单闭环流量比值控制系统实验报告

单闭环流量比值控制系统实验报告
单闭环流量比值控制系统实验报告

《控制工程实验》实验报告

实验题目:单闭环流量比值控制系统

课程名称:《控制工程实验》

姓名:

学号:

专业:

年级:

院、所:

日期: 2019.04.25

实验一一阶单容上水箱对象特性的测试

一、实验目的

1.了解单闭环比值控制系统的原理与结构组成。

2.掌握比值系数的计算方法。

3.掌握比值控制系统的参数整定与投运方法

二、实验设备

1. 实验装置对象及控制柜 1套

2. 装有Step7、WinCC等软件的计算机 1台

3. CP5621专用网卡及MPI通讯线各1个

三、实验原理

在工业生产过程中,往往需要几种物料以一定的比例混合参加化学反应。如果比例失调,则会导致产品质量的降低、原料的浪费,严重时还会发生事故。这种用来实现两个或两个以上参数之间保持一定比值关系的过程控制系统,均称为比值控制系统。本实验是单闭环流量比值控制系统。其实验系统结构图如图1所示。该系统中有两条支路,一路是来自于电动调节阀支路的流量Q1,它是一个主流量;另一路是来自于变频器—磁力泵支路的流量Q2,它是系统的副流量。要求副流量Q2能跟随主流量Q1的变化而变化,而且两者之间保持一个定值的比例关系,即Q2/Q1=K。

图1 单闭环流量比值控制系统

(a)结构图(b)方框图

由图中可以看出副流量是一个闭环控制回路,当主流量不变,而副流量受到扰动时,则可通过副流量的闭合回路进行定值控制;当主流量受到扰动时,副流量按一定比例跟随主流量变化,显然,单闭环流量控制系统的总流量是不固定的。

四、比值系数的计算

设流量变送器的输出电流与输入流量间成线性关系,即当流量 Q 由 0~Qmax变化时,相应变送器的输出电流为 4~20mA。由此可知,任一瞬时主流量 Q1和副流量 Q2所对应变送器的输出电流分别为

(1)

(2)

式中Q1max和Q2max分别为Q1和Q2最大流量值,即涡轮流量计测量上限,由于两只涡轮流量计完全相同,所以有Q1max=Q2max。

设工艺要求Q2/Q1=K,则式(1)、(2)可改写为:

(3)

(4)

于是求得:

(5)

折算成仪表的比值系数K′为:

(6)

五、实验内容与步骤

本实验选择电动阀支路和变频器支路组成流量比值控制系统。实验之前先将储水箱中贮足水量,然后将阀门F1-1、F1-8、F1-11、F2-1、F2-5全开,其余阀门均关闭。

S7-300PLC 控制:

1.用 MPI 通讯电缆线将 S7-300PLC 连接到计算机 CP5621 专用网卡,并按照控制柜接线图连接实验系统。

2.接通总电源空气开关,合上单相,打开钥匙开关,给系统上电,将相应旋钮开关打至开,给 S7-300PLC 及电动调节阀上电。

3.打开 Step 7 软件,并打开“S7-300PLC”程序进行下载,然后将S7-300PLC 置于运行状态,然后运行 WinCC 组态环境,打开“S7-300PLC 控制系统”工程,然后进入 WinCC 运行环境,在主菜单中点击“实验十四、上水箱液位与进水口流量串级控制实验”,进入实验十四的监控界面。

4.在上位机监控界面中输出值设置为一个合适的值。

5.合上三相电源空气开关,磁力驱动泵上电打水,适当增加/减少 PLC 的输出量,使下水箱的液位处于某一平衡位置,记录此时的仪表输出值和液位值。

6.待上水箱液位平衡后,突增(或突减)PLC 输出量的大小,使其输出有一个正(或负)阶跃增量的变化(即阶跃干扰,此增量不宜过大,以免水箱中水溢出),于是水箱的液位便离开原平衡状态,经过一段时间后,水箱液位进入新的平衡状态,记录下此时的仪表输出值和液位值。

7.根据前面记录的液位值和输出值,按公式(7)计算 K 值,再根据公式(8)求得 T、值,写出对象的传递函数。

六、实验结果

根据实验步骤1-7得出实验数据如下图2所示:

图2 单闭环流量比值控制实验结果图

根据实验结果图可以看出,实测比值器的比值系数与设定值基本一致。在阶跃扰动下,当比例系数较大时,系统的静态误差也较大,这是因为比例系数会加大幅值;在加入微分环节后,系统的动态误差明显减小,但调节时间却延长,这是因为微分具有超前的作用,可以增加系统的稳定度。

六、思考题

1. 如果 Q1(t)是一斜坡信号,试问在这种情况下 Q1与 Q2还能保持原比值关系?

答:能,单闭环比值控制系统在开环比值控制的基础上,增加对副流量的闭环控制,当其对Q2进行闭环控制时,比值控制的精度较高,对Q1只测量、不控制。Q1变化,Q2跟着变化

2.试根据工程比值系数确定仪表比值系数?

答:比值控制是解决不同物料流量之间的比例关系问题。工艺要求的比值系数K,是不同物料之间的体积流量或重量流量之比,而比值器参数K',则是仪表的读数,它与实际物料流量的比值K,一般情况下并不相等。因此,在设计比值控制系统时,必须根据工艺要求的比值系数K计算出比值器参数K'。当使用单元组合仪表时,因输入-输出参数均为统一标准信号,所以,比值器参数K'必须由实际物料流量的比值系数K折算成仪表的标准统一信号。

比值控制系统

第三节比值控制系统 一、比值控制原理 在炼油、化工、制药等许多生产过程中,经常需要两种物料或两种以上的物料保持一定的比例关系。最常见的就是燃烧过程,燃料与空气要保持一定的比例关系,才能满足生产与环保的要求:造纸过程中,浓纸浆与水要以一定的比例混合,才能制造出合格的纸浆;许多化学反应的诸个进料要保持一定的比例。 通常,在两个需要保持一定比例关系的物料中,一个就是主动量或关键量,另一个就是从动量或辅 助量。由于物料通常就是液体,因此称主动量为主流量F M ,从动量为副流量F S 。F M 与F S 之间的关系为 Fs=KF M (8-l) 式中,K为比值系数。 因此,只要主副流量的给定值保持比值关系,或者副流量给定值随主流量按一定比例关系而变化即可实现比值控制。 二、比值控制系统的类型 l.单闭环比值控制系统图8-12表示一个燃烧过程单闭环比值控制系统,主流量就是燃料,副流量就 是空气。F M T测量出主流量并变换为标准信号,乘以比值系数K后,作为副流量控制系统中被控变量Fs的给定值。如此,可以保持主流量与副流量之间的比例关系。从系统结构外观上瞧,似乎单闭环比值控制系统与串级控制系统很相似。但它们的方块图就是不同的,功能也就是不同的。单闭环比值控制系统的方块图如图8-13所示。 图8-13 单闭环比值控制系统方块图 从图8-13中可以瞧到,没有主对象与主调节器,这就是单闭环比值控制系统在结构上与串级不同的地方,串级中的副变量就是调节变量到被控变量之间总对象的一个中间变量,而比值中,副流量不会影响主流量,这就是两者之间本质上的区别。 副流量控制系统就是一个随动控制系统,它的给定值由系统外部的KF M 提供,它的任务就就是使副流 量Fs尽可能地保持与KF M 相等,随F M 的变化而变化,始终保持F M 与Fs的比值关系。当系统处于稳态时,

控制系统仿真与设计实验报告

控制系统仿真与设计实验报告 姓名: 班级: 学号: 指导老师:刘峰 7.2.2控制系统的阶跃响应 一、实验目的 1.观察学习控制系统的单位阶跃响应; 2.记录单位阶跃响应曲线; 3.掌握时间相应的一般方法; 二、实验内容 1.二阶系统G(s)=10/(s2+2s+10)

键入程序,观察并记录阶跃响应曲线;录系统的闭环根、阻尼比、无阻尼振荡频率;记录实际测去的峰值大小、峰值时间、过渡时间,并与理论值比较。 (1)实验程序如下: num=[10]; den=[1 2 10]; step(num,den); 响应曲线如下图所示: (2)再键入: damp(den); step(num,den); [y x t]=step(num,den); [y,t’] 可得实验结果如下:

记录实际测取的峰值大小、峰值时间、过渡时间,并与理论计算值值比较 实际值理论值 峰值 1.3473 1.2975

峰值时间 1.0928 1.0649 过渡时间+%5 2.4836 2.6352 +%2 3.4771 3.5136 2. 二阶系统G(s)=10/(s2+2s+10) 试验程序如下: num0=[10]; den0=[1 2 10]; step(num0,den0); hold on; num1=[10]; den1=[1 6.32 10]; step(num1,den1); hold on; num2=[10]; den2=[1 12.64 10]; step(num2,den2); 响应曲线:

(2)修改参数,分别实现w n1= (1/2)w n0和w n1= 2w n0响应曲线试验程序: num0=[10]; den0=[1 2 10]; step(num0,den0); hold on; num1=[2.5]; den1=[1 1 2.5]; step(num1,den1); hold on; num2=[40]; den2=[1 4 40]; step(num2,den2); 响应曲线如下图所示:

比值控制系统

比值控制系统 问题的提出:在工业生产过程中,要求两种或多种物料流量成一定比例关系 要求严格控制比例。 最常见的是燃烧过程,燃料与空气要保持一定的比例关系,才能满足生产和环保的要求。 造纸过程中,浓纸浆与水要以一定的比例混合,才能制造出合格的纸浆,许多化学反应的诸个进料要保持一定的比例。 例如1、氨合成生产过程3H2+1N2=2NH3,要求H2和N2完全按照3:1进料。 2、造纸过程中,对纸浆浓度有要求,进料浓纸浆和水的进料就要满足一定比例。 如果有三个进料,对三个进料之间需要满足一定比例关系。 而我们之前学习的控制系统的控制达不到这样的控制要求。因此就要用到一个新的控制————比值控制系统基本概念: 1.比值控制系统(流量比值控制系统):实现两个或两个以上参数符合一定比例关系的控制系统。 2.主物料或主动量:在保持比例关系的两种物料中处于主导地位的物料,称为主物料;表征主物料的参数称为主动量(主流量),用F1表示。 3.从物料或从动量:按照主物料进行配比,在控制过程中跟随主物料变化而变化的物料称为从物料;表征从物料特性的参数称为从动量(副流量),用F2表示。 4.有些场合,用不可控物料为主物料,用改变可控物料即从物料来实现比值关系。 5. 比值控制系统就是要实现从动量与主动量成一定的比值关系: K= F2/ F1 F2—为从动量A F1—为主动量B (从动量/主动量=K 常数)在比值控制系统中 从动量是跟随主动量变化的物料流量,因此,比值控制系统实际上是一种随动控制系统。 比值控制系统的类型: 开环比值控制系统 单闭环比值控制系统 双闭环比值控制系统 变比值比值控制系统 (串级比值控制系统) 开环比值控制系统 开环比值控制系统是最简单的比值控制系统,同时也是一个开环控制系统。 随着F1的变化,F2跟着变化,满足F2=KF1的要求。(阀门开度与F1之间成一定的比例关系)。 图P162 图5.1 开环比值控制缺点: 1.当F2因管线两端压力波动而发生变化时,系统不起控制作用,即F2本身无抗干扰能力。 2.适用于副流量较平稳且比值精度要求不高的场合。 特点:由于系统是开环的,对从动量F2有干扰无法克服,无法保持比值关系。 适用场合:适用于从动量较平稳且比值关系要求不高的场合,实际生产上很少用。 单闭环比值控制 图P162 图5.2 单闭环比值控制系统是为了克服开环比值系统存在的不足,在开环比值控制系统的基础上增加一个从动量的闭环控制系统。 单闭环比值控制原理: (1)、当F1不变而F2受到扰动,通过闭环实现定值控制,将F2调回到F1的给定值上。

双闭环管道流量比值控制系统设计报告

双闭环管道流量比值控制系统设计报告 PLC控制技术实训评分表 课程名称: PLC控制技术实训 设计题目:单容液位变频器PID单回路控制,比值控制系统班级:学号:姓名: 指导老师: 年月日

双闭环管道流量比值控制系统设计报告常熟理工学院 电气及自动化工程学院 《PLC控制技术实训》报告 题目:单容液位变频器PID单回路控制 比值控制系统设计 姓名:李良、何龙太 莫勇、高虎 学号: 160112109、160112106 160112113、160112104 班级:自动化121 指导教师:刘叔军 起止日期: 2015.6.29~7.12

摘要 本课题针对液位控制系统系统作初步设计和基本研究,该系统能对水箱液位信号进行采集,以PLC为下位机,以工控组态软件组态王设计上位机监控画面,实现PID 对水箱液位的控制。 针对比值控制系统进行模拟复杂控制系统设计、分析和测试研究,该系统通过涡轮流量计、电磁流量计进行信号采集,以工控组态软件组态王上位机监控P画面并对PID参数调节,实现对比值系统的控制。 关键词:PLC PID控制液位控制比值控制组态王流量

目录 1、引言................................ 错误!未定义书签。 1.1主要内容 ............................ 错误!未定义书签。 1.2任务要求 ............................ 错误!未定义书签。 2、设计方案............................ 错误!未定义书签。 2.1设计原理 ............................ 错误!未定义书签。 2.2设计方案论证......................... 错误!未定义书签。 2.3系统原理图........................... 错误!未定义书签。 2.4系统结构图........................... 错误!未定义书签。 2.5系统工艺流程图 (4) 3、硬件设计 (4) 3.1流量计(涡轮流量计、电磁流量计) (3) 3.2 电动调节阀 (5) 3.3 变频器面板 (6) 3.4百特自整定PID调节器 (6) 3.5 EM235拓展模块 (7) 3.6 硬件接线图 (8) 3.7 I/O口分配表 (10) 4、软件设计............................ 错误!未定义书签。 4.1 程序流程图.......................... 错误!未定义书签。 4.2程序分析 ............................ 错误!未定义书签。 5、系统建模及MATALAB仿真调试 .......... 错误!未定义书签。

哈工大_控制系统实践_磁悬浮实验报告

研究生自动控制专业实验 地点:A区主楼518房间 姓名:实验日期:年月日斑号:学号:机组编号: 同组人:成绩:教师签字:磁悬浮小球系统 实验报告 主编:钱玉恒,杨亚非 哈工大航天学院控制科学实验室

磁悬浮小球控制系统实验报告 一、实验内容 1、熟悉磁悬浮球控制系统的结构和原理; 2、了解磁悬浮物理模型建模与控制器设计; 3、掌握根轨迹控制实验设计与仿真; 4、掌握频率响应控制实验与仿真; 5、掌握PID控制器设计实验与仿真; 6、实验PID控制器的实物系统调试; 二、实验设备 1、磁悬浮球控制系统一套 磁悬浮球控制系统包括磁悬浮小球控制器、磁悬浮小球实验装置等组成。在控制器的前部设有操作面板,操作面板上有起动/停止开关,控制器的后部有电源开关。 磁悬浮球控制系统计算机部分 磁悬浮球控制系统计算机部分主要有计算机、1711控制卡等; 三、实验步骤 1、系统实验的线路连接 磁悬浮小球控制器与计算机、磁悬浮小球实验装置全部采用标准线连接,电源部分有标准电源线,考虑实验设备的使用便利,在试验前,实验装置的线路已经连接完毕。 2、启动实验装置 通电之前,请详细检察电源等连线是否正确,确认无误后,可接通控制器电源,随后起动计算机和控制器,在编程和仿真情况下,不要启动控制器。 系统实验的参数调试

根据仿真的数据及控制规则进行参数调试(根轨迹、频率、PID 等),直到获得较理想参数为止。 四、实验要求 1、学生上机前要求 学生在实际上机调试之前,必须用自己的计算机,对系统的仿真全部做完,并且经过老师的检查许可后,才能申请上机调试。 学生必须交实验报告后才能上机调试。 2、学生上机要求 上机的同学要按照要求进行实验,不得有违反操作规程的现象,严格遵守实验室的有关规定。 五、系统建模思考题 1、系统模型线性化处理是否合理,写出推理过程? 合理,推理过程: 由级数理论,将非线性函数展开为泰勒级数。由此证明,在平衡点)x ,(i 00对 系统进行线性化处理是可行的。 对式2x i K x i F )(),(=作泰勒级数展开,省略高阶项可得: )x -)(x x ,(i F )i -)(i x ,(i F )x ,F(i x)F(i,000x 000i 00++= )x -(x K )i -(i K )x ,F(i x)F(i,0x 0i 00++= 平衡点小球电磁力和重力平衡,有 (,)+=F i x mg 0 |,δδ===00 i 00 i i x x F(i,x) F(i ,x )i ;|,δδ===00x 00i i x x F(i,x)F (i ,x )x 对2 i F(i,x )K()x =求偏导数得:

双闭环流量比值控制系统设计

目录 摘要 (1) 双闭环流量比值控制系统设计 (2) 1、双闭环比值控制系统的原理与结构组成 (2) 2、课程设计使用的设备 (3) 3、比值系数的计算 (4) 4、设备投运步骤以及实验曲线结果 (5) 5、总结 (16) 6、参考文献 (17)

摘要 在许多生产过程中,工艺上常常要求两种或者两种以上的物料保持一定的比例关系。一旦比例失调,会影响生产的正常进行,造成产量下降,质量降低,能源浪费,环境污染,甚至造成安全事故。 这种自动保持两个或多个参数间比例关系的控制系统就是比值控制所要完成的任务。因此比值控制系统就是用于实现两个或两个以上物料保持一定比例关系的控制系统。需要保持一定比例关系的两种物料中,总有一种起主导作用的物料,称这种物料为主物料,另一种物料在控制过程中跟随主物料的变化而成比例的变化,这种无物料成为从物料。由于主,从物料均为流量参数,又分别成为主物料流量和从物料流量,通常,主物料流量用Q1表示,从物料流量用Q2表示,工艺上要求两物料的比值为K,即K=Q2/Q1.在比值控制精度要求较高而主物料Q1又允许控制的场合,很自然就想到对主物料也进行定值控制,这就形成了双闭环比值系统。在双闭环比值系统中,当主物料Q1受到干扰发生波动时,主物料回路对其进行定值控制,使从物料始终稳定在设定值附近,因此主物料回路是一个定值控制系统,而从物料回路是一个随动控制系统,主物料发生变化时,通过比值器的输出,使从物料回路控制器的设定值也发生变化,从而使从物料随着主物料的变化而成比例的变化。当从物料Q2受到干扰时,和单闭环控制系统一样,经过从物料回路的调节,使从物料稳定在比值器输出值上。双闭环比值控制系统由于实现了主物料Q1的定值控制,克服了干扰的影响,使主物料Q1变化平稳。当然与之成比例的从物料Q2变化也将比较平稳。根据双闭环比值控制系统的优点,它常用在主物料干扰比较频繁的场合,工艺上经常需要升降负荷的场合以及工艺上不允许负荷有较大波动的场合。本实验通过了解双闭环比值控制系统的原理与结构组成,进行双闭环流量比值控制系统设计(包括仪表选型)以及进行比值系数的计算,最后基于WinCC进行监控界面设计,给出不同参数下的响应曲线,根据扰动作用时,记录系统输出的响应曲线。

进水流量跟随出水流量比值控制系统

实验题目 进水流量跟随出水流量比值控制系统 实验室 实验时间 同组人数 人 实验类别 综合性实验 指导教师:张运波 张红 一、实验目的 1.掌握比值控制的基本原理、系统构成方法以及参数整定方法; 2.进一步熟练智能调节仪表的基本操作与整定方法; 3.掌握比值控制系统的基本特性和控制方式。 二、实验设备 1.过程控制对象:1套 2.控制系统操作台:1套 3.PID 自整定数字调节仪:1块 4.示波器(或计算机):1台 三、实验原理 系统的原理框图如图4.1所示,系统由一个定值控制的主动量回路和一个跟随主动量变化的从动量随动控制回路组成。 出水 进水 图4.1 比值控制系统原理框图 主动量控制回路能克服主动量扰动,实现其定值控制;从动量控制回路能克服作用于从动 给定值 扰动值 输出值 — PID 调节器1 电动调节阀1 出水流量 电磁流量计 变送器 输出值 — PID 调节器2 电动调节阀2 锅炉 电磁流量计 变送器 扰动值

量回路中的扰动,实现随动控制。本系统中主动量为出水流量,从动量为进水流量,通过系统的调节,实现进水流量跟随出水流量变化。 四、实验内容与步骤 1.熟悉过程控制对象和控制系统操作台,掌握“水路”和“电路”的连接方式。 2.按照工艺流程图和电气接线图,连通实验管路和连接电气电路。 3.打开电源,设置和整定智能调节仪表: (1)一级参数设置:在仪表PV测量值显示状态下,按压SET键,仪表将转入控制参数设定状态。每按SET键一次,就转入下一个被修改参数。 序号符号设定值作用 1 CLK 13 2 无禁锁,可修改一级参数 2 AL1 0 第一报警值 3 AL2 400 第二报警值 4 AH1 2 第一报警回差 5 AH2 2 第二报警回差 出水流量调节器参数设置:P=240,I=15,D=0 进水流量调节器参数设置:P=200,I=12,D=0 (2)二级参数设置:在仪表一级参数设定状态下,设定CLK=132后,在PV显示CLK,SV 显示132的状态下,同时按下SET键和▲键30秒,仪表就进入二级参数设定。在二级参数设定状态下,每按SET键一次,就变换一个被修改参数,利用▲或▼键改变参数值。 1)进水流量调节器参数设置: 序号符号设定值作用 1 SL0 14 输入分度号,14=(1~5)V 2 SL1 0 显示无小数点 3 SL2 1 第一报警为下限报警 4 SL3 2 第二报警为上限报警 5 DE 1 设备号(通讯用) 6 BT 5 通讯波特率=9600 7 F1 1 PID反作用方式 8 F2 1 PID为电压、电流输出

过程控制系统实验报告

实验一过程控制系统的组成认识实验 过程控制及检测装置硬件结构组成认识,控制方案的组成及控制系统连接 一、过程控制实验装置简介 过程控制是指自动控制系统中被控量为温度、压力、流量、液位等变量在工业生产过程中的自动化控制。本系统设计本着培养工程化、参数化、现代化、开放性、综合性人才为出发点。实验对象采用当今工业现场常用的对象,如水箱、锅炉等。仪表采用具有人工智能算法及通讯接口的智能调节仪,上位机监控软件采用MCGS工控组态软件。对象系统还留有扩展连接口,扩展信号接口便于控制系统二次开发,如PLC控制、DCS控制开发等。学生通过对该系统的了解和使用,进入企业后能很快地适应环境并进入角色。同时该系统也为教师和研究生提供一个高水平的学习和研究开发的平台。 二、过程控制实验装置组成 本实验装置由过程控制实验对象、智能仪表控制台及上位机PC三部分组成。 1、被控对象 由上、下二个有机玻璃水箱和不锈钢储水箱串接,4.5千瓦电加热锅炉(由不锈钢锅炉内胆加温筒和封闭外循环不锈钢锅炉夹套构成),压力容器组成。 水箱:包括上、下水箱和储水箱。上、下水箱采用透明长方体有机玻璃,坚实耐用,透明度高,有利于学生直接观察液位的变化和记录结果。水箱结构新颖,内有三个槽,分别是缓冲槽、工作槽、出水槽,还设有溢流口。二个水箱可以组成一阶、二阶单回路液位控制实验和双闭环液位定值控制等实验。 模拟锅炉:锅炉采用不锈钢精致而成,由两层组成:加热层(内胆)和冷却层(夹套)。做温度定值实验时,可用冷却循环水帮助散热。加热层和冷却层都有温度传感器检测其温度,可做温度串级控制、前馈-反馈控制、比值控制、解耦控制等实验。 压力容器:采用不锈钢做成,一大一小两个连通的容器,可以组成一阶、二阶单回路压力控制实验和双闭环串级定值控制等实验。 管道:整个系统管道采用不锈钢管连接而成,彻底避免了管道生锈的可能性。为了提高实验装置的使用年限,储水箱换水可用箱底的出水阀进行。 2、检测装置 (液位)差压变送器:检测上、下二个水箱的液位。其型号:FB0803BAEIR,测量范围:0~1.6KPa,精度:0.5。输出信号:4~20mA DC。 涡轮流量传感器:测量电动调节阀支路的水流量。其型号:LWGY-6A,公称压力:6.3MPa,精度:1.0%,输出信号:4~20mA DC 温度传感器:本装置采用了两个铜电阻温度传感器,分别测量锅炉内胆、锅炉夹套的温度。经过温度传感器,可将温度信号转换为4~20mA DC电流信号。 (气体)扩散硅压力变送器:用来检测压力容器内气体的压力大小。其型号:DBYG-4000A/ST2X1,测量范围:0.6~3.5Mpa连续可调,精度:0.2,输出信号为4~20mA DC。 3、执行机构 电气转换器:型号为QZD-1000,输入信号为4~20mA DC,输出信号:20~100Ka气压信号,输出用来驱动气动调节阀。 气动薄膜小流量调节阀:用来控制压力回路流量的调节。型号为ZMAP-100,输入信号为4~20mA DC或0~5V DC,反馈信号为4~20mA DC。气源信号 压力:20~100Kpa,流通能力:0.0032。阀门控制精度:0.1%~0.3%,环境温度:-4~+200℃。 SCR移相调压模块:采用可控硅移相触发装置,输入控制信号0~5V DC或4~20mA DC 或10K电位器,输出电压变化范围:0~220V AC,用来控制电加热管加热。 水泵:型号为UPA90,流量为30升/分,扬程为8米,功率为180W。

双闭环比值控制系统仿真

学号:2013133301 课程设计报告 题目双闭环比值系统仿真 学院计算机科学与信息工程学院 专业自动化 班级2013级自动化3 学生姓名刘博 指导教师吴诗贤 2016 年11 月26 日

摘要 3 一、课程设计任务 5 5 (1) PID控制原理及PID参数整定概述 5 (2) 基于稳定边界法的PID控制器参数整定算法7 (3) 利用Simulink建立仿真模型9 (4) 参数整定过程14 (5) 调试分析过程及仿真结果描述20 三、总结20

参考文献21

双闭环比值控制系统仿真 摘要: 双闭环比值控制系统的特点是在保持比值控制的前提下,主动量和从动量两个流量均构成闭环回路,这样克服了自身流量的干扰,使主、从流量都比较平稳,并使得工艺总负荷也较稳定。从动量控制回路是随动控制系统,期望系统响应快些,一般按单回路整定;主动量控制回路是定值控制系统,反应速度较慢时有利于从动控制回路的快速跟踪,一般整定为周期过程。主、从控制回路均选择PI控制方式。 MATLAB是矩阵实验室(Matrix Laboratory)的简称,是美国MathWorks公司出品的商业数学软件,用于算法开发、数据可视化、数据分析以及数值计算的高级技术计算语言和交互式环境,主要包括MATLAB和Simulink两大部分。 MATLAB的基本数据单位是矩阵,它的指令表达式与数学、工程中常用的形式十分相似,故用MATLAB来解算问题要比用C、FORTRAN等语言完成相同的事情简捷得多,并且mathwork也吸收了像Maple等软件的优点,使MATLAB成为一个强大的数学软件。 Simulink是MATLAB最重要的组件之一,它提供一个动态系统建模、仿真和综合分析的集成环境。在该环境中,无需大量书写程序,而只需要通过简单直观的鼠标操作,就可构造出复杂的系统。Simulink 具有适应面广、结构和流程清晰及仿真精细、贴近实际、效率高、灵

自动控制系统实验报告

自动控制系统实验报告 学号: 班级: 姓名: 老师:

一.运动控制系统实验 实验一.硬件电路的熟悉和控制原理复习巩固 实验目的:综合了解运动控制实验仪器机械结构、各部分硬件电路以及控制原理,复习巩固以前课堂知识,为下阶段实习打好基础。 实验内容:了解运动控制实验仪的几个基本电路: 单片机控制电路(键盘显示电路最小应用系统、步进电机控制电路、光槽位置检测电路) ISA运动接口卡原理(搞清楚译码电路原理和ISA总线原理) 步进电机驱动检测电路原理(高低压恒流斩波驱动电路原理、光槽位置检测电路)两轴运动十字工作台结构 步进电机驱动技术(掌握步进电机三相六拍、三相三拍驱动方法。) 微机接口技术、单片机原理及接口技术,数控轮廓插补原理,计算机高级语言硬件编程等知识。 实验结果: 步进电机驱动技术: 控制信号接口: (1)PUL:单脉冲控制方式时为脉冲控制信号,每当脉冲由低变高是电机走一步;双 脉冲控制方式时为正转脉冲信号。 (2)DIR:单脉冲控制方式时为方向控制信号,用于改变电机转向;双脉冲控制方式 时为反转脉冲信号。

(3)OPTO :为PUL 、DIR 、ENA 的共阳极端口。 (4)ENA :使能/禁止信号,高电平使能,低电平时驱动器不能工作,电机处于自由状 态。 电流设定: (1)工作电流设定: (2)静止电流设定: 静态电流可用SW4 拨码开关设定,off 表示静态电流设为动态电流的一半,on 表示静态电流与动态电流相同。一般用途中应将SW4 设成off ,使得电机和驱动器的发热减少,可靠性提高。脉冲串停止后约0.4 秒左右电流自动减至一半左右(实际值的60%),发热量理论上减至36%。 (3)细分设定: (4)步进电机的转速与脉冲频率的关系 电机转速v = 脉冲频率P * 电机固有步进角e / (360 * 细分数m) 逐点比较法的直线插补和圆弧插补: 一.直线插补原理: 如图所示的平面斜线AB ,以斜线起点A 的坐标为x0,y0,斜线AB 的终点坐标为(xe ,ye),则此直线方程为: 00 00Y Ye X Xe Y Y X X --= -- 取判别函数F =(Y —Y0)(Xe —Xo)—(X-X0)(Ye —Y0)

双闭环比值控制系统仿真

课程设计报告 题目双闭环比值系统仿真 学院计算机科学与信息工程学院 专业自动化 班级2013级自动化3 学生姓名刘博 指导教师吴诗贤 2016 年11 月26 日

摘要 (3) 一、课程设计任务 (5) (5) (1)PID控制原理及PID参数整定概述 (5) (2)基于稳定边界法的PID控制器参数整定算法 (7) (3)利用Simulink建立仿真模型 (9) (4)参数整定过程 (14) (5)调试分析过程及仿真结果描述 (20) 三、总结 (20) 参考文献21

双闭环比值控制系统仿真 摘要: 双闭环比值控制系统的特点是在保持比值控制的前提下,主动量和从动量两个流量均构成闭环回路,这样克服了自身流量的干扰,使主、从流量都比较平稳,并使得工艺总负荷也较稳定。从动量控制回路是随动控制系统,期望系统响应快些,一般按单回路整定;主动量控制回路是定值控制系统,反应速度较慢时有利于从动控制回路的快速跟踪,一般整定为周期过程。主、从控制回路均选择PI控制方式。 MATLAB是矩阵实验室(Matrix Laboratory)的简称,是美国MathWorks公司出品的商业数学软件,用于算法开发、数据可视化、数据分析以及数值计算的高级技术计算语言和交互式环境,主要包括MATLAB和Simulink两大部分。 MATLAB的基本数据单位是矩阵,它的指令表达式与数学、工程中常用的形式十分相似,故用MATLAB来解算问题要比用C、FORTRAN等语言完成相同的事情简捷得多,并且mathwork也吸收了像Maple等软件的优点,使MATLAB成为一个强大的数学软件。 Simulink是MATLAB最重要的组件之一,它提供一个动态系统建模、仿真和综合分析的集成环境。在该环境中,无需大量书写程序,而只需要通过简单直观的鼠标操作,就可构造出复杂的系统。Simulink具有适应面广、结构和流程清晰及仿真精细、贴近实际、效率高、灵活等优点,并基于以上优点Simulink已被广泛应用于控制理论和数字信号处理的复杂仿真和设计。同时有大量的第三方软件

控制系统仿真实验报告

哈尔滨理工大学实验报告 控制系统仿真 专业:自动化12-1 学号:1230130101 姓名:

一.分析系统性能 课程名称控制系统仿真实验名称分析系统性能时间8.29 地点3# 姓名蔡庆刚学号1230130101 班级自动化12-1 一.实验目的及内容: 1. 熟悉MATLAB软件的操作过程; 2. 熟悉闭环系统稳定性的判断方法; 3. 熟悉闭环系统阶跃响应性能指标的求取。 二.实验用设备仪器及材料: PC, Matlab 软件平台 三、实验步骤 1. 编写MATLAB程序代码; 2. 在MATLAT中输入程序代码,运行程序; 3.分析结果。 四.实验结果分析: 1.程序截图

得到阶跃响应曲线 得到响应指标截图如下

2.求取零极点程序截图 得到零极点分布图 3.分析系统稳定性 根据稳定的充分必要条件判别线性系统的稳定性最简单的方法是求出系统所有极点,并观察是否含有实部大于0的极点,如果有系统不稳定。有零极点分布图可知系统稳定。

二.单容过程的阶跃响应 一、实验目的 1. 熟悉MATLAB软件的操作过程 2. 了解自衡单容过程的阶跃响应过程 3. 得出自衡单容过程的单位阶跃响应曲线 二、实验内容 已知两个单容过程的模型分别为 1 () 0.5 G s s =和5 1 () 51 s G s e s - = + ,试在 Simulink中建立模型,并求单位阶跃响应曲线。 三、实验步骤 1. 在Simulink中建立模型,得出实验原理图。 2. 运行模型后,双击Scope,得到的单位阶跃响应曲线。 四、实验结果 1.建立系统Simulink仿真模型图,其仿真模型为

双闭环比值控制系统-----课程设计

《过程控制》 课程设计报告 题目:双闭环比值控制系统的分析与设计姓名:王飞 学号:20106206 专业:自动化 年级:2010级 指导教师:李天华

目录 1 任务书-------------------------------------------------------- 1 1.1设计题目 --------------------------------------------------- 1 1.2设计任务 --------------------------------------------------- 1 1.3原始数据 --------------------------------------------------- 2 1.4设计内容 --------------------------------------------------- 2 2 研究背景 ------------------------------------------------------- 3 3 研究意义 ------------------------------------------------------- 4 4 研究内容 ------------------------------------------------------- 4 5 论文组织 -------------------------------------------------------- 5 5.1衰减曲线法整定主动量回路控制器参数 -------------------------- 5 5.2反应曲线法整定从动量回路控制器参数 -------------------------- 8 5.3双闭环比值控制系统仿真及性能测试 --------------------------- 11 5.4双闭环比值控制系统的抗干扰能力检验 ------------------------- 13 6 双闭环比值控制与串级控制的区别,以及各自的优缺点 --------------- 16 6.1双闭环比值控制与串级控制的区别 ----------------------------- 16 6.2双闭环比值控制的优、缺点 ----------------------------------- 17 6.3串级控制的优、缺点 ----------------------------------------- 17 7 总结 ---------------------------------------------------------- 17 8 参考文献 ------------------------------------------------------ 17 附录:双闭环比值控制最终整定结果(Simulink图) -------------------- 18

双闭环流量比值控制系统设计

目录 摘要 0 双闭环流量比值控制系统设计 (1) 1、双闭环比值控制系统的原理与结构组成 (1) 2、课程设计使用的设备 (1) 3、比值系数的计算 (2) 4、设备投运步骤以及实验曲线结果 (2) 5、总结 (6) 6、参考文献 (6)

摘要 在许多生产过程中,工艺上常常要求两种或者两种以上的物料保持一定的比例关系。一旦比例失调,会影响生产的正常进行,造成产量下降,质量降低,能源浪费,环境污染,甚至造成安全事故。 这种自动保持两个或多个参数间比例关系的控制系统就是比值控制所要完成的任务。因此比值控制系统就是用于实现两个或两个以上物料保持一定比例关系的控制系统。需要保持一定比例关系的两种物料中,总有一种起主导作用的物料,称这种物料为主物料,另一种物料在控制过程中跟随主物料的变化而成比例的变化,这种无物料成为从物料。由于主,从物料均为流量参数,又分别成为主物料流量和从物料流量,通常,主物料流量用Q1表示,从物料流量用Q2表示,工艺上要求两物料的比值为K,即K=Q2/Q1.在比值控制精度要求较高而主物料Q1又允许控制的场合,很自然就想到对主物料也进行定值控制,这就形成了双闭环比值系统。在双闭环比值系统中,当主物料Q1受到干扰发生波动时,主物料回路对其进行定值控制,使从物料始终稳定在设定值附近,因此主物料回路是一个定值控制系统,而从物料回路是一个随动控制系统,主物料发生变化时,通过比值器的输出,使从物料回路控制器的设定值也发生变化,从而使从物料随着主物料的变化而成比例的变化。当从物料Q2受到干扰时,和单闭环控制系统一样,经过从物料回路的调节,使从物料稳定在比值器输出值上。双闭环比值控制系统由于实现了主物料Q1的定值控制,克服了干扰的影响,使主物料Q1变化平稳。当然与之成比例的从物料Q2变化也将比较平稳。根据双闭环比值控制系统的优点,它常用在主物料干扰比较频繁的场合,工艺上经常需要升降负荷的场合以及工艺上不允许负荷有较大波动的场合。本实验通过了解双闭环比值控制系统的原理与结构组成,进行双闭环流量比值控制系统设计(包括仪表选型)以及进行比值系数的计算,最后基于WinCC进行监控界面设计,给出不同参数下的响应曲线,根据扰动作用时,记录系统输出的响应曲线。

实验六 双闭环流量比值控制系统

实验六双闭环流量比值控制系统 一、实验目的 1.实验目的: (1) 通过实验加深了解比值控制系统的基本概念、比值控制系统的结构组成 (2) 掌握比值系数的计算, 掌握比值控制系统的参数整定 二、实验设备 1、水泵Ⅰ、压力变送器、变频器、调节器(调节器808型两台、818型)、主回路调节 阀、主回路流量计、副回路调节阀、副回路流量计,比例器,上水箱、中水箱。 2、计算机、上位机MCGS 组态软件、RS232-485 转换器1 只、串口线1 根 3、万用表1 只 三、实验原理 本实验是双闭环流量比值控制系统。其实验系统结构图如图6-7所示。该系统中有两条支路,一路是来自于电动阀支路的流量Q1,它是一个主流量;另一路是来自于变频器—磁力泵支路的流量Q2,它是系统的副流量。要求副流量Q2能跟随主流量Q1的变化而变化,而且两者间保持一个定值的比例关系,即Q2/Q1=K。 图6-7 双闭环流量比值控制系统 (a)结构图 (b)方框图 由图中可以看出双闭环流量比值控制系统是由一个定值控制的主流量回路和一个跟随主流量变化的副流量控制回路组成,主流量回路能克服主流量扰动,实现其定值控制。副流量控制回路能抑制作用于副回路中的扰动,当扰动消除后,主副流量都回复到原设定值上,其比值不变。显然,双闭环流量控制系统的总流量是固定不变的。 四、实验内容与步骤 1、根据实验系统流程图构成一个单闭环比值控制系统。 2、将流量比值实验所用设备,按系统框图连接。 3、将阀门F1-1、F1-2、F1-8、F1-11、F2-1、F2-5全开,其余阀门均关闭 4、接通总电源和各仪表电源。 5、调节控制台面板上电位器K1可改变主副流量的比值,比值的范围是0.1~1倍。 控制系统的参数整定,调节器的参数整定可按单回路的整定方法进行。 6、稳定后,改变副回路中流量的大小,观察主回路流量的变化。 7、记录并处理历史曲线。 8、改变比例器的比例系数,观察流量的变化。

实验一电力拖动自动控制系统实验报告

第五章仿真及实验 第一节晶闸管直流调速系统参数和环节特性的测定 一、实验目的 1 熟悉晶闸管直流调速系统的组成及其基本结构。 2掌握晶闸管直流调速系统参数及反馈环节测定方法。 二、实验原理 晶闸管直流调速系统由整流变压器、晶闸管整流跳水装置、平波电抗器、电动机-发电机组等组成。 在本实验中,整流装置的主电路喂三相桥式电路,控制电路可直接由给定电压Ug作为触发器的移相控制电压Ua。改变Ug的大小即可改变控制角a,从而获得可调的直流电压,以满足实验要求。实验系统的组成原理如图5.1所示。 三.实验内容 1测定晶闸管直流调速系统主电路总电阻值R。 2测定晶闸管直流系统电路电感值L.. 3测定直流电机-直流发电机-测速发电机的飞轮惯量GD的平方。 4测定晶闸管直流调速系统主电路电磁时间常数Td。

5测定直流电动机电势常数Ce和转矩常数Cm。 6测定晶闸管直流调速系统机电时间常数Tm。 7测定晶闸管触发及整流装置特性Ud=f(Ue)。 8测定测速发电机特性Utg=f(n)。 四.实验仿真 晶闸管直流调速系统的原理如图5.1所示。该系统由给定信号、同步脉冲触发器、晶闸管整流桥、平波电抗器、直流电动机等部分组成。图5.2势采用面向电气原理图方法构成的晶闸管直流系统的仿真模型。下面介绍各部分建模与参数设置过程。 1.系统的建模和模型参数设置 系统的建模包括主电路的建模和控制电路的建模俩部分。 1)主电路的建模和参数设置 由图5.2可见,开环直流调速系统的主电路由三相对称交流电压器、晶闸管整流桥、平波电抗器、直流电动机等部分组成。由于同步脉冲与晶闸管整流桥是不可分割的两个环节,通常作为一个组合体讨论,所以将触发器归到主电路进行建模。 2)三相整流桥时,桥臂数取3,A,B,C三相交流电源接到整流桥的输入端,

计算机控制系统实验报告

《计算机控制系统》实验报告 学校:上海海事大学 学院:物流工程学院 专业:电气工程及其自动化 姓名:*** 学号:************

一、实验课程教学目的与任务 通过实验设计或计算机仿真设计,使学生了解和掌握数字PID控制算法的特点、了解系统PID参数整定和数字控制系统的直接设计的基本方法,了解不同的控制算法对被控对象的控制特性,加深对计算机控制系统理论的认识,掌握计算机控制系统的整定技术,对系统整体设计有一个初步的了解。 根据各个实验项目,完成实验报告(用实验报告专用纸)。 二、实验要求 学生在熟悉PC机的基础上,熟悉MATLAB软件的操作,熟悉Simulink工具箱的软件编程。通过编程完成系统的设计与仿真实验,逐步学习控制系统的设计,学习控制系统方案的评估与系统指标评估的方法。 计算机控制系统主要技术指标和要求: 根据被控对象的特性,从自动控制系统的静态和动态质量指标要求出发对调节器进行系统设计,整体上要求系统必须有良好的稳定性、准确性和快速性。一般要求系统在振荡2~3次左右进入稳定;系统静差小于3%~5%的稳定值(或系统的静态误差足够小);系统超调量小于30%~50%的稳定值;动态过渡过程时间在3~5倍的被控对象时间常数值。 系统整定的一般原则: 将比例度置于较大值,使系统稳定运行。根据要求,逐渐减小比例度,使系统的衰减比趋向于4:1或10:1。若要改善系统的静态特性,要使系统的静差为零,加入积分环节,积分时间由大向小进行调节。若要改善系统的动态特性,增加系统的灵敏度,克服被控对象的惯性,可以加入微分环节,微分时间由小到大进行调节。PID控制的三个特性参数在调节时会产生相互的影响,整定时必需综合考虑。系统的整定过程是一个反复进行的过程,需反复进行。

单闭环管道流量比值控制系统设计

《单闭环管道流量比值控制系统》 过程控制系统课程设计说明书 专业班级: 11级自动化1班 姓名:孙勇李自强周程鲍凯 学号:080311009 080311022 080311035 080311047 指导教师:陈世军 设计时间: 2014年6月11日 物理与电气工程学院 2014年 6 月 11 日

摘要 在现代工业生产过程中,工艺上常需要两种或两种以上的物料流量保持一定的比例关系,一旦比例失调,就会影响生产的正常进行,影响产品质量,浪费原料,消耗动力,造成环境污染,甚至产生生产事故。实现两个或两个以上参数符合一定比例关系的控制系统,称为比值控制系统。通常以保持两种或几种物料的流量为一定比例关系的系统,称之为流 量比值控制系统,这次课程设计的内容就是流量比值过程控制系统。 流量测量是比值控制的基础。各种流量计都有一定的适用范围(一般正常流量选在满量程的70%左右),必须正确选择使用。在工程上,具体实施比值控制时,通常有比值器、乘法器或除法器等单元仪表可供选择,相当方便。若采用计算机控制来实现,只要进行乘法或除法运算即可,我们这次就主要使用计算机及组态王软件进行设计。 关键词:组态王;流量;比值控制系统

目录 1、引言 (1) 1.1主要内容 (1) 1.2任务要求 (1) 2、设计方案 (2) 2.1设计原理 (2) 2.2系统原理图 (2) 2.3 MATLAB仿真调试 (3) 3、硬件设计 (4) 3.1使用仪器 (4) 4、软件设计 (7) 4.1 PLC程序 (7) 4.2 MCGS系统组态设计 (11) 4.2.1组态图 (11) 4.2.2静态画面 (12) 4.2.3数字字典 (14) 4.2.4系统应用程序 (16) 4.2.5动画连接 (17) 5、课程设计总结 (17) 6、参考文献 (18)

自动控制原理实验报告

自控实验报告

目录 实验一典型环节及其阶跃响应 (1) 一、实验目的 (1) 二、实验仪器 (1) 三、实验原理 (1) 四、实验内容 (1) 五、实验步骤 (2) 六、实验结果 (3) 七、实验分析 (6) 实验二二阶系统阶跃响应 (7) 一、实验目的 (7) 二、实验仪器 (7) 三、实验原理 (7) 四、实验内容 (8) 五、实验步骤 (9) 六、实验结果及分析 (9) 实验三连续系统串联校正 (15) 一、实验目的 (15) 二、实验仪器 (15) 三、实验内容 (15) 四、实验步骤 (17) 五、实验结果 (17)

实验一 典型环节及其阶跃响应 一、 实验目的 1. 掌握控制模拟实验的基本原理和一般方法。 2. 掌握控制系统时域性能指标的测量方法。 二、实验仪器 1. EL-AT-III 型自动控制系统实验箱一台 2. 计算机一台 三、实验原理 1.模拟实验的基本原理: 控制系统模拟实验采用复合网络法来模拟各种典型环节,即利用运算放大器不同的输入网络和反馈网络模拟各种典型环节,然后按照给定系统的结构图将这些模拟环节连接起来,便得到了相应的模拟系统。再将输入信号加到模拟系统的输入端,并利用计算机等测量仪器,测量系统的输出,便可得到系统的动态响应曲线及性能指标。若改变系统的参数,还可进一步分析研究参数对系统性能的影响。 四、实验内容 构成下述典型一阶系统的模拟电路,并测量其阶跃响应: 1. 比例环节的模拟电路及其传递函数。 2 1 ()R G s R

2. 惯性环节的模拟电路及其传递函数。 3. 积分环节的模拟电路及传递函数。 4. 微分环节的模拟电路及传递函数。 5. 比例+微分环节的模拟电路及传递函数。 五、实验步骤 1.启动计算机,在桌面双击图标 [自动控制实验系统] 运行软件。 2.测试计算机与实验箱的通信是否正常,通信正常继续。如通信不正常查找原因使通信正常后才可以继续进行实验。 比例环节: 3.连接被测量典型环节的模拟电路(图1-1)。电路的输入U1接A/D 、D/A 卡的DA1输出,电路的输出U2接A/D 、D/A 卡的AD1输入。检查无误后接通电源。 4.在实验项目的下拉列表中选择实验一[一、典型环节及其阶跃响应] 。 ()1K G s Ts =-+221 (,) R K T R C R ==1 ()G s Ts = () T RC =()G s RCs =-()1K G s Ts =-+211 (,)R K T R C R ==

相关文档
最新文档