的图形(用stem(.))。求出该滤波器的频率响应(的N 个抽样)H 1(k),显示|H 1 (k)|的图形(用plot(.))。 (2)用汉明窗,窗长N=41。得出第二个滤波器的单位抽样响应序列h 2(n)。记下h 2 (n) 的各个抽样值,显示h 2(n)的图形。求出滤波器的频率响应H 2 (k),显示|H 2 (k)|的 图形。 (3)由图形,比较h 1(n)与h 2 (n)的差异,|H 1 (k)|与|H 2 (k)|的差异。 2-2 产生长度为200点、均值为零的随机信号序列x(n)(用rand(1,200)0.5)。显示x(n)。 求出并显示其幅度谱|X(k)|,观察特征。 2-3 滤波 (1)将x(n)作为输入,经过第一个滤波器后的输出序列记为y 1(n),其幅度谱记为|Y 1 (k)|。 显示|X(k)|与|Y 1 (k)|,讨论滤波前后信号的频谱特征。 (2)将x(n)作为输入,经过第二个滤波器后的输出序列记为y 2(n),其幅度谱记为|Y 2 (k)|。 比较|Y 1(k)|与|Y 2 (k)|的图形,讨论不同的窗函数设计出的滤波器的滤波效果。 2-4 设计第三个FIR低通滤波器,截止频率 C =0.5。用矩形窗,窗长N=127。用它对x(n)进行滤波。显示输出信号y

数字滤波器设计步骤

数字信号处理 数字滤波器的设计 学院计算机与电子信息学院 专业电子信息科学与技术班级电子15-2 班姓名学号 指导教师刘利民

数字滤波器的设计 一、模拟低通滤波器的设计方法 1、B utterw orth 滤波器设计步骤: ⑴。确定阶次N ① 已知Ωc 、Ωs 和As 求Bu tt er worth DF 阶数N ② 已知Ωc 、Ωs 和Ω=Ωp (3dB p Ω≠-)的衰减A p 求Bu tterwort h DF 阶数N ③ 已知Ωp、Ωs和Ω=Ωp 的衰减A p 和As 求B utte rwo rth DF 阶数N /10 /1022(/)101,(/)101p s A A N N p c s c ΩΩ=-ΩΩ=-则:

⑵.用阶次N 确定 ()a H s 根据公式: 1,2,2N ()()a a H s H s -在左半平面的极点即为()a H s 的极点,因而 2,,N 2、切比雪夫低通滤波器设计步骤: ⑴.确定技术指标p Ω p α s Ω s α 归一化: /1p p p λ=ΩΩ= /s s p λ=ΩΩ ⑵.根据技术指标求出滤波器阶数N 及ε: 0.12 10 1δε=- p δα= ⑶.求出归一化系统函数 其中极点由下式求出:

或者由N 和S直接查表得()a H p 二、数字低通滤波器的设计步骤: 1、 确定数字低通滤波器的技术指标:通带截止频率p ω、通带最大衰减系数 p α、 阻带截止频率ω、阻带最小衰减系数s α。 2、 将数字低通滤波器的技术指标转换成模拟低通滤波器的技术指标。 巴特沃斯: 切比雪夫:/s s p λ=ΩΩ 0.1210 1δ ε=- p δα=

实验四数字滤波器的设计实验报告

数字信号处理 实验报告 实验四 IIR数字滤波器的设计学生姓名张志翔 班级电子信息工程1203班 学号 指导教师 实验四 IIR数字滤波器的设计 一、实验目的: 1. 掌握双线性变换法及脉冲响应不变法设计IIR数字滤波器的具体设 计方法及其原理,熟悉用双线性变换法及脉冲响应不变法设计低通、高通和带通IIR数字滤波器的MATLAB编程。 2. 观察双线性变换及脉冲响应不变法设计的滤波器的频域特性,了解双线性变换法及脉冲响应不变法的特点。 3.熟悉Butterworth滤波器、切比雪夫滤波器和椭圆滤波器的频率特性。 二、实验原理: 1.脉冲响应不变法 用数字滤波器的单位脉冲响应序列模仿模拟滤波器的冲激响应 ,让正好等于的采样值,即,其中为采样间隔,如果以及分别表示的拉式变换及的Z变换,则 2.双线性变换法 S平面与z平面之间满足以下映射关系:

s平面的虚轴单值地映射于z平面的单位圆上,s平面的左半平面完全映射到z平面的单位圆内。 双线性变换不存在混叠问题。 双线性变换是一种非线性变换,这种非线性引起的幅频特性畸变可通过预畸而得到校正。 三、实验内容及步骤: 实验中有关变量的定义: fc 通带边界频率; fr阻带边界频率;δ通带波动;At 最小阻带衰减; fs采样频率; T采样周期 (1) =0.3KHz, δ=0.8Db, =0.2KHz, At =20Db,T=1ms; 设计一个切比雪夫高通滤波器,观察其通带损耗和阻带衰减是否满足要求。 MATLAB源程序: wp=2*1000*tan(2*pi*300/(2*1000)); ws=2*1000*tan(2*pi*200/(2*1000)); [N,wn]=cheb1ord(wp,ws,0.8,20,'s'); %给定通带(wp)和阻带(ws)边界角频率,通带波动波动0.8,阻带最小衰减20dB,求出最低阶数和通带滤波器的通带边界频率Wn [B,A]=cheby1(N,0.5,wn,'high','s');%给定通带(wp)和阻带(ws)边界角频率,通带波动 [num,den]=bilinear(B,A,1000); [h,w]=freqz(num,den); f=w/(2*pi)*1000; plot(f,20*log10(abs(h)));

(整理)数字滤波器的设计

模拟滤波器到数字滤波器的转换 一、脉冲响应不变法设计IIR数字滤波器 impinvar 功能:用脉冲响应不变法实现模拟到数字的滤波器变换。 调用格式: [bd,ad]=impinvar(b,a,Fs);将模拟滤波器系数b,a变换成数字的滤波器系数bd,ad,两者的冲激响应不变。 [bd,ad]=impinvar(b,a);采用Fs的缺省值1Hz. 例:采用脉冲响应不变法设计一个切比雪夫I型数字带通滤波器,要求:通带w p1=0.3pi, W p2=0.7pi, R p=1dB, 阻带w s1=0.1pi, W s2=0.9pi, A s=15dB, 滤波器采样频率为 F s=2000Hz. Matlab程序: %数字滤波器指标 w p1=0.3*pi; w p2=0.7*pi; w s1=0.1*pi; w s2=0.9*pi; R p=1; A s=15; %转换为模拟滤波器指标 Fs=2000; T=1/Fs; Omgp1=wp1*Fs; Omgp2=wp2*Fs; %模拟滤波器的通带截止频率 Omgp=[Omgp1,Omgp2]; Omgs1=ws1*Fs; Omgs2=ws2*Fs; %模拟滤波器的阻带截止频率 Omgs=[Omgs1,Omgs2]; Bw=Omgp2-Omgp1; w0=sqrt(Omgp1*Omgp2); %模拟通带带宽和中心频率 %模拟原型滤波器计算 [n,omgn]=cheb1ord(omgp,Omgs,Rp,As,’s’); [z0,p0,k0]=cheb1ap(n,Rp); %设计归一化的模拟原型滤波器(zpk模型) ba1=k0*real(poly(z0)); %求原型滤波器系统函数分子系数b aa1=real(poly(p0)); %求原型滤波器系统函数分母系数a [ba,aa]=lp2bp(ba1,aa1,w0,bw); %变换为模拟带通滤波器 %用脉冲响应不变法计算数字滤波器系数 [bd,ad]=impinvar(ba,aa,Fs); %求数字系统的频率特性 [H,w]=freqz(bd,ad); dbH=20*log10((abs(H)+eps)/max(abs(H))); %将幅度化为分贝值 %作图 subplot(2,2,3),plot(w/pi,dbH); axis([0,1,-50,1]); title('实际带通相对幅度'); ylabel('dB');xlabel('数字频率(w/pi)'); set(gca,'Xtick',[0,wp1/pi,ws1/pi,wp2/pi,ws2/pi,1]); set(gca,'Ytick',[-50,-20,-3,-1]); grid subplot(2,2,4),plot(w/pi, angle(H)/pi*180); axis([0,1,-200,200]);title('实际数字带通相位');

FIR数字滤波器设计与软件实现(精)讲解学习

实验二:FIR 数字滤波器设计与软件实现 一、实验指导 1.实验目的 (1掌握用窗函数法设计 FIR 数字滤波器的原理和方法。 (2掌握用等波纹最佳逼近法设计 FIR 数字滤波器的原理和方法。 (3掌握 FIR 滤波器的快速卷积实现原理。 (4学会调用 MA TLAB 函数设计与实现 FIR 滤波器。 2. 实验内容及步骤 (1认真复习第七章中用窗函数法和等波纹最佳逼近法设计 FIR 数字滤波器的原理; (2调用信号产生函数 xtg 产生具有加性噪声的信号 xt ,并自动显示 xt 及其频谱,如图 1所示;

图 1 具有加性噪声的信号 x(t及其频谱如图 (3请设计低通滤波器,从高频噪声中提取 xt 中的单频调幅信号,要求信号幅频失真小于 0.1dB ,将噪声频谱衰减 60dB 。先观察 xt 的频谱,确定滤波器指标参数。 (4根据滤波器指标选择合适的窗函数,计算窗函数的长度 N ,调用 MATLAB 函数 fir1设计一个 FIR 低通滤波器。并编写程序,调用 MATLAB 快速卷积函数 fftfilt 实现对 xt 的滤波。绘图显示滤波器的频响特性曲线、滤波器输出信号的幅频特性图和时域波形图。 (5 重复 (3 , 滤波器指标不变, 但改用等波纹最佳逼近法, 调用MA TLAB 函数 remezord 和 remez 设计 FIR 数字滤波器。并比较两种设计方法设计的滤波器阶数。 提示:○ 1MA TLAB 函数 fir1的功能及其调用格式请查阅教材; ○ 2采样频率 Fs=1000Hz,采样周期 T=1/Fs;

○ 3根据图 1(b和实验要求,可选择滤波器指标参数:通带截止频率 fp=120Hz,阻带截 至频率 fs=150Hz, 换算成数字频率, 通带截止频率 p 20.24 p f ωπ =T=π, 通带最大衰为 0.1dB , 阻带截至频率 s 20.3 s f ωπ =T=π,阻带最小衰为 60dB 。 3、实验程序框图如图 2所示,供读者参考。 图 2 实验程序框图 4.信号产生函数 xtg 程序清单(见教材 二、滤波器参数及实验程序清单 1、滤波器参数选取 根据实验指导的提示③选择滤波器指标参数: 通带截止频率 fp=120Hz,阻带截至频率 fs=150Hz。代入采样频率 Fs=1000Hz,换算成 数字频率,通带截止频率 p 20.24 p f

设计数字低通滤波器(用matlab实现)

DSP 设计滤波器报告 姓名:张胜男 班级:07级电信(1)班 学号:078319120 一·低通滤波器的设计 (一)实验目的:掌握IIR 数字低通滤波器的设计方法。 (二)实验原理: 1、滤波器的分类 滤波器分两大类:经典滤波器和现代滤波器。 经典滤波器是假定输入信号)(n x 中的有用成分和希望取出的成分各自占有不同的频带。这样,当)(n x 通过一个线性系统(即滤波器)后可讲欲去除的成分有效的去除。 现代滤波器理论研究的主要内容是从含有噪声的数据记录(又称时间序列)中估计出信号的某些特征或信号本身。 经典滤波器分为低通、高通、带通、带阻滤波器。每一种又有模拟滤波器(AF )和数字滤波器(DF )。对数字滤波器,又有IIR 滤波器和FIR 滤波器。 IIR DF 的转移函数是: ∑∑=-=-+==N k k k M r r r z a z b z X z Y z H 10 1)()()( FIR DF 的转移函数是: ∑-=-=10)()(N n n z n h z H FIR 滤波器可以对给定的频率特性直接进行设计,而IIR 滤波器目前最通用的方法是利用已经很成熟的模拟滤波器的设计方法进行设计。 2、滤波器的技术要求 低通滤波器: p ω:通带截止频率(又称通带上限频率) s ω:阻带下限截止频率 p α:通带允许的最大衰减 s α:阻带允许的最小衰减 (p α,s α的单位dB ) p Ω:通带上限角频率 s Ω:阻带下限角频率 (s p p T ω=Ω,s s s T ω=Ω)即 C p p F ωπ2=Ω C s s F ωπ2=Ω 3、IIR 数字滤波器的设计步骤:

实验五FIR数字滤波器的设计

实验六 FIR 数字滤波器的设计 一、实验目的 1.熟悉FIR 滤波器的设计基本方法 2.掌握用窗函数设计FIR 数字滤波器的原理与方法。 二、实验内容 1.FIR 数字滤波器的设计方法 FIR 滤波器的设计问题在于寻求一系统函数)(z H ,使其频率响应)(ωj e H 逼近滤波器要求的理想频率响应)(ωj d e H ,其对应的单位脉冲响应为)(n h d 。 (1)用窗函数设计FIR 滤波器的基本原理 设计思想:从时域从发,设计)(n h 逼近理想)(n h d 。设理想滤波器)(ωj d e H 的单位脉 冲响应为)(n h d 。以低通线性相位FIR 数字滤波器为例。 ?∑--∞-∞=== ππωωωωω πd e e H n h e n h e H jn j d d jn n d j d )(21)()()( (6-1) )(n h d 一般是无限长的,且是非因果的,不能直接作为FIR 滤波器的单位脉冲响应。要想得到一个因果的有限长的滤波器h(n),最直接的方法是截断)()()(n w n h n h d =,即截取为有限长因果序列,并用合适的窗函数进行加权作为FIR 滤波器的单位脉冲响应。按照线性相位滤波器的要求,h(n)必须是偶对称的。对称中心必须等于滤波器的延时常数,即 ???-==2 /)1()()()(N a n w n h n h d (6-2) 用矩形窗设计的FIR 低通滤波器,所设计滤波器的幅度函数在通带和阻带都呈现出振荡现象,且最大波纹大约为幅度的9%,这个现象称为吉布斯(Gibbs )效应。为了消除吉布斯效应,一般采用其他类型的窗函数。 (2) 典型的窗函数 ① 矩形窗(Rectangle Window) )()(n R n w N = (6-3)

数字滤波器的设计(1)

数字滤波器的设计 1设计背景 数字滤波是数字信号分析中最重要的组成部分之一,数字滤波与模拟滤波相比,具有精度和稳定性高、系统函数容易改变、灵活性高、不存在阻抗匹配问题、便于大规模集成、可实现多维滤波等优点。 本次主要设计高通、带通和带阻数字滤波器,利用这三个数字滤波器去滤除本设计所给出的复合信号,比较它们之间的差别分析其优缺点,并在实际应用中比较利弊选择使用。 2设计原理 2.1数字滤波器的基本概念 数字滤波器是指输入、输出均为数字信号,通过数值运算处理改变输入信号所含频率成分的相对比例,或者滤除某些频率成分的数字器件或程序。 2.2数字滤波器的分类 按照不同的分类方法,数字滤波器有许多种类,总的可以分成两大类:经典滤波器和现代滤波器。其中,经典数字滤波器从滤波特性上分类,可以分成低通、高通、带通和带阻等滤波器。数字滤波器从实现的网络结构或者从单位脉冲响应长度分类,可以分为无限长单位脉冲响应(IIR)滤波器和有限长单位脉冲响应(FIR)滤波器。 ?低通滤波器 从0~f2频率之间,幅频特性平直,它可以使信号中低于f2的频率成分几乎不受衰减地通过,而高于f2的频率成分受到极大地衰减。 ?高通滤波器 与低通滤波相反,从频率f1~∞,其幅频特性平直。它使信号中高于f1的频率成分几乎不受衰减地通过,而低于f1的频率成分将受到极大地衰减。 ?带通滤波器 它的通频带在f1~f2之间。它使信号中高于f1而低于f2的频率成分可以不受衰减地通过,而其它成分受到衰减。 ?带阻滤波器 与带通滤波相反,阻带在频率f1~f2之间。它使信号中高于f1而低于f2的频率成分受到衰减,其余频率成分的信号几乎不受衰减地通过。 不同类型(高通、低通、带通和带阻)滤波器对应的Wp和Ws值遵循以下规则: a.高通滤波器:Wp和Ws为一元矢量且Wp>Ws; b.低通滤波器:Wp和Ws为一元矢量且WpWs,如Wp=[0.1,0.8],Ws=[0.2,0.7]。 2.2.1 IIR滤波器设计原理

数字滤波器的设计及实现

数字滤波器的设计及实现 【一】设计目的 1. 熟悉IIR 数字滤波器和FIR 数字滤波器的设计原理和方法; 2. 学会调用MATLAB 信号处理工具箱中的滤波器设计函数设计各种IIR 和FIR 数字滤波器,学会根据滤波要求确定滤波器指标参数; 3. 掌握用IIR 和FIR 数字滤波器的MA TLAB 实现方法,并能绘制滤波器的幅频特性、相频特性; 4. 通过观察滤波器的输入、输出信号的时域波形及其频谱,建立数字滤波的概念。 【二】设计原理 抑制载波单频调幅信号的数学表达式为 []))(2cos())(2cos(2 1)2cos()2cos()(000t f f t f f t f t f t s c c c ++-==ππππ (2.1) 其中,)2cos(t f c π称为载波,c f 为载波频率,)2cos(0t f π称为单频调制信号,0f 为调制正弦波信号频率,且满足0c f f >。由(2.1)式可见,所谓抑制载波单频调制信号,就是两个正弦信号相乘,它有2个频率成分:和频c f +0f ,差频c f -0f ,这两个频率成分关于载波频率c f 对称。所以,1路抑制载波单频调幅信号的频谱图是关于载波频率c f 对称的两根谱线。 复合信号st 产生函数mstg 清单: function st=mstg %产生信号序列st ,并显示st 的时域波形和频谱 %st=mstg 返回三路调幅信号相加形成的混合信号,长度N=800 N=800; %信号长度N 为800 Fs=10000;T=1/Fs;Tp=N*T; %采样频率Fs=10kHz ,Tp 为采样时间 t=0:T:(N-1)*T;k=0:N-1;f=k/Tp; fc1=Fs/10; %第1路调幅信号载波频率fc1=1000Hz fm1=fc1/10; %第1路调幅信号的调制信号频率fm1=100Hz fc2=Fs/20; %第2路调幅信号载波频率fc2=500Hz fm2=fc2/10; %第2路调幅信号的调制信号频率fm2=50Hz fc3=Fs/40; %第3路调幅信号载波频率fc3=250Hz fm3=fc3/10; %第3路调幅信号的调制信号频率fm3=25Hz xt1=cos(2*pi*fm1*t).*cos(2*pi*fc1*t); %产生第1路调幅信号 xt2=cos(2*pi*fm2*t).*cos(2*pi*fc2*t); %产生第2路调幅信号 xt3=cos(2*pi*fm3*t).*cos(2*pi*fc3*t); %产生第3路调幅信号 st=xt1+xt2+xt3; %三路信号相加,得到复合信号

实验五 IIR数字滤波器设计与滤波(附思考题程序)

实验五 IIR 数字滤波器设计与滤波 1.实验目的 (1)加深对信号采样的理解, (2)掌握滤波器设计的方法; (3)复习低通滤波器的设计。 2.实验原理 目前,设计IIR 数字滤波器的通用方法是先设计相应的低通滤波器,然后再通过双线性变换法和频率变换得到所需要的数字滤波器。模拟滤波器从功能上分有低通、高通、带通及带阻四种,从类型上分有巴特沃兹(Butterworth )滤波器、切比雪夫(Chebyshev )I 型滤波器、切比雪夫II 型滤波器、椭圆(Elliptic )滤波器以及贝塞尔(Bessel )滤波器等。 典型的模拟低通滤波器的指标如下:,P S ΩΩ分别为通带频率和阻带频率,,P S δδ分别为通带和阻带容限(峰波纹值)。在通带内要求1()1P a H J δ-≤Ω≤,有时指标由通带最大衰减p α和阻带最小衰减s α给出,定义如下:20lg(1)p p αδ=-- 和20lg()s s αδ=- 第二种常用指标是用参数ε和A 表示通带和阻带要求,如图所示: 二者之间的关系为:21/2[(1)1]p εδ-=--和1/s A δ=,根据这几个参数可导出另外两个参数d ,k ,分别称为判别因子和选择性因子。 21d A = - /p s k =ΩΩ

BUTTERWORTH 低通滤波器:幅度平方函数定义为221()1(/)a N c H J Ω=+ΩΩ,N 为滤波器阶数,c Ω为截止频率。当c Ω=Ω 时,有()1/a H J Ω=3DB 带宽。 BUTTERWORTH 低通滤波器系统函数有以下形式: 11111()...() N c a N N N N N k H s s a s a s a k s s --=Ω==++++∏- 由模拟滤波器设计IIR 数字滤波器,必须建立好s 平面和z 平面的映射关系。使模拟系统函数()a H s 变换成数字滤波器的系统函数()H z ,通常采用冲激相应不变法和双线性变换法。冲激相应不变法存在频谱混叠现象,双线性变换法消除了这一线象,在IIR 数字滤波器的设计中得到了更广泛的应用。 s 平面和Z 平面的映射关系为1 121()1s Z s f Z T Z ---==+,将s j =Ω和jw z e =待入数字频率和等效的模拟频率之间的映射关系:tan()2 w Ω=,由于二者不是线性关系,所以称为预畸变。 3.实验内容及其步骤 实验的步骤: (1)给定数字滤波器的幅度相应参数。 (2)用预畸变公式将数字滤波器参数变换为相应的等效模拟滤波器参数。 (3)采用模拟滤波器设计方法设计等效模拟滤波器()a H s (4)采用双线性变换公式把等效模拟滤波器映射为所期望的数字滤波器。 其中第三步中模拟滤波器设计步骤为: 首先,根据滤波器指标求选择因子k 和判别因子d 其次,确定满足技术所需的滤波器阶数N, log log d N k ≥ 再次,设3db 截止频率c Ω

经典数字滤波器

数字滤波器是现在电视中常用的电路元件之一。数字滤波器(digital filter)是由数字乘法器、加法器和延时单元组成的一种装置。其功能是对输入离散信号的数字代码进行运算处理,以达到改变信号频谱的目的。由于电子计算机技术和大规模集成电路的发展,数字滤波器已可用计算机软件实现,也可用大规模集成数字硬件实时实现。数字滤波器是一个离散时间系统(按预定的算法,将输入离散时间信号转换为所要求的输出离散时间信号的特定功能装置)。应用数字滤波器处理模拟信号时,首先须对输入模拟信号进行限带、抽样和模数转换。数字滤波器输入信号的抽样率应大于被处理信号带宽的两倍,其频率响应具有以抽样频率为间隔的周期重复特性,且以折叠频率即1/2抽样频率点呈镜像对称。为得到模拟信号,数字滤波器处理的输出数字信号须经数模转换、平滑。数字滤波器具有高精度、高可靠性、可程控改变特性或复用、便于集成等优点。数字滤波器在语言信号处理、图像信号处理、医学生物信号处理以及其他应用领域都得到了广泛应用。数字滤波器有低通、高通、带通、带阻和全通等类型。它可以是时不变的或时变的、因果的或非因果的、线性的或非线性的。应用最广的是线性、时不变数字滤波器. 阶数越高,截止频率等参数越精确,但是电路结构也越复杂。简单说比如你的截止频率是100HZ,你只有2阶的话可能实际的截止平率是95-1000HZ,衰减比较慢,但如果是20阶的话,可能截止

频率就变成了95-105HZ,衰减很快。但是阶数上升,实际电路的结构就会非常的复杂,浪费资源。 先听我慢慢说啊,先说傅里叶变换,然后再说滤波器,就懂了。 周期信号可以用一系列的不同频率不同幅度的正弦信号表示出来,就是傅里叶级数。 而非周期信号亦可以,比如门信号,它的傅氏变换是抽样信号,意思就是,它可以用的一系列不同频率的正弦信号表示,比如有:频率为0.1Hz幅度为2的正弦,频率为0.2Hz幅度为1的正弦,频率为0.25幅度为a的正弦……这些无数个的所谓的“频率为某Hz幅度为某”的正弦波叠加之后,就成了门信号。 从门信号的频谱图可看出:用来表示门信号的一系列频率连续的无数个的正弦波幅度是不同的,甚至有些是0 。尤其频率越高的正弦波,它们的幅度普遍很小,因为这些频率成分是表示细节(门信号的棱角)的。另一方面,低频成分显示的是门信号的轮廓。

相关文档
最新文档