电子科技大学 微电子器件实验报告MICRO-1

电子科技大学 微电子器件实验报告MICRO-1
电子科技大学 微电子器件实验报告MICRO-1

电子科技大学

实验报告(实验)课程名称微电子器件

实验一:双极晶体管直流特征的测量

学生姓名:

学号:201203******

指导教师:刘继芝

实验地点:211楼605

实验时间:2015、6、

一、实验室名称: 微电子器件实验室

二、实验项目名称:双极晶体管直流特征的测量

三、实验学时:3

四、实验原理:

1.XJ4810半导体管特性图示仪的基本原理方框图

XJ4810图示仪的基本原理方框图如图1-3所示。其各部分的作用如下。

(1)基极阶梯信号发生器提供必须的基极注入电流。

(2)集电极扫描电压发生器提供从零开始、可变的集电极电源电压。

(3)同步脉冲发生器用来使基极阶梯信号和集电极扫描电压保持同步,以便正确而稳定地显示特性曲线(当集电极扫描电压直接由市电全波整流取得时,同步脉冲发生器可由50Hz 市电代替)。

(4)测试转换开关是用于测试不同接法和不同类型晶体管的特性曲线和参数的转换开关。

(5)放大和显示电路用于显示被测管的特性曲线。

(6)电源(图中未画出)为各部分电路提供电源电压。

2.读测方法(以3DG6 npn 管为例)

(1)输入特性曲线和输入电阻R i

在共射晶体管电路中,输出交流短路时,输入电压和输入电流之比为R i ,即

常数

=??=CE V B BE

i I V R 它是共射晶体管输入特性曲线斜率的倒数。例如需测3DG6在V CE = 10V 时某一工作点Q 的R i 值,晶体管接法如图1- 4所示。各旋钮位置为:

峰值电压范围 0~10V

极性(集电极扫描) 正(+)

极性(阶梯) 正(+)

功耗限制电阻 0.1~1k Ω(适当选择)

x 轴作用 电压0 .1V/度 y 轴作用

阶梯作用 重复

阶梯选择 0.1mA/级

测试时,在未插入样管时先将x 轴集电极电压置于1V/度,调峰值电压为10V ,然后插入样管,将x 轴作用扳到电压0.1V/度,即得V CE =10V 时的输入特性曲线。这样可测得图1-5;

.200101.002.0310Ω=?=??=-=V V

B BE i CE I V R

图1-4 晶体管接法 图1-5 晶体管的输入特性曲线

(2)输出特性曲线、转移特性曲线和β、h FE 、α

在共射电路中,输出交流短路时,输出电流和输入电流增量之比为共射晶体管交流电流放大系数β。在共射电路中,输出端短路时,输出电流和输入电流之比为共射晶体管直流电流放大系数h FE 。晶体管接法如图1- 4所示。旋钮位置如下:

峰值电压范围 0~50V

极性(集电极扫描) 正(+)

极性(阶梯) 正(+)

功耗限制电阻 0.1~1k Ω

x 轴 集电极电压2V/度

y 轴 集电极电流2mA/度

阶梯选择 0.02mA/级

阶梯作用 重复

调节峰值电压得到图1-6所示共射晶体管输出特性曲线。并可读得

11002.02.21001.010********==??=???? ??===???? ??====B

C V CE V mA C I B C V CE V mA C I FE I I I I h β β>h FE 主要是因为基区表面复合等原因导致小电流β较小造成的。β、h FE 也可用共射晶体管的转移特性图1-7进行测量。只要将上述的x 轴作用开关拨至 ,即得到共射晶体管的转移特性。这种曲线可直接观察β的线性好坏。

图1-6 共射晶体管输出特性的读测 图1-7共射晶体管的转移特性

此外,在共射晶体管输出特性曲线中,当I B 为某一值时可读测出共射小讯号输出电导g ,它是I B 为某值时输出曲线的斜率,即

常数

=??=B I CE c

V I g

当接地选择打到“基极接地”,阶梯极性改为负(—),阶梯选择改为2mA/级(这时注入电流以为I E ),图示仪上则显示出共基晶体管输出特性,并可读测出α值:

常数

==

CB V E C I I α

(3)饱和压降V CES 和正向压降V BES

V CES 和V BES 是功率管的重要参数,对开关管尤其重要。V CES 是共射晶体管饱和态时C —E 间的压降。V BES 是共射晶体管饱和态时B —E 间的压降。一般硅管的V BES =0.7~0.8V ,锗管的V BES =0.3~0.4V 。V CES 的大小与衬底材料和测试条件有一定的关系。V BES 与芯片表面的铝硅接触情况有关,铝硅合金不好,或光刻引线孔时残留有薄氧化层都会导致V BES 过大。

测试时,晶体管接法仍如图1-4所示。当测试条件为I C =10mA 、I B =1mA 时,图示仪的旋钮位置如下: 峰值电压范围 0~50V

功耗电阻 0.5~1K Ω

极性(集电极扫描) 正(+)

极性(阶梯) 正(+)

x 轴 集电极电压0.05V/度

y 轴 集电极电流1mA/度

阶梯信号选择 0.1mA/级

阶梯信号 重复

级/族 10

调峰值电压,使第10级(即第11根)曲线与I C =10mA 的线相交,此交点对应的V CE 值即为V CES (如图1-8所示,V CES =0.15V )。 将y 轴作用拨至,x 轴作用拨至基极电压0.1V/度,即得如图1-9所示的输入特性曲线。此曲线与I B =1mA 的线交点对应的V BE 值即为V BES (如图1-9所示,V BES = 0.78V )。

图1-8 V CES 的测量 图1-9 V BES 的测量

(4)反向击穿电压BV CBO 、BV CEO 和BV EBO

外延片制作的双极晶体管的反向击穿电压V B (一般指BV CEO 或BV CBO )既与外延层电阻率ρc 有关,也与结的曲率半径和表面状况等因素有关。当高阻集电区厚度Wc 小于BV CBO 所对应的势垒宽度x mB 时,V B 还与W C 有关。所以提高晶体管反向耐压可采取提高ρc 、W C ,减小二氧化硅中表面电荷密度,采用圆角基区图形,深结扩散、甚至采用台面结构、扩展电极或加电场限制环等措施。

BV CBO 是共基晶体管在发射极开路时输出端C —B 间的反向击穿电压。BV CEO 是共射晶体管在基极开路时输出端C —E 间的反向击穿电压。晶体管手册中(或实际测试中)的规定为:

BV CBO ——发射极开路,集电极电流为规定值时,C —B 间的反向电压值。

BV CEO ——基极开路, 集电极电流为规定值时,C —E 间的反向电压值。

BV EBO ——集电极开路,发射极电流为规定值时,E —B 间的反向电压值。 理论上可推导出n o CBO CEO BV BV β+=1/对硅npn 管,n = 4。硅双扩散管的基区平均杂质浓度>>Nc N B ,所以,一般BV CBO >BV CEO >BV EBO ,而锗合金管C B <<N N ,所以,一般BV CBO ≈BV EBO >BV CEO 。

3DG6的BV CBO 和BV CEO 的测试条件为I C =100μA BV EBO 的为I E =100μA 。晶体管的接法如图1-10所示。旋钮位置为:

峰值电压范围 0~200V (测BV CBO ,BV CEO )

0~20V (测BV EBO )

极性(集电极扫描) 正(+)

功耗电阻 5~50k Ω

x 轴 集电极电压10V/度(测BV CBO ,BV CEO )

1V/度(测BV EBO )

y 轴 集电极电流0.1mA/度

将峰值电压调整到合适的值,即可得到图1-11所示的值,图例表明BV CBO =70V ,BV CEO =40V 、BV EBO =7V 。

图1-10 测击穿电压时晶体管的接法

图1-11 晶体管击穿电压测量值的示意图

五、实验目的:

(1)学会识别常用的分立器件的三极管的引脚。

(2)掌握晶体管特征图示仪的工作原理。

(3)能熟练地运用其对双极晶体管的直流特性进行测试。

(4)能够运用理论知识分析实验结果。

六、实验内容:

(1)输入特性曲线和输入电阻R i

(2)输出特性曲线、转移特性曲线和β、h FE、

(3)饱和压降V CES和正向压降V BES

(4)反向击穿电压BV CBO、BV CEO和BV EBO

(5)反向电流I CBO、I CEO和I EBO

七、实验器材(设备、元器件):

晶体管特征图示仪,3DG6,3AG6双极晶体管

八、实验步骤:

1.开启电源,预热5分钟,调节“辉度”、“聚焦”、“辅助聚焦”使显示清晰。

2.阅读实验注意事项

①每次测试时应把光点调到和坐标原点重合,测V CES、V BES时尤其要注意。

②每次测试前应把峰值电压调到最小,要缓慢进行调节,以免损坏仪器部件。

③测高反压管的反向耐压和反向电流时,功耗电阻应选大些,以免烧坏被测管。

④在满功耗附近测量共射晶体管输出特性时,扫描时间不能过长,以免损坏被测管,对未加散热器的

大功率管测试尤其要注意。

⑤用XJ4810图示仪鉴别晶体管类型pnp或npn和管脚极性时,应选用不会损坏被测管的低电压和小

电流。例如V CE=0.3V、I C=1mA。

3.按照实验原理部分进行“输入特性曲线和输入电阻Ri ”的测量并记录数据。

4.按照实验原理部分进行“输出特性曲线、转移特性曲线和β、hFE”的测量并记录数据。

5.按照实验原理部分进行“饱和压降VCES和正向压降VBES”的测量并记录数据。

6.按照实验原理部分进行“反向击穿电压BVCBO、BVCEO和BVEBO”的测量并记录数据。

7.整理实验数据,撰写实验报告。

九、实验数据及结果分析:

九、实验结论:

1、在合适的测试条件下,三极管的三种击穿电压不同,从实验数据可以看出Vcbo较大。

2、三极管的输入特性曲线、输出特性曲线、转移特性曲线各有特征,本实验测出的三极管特性曲线和课本《微电子器件》上的基本符合。

十一、总结及心得体会:

本次实验学会识别常用的分立器件的三极管的引脚,了解了晶体管特征图示仪的工作原理,学会了如何对双极晶体管的直流特性进行测试。

十二、对本实验过程及方法、手段的改进建议:

实验室新购进了一批半导体图示仪,但到我们班级做实验的时候就只有少量的可以正常使用,建议将实验指导书打印成册,放置在实验桌上,让同学们严格按照指导书上的步骤进行实验。

报告评分:

指导教师签字:

微电子实验报告一

实验一MOS管的基本特性 班级姓名学号指导老师袁文澹 一、实验目的 1、熟练掌握仿真工具Hspice相关语法; 2、熟练掌握MOS管基本特性; 3、掌握使用HSPICE对MOS电路进行SPICE仿真,以得到MOS电路的I-V曲线。 二、实验内容及要求 1、熟悉Hspice仿真工具; 2、使用Hspice仿真MOS的输出特性,当VGs从0~5V变化,Vds分别从1V、2V、3V、4V 和5V时的输出特性曲线; 三、实验原理 1、N沟道增强型MOS管电路图 a)当Vds=0时,Vgs=0的话不会有电流,即输出电流Id=0。 b)当Vgs是小于开启电压的一个确定值,不管Vds如何变化,输出电流Id都不会改变。 c)当Vgs是大于开启电压的一个确定值,在一定范围内增大Vds时,输出电流Id增大。但当 出现预夹断之后,再增大Vds,输出电流Id不会再变化。 2、NMOS管的输出特性曲线

四、实验方法与步骤 实验方法: 计算机平台:(在戴尔计算机平台、Windows XP操作系统。) 软件仿真平台:(在VMware和Hspice软件仿真平台上。) 实验步骤: 1、编写源代码。按照实验要求,在记事本上编写MOS管输出特性曲线的描述代码。并以aaa.sp 文件扩展名存储文件。 2、打开Hspice软件平台,点击File中的aaa.sp一个文件。 3、编译与调试。确定源代码文件为当前工程文件,点击Complier进行文件编译。编译结果有错误或警告,则将要调试修改直至文件编译成功。 4、软件仿真运行及验证。在编译成功后,点击simulate开始仿真运行。点击Edit LL单步运行查看结果,无错误后点击Avanwaves按照程序所述对比仿真结果。 5、断点设置与仿真。… 6、仿真平台各结果信息说明. 五、实验仿真结果及其分析 1、仿真过程 1)源代码 *Sample netlist for GSMC $对接下来的网表进行分析 .TEMP 25.0000 $温度仿真设定 .option abstol=1e-6 reltol=1e-6 post ingold $设定abstol,reltol的参数值 .lib 'gd018.l' TT $使用库文件 * --- Voltage Sources --- vdd VDD 0 dc=1.8 $分析电压源 vgs g 0 0 $分析栅源电压 vds d 0 dc=5 $分析漏源电压 vbs b 0 dc=0 $分析衬源电压 * --- Inverter Subcircuit --- Mnmos d g 0 b NCH W=30U L=6U $Nmos管的一些参数 * --- Transient Analysis --- .dc vds 0 5 0.1 SWEEP vgs 1 5 1 $双参数直流扫描分析 $vds从0V~5V,仿真有效点间隔取0.1 $vgs取1V、2V、3V、4V、5V

微电子技术在医学中的应用

微电子技术在医学中的应用 随着科技的迅速发展,和医疗水平息息相关的电子技术应用也越来越广泛。微电子技术的发展大大方便了人们的生活,随着微电子技术的发展,生物医学也在快速的发展,微电子技术过去在医学中的主要是应用于各类医疗器械的集成电路,在未来主要是生物芯片。生物芯片技术在医学、生命科学、药业、农业、环境科学等凡与生命活动有关的领域中均具有重大的应用前景。微电子技术与生物医学之间有着非常紧密的联系。 生物医学电子学是由微电子学、生物和医学等多学科交叉的边缘科学,为使得生物医学领域的研究方式更加精确和科学,所以将电子学用于生物医学领域。在生物医学与电子学交叉作用部分中最活跃、最前沿、作用力最大的一项关键技术就是微电子技术。特别是随着集成电路集成度的提高和超大规模集成电路的发展,元件尺寸达到分子级,进入了分子电子学时代,用有机化合物低分子、高分子和生物分子作芯片,它们具有识别、采集、记忆、放大、开关、传导等功能,更大大促进了医学电子学的发展。 以下将主要从生物医学传感器、植入式电子系统、生物芯片这三个方面结合当前国际上最新进展来介绍两者之间的关系与发展。 一、生物医学传感器 生物医学传感器是连接生物医学和电子学的桥梁。它的作用是把人体中和生物体包含的生命现象、性质、状态、成分和变量等生理信息转化为与之有确定函数关系的电子信息。生物医学传感器技术是生物医学电子学中一项关键的技术,是发展生物技术必不可少的一种先进的检测方法与监控方法,也是物质分子水平的快速、微量分析方法。因为生物传感器专一、灵敏、响应快等特点,为基础医学研究及临床诊断提供了一种快速简便的新型方法,在临床医学中发挥着越来越大的作用,意义极为重大。 常见的生物医学传感器主要可分为以下几种:电阻式传感器,电感式传感器,电容式传感器,压电式传感器,热电式传感器,光电传感器以及生物传感器等。 医学领域的生物传感器发挥着越来越大的作用。在临床医学中,酶电极是最早研制且应用最多的一种传感器。利用具有不同生物特性的微生物代替酶,可制成微生物传感器,广泛应用于:药物分析、肿瘤监测、血糖分析等。 生物医学传感器相较于传统医疗方式具有以下特点: 1、生物传感器采用固定化生物活性物质作催化剂,价值昂贵的试剂可以重复多次使用,克服了过去酶法分析试剂费用高和化学分析繁琐复杂的缺点。因此,这一技成本低,在连续使用时,每例测定仅需要几分钱人民币,术在很大程度上减轻病患医疗费用上的负担。

电子科技大学 汇编 实验报告

计算机专业类课程 实 验 报 告 课程名称:汇编语言程序设计 学院:计算机科学与工程 专业:计算机科学与技术 学生姓名:郭小明 学号:2011060100010 日期:2013年12月24日

电子科技大学 实验报告 实验一 学生姓名:郭小明学号:2011060100010 一、实验室名称:主楼A2-412 二、实验项目名称:汇编源程序的上机调试操作基础训练 三、实验原理: DEBUG 的基本调试命令;汇编数据传送和算术运算指令 MASM宏汇编开发环境使用调试方法 四、实验目的: 1. 掌握DEBUG 的基本命令及其功能 2. 学习数据传送和算术运算指令的用法 3.熟悉在PC机上编辑、汇编、连接、调试和运行汇编语言程序的过程五、实验内容: 编写程序计算以下表达式: Z=(5X+2Y-7)/2 设X、Y的值放在字节变量VARX、VARY中,结果存放在字节单元VARZ中。 1.编辑源程序,建立一个以后缀为.ASM的文件. 2.汇编源程序,检查程序有否错误,有错时回到编辑状态,修改程序中错误行。无错时继续第3步。 3.连接目标程序,产生可执行程序。

4.用DEBUG程序调试可执行程序,记录数据段的内容。 六、实验器材(设备、元器件): PC机,MASM软件平台。 七、实验数据及结果分析: 程序说明: 功能:本程序完成Z=(5X+2Y-7)/2这个等式的计算结果求取。其中X 与Y 是已知量,Z是待求量。 结构:首先定义数据段,两个DB变量VARX与VARY(已经初始化),以及结果存放在VARZ,初始化为?。然后定义堆栈段,然后书写代码段,代码段使用顺序程序设计本程序,重点使用MOV和IMUL以及XOR,IDIV完成程序设计。详细内容见程序注释。 程序清单:

微电子器件实验5模版 联合仿真 nmos

南京邮电大学 课内实验报告 课程名:微电子器件设计 任课教师: 专业:微电子学 学号: 姓名: 2014/2015学年第2学期 南京邮电大学电子科学与工程学院

《微电子器件设计》课程实验第 5 次实验报告 实验内容及基本要求: 实验项目名称:MOS晶体管的工艺器件联合仿真 实验类型:验证 每组人数:1 实验内容及要求: 内容:采用Tsuprem4仿真软件对MOS晶体管进行工艺仿真,并采用MEDICI仿真软件对该MOS晶体管进行器件仿真。 要求:能够将工艺仿真软件得到的器件数据输出到某个文件中,并能在器件仿真中调用该文件。会画出并分析器件仿真结果。 实验考核办法: 实验结束要求写出实验报告。内容如下: 1、问题的分析与解答; 2、结果分析,比较不同器件结构参数对仿真结果的影响; 3、器件设计的进一步思考。 实验结果:(附后) 实验代码如下: COMMENT Example 9B - TSUPREM-4/MEDICI Interface COMMENT TSUPREM-4 Input File OPTION DEVICE=PS COMMENT Specify the mesh LINE X LOCATION=0 SPACING=0.20 LINE X LOCATION=0.9 SPACING=0.06 LINE X LOCATION=1.8 SPACING=0.2 LINE Y LOCATION=0 SPACING=0.01 LINE Y LOCATION=0.1 SPACING=0.01 LINE Y LOCATION=0.5 SPACING=0.10

LINE Y LOCATION=1.5 SPACING=0.2 LINE Y LOCATION=3.0 SPACING=1.0 ELIMIN ROWS X.MIN=0.0 X.MAX=0.7 Y.MIN=0.0 Y.MAX=0.15 ELIMIN ROWS X.MIN=0.0 X.MAX=0.7 Y.MIN=0.06 Y.MAX=0.20 ELIMIN COL X.MIN=0.8 Y.MIN=1.0 COMMENT Initialize and plot mesh structure INITIALIZ <100> BORON=1E15 SELECT TITLE=”TSUPREM-4: Initial Mesh” PLOT.2D GRID COMMENT Initial oxide DEPOSIT OXIDE THICKNESS=0.03 COMMENT Models selection. For this simple example, the OED COMMENT model is not turned on (to reduce CPU time) METHOD VERTICAL COMMENT P-well implant IMPLANT BORON DOSE=3E13 ENERGY=45 COMMENT P-well drive DIFFUSE TEMP=1100 TIME=500 DRYO2 PRESS=0.02 ETCH OXIDE ALL COMMENT Pad oxidation DIFFUSE TEMP=900 TIME=20 DRYO2 COMMENT Pad nitride DEPOSIT NITRIDE THICKNESS=0.1 COMMENT Field oxidation DIFFUSE TEMP=1000 TIME=360 WETO2 ETCH NITRIDE ALL COMMENT Vt adjust implant IMPLANT BORON ENERGY=40 DOSE=1E12 ETCH OXIDE ALL COMMENT Gate oxidation DIFFUSE TEMP=900 TIME=35 DRYO2 DEPOSIT POLYSILICON THICKNESS=0.3 DIVISIONS=4 COMMENT Poly and oxide etch ETCH POLY LEFT P1.X=0.8 P1.Y=-0.5 P2.X=0.8 P2.Y=0.5 ETCH OXIDE LEFT P1.X=0.8 P1.Y=-0.5 P2.X=0.8 P2.Y=0.5 DEPOSIT OXIDE THICKNESS=0.02 COMMENT LDD implant IMPLANT PHOS ENERGY=50 DOSE=5E13 COMMENT LTO DEPOSIT OXIDE THICK=0.2 DIVISIONS=10 COMMENT Spacer etch ETCH OXIDE DRY THICK=0.22 COMMENT S/D implant IMPLANT ARSENIC ENERGY=100

电子科大电子技术实验报告

电子科技大学 电子技术实验报告 学生姓名:班级学号:考核成绩:实验地点:仿真指导教师:实验时间: 实验报告内容:1、实验名称、目的、原理及方案2、经过整理的实验数据、曲线3、对实验结果的分析、讨论以及得出的结论4、对指定问题的回答 实验报告要求:书写清楚、文字简洁、图表工整,并附原始记录,按时交任课老师评阅实验名称:负反馈放大电路的设计、测试与调试

一、实验目的 1、掌握负反馈电路的设计原理,各性能指标的测试原理。 2、加深理解负反馈对电路性能指标的影响。 3、掌握用正弦测试方法对负反馈放大器性能的测量。 二、实验原理 1、负反馈放大器 所谓的反馈放大器就是将放大器的输出信号送入一个称为反馈网络的附加电路后在放大器的输入端产生反馈信号,该反馈信号与放大器原来的输入信号共同控制放大器的输入,这样就构成了反馈放大器。单环的理想反馈模型如下图所示,它是由理想基本放大器和理想反馈网络再加一个求和环节构成。 反馈信号是放大器的输入减弱成为负反馈,反馈信号使放大器的输入增强成为正反馈。四种反馈类型分别为:电压取样电压求和负反馈,电压取样电流求和负反馈,电流取样电压求和负反馈,电流取样电流求和负反馈。 2、实验电路

实验电路如下图所示,可以判断其反馈类型累电压取样电压求和负反馈。 3.电压取样电压求和负反馈对放大器性能的影响 引入负反馈会使放大器的增益降低。负反馈虽然牺牲了放大器的放大倍数,但它改善了放大器的其他性能指标,对电压串联负反馈有以下指标的改善。 可以扩展闭环增益的通频带 放大电路中存在耦合电容和旁路电容以及有源器件内部的极间电容,使得放大器存在有效放大信号的上下限频率。负反馈能降低和提高,从而扩张通频带。 电压求和负反馈使输入电阻增大 当 v一定,电压求和负反馈使净输入电压减小,从而使输入电流 s

微电子科学与工程专业本科培养计划

微电子科学与工程专业本科培养计划 Undergraduate Program for Specialty in Microelectronic Science and Engineering 一、培养目标 Ⅰ.Program Objectives 本专业培养掌握微电子科学与工程专业必需的基础知识、基本理论和基本实验技能,能够从事该领域的各种微电子材料、器件、封装、测试、集成电路设计与系统的科研、教学、科技开发、工程技术、生产管理等工作的高级专门人才。 This program trains advanced talents with basic knowledge, theory and experimental skills necessary for Microelectronic Science and Engineering. These talents can be engaged in various works in microelectronic materials, devices, packaging, testing, integrated circuit design and system as well as the scientific research, education, technique development, engineering technology, production management. 二、基本规格要求 Ⅱ.Learning Outcomes 毕业生应获得以下几个方面的知识和能力: 1、具有扎实的自然科学基础,良好的人文社会科学基础和外语能力; 2、掌握本专业领域较宽的基础理论知识,主要包括固体物理、半导体物理、微电子材料、微电子器件、集成电路设计等方面的基础理论知识;在本专业领域内具备从事科学研究的能力; 3、受到良好的工程实践训练,掌握各种微电子器件与集成电路的分析、设计与制造方法,具有独立进行微电子材料及器件性能分析、集成电路设计、微电子工艺流程的基本能力;具备一定的工程开发和组织管理能力; 4、了解本专业的最新发展动态和发展前景,了解微电子产业的发展状况。 The program requires that the learners have the knowledge and abilities listed as follows: 1. Have solid foundation in natural science, basic fine knowledge in humanities and social sciences

微电子综合实验报告

微电子综合实验报告实验题目:⒚同或门电路仿真 班级:电子科学与技术1201 姓名:XXX 学号:XXX 时间:2015.5—2015.6

一、电路图。 OUT A B (IN1) (IN2) 分别给上图中的每个管子和结点标注,如下所述: P管分别标记为:MP1、MP2、MP3;N管分别标记为:MN1、MN2、MP3;A、B端分别标记为:IN1、IN2;输出端标记为:OUT;N 管之间连接点标记为:1;连接反相器的点标记为:2;如上图所示。 其真值表如下所示:

二、电路仿真表。 *dounand MN1 1 IN1 0 0 NMOS L=0.6U W=2.4U MN2 2 IN2 1 0 NMOS L=0.6U W=2.4U MN3 OUT 2 0 0 NMOS L=0.6U W=2.4U MP1 IN2 IN1 2 VDD PMOS L=0.6U W=4.4U MP2 IN1 IN2 2 VDD PMOS L=0.6U W=4.4U MP3 OUT 2 VDD VDD PMOS L=0.6U W=4.4U VDD VDD 0 DC 5V VIN1 IN1 0 PULSE(0 5 0 0.1N 0.1N 5N 10N) VIN2 IN2 0 PULSE(0 5 0 0.1N 0.1N 10N 20N) .TRAN 1N 100N UIC .LIB './HJ.L' TT .END 下图为无负载电容,IN1=10ns,IN2=20ns时的波形图。 从图中可以发现,本来输出应该是5v,实际输出只有4.8v,可见输出有阈值损失。 原因是N管传高电平、P管传低电平时,输出半幅,所以存在阈值损失。 三、输出加负载电容。 1、C=0.2p ;IN1=10ns ;IN2=20ns 时波形如下:

微电子技术及其应用

微电子技术及其应用 041050107陈立 一、微电子技术简介 如今,世界已经进入信息时代,飞速发展的信息产业是这个时代的特征。而微电子技术制造的芯片则是大量信息的载体,它不仅可以储存信息,还能处理和加工信息。因此,微电子技术在如今已是不可或缺的生活和生产要素。 微电子学是研究在固体(主要是半导体)材料上构成的微小型化电路、电路及系统的电子学分支。 作为电子学的分支学科,它主要研究电子或粒子在固体材料中的运动规律及其应用,并利用它实现信号处理功能的科学,以实现电路的系统和集成为目的,实用性强。微电子学又是信息领域的重要基础学科,在这一领域上,微电子学是研究并实现信息获取、传输、存储、处理和输出的科学,是研究信息获取的科学,构成了信息科学的基石,其发展水平直接影响着整个信息技术的发展。微电子科学技术的发展水平和产业规模是一个国家经济实力的重要标志。 微电子学是一门综合性很强的边缘学科,其中包括了半导体器件物理、集成电路工艺和集成电路及系统的设计、测试等多方面的内容;涉及了固体物理学、量子力学、热力学与统计物理学、材料科学、电子线路、信号处理、计算机辅助设计、测试和加工、图论、化学等多个领域。 微电子学是一门发展极为迅速的学科,高集成度、低功耗、高性能、高可靠性是微电子学发展的方向。信息技术发展的方向是多媒体(智能化)、网络化和个体化。要求系统获取和存储海量的多媒体信息、以极高速度精确可靠的处理和传输这些信息并及时地把有用信息显示出来或用于控制。所有这些都只能依赖于微电子技术的支撑才能成为现实。超高容量、超小型、超高速、超高频、超低功耗是信息技术无止境追求的目标,是微电子技术迅速发展的动力。 微电子学渗透性强,其他学科结合产生出了一系列新的交叉学科。微机电系统、生物芯片就是这方面的代表,是近年来发展起来的具有广阔应用前景的新技术。 二、微电子技术核心—-集成电路技术 集成电路(integrated circuit)是一种微型电子器件或部件。采用一定的工艺,把一个电路中所需的晶体管、二极管、电阻、电容和电感等元件及布线互连一起,制作在一小块或几小块半导体晶片或介质基片上,然后封装在一个管壳内,成为具有所需电路功能的微型结构;其中所有元件在结构上已组成一个整体,这样,整个电路的体积大大缩小,且引出线和焊接点的数目也大为减少,从而使电子元件向着微小型化、低功耗和高可靠性方面迈进了一大步。它在电路中用字母“IC”。 集成电路的分类 1.按功能结构分类 集成电路按其功能、结构的不同,可以分为模拟集成电路、数字集成电路和数/模混合集成电路 模拟集成电路又称线性电路,用来产生、放大和处理各种模拟信号(指幅度随时间变化的信号。例如半导体收音机的音频信号、录放机的磁带信号等),其输入信号和输出信号成

集成电路综合实验报告

集成电路设计综合实验 题目:集成电路设计综合实验 班级:微电子学1201 姓名: 学号:

集成电路设计综合实验报告 一、实验目的 1、培养从版图提取电路的能力 2、学习版图设计的方法和技巧 3、复习和巩固基本的数字单元电路设计 4、学习并掌握集成电路设计流程 二、实验内容 1. 反向提取给定电路模块(如下图1所示),要求画出电路原理图,分析出其所完成的逻辑功能,并进行仿真验证;再画出该电路的版图,完成DRC验证。 图1 1.1 查阅相关资料,反向提取给定电路模块,并且将其整理、合理布局。 1.2 建立自己的library和Schematic View(电路图如下图2所示)。 图2 1.3 进行仿真验证,并分析其所完成的逻辑功能(仿真波形如下图3所示)。

图3 由仿真波形分析其功能为D锁存器。 锁存器:对脉冲电平敏感,在时钟脉冲的电平作用下改变状态。锁存器是电平触发的存储单元,数据存储的动作取决于输入时钟(或者使能)信号的电平值,当锁存器处于使能状态时,输出才会随着数据输入发生变化。简单地说,它有两个输入,分别是一个有效信号EN,一个输入数据信号DATA_IN,它有一个输出Q,它的功能就是在EN有效的时候把DATA_IN的值传给Q,也就是锁存的过程。 只有在有锁存信号时输入的状态被保存到输出,直到下一个锁存信号。其中使能端A 加入CP信号,C为数据信号。输出控制信号为0时,锁存器的数据通过三态门进行输出。所谓锁存器,就是输出端的状态不会随输入端的状态变化而变化,仅在有锁存信号时输入的状态被保存到输出,直到下一个锁存信号到来时才改变。锁存,就是把信号暂存以维持某种电平状态。 1.4 生成Symbol测试电路如下(图4所示) 图4

电工电子工艺基础实验报告完整版

电工电子工艺基础实验报告完整版 电工电子工艺基础实验报告专业年级: 学号: 姓名: 指导教师: 2013 年 10 月 7 日

目录 一.手工焊点焊接方法与工艺,贴片、通孔元器件焊接工艺。 二.简述磁控声光报警器的工作原理,画出电路组成框图,实物图片。 三.简述ZX—2005型稳压源/充电器的工作原理,画出电路组成框图,实物图片;附上实习报告。四.简述流水灯工作原理,画出电路组成框图,实物图。 五.简述ZX2031FM微型贴片收音机的工作原理,画出电路组成框图,实物图。 六.简述HTDZ1208型—复合管OTL音频功率放大器的工作原理,画出电路组成框图,实物图。七.总的实训体会,收获,意见。 一.手工焊点焊接方法与工艺,贴片、通孔元器件焊接工艺。 (1)电烙铁的拿法 反握法:动作稳定,不易疲劳,适于大功率焊接。 正握法:适于中等功率电烙铁的操作。

握笔法:一般多采用握笔法,适于轻巧型的电烙铁,其 烙铁头就是直的,头端锉成一个斜面或圆锥状,适于焊 接面积较小的焊盘。 (2)焊锡的拿法 (3)焊接操作五步法 左手拿焊条,右手拿焊铁,处于随时可焊状态。 加热焊件、送入焊条、移开焊条、移开电烙铁。(4)采用正确的加热方法 让焊件上需要锡侵润的各部分均匀受热 (5)撤离电烙铁的方法 撤离电烙铁应及时,撤离时应垂直向上撤离 (6)焊点的质量要求 有可靠的机械强度、有可靠的电气连接。 (7)合格焊点的外观 焊点形状近似圆锥体,椎体表面呈直线型、表面光泽 且平滑、焊点匀称,呈拉开裙状、无裂纹针孔夹 渣。 (8)常见焊点缺陷分析 二.简述磁控声光报警器的工作原理,画出

聚酰亚胺在微电子领域的应用及研究进展 王正芳

聚酰亚胺在微电子领域的应用及研究进展王正芳 发表时间:2019-10-23T14:56:28.063Z 来源:《电力设备》2019年第10期作者:王正芳张馨予 [导读] 摘要:随着科技的深入发展,半导体和微电子工业已经成为国民经济的支柱性产业。 (天津环鑫科技发展有限公司天津市 30000) 摘要:随着科技的深入发展,半导体和微电子工业已经成为国民经济的支柱性产业。微电子工业的发展,除了设计、加工等本身技术的不断更新外,各种与之配套的材料的发展也有着十分重要的支撑作用。电子产品的轻量化、高性能化和多功能化使得其对高分子材料的要求也越来越高。聚酰亚胺(PI)可以说是目前电子化学品中最有发展前途的有机高分子材料之一。其优异的综合性能可满足微电子工业对材料的苛刻要求,因此得到了广泛的重视。 关键词:聚酰亚胺;PI薄膜;应用 信息产业的迅速发展除了技术的不断更新外,各种配套材料的发展同样占据着十分重要的地位。为微电子工业配套的专用化学材料通常称为“电子化学品”,其主要包括集成电路和分立器件用化学品、印刷电路板配套化学品、表面组装用化学品和显示器件用化学品等。电子化学品具有质量要求高、用量少、对生产及使用环境洁净度要求高和产品更新换代快等特点。同时PI具有比无机介电材料二氧化硅、氮化硅更好的成膜性能和力学性能,对常用的硅片、金属和介电材料有很好的粘结性能,聚酰亚胺(PI)薄膜具有良好的耐高低温性能、环境稳定性、力学性能以及优良的介电性能,在众多基础工业与高技术领域中均得到广泛应用。 一、PI发展及在微电子领域的应用 截至目前,PI已经成为耐热芳杂环高分子中应用最为广泛的材料之一,其大类品种就有20多种,较为著名的生产厂家包括通用电气公司GE、美国石油公司等,由于具有很好的热力学稳定性、机械性能及电性能,PI被广泛应用于半导体及微电子行业。可以说,微电子产业的发展水平,离不开PI材料的贡献。PI主要的应用包括下面方面。 1、α粒子的屏蔽层航空航天、军用集成电路在辐射环境中,遭受射线辐射后会发生性能劣化或失效,进而导致仪器设备的失控,因此其抗辐射的性能非常重要。高纯度(低杂质)的PI涂层是一种重要的耐辐射遮挡材料。在元器件外壳涂覆PI遮挡层,可有效防止由微量放射性物质释放的射线而造成的存储器错误。 2、元器件的金属层间介质以及先进封装的再布线技术材料。PI在微电子领域的很多应用,都是出于其优良的综合性能而不是单一特性,某些类似的应用可以发生在不同的领域中,一些应用情况也可以有多重的目的以及名称,因此在介绍文章的描述中,容易产生混乱。由于PI较低的介电常数减少电路时延和串扰,与其他材料的较好的粘附性防止脱离,常用金属材料在其中较低的扩散可靠性,挥发放气极低,以及良好的成膜和填平性,因此可作为多层金属互联结构的层间介质材料(ILD),缓和应力,提高集成电路的速度、集成度和可靠性。类似的考虑也导致其作为先进封装的再布线RDL技术的首选介质材料,用于一般晶圆级的封装WLP中的扇入(Fan-in)和扇出(Fan-out)技术,以及多芯片组件(MCM)等技术中的再布线工艺。 3、微电子器件的钝化层\缓冲\填充\保护层。PI涂层作为钝化层,可有效地改善界面状况,阻滞电子迁移、降低漏电流,防止后序工艺和使用过程中的机械刮擦和表面污染,也可有效地增加元器件的抗潮湿能力。作为缓冲层(Stress Buffer)可有效地降低由于热应力和机械应力引起的电路崩裂断路。单层PI膜,往往同时起到化学钝化、机械保护、空间填充/平坦化的多重功能。此外,PI在微电子产业中的重要潜在应用还有:生物微电极(良好的生物相容性),以及光电材料(波导、开关器件),微电机(MEMS)工艺材料等。这些都是目前发展十分迅速的新兴技术领域,预示着这种介质材料的光明市场前景。尽管PI材料在微电子领域的市场前景十分广阔,且该领域与其他传统材料领域的也有很大不同,体现在初期体量小成本高,对材料的性能质量要求苛刻,而且呈现多样性特点,比如希望进一步降低介电常数,提高/降低玻璃化转变温度,降低吸水率等。在技术方面,它还面临着其他类似材料比如苯并环丁烯(BCB)聚合物,聚苯并唑(PBO)等的激烈竞争。 4、含氟PI在光波导材料中的应用。近年来,关于聚合物光波导材料的开发研究日益受到人们的重视。与传统的无机光波导材料相比,有机聚合物光波导材料具有如下特点:(1)较高的电光耦合系数;较低的介电常数;较短的响应时间和较小的热损耗;(2)加工工艺简单经济,无须高温加热处理,只要通过匀胶、光刻等工艺即可制得复杂的光电集成器件,而且器件具有轻巧、机械性能好的特点,适用于制作大型光学器件和挠性器件。目前研究较多的聚合物光波导材料包括氟代、氘代的聚甲基丙烯酸甲酯、含氟聚酰亚胺、含氟聚芳醚以及聚硅氧烷等[1]。含氟聚酰亚胺不仅具有传统聚酰亚胺材料所具有的耐高温、耐腐蚀、机械性能优良等性质,而且还具有溶解性能优异、低介电常数、低吸水率、低热膨胀系数等特性,因此非常适于制造光波导材料。 5、含氟PI在非线性光学材料中的应用。常用的非线性光学材料包括无机材料,如铌酸锂(LiNbO3)和有机聚合物材料,如聚酰亚胺等。聚合物作为非线性光学材料具有比无机材料更为明显的非线性光学效应、更快的响应速度以及低得多的介电常数。同时聚合物材料还具有结构多样、加工性能优越、与微电子技术和光纤技术具有良好适应性等特点,因此应用越来越广泛。与无机材料相比,PI材料具有非线性系数大、响应时间短、介电常数低、频带宽、易合成等特性,同时还具有优良的热性能、电性能、机械性能以及环境稳定性能等,而且可以与现有的微电子工艺良好地兼容,可在各种基材上制备器件,特别是可以制作多层材料,达到垂直集成,这是现有的铌酸锂等无机材料做不到的。含氟PI在保持PI固有的优良特性的同时,极大地改善了PI的溶解性,这就避免了聚酰胺酸在热亚胺化过程中,由于脱除小分子水留下“空穴”而引起光散射。 二、PI超薄膜未来发展趋势 PI超薄膜是近年才发展起来的一类高性能高分子薄膜材料,优异的综合性能很快确立了其在有机薄膜材料家族中的顶端地位。目前,PI超薄膜的发展方向主要体现在两个方面:一是标准型Kapton薄膜的超薄化;另一个是功能性PI超薄膜的研制与开发。对于前者而言,Kapton薄膜本身优良的热学与力学性能保证了其在超薄化过程中性能的稳定,其主要技术瓶颈更多地在于制备设备与制膜工艺参数的优化与调整。而对于功能性PI超薄膜而言,其性能不仅与设备和工艺有着密切的关系,而且树脂结构的分子设计以及新合成方法的研究也起着至关重要的作用。如何在保证特种功能的前提下,尽可能地保持PI薄膜固有的力学性能、热性能等是一项极具挑战性的研究课题,也是未来一项主要研究课题。 超薄型PI薄膜在现代工业领域中具有广泛的应用前景。国外十分重视这类材料的研制与开发,已经有批量化产品问世。由于PI超薄膜的应用领域较为特殊,国外对该材料的出口限制十分严格,某些品种甚至是对我国禁售的,这就需要国内尽早开展相关研究与产业化工

电子科技大学通信原理实验实验报告2

电子科技大学通信学院 最佳接收机(匹配滤波器) 实验报告 班级 学生 学号 教师任通菊

最佳接收机(匹配滤波器)实验 一、实验目的 1、运用MATLAB软件工具,仿真随机数字信号在经过高斯白噪声污染后最佳的恢复的方法。 2、熟悉匹配滤波器的工作原理。 3、研究相关解调的原理与过程。 4、理解高斯白噪声对系统的影响。 5、了解如何衡量接收机的性能及匹配滤波器参数设置方法。 二、实验原理 对于二进制数字信号,根据它们的时域表达式及波形可以直接得到相应的解调方法。在加性白高斯噪声的干扰下,这些解调方法是否是最佳的,这是我们要讨论的问题。 数字传输系统的传输对象是二进制信息。分析数字信号的接收过程可知,在接收端对波形的检测并不重要,重要的是在背景噪声下正确的判断所携带的信息是哪一种。因此,最有利于作出正确判断的接收一定是最佳接收。 从最佳接收的意义上来说,一个数字通信系统的接收设备可以看作一个判决装置,该装置由一个线性滤波器和一个判决电路构成,如图1所示。线性滤波器对接收信号进行相应的处理,输出某个物理量提供给判决电路,以便判决电路对接收信号中所包含的发送信息作出尽可能正确的判决,或者说作出错误尽可能小的判决。 图1 简化的接收设备 假设有这样一种滤波器,当不为零的信号通过它时,滤波器的输出能在某瞬间形成信号的峰值,而同时噪声受到抑制,也就是能在某瞬间得到最大的峰值信号功率与平均噪声功率之比。在相应的时刻去判决这种滤波器的输出,一定能得到最小的差错率。 匹配滤波器是一种在最大化信号的同时使噪声的影响最小的线性滤波器设计技术。注意:该滤波器并不保持输入信号波形,其目的在于使输入信号波形失 t输出信号值相对于均方根(输出)噪声值达到真并滤除噪声,使得在采样时刻 最大。

微电子科学与工程专业

微电子科学与工程专业 一、培养目标 本专业培养德、智、体等方面全面发展,具备微电子科学与工程专业扎实的自然科学基础、系统的专业知识和较强的实验技能与工程实践能力,能在微电子科学技术领域从事研究、开发、制造和管理等方面工作的专门人才。 二、专业特色 微电子科学与工程是在物理学、电子学、材料科学、计算机科学、集成电路设计制造学等多个学科和超净、超纯、超精细加工技术基础上发展起来的一门新兴学科。微电子技术是近半个世纪以来得到迅猛发展的一门高科技应用性学科,是21世纪电子科学技术与信息科学技术的先导和基础,是发展现代高新技术和国民经济现代化的重要基础,被誉为现代信息产业的心脏和高科技的原动力。本专业主要学习半导体器件物理、功能电子材料、固体电子器件,集成电路设计与制造技术、微机械电子系统以及计算机辅助设计制造技术等方面的基础知识和实践技能,培养出来的学生在微电子技术领域初步具有研究和开发的能力。 三、培养标准 本专业学生要求在物理学、电子技术、计算机技术和微电子学等方面掌握扎实的基础理论,掌握微电子器件及集成电路的原理、设计、制造、封装与应用技术,接受相关实验技术的良好训练,掌握文献资料检索基本方法,具有较强的实验技能与工程实践能力,在微电子科学与工程领域初步具有研究和开发的能力。 毕业生应获得以下几方面的知识和能力: 1. 具有较好的人文科学素养、创新精神和开阔的科学视野; 2. 树立终身学习理念,具有较强的在未来生活和工作中继续学习的能力; 3. 具有较扎实的自然科学基本理论基础; 4. 具备微电子材料、微电子器件、集成电路、集成系统、计算机辅助设计、封装技术和测试技术等方面的理论基础和实验技能; 5. 了解本专业领域的科技发展动态及产业发展状况,熟悉国家电子信息产业政策及国内外有关知识产权的法律法规; 6.掌握文献检索及运用现代信息技术获取相关信息的基本方法; 7.具有归纳、整理和分析实验结果以及撰写论文、报告和参与学术交流的能力。 77

华桥大学微电子器件与电路实验实验报告IC2019实验2

实验报告)微电子器件与电路实验(集成 学号实验时间姓名 2019.04 实验成绩实验操作教师签字 实验二集成二极管电学特性分析实验名称(1)计算机 (2)操作系统:Centos 实验设备TSMC RF0.18um工艺模型软件平台:Cadence Virtuoso (4)(3)1.掌握变量扫描分析、OP分析、DC Sweep下分析器件电学模型参数 2.掌握二极管电流和结面积和结周长关系,加深对集成二极管电学特性的理解实验目的特性的测试方法 3.掌握二极管CV 掌握单边突变结二极管掺杂浓度测量方法 4.实验 要求 1. 实验前按要求阅读器件说明文档,阅读实验操作文档,熟悉实验过程及操作步骤 2. 实验过程中按实验报告要求操作、仿真、记录数据(波形) 3. 实验结果经指导老师检查、验收,经允许后方可关机,离开实验室 ,、实验后按要求处理数据和波形,回答问题。实验报告打印后,于下次实验时间缴交。3实验内容: 【20%】 2.1 集成二极管电流随结面积变化特性(变量分析)实验对给定的二极管固定二极管的L,然后对二极管结W进行变量分析,测得二极管电流和结面积之间的关系曲线,通过曲线斜率估计二极管电流和结面积是否满足线性关系,回答思考题1 【20%】分析)2.2 实验集成二极管电流随结周长变化特性(OP使用不同结周长的二极管单元并联成结面积相同的二极管器件,测得相同偏置条件下的二极管电流,通过对比不同二极管电流之间的差异,确定二极管电流和结周长的关系,回答思考题2 【30%】 CV特性测试(DC分析下器件电学模型参数分析)集成二极管实验2.3 对给定结面积的二极管进行DC分析,分析二极管结电容和反偏电压之间的关系,测得CV特性曲线。并根据《微电子器件与电路》所学知识,回答思考题3、4、5。 【30%】实验2.4 集成二极管内建电势差及掺杂浓度测量2测试不同结电压下单边突变结二极管的单位结面积电容,根据单边突变结1/C关系曲线特点计算得到二极管的掺杂浓度和内建电势差。

电子科技大学实验报告撰写模板

电子科技大学 实验报告 ( 2018 - 2019 - 2 ) 学生姓名:学生学号:指导老师: 实验学时:1.5h 实验地点:基础实验大楼425 实验时间:2019.4.9 14:30—16:00 报告目录 一、实验课程名称:电路实验I 1.实验名称:BJT放大器设计与测试 二、实验目的: 1. 了解BJT管的基本放大特性。 2. 掌握BJT共射放大电路的分析与设计方法。 3. 掌握放大电路静态工作点的测试方法。 4. 掌握放大电路放大倍数(增益)的测试方法。 5. 掌握放大电路输入、输出电阻的测试方法。 6. 掌握放大电路幅频特性曲线的测试方法。 三、实验器材(设备、元器件): GDS1152A型数字示波器一台。 EE1641B1型函数发生器一台。

通用面包板一个。 1kΩ电阻;10mH电感;0.047μF电容若干。 四、实验原理:

3、测试方法 (1)静态工作点调整与测试 对直流电压的测量一般用数字万用表。测量静态工作点时测出晶体管各管脚对地的电压。 (2)放大倍数的测试 用晶体管毫伏表或者示波器直接测量输出、输入电压,由 Av=vo/vi 即可得到。(3)放大器输入电阻的测试

在放大器输入端口串入一个取样电阻R,用两次电压法测量放大器的输入电阻Ri。 (4)放大器输出电阻的测试 在放大器输出端口选择一个合适的负载电阻RL,用两次电压法分别测量空载与接上负载时的输出电压,计算输出电阻Ro。 (5)放大器频率特性的测试 用点频法测试法测量放大器的频率特性,并求出带宽。 五、实验内容: (1)静态工作点的测试 (2)电压增益测试 (3)输入电阻测试 (4)输出电阻测试 (5)幅频特性测试 六、实验数据及结果分析: 1、静态工作点调整与测试 令VCC=+12V,用万用表测量VE、VB、VC,计算VBE、IEQ、VCE,数据记入表格中。 2、放大倍数的测试 用函数发生器输出一个正弦波信号作为放大器的输入信号,设置信号频率 f =1kHz,(有效值)Ui=5mV,测量U0 ,计算放大器的电压放大倍数(增益)Av。数据填入表中,定量描绘输出波形图。

EDA实验报告

电子科技大学成都学院 实验报告册 课程名称:EDA实验与实践 姓名:魏亮 学号:2940710618 院系:微电子技术系 专业:集成电路设计与集成系统(嵌入式) 教师:李海 2011 年12 月12 日

实验一:计数器 一、实验目的: 学习计数器的设计,仿真和硬件测试; 进一步熟悉Verilog HDL的编程方法。 二、实验原理和内容: 本实验的原理是利用复位信号rst,时钟信号clk,输出cout ,实现由0自加到学号(即18)。 本实验的内容是利用Quartus Ⅱ建立一个自加至18的计数器,并进行仿真测试。 三、实验步骤: 1. 启动Quartus Ⅱ建立一个空白工程,然后命名为count . qpf 。 2. 新建Verilog HDL源程序文件count.v,输入程序代码并保存, 然后进行综合编译,若在编译过程中发现错误,则找出并更正错误, 直到编译成功为止。 3. 建立波形仿真文件并进行仿真验证。 四、实验数据和结果: module count (clk,rst,cout); input clk,rst; output[5:0] cout; reg[5:0] cout; always @ (posedge clk) begin if(rst) begin cout=cout+1; if(cout==5'b10011) cout=0; end end endmodule

五、实验总结: 进一步熟悉仿真测试和Verilog HDL 编程方法。

实验二:流水灯 一、实验目的: 通过次试验进一步了解、熟悉和掌握CPLD/FPGA开发软件的使用方法及Verilog HDL的编程方法;学习简单的时序电路的设计和硬件 测试。 二、实验原理和内容: 本实验的内容是建立可用于控制LED流水灯的简单硬件电路,要求在实验箱上时间LED1~LED8发光二极管流水灯显示。 原理:在LED1~LED8引脚上周期性的输出流水数据,如原来输出的数据是11111100则表示点亮LED1、LED2。流水一次后,输出数据应 该为11111000,而此时则应点亮LED1~LED3三个LED发光二极管,这 样就可以实现LED流水灯,为了方便观察,在源程序中加入了一个分频 程序来控制流水速率。 三、实验步骤: (1)启动QuartusII建立空白工程,然后命名为led.qpf。 (2)新建Verilog HDL源程序文件led.v,输入程序代码并保存(源程序参考实验内容),进行综合编译,若在编译过程中发现错误,则找出并更正错误,直至编译成功为止。 (3)FPGA引脚分配,在Quartus II主界面下,选择Assignments→Pins,按照实验课本附录进行相应的引脚分配,引脚分配好以后保存。 (4)对该工程文件进行最后的编译,若在编译过程中发现错误,则找出并更正错误,直至编译成功为止。 (5)打开试验箱的电源开关,执行下载命令,把程序下载到FPGA试验箱中,观察流水灯的变化。 四、实验数据和结果: module led(led,clk); input clk; output[7:0] led; reg[7:0] led_r; reg[31:0] count; assign led=led_r[7:0]; always @ (posedge clk) begin count<=count+1';

相关文档
最新文档