Hermitian, symmetric and symplectic random ensembles PDEs for the distribution of the spect

矩阵的正定性及其应用论文

矩阵的正定性及其应用 摘 要:矩阵的正定性是矩阵论中的一个重要概念,本文主要讨论主要阐述的是实矩阵的正定性以及应用.本文在介绍实矩阵的正定性的定义及其判别方法后,简单的举了一些实例来阐述实矩阵正定性的应用.全文分两章,在第一章,矩阵的正定性的定义.在第二章,正定性矩阵的判别方法,在本文的最后给出了几个正定性矩阵的应用实例. 一、二次型有定性的概念 定义1 具有对称矩阵A 之二次型,AX X f T = (1) 如果对任何非零向量X , 都有0>AX X T (或0. 定理3 对称矩阵A 为正定的充分必要条件是它的特征值全大于零. 定理4 A 为正定矩阵的充分必要条件A 的正惯性指数.n p = 定理5 矩阵A 为正定矩阵的充分必要条件矩阵是:存在非奇异矩阵C , 使 C C A T =.即E A 与合同。 推论1 若A 为正定矩阵, 则0||>A .

特征值分解与奇异值分解

特征值:一矩阵A作用与一向量a,结果只相当与该向量乘以一常数λ。即A*a=λa,则a 为该矩阵A的特征向量,λ为该矩阵A的特征值。 奇异值:设A为m*n阶矩阵,A H A的n个特征值的非负平方根叫作A的奇异值。记 (A) 为σ i 上一次写了关于PCA与LDA的文章,PCA的实现一般有两种,一种是用特征值分解去实现的,一种是用奇异值分解去实现的。在上篇文章中便是基于特征值分解的一种解释。特征值和奇异值在大部分人的印象中,往往是停留在纯粹的数学计算中。而且线性代数或者矩阵论里面,也很少讲任何跟特征值与奇异值有关的应用背景。奇异值分解是一个有着很明显的物理意义的一种方法,它可以将一个比较复杂的矩阵用更小更简单的几个子矩阵的相乘来表示,这些小矩阵描述的是矩阵的重要的特性。就像是描述一个人一样,给别人描述说这个人长得浓眉大眼,方脸,络腮胡,而且带个黑框的眼镜,这样寥寥的几个特征,就让别人脑海里面就有一个较为清楚的认识,实际上,人脸上的特征是有着无数种的,之所以能这么描述,是因为人天生就有着非常好的抽取重要特征的能力,让机器学会抽取重要的特征,SVD是一个重要的方法。 在机器学习领域,有相当多的应用与奇异值都可以扯上关系,比如做feature reduction的PCA,做数据压缩(以图像压缩为代表)的算法,还有做搜索引擎语义层次检索的LSI(Latent Semantic Indexing) 另外在这里抱怨一下,之前在百度里面搜索过SVD,出来的结果都是俄罗斯的一种狙击枪(AK47同时代的),是因为穿越火线这个游戏里面有一把狙击枪叫做 SVD,而在Google上面搜索的时候,出来的都是奇异值分解(英文资料为主)。想玩玩战争游戏,玩玩COD不是非常好吗,玩山寨的CS有神马意思啊。国内的网页中的话语权也被这些没有太多营养的帖子所占据。真心希望国内的气氛能够更浓一点,搞游戏的人真正是喜欢制作游戏,搞Data Mining的人是真正喜欢挖数据的,都不是仅仅为了混口饭吃,这样谈超越别人才有意义,中文文章中,能踏踏实实谈谈技术的太少了,改变这个状况,从我自己做起吧。 前面说了这么多,本文主要关注奇异值的一些特性,另外还会稍稍提及奇异值的计算,不过本文不准备在如何计算奇异值上展开太多。另外,本文里面有部分不算太深的线性代数的知识,如果完全忘记了线性代数,看本文可能会有些困难。 一、奇异值与特征值基础知识: 特征值分解和奇异值分解在机器学习领域都是属于满地可见的方法。两者有着很紧密的关系,我在接下来会谈到,特征值分解和奇异值分解的目的都是一样,就是提取出一个矩阵最重要的特征。先谈谈特征值分解吧:

正定矩阵

5.4 正定矩阵 5.4.1 正定矩阵 [1] 二次型的分类 n 个变数的二次型∑=== n j i T j i ij n x A x x x a x x q 1 ,1),,( ,其实就是定义在n R 的一个二次齐次函数,对n R 的每个特定向量q x ,0 对应一个函数值)(0 x q ,依据)(x q 值的符号,在教 材184页上给出了二次型的分类定义: 1.正定二次型。若对一切n R x ∈,当0)(0>=?≠Ax x x q x T 称二次型)(x q 正定。 显然,正定二次型也就是函数值定正的二次型(当然有唯一的例外,0=x 时,0=q )。 2.正半定(或半正定)二次型。若对一切n R x ∈,皆有0)(≥=Ax x x q T ,且至少有一 00 ≠x 能使0)(0 =x q . 3.负定。对二次型Ax x x q T =)(,当(-q )为正定时,称q 为负定二次型。 4.负半定(或半负定)。对二次型Ax x x q T =)(,当(-q )为正半定时,称q 为负半定二次型。 5.不定二次型。若二次型Ax x q T =既能取正值,又能取负值,称为不定二次型。 容易明白,对标准形的二次型(以下给出的均为充要条件)。 若系数全正为正定二次型; 若系数全为非负,且至少有一为0,则为正半定二次型; 若系数全负为负定二次型; 若系数全为非正,且至少有一为0,则为负半定二次型; 若系数有正、有负,则为不定二次型。 对于不是标准形的二次型,为确定其类型,可通过化成标准形,并依据惯性律而作出判断。 例19 设n a a a ,,,21 是n 个实数,问它们满足什么条件时,二次型 2 12322221121)()()(),,,(x a x x a x x a x x x x q n n n ++++++= 是正定二次型。 解 乍一看,这是n 个带正系数1的平方项之和,应明显是正定的。但与定义一对照,发现这并非是二次型的标准形,每一项都是线性型而非单独变换的平方。 在这样考虑下,可对其作线性变换 n n n x x a y x a x y x a x y +=+= +=1 3 2222 111 而将q 化成标准形,2 2221n y y y q +++= 这样不就可断定q 必是正定二次型了吗?但又发现这样的问题:这个线性变换是否是满秩线性变换呢?若是,则可肯定q 为正定,若否,则还是无法肯定q 为正定二次型。 现从定义出发考察此二次型,显然0),,(1≥n x x q , 只要有字距? 0021====?=n x x x q ,就能说明q 是正定二次型了。 若q =0, 则必有

雅克比法求矩阵特征值特征向量

C语言课程设计报告 课程名称:计算机综合课程设计 学院:土木工程学院 设计题目:矩阵特征值分解 级别: B 学生姓名: 学号: 同组学生:无 学号:无 指导教师: 2012年 9 月 5 日 C语言课程设计任务书 (以下要求需写入设计报告书) 学生选题说明: 以所发课程设计要求为准,请同学们仔细阅读; 本任务书提供的设计案例仅供选题参考;也可自选,但难易程度需难度相当; 鼓励结合本专业(土木工程、力学)知识进行选题,编制程序解决专业实际问题。

限2人选的题目可由1-2人完成(A级);限1人选的题目只能由1人单独完成(B级);设计总体要求: 采用模块化程序设计; 鼓励可视化编程; 源程序中应有足够的注释; 学生可自行增加新功能模块(视情况可另外加分); 必须上机调试通过; 注重算法运用,优化存储效率与运算效率; 需提交源程序(含有注释)及相关文件(数据或数据库文件); (cpp文件、txt或dat文件等) 提交设计报告书,具体要求见以下说明。 设计报告格式: 目录 1.课程设计任务书(功能简介、课程设计要求); 2.系统设计(包括总体结构、模块、功能等,辅以程序设计组成框图、流程图解释); 3.模块设计(主要模块功能、源代码、注释(如函数功能、入口及出口参数说明,函数调用关系描述等); 4.调试及测试:(调试方法,测试结果的分析与讨论,截屏、正确性分析); 5.设计总结:(编程中遇到的问题及解决方法); 6.心得体会及致谢; 参考文献

1.课程设计任务书 功能简介: a)输入一个对称正方矩阵A,从文本文件读入; b)对矩阵A进行特征值分解,将分解结果:即U矩阵、S矩阵输出至文本文件; c)将最小特征值及对应的特征向量输出至文本文件; d)验证其分解结果是否正确。 提示:A=USU T,具体算法可参考相关文献。 功能说明: 矩阵特征值分解被广泛运用于土木工程问题的数值计算中,如可用于计算结构自振频率与自振周期、结构特征屈曲问题等。 注:以三阶对称矩阵为例 2.系统设计 3.模块设计 #include #include #include int main() { FILE *fp; int tezheng(double *a,int n,double *s,double *u,double eps,int itmax); //函数调用声明 int i,j,p,itmax=1000; //itmax为最大循环次数 double eps=1e-7,s[3][3],u[3][3]; //eps为元素精度,s为对角矩阵S,u为矩阵U double a[9];//a为待分解矩阵A i=tezheng(a,3,s,u,eps,1000);

正定矩阵的判定方法及正定矩阵在三个不等式证明中的应用汇编

正定矩阵的判定方法及正定矩阵 在三个不等式证明中的应用 作者:袁亮(西安财经大学) 摘要: 本文从正定矩阵的的定义出发,给出了正定矩阵的若干判定定理及推论,并给出了正定矩阵在柯西、Holder、Minkowski三个不等式证明中的应用. 关键词: 正定矩阵,判定,不等式,应用 Abstract: In this paper, we mainly introduce some decision theorem and inference based on the definition of positive definite matrices and give the application of positive definite matrices in the proving on Cauchy、Holder、and Minkowski inequality. Keywords: positive definite matrix,determine,inequality,application

目录 1 引言 (4) 2 正定矩阵的判定方法 (4) 2.1 定义判定 (5) 2.2 定理判定 (6) 2.3 正定矩阵的一些重要推论 (11) 3 正定矩阵在三个不等式证明中的应用 (15) 3.1 证明柯西不等式 (15) 3.2 证明Holder不等式 (16) 3.3 证明Minkowski不等式 (18) 结束语 (21) 参考文献 (22)

1 引言 代数学是数学中的一个重要的分支,而正定矩阵又是高等代数中的重要部分.特别是正定矩阵部分的应用很广泛, n阶实对称正定矩阵在矩阵理论中,占有十分重要的地位.它在物理学、概率论以及优化控制理论[]2中都得到了重要的应用,而本文只提供解决正定矩阵判定问题的方法,并阐明它在数学分析中三个重要不等式证明中的应用. 正定矩阵的一般形式是,设A是n阶实对称矩阵,若对任意n x∈,且0 R x, ≠ 都有0 Mx x T成立[]2.本文从正定矩阵的定义,给出正定矩阵的判定定理,并给> 出正定矩阵的重要推论,这些重要推论对计算数学中的优化问题有着重要的作用,并在矩阵对策,经济均衡,障碍问题[]3的研究中具有很实用的价值.同时还介绍正定矩阵在三个不等式证明中的应用,其一是用正定矩阵证明著名的柯西不等式,其二是用正定矩阵的性质给出Holder不等式的一个新的证明,其三是运用正定矩阵的两个引理证明Minkowski不等式,这三个应用说明正定矩阵运用的广泛性和有效性.以上这些正定矩阵的研究只局限在正定矩阵的理论分析方面,它的一些实际方面的应用还有待笔者和一些学者去探索挖掘. 2 正定矩阵的判定方法 2.1 定义判定 设A=()ij a,(其中ij a∈C,i,j=1,2,…,n),A的共轭转置记为*A=()ji a 定义1[]1对于实对称矩阵A=()ij a,(其中ij a∈R,i,j=1,2,…,n)若对于任意非零列向量X,都有T X A X>0,则称A是正定矩阵. 定义2[]1对于复对称矩阵A=()ij a,(其中ij a∈C,i,j=1,2,…,n)若对于任意非零列向量X,都有* X A X>0,则称A是正定矩阵. 例1设A为m阶实对称矩阵且正定,B为m×n实矩阵,T B为B的转置矩阵,试证AB B T为正定矩阵的充要条件是B的秩r(B)=n. 证 [必要性] 设AB B T为正定矩阵,则对任意的实n维列向量0 x, ≠

正定矩阵的性质和判定方法及应用

内蒙古财经大学本科毕业论文正定矩阵的性质及应用 作者郝芸芸 系别统计与数学学院 专业信息与计算科学 年级10级 学号102093113 指导教师高菲菲 导师职称讲师 答辩日期 成绩

内容提要 矩阵是数学中的一个重要基本概念,也是一个主要研究对象,同时矩阵论又是研究线性代数的一个有力工具.而矩阵的正定性是矩阵论中的一个重要概念.正定矩阵是一种特殊的矩阵,其等价定理在解题过程中可以灵活使用.且正定矩阵具有一般矩阵不具有的特殊性质,尤其是这些性质广泛地应用于各个领域.本文在第一部分介绍了实矩阵的正定性的相关定义以及其等价条件.在第二部分列举了正定矩阵的一系列性质,主要介绍了正定矩阵的关联矩阵的正定性.本文在第三部分介绍了正定矩阵的相关定理.本文在第四部分介绍了矩阵正定性的判定方法:定义法、主子式法、特征值法、与单位矩阵合同法.且简单地举了一些实例来阐述实矩阵正定性的判定.最后本文分别从不等式的证明和多元函数的极值两个方面介绍了正定矩阵的实际应用. 关键词:二次型正定矩阵判定方法应用 Abstract Matrix is an important basic concepts in mathematics, but also a main research object, at the same time matrix theory is a powerful tool for the study of linear algebra. At the same time, the positive definiteness of matrix is an important concept in the matrix theory. The positive definite matrix is a special matrix, the equivalence theorem in the problem solving process can be used flexibly. And the positive definite matrix with special properties of general matrix does not have these properties, especially widely used in various fields. In the first part of this thesis introduces the related definition of positive definite real matrix and its equivalent conditions. In the second part are held a series of properties of positive definite matrix, mainly introduced the positive definiteness correlation matrix is positive definite matrix. This paper introduces the related theorem of positive definite matrix in the third part. This paper introduces the method to judge the positive definiteness matrix in fourth parts: the definition, the master method, the eigenvalue method. Determination and simply cited a number of examples of real positive definite matrices. Two aspects of extreme finally this paper from the proof of inequality and multiple function describes the practical application of positive definite matrices. Key words:Quadratic form Positive definite matrix Determination method Application

正定矩阵的性质及应用

正定矩阵的性质及应用 摘要:正定矩阵是线性代数中一个极其重要的应用广泛的概念,深入探讨其基本性质对于其他科研领域的研究有着重要的意义。基于此,本文首先对正定矩阵的定义进行了描述,其次研究了正定矩阵的性质与判定方法,最后简单介绍了其具体应用。 关键词:正定矩阵;基本性质;推论;判定;应用 前言:矩阵是线性代数中一个极其重要的应用广泛的概念,如线性方程组的一些重要性质反映在它的系数矩阵和增广矩阵的性质上,并且解方程组的过程也表现为变换这些矩阵的过程,二次型的正定性与它的矩阵的正定性相对应,甚至有些性质完全不同的表面上完全没有联系的问题,归结成矩阵问题后却是相同的。这就使矩阵成为代数特别是线性代数的一个主要研究对象。作为矩阵的一种特殊类型,正定矩阵有很多特殊性质,是研究二次型,线性空间和线性变换问题的有利工具。本文就此浅谈一下正定矩阵的各种性质和应用。 1.正定矩阵的基本性质 1.1 正定矩阵的定义 设M是n阶实系数对称矩阵,如果对任何非零向量X=(x1,……,xn) 都有X′MX>0,就称M正定(Positive Definite)。正定矩阵在相合变换下可化为标准型,即单位矩阵。所有特征值大于零的对称矩阵(或厄米矩阵)也是正定矩阵。 另一种定义:一种实对称矩阵,正定二次型f(x1,x2,…,xn)=X′AX的矩阵A(A′)称为正定矩阵。 1.2 正定矩阵的性质 当矩阵A为正定矩阵的时候,则必有以下几个性质,即: (1)aii>0,i=1,2,……,n; (2)A的元素的绝对值最大者,必定为主对角元; (3)≤annAn-1 ,其中,An-1是A的n-1阶主子式; (4)≤a11a22……ann,当且仅当A为对角阵的时候成立; 而除了以上这几个性质外,还有若干个推论也是比较重要的,在很多应用中

正定矩阵及其应用

正定矩阵及其应用

本科毕业论文(设计) 正定矩阵及其应用 学生姓名:学号: 专业:指导老师: 答辩时间:装订时间:

A Graduation Thesis (Project) Submitted to School of Science,Hubei University for Nationalities In Partial Fulfillment of the Requiring for BS Degree In the Year of 2016 Positive definite matrices and their applications Student Name: Student No.: Specialty:s Supervisor: Date of Thesis Defense: Date of Bookbinding:

摘要 矩阵是高等代数里的一个基本概念,是代数知识的基础,是矩阵代数的一个主要研究对象. 它不仅是数学的一个重要分支,而且已经成为现在科技领域处理有限维空间形式与数量关系的强有力的工具. 而正定矩阵是从矩阵延伸出来的具有特殊性质的矩阵,是研究二次型的基础,在函数、不等式中都有应用,因此正定矩阵的特殊性质和广泛应用得到了许多学者关注,进而对此进行了大量的研究. 本文从矩阵最基本的概念和性质出发,由浅入深,层层递进. 从矩阵的性质出发,给出了正定矩阵定义及其等价定义,归纳整理了正定矩阵的性质及其部分证明,总结了正定矩阵的判定定理,最后研究正定矩阵在理论证明和在函数极值中的应用. 关键词:矩阵正定二次型正定矩阵极值

第八章矩阵的特征值与特征向量的数值解法

第八章 矩阵的特征值与特征向量的数值解法 某些工程计算涉及到矩阵的特征值与特征向量的求解。如果从原始矩阵出发,先求出特征多项式,再求特征多项式的根,在理论上是无可非议的。但一般不用这种方法,因为了这种算法往往不稳定.常用的方法是迭代法或变换法。本章介绍求解特征值与特征向量的一些方法。 §1 乘幂法 乘幂法是通过求矩阵的特征向量来求特征值的一种迭代法,它适用于求矩阵的按模最大的特征值及对应的特征向量。 定理8·1 设矩阵An ×n 有n 个线性无关的特征向量X i(i=1,2,…,n),其对应的特征值λi (i =1,2,…,n)满足 |λ1|>|λ2|≧…≧|λn | 则对任何n维非零初始向量Z 0,构造Zk = AZ k-1 11()lim ()k j k k j Z Z λ→∞ -= (8·1) 其中(Zk )j表示向量Z k 的第j个分量。 证明 : 只就λi是实数的情况证明如下。 因为A 有n 个线性无关的特征向量X i ,(i = 1,2,…,n)用X i(i = 1,2,…,n)线性表示,即Z 0=α1X 1 + α2X2 +用A 构造向量序列{Z k }其中 ? 21021010, ,k k k Z AZ Z AZ A Z Z AZ A Z -=====, (8.2) 由矩阵特征值定义知AXi =λi X i (i=1,2, …,n),故 ? 0112211122211121k k k k k n n k k k n n n k n k i i i i Z A Z A X A X A X X X X X X ααααλαλαλλλααλ===++ +=+++???? ??=+ ?????? ? ∑ (8.3) 同理有 1 1 11 1121k n k i k i i i Z X X λλααλ---=? ? ????=+ ????? ? ? ∑ (8.4) 将(8.3)与(8.4)所得Zk 及Z k-1的第j 个分量相除,设α1≠0,并且注意到 |λi |<|λ1|(i=1,2,…,n )得

正定矩阵的性质及应用

正定矩阵的性质及应用 摘要: 正定矩阵是矩阵理论中的一类重要的矩阵,且在多个不同领域内均有重要的作用,本文回顾了正定矩阵的发展史、性质及应用。矩阵理论的应用愈来愈广,它在众多学科和领域中发挥着不可替代的作用,如在数学分析中用黑塞矩阵来判断函数的极值等。把矩阵理论应用到这些数学学科中时,使很多问题变得简单明了. 关键字: 正定矩阵;主子式;顺序主子式;特征值. 研究矩阵的正定性,在数学理论或应用中具有重要意义,是矩阵论中的热门课题之一.正定矩阵具有广泛的应用价值,是计算数学、数学物理、控制论等领域中具有广泛应用的重要矩阵类,其应用引起人们极大的研究兴趣.本文首先给出了正定矩阵的定义,然后研究了正定矩阵的一些等价条件和一些正定矩阵的若干性质,最后简单的列举了一些正定矩阵在数学其它方面的应用. 一、正定矩阵的定义 定义1.设),,,(21n x x x f 是一个实二次型,若对任意的一组不全为零的实数n c c c ,,, 21 都 有0),,,(21>n c c c f ,则称),,,(21n x x x f 是实正定二次型,它所对应的对称矩阵为正定对称矩阵,简称正定矩阵. 定义2.n 阶是对称矩阵A 称为正定矩阵.如果对于任意的n 维实非零列向量) ,,,(21n x x x f X =都有0>' A X X ,正定的是对称矩阵A 简称为正定矩阵. 注:二次型的正定(负定)、半正定(半负定)统称为二次型及其矩阵的有定型,不具备有定型的二次型及其矩阵为不定. 二次型的有定型与其矩阵的有定型之间具有——对应关系.因此,二次型的正定性判别可转化为对称矩阵的正定性的判别. 二.正定矩阵的一些性质 1.正定矩阵的充分必要条 (1)n 元实二次型),,,(21n x x x f 正定?它的惯性指数为n .

正定矩阵及其应用

本科毕业论文(设计) 正定矩阵及其应用 学生:学号: 专业:指导老师: 答辩时间:装订时间:

A Graduation Thesis (Project) Submitted to School of Science,Hubei University for Nationalities In Partial Fulfillment of the Requiring for BS Degree In the Year of 2016 Positive definite matrices and their applications Student Name: Student No.: Specialty:s Supervisor: Date of Thesis Defense:Date of Bookbinding:

摘要 矩阵是高等代数里的一个基本概念,是代数知识的基础,是矩阵代数的一个主要研究对象. 它不仅是数学的一个重要分支,而且已经成为现在科技领域处理有限维空间形式与数量关系的强有力的工具. 而正定矩阵是从矩阵延伸出来的具有特殊性质的矩阵,是研究二次型的基础,在函数、不等式中都有应用,因此正定矩阵的特殊性质和广泛应用得到了许多学者关注,进而对此进行了大量的研究. 本文从矩阵最基本的概念和性质出发,由浅入深,层层递进. 从矩阵的性质出发,给出了正定矩阵定义及其等价定义,归纳整理了正定矩阵的性质及其部分证明,总结了正定矩阵的判定定理,最后研究正定矩阵在理论证明和在函数极值中的应用. 关键词:矩阵正定二次型正定矩阵极值

Abstract The matrix is very important in advanced algebra. It is not only an important branch, but also have become a powerful tool for studying finite dimensional space and quantity r- elationship in the real of modern science and technology. However , extending from the m- atrices, the positive definite matrix is a special matrix, which is a foundation for studying quadratic form and apply properly to both functions and inequality. Thus, its special prop- erty and wide applications have drawn scholars' attention, and a lot of research have been done. This paper begins with the matrix' primary concept and properties, going from the e- asy to the difficult. We define the positive definite matrix and its equivalent one, the sum up its properties and partial evidence, and summarize the determined theorems. At last, we study its application in theory and the solution of the function extremum. Keywords: matrix,positive definite quadratic,positive definite matrix,extremum

正定矩阵的性质与应用

本科生学年论文(设计) 论文(设计)题目正定矩阵的性质及应用 作者 分院、专业理学分院数学与应用数学专业 班级 指导教师(职称) 字数 5488 成果完成时间

正定矩阵的性质及应用 摘要:我们在化二次型为标准型的过程中,得到了正定矩阵的定义,而关于正定矩阵的等价定理及其性质我们在本文中进行了详细的举例及证明.同时,本文也就正定矩阵的性质在矩阵、不等式和极值问题的应用进行了深刻的探讨. 关键词:正定矩阵;等价定理;性质;应用 The nature and application of positive definite matrices Abstract:We are of the two type is a standard process, obtained the positive definite matrix is defined, and on the positive definite matrix equivalence theorem and its properties in this paper we carried out a detailed examples and proved. At the same time, this paper also has the properties of positive definite matrix in matrix, inequalities and extremum problems for application of the profound discussion. Key words:Positive definite matrix; equivalence theorem; properties; application

特征值分解及奇异值分解在数字图像中的应用

特征值分解及奇异值分解在数字图像中的应用 摘要:目前,随着科学技术的高速发展,现实生活中有大量的信息用数字进行存储、处理和传送。而传输带宽、速度和存储器容量等往往有限制,因此数据压缩就显得十分必要。数据压缩技术已经是多媒体发展的关键和核心技术。图像文件的容量一般都比较大,所以它的存储、处理和传送会受到较大限制,图像压缩就显得极其重要。当前对图像压缩的算法有很多,特点各异,类似JPEG 等许多标准都已经得到了广泛的应用。本文在简单阐述了矩阵特征值的数值求解理论之后,介绍了几种常用的求解矩阵特征值的方法,并最终将特征值计算应用到图像压缩中。以及奇异值分解(Singular Value Decomposition ,SVD) 。奇异值分解是一种基于特征向量的矩阵变换方法,在信号处理、模式识别、数字水印技术等方面都得到了应用。由于图像具有矩阵结构,有文献提出将奇异值分解应用于图像压缩[2],并取得了成功,被视为一种有效的图像压缩方法。本文在奇异值分解的基础上进行图像压缩。 关键词:特征值数值算法;奇异值分解;矩阵压缩;图像处理 引言 矩阵的特征值计算虽然有比较可靠的理论方法,但是,理论方法只适合于矩阵规模很小或者只是在理论证明中起作用,而实际问题的数据规模都比较大,不太可能采用常规的理论解法。计算机擅长处理大量的数值计算,所以通过适当的数值计算理论,写成程序,让计算机处理,是一种处理大规模矩阵的方法,而且是一种好的方法。常用的特征值数值方法包括幂法、反幂法、雅克比方法、QR 分解法等。其中,幂法适用于求解矩阵绝对值最大的特征值,反幂法适合求解矩阵的逆矩阵的特征值,雅克比方法适合求解对称矩阵的特征值,QR分解法主要使用于求中小型矩阵以及对称矩阵的全部特征值。矩阵乘以一个向量的结果仍是同维数的一个向量。因此,矩阵乘法对应了一个变换,把一个向量变成同维数的另一个向量,变换的效果当然与方阵的构造有密切关系。图像压缩处理就是通过矩阵理论减少表示数字图像时需要的数据量,从而达到有效压缩。数字图像的质量很大程度上取决于取样和量化的取样数和灰度级。取样和量化的结果是一个实际的矩阵。图像压缩是数据压缩技术在数字图像上的应用,它的目的是减少图像数据中的冗余信息从而用更加高效的格式存储和传输数据。图像数据之所以能被压缩,就是因为数据中存在着冗余。图像数据的冗余主要表现为:图像中相邻像素间的相关性引起的空冗余;图像序列中不同帧之间存在相关性引起的时间冗

正定矩阵的应用

关于正定矩阵应用的综述 数学与应用数学专业 数学1201班 XXX 指导老师 XXX 摘 要:对正定矩阵的一些性质,给出了正定矩阵的几个应用,并对这些应用中结论的证明作了进一步的补充. 关键词:正定矩阵;可逆矩阵;正交矩阵; 1. 引言 矩阵的思想很早就已经有了,至少可以追溯到汉代中国学者在解线性方程组时的应用上.而经过近几年的发展,矩阵论已经是代数学中的一个重要分支了,而正定矩阵因其特有的性质及应用也受到了人们的广泛关注. 正定矩阵是一类重要的矩阵,在二次型和欧式空间等方面有着较为广泛的应用,研究它的性质对拓展欧式空间有着极其重要的意义. 由正定矩阵的一些基本性质 , 并且运用这些性质从而得出正定矩阵的新性质. 二次齐次多项式是一类重要的多项式,在实际工作和理论研究中占据重要地位.它在数学的许多分支以及物理学中会经常用到,尤其是对于实二次型中的正定二次型,更占有特殊的地位.我们把正定二次型的系数矩阵叫做正定矩阵.因此,对于正定矩阵的讨论在矩阵理论方面或实际应用方面都有着极其重要的意义.本文主要是从正定矩阵的一些性质出发,并结合已有的知识将正定阵的性质作了进一步扩充及应用. 2. 正定矩阵的应用 2.1. 矩阵正定在运算中的性质应用 定理1:若A 与B 都 是同阶正定矩阵,则矩阵AB 的特征根都大于零. 证明:AB 都是正定矩阵,故有非奇异矩阵P Q 、,使,T T A P P B Q Q ==,于 是,()()1T T T T T T T T A B P PQ Q Q QP PQ Q Q PQ PQ Q -?===因为T PQ 非奇异,故 () ()T T PQ PQ 是正定阵,从而与它相似的矩阵AB 的特征值都是正数. 应注意的是,定理1中仅指A B ?的特征值是大于零的,而由于AB 不一定是对称阵,所

二次型的正定性及其应用

毕业论文 题目:二次型的正定性及其应用 学生姓名:孙云云 学生学号: 0805010236 系别:数学与计算科学系 专业:数学与应用数学 届别: 2012 届 指导教师:李远华

目录 摘要 (1) 前言 (1) 1 二次型的概念 (2) 1.1 二次型的矩阵形式 (2) 1.2 正定二次型与正定矩阵的概念 (2) 2 二次型的正定性一些判别方法及其性质 (3) 3 二次型的应用 (8) 3.1 多元函数极值 (8) 3.2 线性最小二乘法 (12) 3.3 证明不等式 (14) 3.4 二次曲线 (16) 结论 (17) 致谢 (17) 参考文献 (17)

淮南师范学院2012届本科毕业论文1 二次型的正定性及其应用 学生:孙云云 指导老师:李远华 淮南师范学院数学与计算科学系 摘要:二次型与其矩阵具有一一对应关系,本文主要通过研究矩阵的正定性来研究二次型的正定性及其应用。通过研究二次型的性质并利用正(负)定矩阵判断多元函数的极值、证明不等式,由矩阵的特征值求多元函数的最值,再借助于非退化线性替换判断二次曲线的形状。 关键词:二次型;矩阵;正定性;应用 The second type of positive definite matrix and its applications Student: Sun YunYun Instructor: Li YuanHua Department of mathematics and Computational Science, Huainan Normal University Abstract: Quadratic and its matrix is exactly corresponding relation, this paper mainly through the study of the matrix is qualitative to study the second type is qualitative and its application. Through the study of the nature of the second type and use the positive (negative) set judgment matrix function of many extreme value, to testify inequality, the characteristic value of the matrix for the most value of a function of many, then the degradation by linear replace judgment of the shape of the quadratic curves. Key words: Quadratic; Quadratic matrix; Qualitative; Application 前言 二次型常常出现在许多实际应用和理论研究中,有很大的实际使用价值。它不仅在数学的许多分支中用到,而且在物理学中也会经常用到,其中实二次型中的正定二次型占用特殊的位置. 二次型的有定性与其矩阵的有定性之间具有一一对应关系.因此,二次型的正定性判别可转化为对称矩阵的正定性判别,因此,对正定矩阵的讨论有重要的意义.

中心对称矩阵在矩阵特征分解中的应用

中心对称矩阵在矩阵特征分解中的应用 摘要 本文针对偶数阶中心对称矩阵,引入偶数阶置换矩阵,探索了矩阵特征分解的新方法。该方法是通过对矩阵的分块,将复杂大型矩阵特征值问题,转化为几个小矩阵特征值求解,使得问题计算的复杂度大大缩减。 关键词:中心对称矩阵 置换矩阵 特征分解 定义1:如果n m ?矩阵P=(ij p )满足 1,1+-+-=j n i m ij p p 其中n j m i ≤≤≤≤1,1 则P 是中心对称矩阵[1] 形如???? ??a b b a ,???? ? ??a b c d e d c b a 都是中心对称矩阵。 定义2:如果?????? ? ??==?111)( n n ij n J J ,则n J 为n 阶置换矩阵 设n J 为n 阶置换矩阵,则用n J 左乘(或右乘)矩阵P ,可以将其行(或列)按反序重新排列。 定理1:n m ?矩阵P 是中心对称矩阵当且仅当 n m PJ P J = 证明:若n m PJ P J =,因为E J n =2,则n m PJ J P =,且 [][]1,1,1+-+-+-===j n i m j i m n ij n m ij p PJ PJ J p 其中n j m i ≤≤≤≤1,1 因此P 是中心对称矩阵。 反之,若P 是中心对称矩阵,则显然有n m PJ P J =. 定理2:设P 和Q 都是n 阶中心对称矩阵,则P+Q ,PQ 和cP (c 为任意实数)仍是中心对称矩阵

证明:设P 和Q 都是n 阶中心对称矩阵,则由定理1, Q P QJ J PJ J J Q P J n n n n n n +=+=+)(, PQ QJ J PJ J J PQ J n n n n n n ==))(()(, cP PJ J c J cP J n n n n ==)()(. 因此,P+Q ,PQ 和cP 仍是中心对称矩阵。 引理1:对于偶数阶(n=2s )置换矩阵J ,存在变换矩阵Q ,使得Q T J n Q 为E s 0-E s ?è ????÷÷ 证明:设T u )0,,0,1(1 =,则T n u J )1,,0,0(1 =,T n u J )0,,0,1(12 =,故0112=-u u J n 即0))(()(112=-+=-u E J E J u E J n n n ,所以 T n u E J )1,,0,1()(1 =+,T n u E J )1,,0,1()(1 -=-分别是n J 的属于特征值1,-1的 特征向量。同样,设T u )0,,1,0(2 =,有0222=-u u J n ,所以T )0,1,0,,0,1,0( 和 T )0,1,0,,0,1,0( -分别是属于特征值1,-1的特征向量。当P 为偶数阶(n=2s )时,继续做下去,可得n=2s 个相互正交的特征向量,将它们排列为变换矩阵Q 的列向量,得 ??? ? ??-=????????????? ??---=s s s s E J J E Q 2111111111111121 ,

正定矩阵的判别及其应用

毕业论文 题目正定矩阵的判别方法及其应用学院数学与统计学院 专业数学与应用数学 姓名周永辉 班级11级数应1班 学号20111010148 指导教师董芳芳讲师 提交日期2015/5/12

原创性声明 本人郑重声明:本人所呈交的论文是在指导教师的指导下独立进行研究所取得的成果。学位论文中凡是引用他人已经发表或未经发表的成果、数据、观点等均已明确注明出处。除文中已经注明引用的内容外,不包含任何其他个人或集体已经发表或撰写过的科研成果。 本声明的法律责任由本人承担。 论文作者签名: 年月日论文指导教师签名:

正定矩阵的判别及其应用 摘要本文从正定矩阵的定义出发,给出了矩阵正定性的一些判别方法,并得到了正定矩阵的一些应用. 关键词矩阵;正定性;判别;应用 Methods and the applications of the judgment of positive definite matrix Yonghui zhou (School of Mathematics and Statistics, Tianshui Normal University, Tianshui 741000,China) Abstract In this paper, Some Methods of judgement matrix are given by the definite and some application are obtained. Key Words matrix;positive definiteness;method;application 目录

相关文档
最新文档