反激变换器PSR芯片控制原理

(整理)反激式开关电源变压器设计原理.

反激式开关电源变压器设计原理 (Flyback Transformer Design Theory) 第一节. 概述. 反激式(Flyback)转换器又称单端反激式或"Buck-Boost"转换器.因其输出端在原边绕组断开电源时获得能量故而得名.离线型反激式转换器原理图如图. 一、反激式转换器的优点有: 1. 电路简单,能高效提供多路直流输出,因此适合多组输出要求. 2. 转换效率高,损失小. 3. 变压器匝数比值较小. 4. 输入电压在很大的范围内波动时,仍可有较稳定的输出,目前已可实现交流输入在 85~265V间.无需切换而达到稳定输出的要求. 二、反激式转换器的缺点有: 1. 输出电压中存在较大的纹波,负载调整精度不高,因此输出功率受到限制,通常应用于150W以下. 2. 转换变压器在电流连续(CCM)模式下工作时,有较大的直流分量,易导致磁芯饱和,所以必须在磁路中加入气隙,从而造成变压器体积变大. 3. 变压器有直流电流成份,且同时会工作于CCM / DCM两种模式,故变压器在设计时较困难,反复调整次数较顺向式多,迭代过程较复杂. 第二节. 工作原理 在图1所示隔离反驰式转换器(The isolated flyback converter)中, 变压器" T "有隔离与扼流之双重作用.因此" T "又称为Transformer- choke.电路的工作原理如下: 当开关晶体管 Tr ton时,变压器初级Np有电流 Ip,并将能量储存于其中(E = LpIp / 2).由于Np与Ns极性相反,此时二极管D反向偏压而截止,无能量传送到负载.当开关Tr off 时,由楞次定律 : (e = -N△Φ/△T)可知,变压器原边绕组将产生一反向电势,此时二极管D正向导通,负载有电流IL流通.反激式转换器之稳态波形如图2. 由图可知,导通时间 ton的大小将决定Ip、Vce的幅值: Vce max = VIN / 1-Dmax VIN: 输入直流电压 ; Dmax : 最大工作周期 Dmax = ton / T 由此可知,想要得到低的集电极电压,必须保持低的Dmax,也就是Dmax<0.5,在实际应用中通常取Dmax = 0.4,以限制Vcemax ≦ 2.2VIN. 开关管Tr on时的集电极工作电流Ie,也就是原边峰值电流Ip 为: Ic = Ip = IL / n. 因IL = Io,故当Io一定时,匝比 n的大小即决定了Ic 的大小,上式是按功率守恒原则,原副边安匝数相等 NpIp = NsIs而导出. Ip 亦可用下列方法表示: Ic = Ip = 2Po / (η*VIN*Dmax) η: 转换器的效率 公式导出如下: 输出功率 : Po = LIp2η / 2T

正激变换器工作原理

正激变换器 实际应用中,由于电压等级变换、安全、系统串并联等原因,开关电源的输入输出往往需要电气隔离。在基本的非隔离DC DC-变换器中加入变压器,就可以派生出带隔离变压器的DC DC-变换器。例如,单端正激变换器就是有BUCK变换器派生出来的。 一工作原理 1 单管正激变换器 单端正激变换器是由BUCK变换器派生而来的。图(a1)为BUCK 变换器的原理图,将开关管右边插入一个隔离变压器,就可以得到图(a2)的单端正激变换器 图(a1)BUCK变换器

图(a2)单端正激变换器 BUCK 变换器工作原理: 电路进入平恒以后,由电感单个周期内充放电量相等, 由电感周期内充放电平恒可以得到: ?==T dt L u T L U 001

即: 可得: 单端正激变换器的工作原理和和BUCK 相似。 其工作状态如图如图(a3)所示: 图(a3)单端正激变换器工作状态 开关管Q 闭合。如图所示,当开关管Q 闭合时的工作状态如图a4所示, ? ? =- -ON ON t T t o o i dt U dt U U 0 )(i i ON o o o i OFF o ON o i DU U T t U T D U DT U U t U t U U == -=-=-)1()()(

图(a4) 根据图中同名端所示,可以知道变压器副边也流过电流,D1导通,D2截止,电感电压为正,变压器副边的电流线性上升。在此期间,电感电压为: O I L U U N N u -= 1 2 开关管Q 截止。开关管截止时,变压器副边没有电流流过,副边电流经反并联二极管D2续流,在此期间,电感电压为负,电流线性下降: O L U U -= 在稳定时,和BUCK 电路一样,电感电压在一个周期内积分为零,因此: ()S O S I T D U DT U U N N ?-?=??? ? ??-1120 得: I O DU N N U 1 2= 由此可见,单端正激变换器电压增益与开关导通占空比成正比,

Buck变换器工作原理介绍

Buck 变换器工作原理介绍 2.2.1 Buck 变换器的基本工作原理 Buck 变换器又称为降压变换器,串联稳压开关电源和三端开关型降压稳压电源。其基本的原理结构图如图2.2所示。 G a b c WM V G d 图2.2 Buck 变换器的基本原理图 由上图可知,Buck 变换器主要包括:开关元件M1,二极管D1,电感L1,电容C1和反馈环路。而一般的反馈环路由四部分组成:采样网络,误差放大器(Error Amplifier ,E/A ),脉宽调制器(Pulse Width Modulation ,PWM )和驱动电路。 为了便于对Buck 变换器基本工作原理的分析,我们首先作以下几点合理的假设[1]: a 、开关元件M1和二极管D1都是理想元件。它们可以快速的导通和关断,且导通时压降为零,关断时漏电流为零; b 、电容和电感同样是理想元件。电感工作在线性区而未饱和时,寄生电阻等于零。电容的等效串联电阻(Equivalent Series Resistance ,ESR )和等效串联电感(Equivalent Series inductance ,ESL )等于零; c 、输出电压中的纹波电压和输出电压相比非常小,可以忽略不计。 d 、采样网络R1和R2的阻抗很大,从而使得流经它们的电流可以忽略不计。 在以上假设的基础上,下面我们对Buck 变换器的基本原理进行分析。 如图2.2所示,当开关元件M1导通时,电压V1与输出电压Vdc 相等,晶体管D1处于反向截至状态,电流01=D I 。电流11L M I I =流经电感L1,电流线性增加。经过电容C1滤波后,产生输出电流O I 和输出电压O V 。采样网络R1和R2对输出电压O V 进行采样得到电压信号S V ,并与参考电压ref V 比较放大得到信号。

有源钳位正激变化器的工作原理

第2章有源箝位正激变换器的工作原理 2.1 有源箝位正激变换器拓扑的选择 单端正激变换器具有结构简单、工作可靠、成本低廉、输入输出电气隔离、易于多路输出等优点,因而被广泛应用在中小功率变换场合。但是它有一个固有缺点:在主开关管关断期间,必须附加一个复位电路,以实现高频变压器的磁复位,防止变压器磁芯饱和[36]。传统的磁复位技术包括采用第三个复位绕组技术、无损的LCD箝位技术以及RCD箝位技术。这三种复位技术虽然都有一定的优点,但是同时也存在一些缺陷[37-39]。 (1)第三复位绕组技术采用第三个复位绕组技术正激变换器的优点是技术比较成熟,变压器能量能够回馈给电网。 它存在的缺点是:第三复位绕组使得变压器的设计和制作比较复杂;变压器磁芯不是双向对称磁化,因而利用率较低;原边主开关管承受的电压应力很大。 (2)RCD箝位技术采用RCD箝位技术正激变换器的优点是电路结构比较简单,成本低廉。 它存在的缺点是:在磁复位过程中,磁化能量大部分都消耗在箝位网络中,因而效率较低;磁芯不是双向对称磁化,磁芯利用率较低。 (3) LCD箝位技术采用无损的LCD箝位技术正激变换器的优点是磁场能量能够全部回馈给电网,效率较高。 它存在的缺点是:在磁复位过程中,箝位网络的谐振电流峰值较大,增加了开关管的电流应力和通态损耗,因而效率较低;磁芯不是双向对称磁化,磁芯利用率较低。 而有源箝位正激变换器是在传统的正激式变换器的基础上,增加了由箝位电容和箝位开关管串联构成的有源箝位支路,虽然与传统的磁复位技术相比,有源箝位磁复位技术增加了一个箝位开关管,提高了变换器的成本,但是有源箝位磁复位技术有以下几个优点: (1)有源箝位正激变换器的占空比可以大于0.5,使得变压器的原副边匝

BUCK 变换器轻载时三种工作模式原理及应用

BUCK 变换器轻载时三种工作模式原理及应用 Adlsong 摘要摘要::降压型Buck 变换器在轻载有三种工作模式:突发模式、跳脉冲模式和强迫连续模式。文中详细的阐述了这三种模式的工作原理, 同时介绍了这三种模式的优点及缺点。 通过滞洄比较器监控输出电压的突发模式开关管工作的时间短,效率高,纹波最大。强迫连续模式电感的电流双向流动,效率最低,纹波最小。跳脉冲模式工作DCM 模式并跳去一些脉冲,效率和纹波介于上述两种模式之间。同时本文给出3.3V 到2.5V 的Buck 变换器电感,输入电容和输出电容的计算和选取方法。 关键词关键词::突发模式 跳脉冲模式 强迫连续模式 轻载 Abstract: Buck conveter has three modes at light output load: burst mode, pulse skip mode and force continuous mode. The principles of three modes are discussed in detail in this paper. The advantages and disadvantages of three modes are presented and also compared at the same time. The longest off time duration, highest efficiency and highest ouput ripple voltage are featured for burst mode detecting output votage via hysteresis comparator. The least efficiency and least ouput ripple voltage is featured for force continuous mode with positive and negative current through the inductor. The efficiency and ouput ripple voltage of pulse skip mode with skipping some swithching pulse is between that of two modes above. The methods to calculate the inductance, input

反激式变压器设计原理

反激式变压器设计原理 绿色节能PWM控制器CR68XX CR6848低功耗的电流模PWM反激式控制芯片 成都启达科技有限公司联系人:陈金元TEL: 电话/传真:-218 电邮:; MSN: 概述:CR6848是一款高集成度、低功耗的电流模PWM控制芯片,适用于离线式AC-DC反激拓扑的小功率电源模块。 特点:电流模式PWM控制低启动电流低工作电流 极少的外围元件片内自带前沿消隐(300nS) 额定输出功率限制 欠压锁定(12.1V~16.1V) 内建同步斜坡补偿PWM工作频率可调 输出电压钳位(16.5V) 周期电流限制 软驱动2000V的ESD保护过载保护 过压保护(27V)60瓦以下的反激电源SOT23-6L、DIP8封装 应用领域:本芯片适用于:电池充电器、机顶盒电源、DVD 电源、小功率电源适配器等60 瓦以下(包括60 瓦)的反激电源模块。 兼容型号: SG6848/SG5701/SG5848/LD7535/LD7550/OB2262/OB2263。 原生产厂家现货热销!-218,。 CR6842兼容SG6842J/LD7552/OB2268/OB2269。 绿色节能PWM控制器AC-DC 产品型号功能描述封装形式兼容型号 CR6848 低成本小功率绿色SOT-26/DIP-8 SG6848/SG5701/SG5848 节能PWM控制器LD7535/LD7550 OB2262/OB2263 CR6850 新型低成本小功率绿色SG6848/SG5701/SG5848 节能PWM控制器SOT-26/DIP-8 LD7535/LD7550 SOP-8OB2262/OB2263 CR6851 具有频率抖动的低成本SOT-26/DIP-8 SG6848/SG5701/SG5848 绿色节能PWM控制器SOP-8 LD7535/LD755 OB2262/OB2263 CR6842 具有频率抖动的大功能DIP-8 兼容SG6842J/LD7552

Buck-Boost变换器原理(过程啊)

Buck变换器原理 Buck变换器又称降压变换器、串联开关稳压电源、三端开关型降压稳压器。 1.线路组成 图1(a)所示为由单刀双掷开关S、电感元件L和电容C组成的Buck变换器电路图。图1(b)所示为由以占空比D工作的晶体管T r、二极管D1、电感L、电容C组成的Buck变换器电路图。电路完成把直流电压V s转换成直流电压V o的功能。 图1Buck变换器电路 2.工作原理 当开关S在位置a时,有图2 (a)所示的电流流过电感线圈L,电流线性增加,在负载R上流过电流I o,两端输出电压V o,极性上正下负。当i s>I o时,电容在充电状态。 这时二极管D1承受反向电压;经时间D1T s后(,t on为S在a位时间,T s是周期),当开关S在b位时,如图2(b)所示,由于线圈L中的磁场将改变线圈L两端的电压极性,以保持其电流i L不变。负载R两端电压仍是上正下负。在i L0,开关打开时,i s=0,故i s是脉动的,但输出电流I o,在L、D1、C作用下却是连续的,平稳的。 图2Buck变换器电路工作过程

Boost变换器 Boost变换器又称为升压变换器、并联开关电路、三端开关型升压稳压器。 1.线路组成 线路由开关S、电感L、电容C组成,如图1所示,完成把电压V s升压到V o的功能。 图1 2.工作原理 当开关S在位置a时,如图2(a)所示电流i L流过电感线圈L,电流线性增加,电能以磁能形式储在电感线圈L中。此时,电容C放电,R上流过电流I o,R两端为输出电压V o,极性上正下负。由于开关管导通,二极管阳极接V s负极,二极管承受反向电压,所以电容不能通过开关管放电。开关S转换到位置b时,构成电路如2(b)所示,由于线圈L中的磁场将改变线圈L两端的电压极性,以保持i L不变。这样线圈L磁能转化成的电压V L与电源V s串联,以高于V o电压向电容C、负载R供电。高于V o时,电容有充电电流;等于V o时,充电电流为零;当V o有降压趋势时,电容向负载R放电,维持V o不变。 图2Boost变换器电路工作过程 由于V L+V s向负载R供电时,V o高于V s,故称它为升压变换器。工作中输入电流i s=i L是连续的。但流经二极管D1电流确实脉动的。由于有C的存在,负载R上仍有稳定、连续的负载电流I o。

正激式变压器开关电源工作原理

正激式变压器开关电源工作原理 正激式变压器开关电源输出电压的瞬态控制特性和输出电压负载特性,相对来说比较好,因此,工作比较稳定,输出电压不容易产生抖动,在一些对输出电压参数要求比较高的场合,经常使用。 1-6-1.正激式变压器开关电源工作原理 所谓正激式变压器开关电源,是指当变压器的初级线圈正在被直流电压激励时,变压器的次级线圈正好有功率输出。 图1-17是正激式变压器开关电源的简单工作原理图,图1-17中Ui是开关电源的输入电压,T是开关变压器,K是控制开关,L是储能滤波电感,C是储能滤波电容,D2是续流二极管,D3是削反峰二极管,R 是负载电阻。 在图1-17中,需要特别注意的是开关变压器初、次级线圈的同名端。如果把开关变压器初线圈或次级线圈的同名端弄反,图1-17就不再是正激式变压器开关电源了。 我们从(1-76)和(1-77)两式可知,改变控制开关K的占空比D,只能改变输出电压(图1-16-b中正半周)的平均值Ua ,而输出电压的幅值Up不变。因此,正激式变压器开关电源用于稳压电源,只能采用电压平均值输出方式。 图1-17中,储能滤波电感L和储能滤波电容C,还有续流二极管D2,就是电压平均值输出滤波电路。其工作原理与图1-2的串联式开关电源电压滤波输出电路完全相同,这里不再赘述。关于电压平均值输出滤波电路的详细工作原理,请参看“1-2.串联式开关电源”部分中的“串联式开关电源电压滤波输出电路”内容。 正激式变压器开关电源有一个最大的缺点,就是在控制开关K关断的瞬间开关电源变压器的初、次线圈绕组都会产生很高的反电动势,这个反电动势是由流过变压器初线圈绕组的励磁电流存储的磁能量产生的。因此,在图1-17中,为了防止在控制开关K关断瞬间产生反电动势击穿开关器件,在开关电源变压器中增加一个反电动势能量吸收反馈线圈N3绕组,以及增加了一个削反峰二极管D3。 反馈线圈N3绕组和削反峰二极管D3对于正激式变压器开关电源是十分必要的,一方面,反馈线圈N3绕组产生的感应电动势通过二极管D3可以对反电动势进行限幅,并把限幅能量返回给电源,对电源进行充

BUCK变换器de控制技术的研究.

BUCK 变换器的控制技术的研究 一、实验目的 1、理解开环、电压单闭环和电压电流双闭环控制策略的原理,完成系统闭环控制调试; 2、建立变换器的模型,通过仿真和实验掌握电压和电流调节器的参数设计方法; 3、验证BUCK变换器的输入输出波形特性,PWM波形,及输入输出数量关系,加深对BUCK变换器连续和断续工作模态下的工作原理及特性的理解。 二、实验内容 熟悉SG3525的原理及使用方法,理解PWM波产生过程;研究BUCK变换器开环、电压闭环、电压电流双闭环状态下电路各器件,包括功率管、二极管、电感电压电流工作情况,输入输出电量关系,控制电路参数对变换器的性能的影响。观察电压纹波,观察不同电感、频率和负载对电流连续点的影响。理解BUCK 变换器闭环控制过程,掌握闭环性能指标。 变换器的基本要求如下: 输入电压:20~30V 输出电压:15V(输出电压闭环控制时) 输出负载电流:0.1~1A 工作频率:50kHz 输出纹波电压:≤100m V 三、实验仪器

6 电压表 2 7 电流表 2 8 负载 1 四、实验原理 1)BUCK主电路原理图(图1) 图1.BUCK主电路原理图 2)控制电路SG3525内部结构框图() 图2.SG3525内部结构框图 五、实验步骤 1、将BUCK变换器挂箱的所有开关关闭后再接线。 2、控制电路接20V直流电压,调节电位器RW1,用示波器观察并记录占空比为某一定值时SG3525 各管脚波形及驱动电路输出波形。注意观察SG3525 的9脚、5脚波形和输出波形之间的关系,理解SG3525 芯片PWM 波产生过程。调节RW2观测PWM波频率的变化,通过测得的PWM波计算PWM波频率。 3、控制电路接20V直流电压,主电路接6-30V可调直流电压,可控制开关S4

Buck变换器实现及其调速系统设计与调试

运动控制系统 课程设计 题目:Buck变换器实现及其调速系统设计与调试 院系: 班级: 姓名: 学号: 指导老师: 日期:

摘要 (3) 第一章概述 (3) 第二章设计任务及要求 (4) 2.1实验目的 (4) 2.2实验内容 (4) 2.3设计要求 (4) 2.4课程设计基本要求 (5) 第三章BUCK变换器的工作原理和各种模型 (6) 3.1B UCK变换器介绍 (6) 3.2B UCK变换器电路拓扑 (6) 3.3PWM控制的基本原理 (7) 第四章MATLAB仿真模型的建立 (9) 4.1MATLA仿真软件介绍 (9) 4.2B UCK电路模型的搭建 (9) 4.3B UCK变换器在电机拖动控制系统中的设计与仿真 (12) 4.3.1直流电机的数学模型 (12) 4.3.2系统在开环情况下的仿真 (13) 4.3.3 系统在闭环情况下的仿真 (14) 第五章总结与体会 (18)

变压调速是直流调速系统的主要方法,调节电枢供电电压从而改变电机的转速。即需要有一个可控直流源,常用的为直流斩波或者脉宽调制器,其通过电力电子开关控制及电容、电感的充放电及二极管的续流组成直流斩波电路(DC),实现输出电压可控,即升压(BOOST)、降压(BUCK)。本实验主要针对降压斩波电路(BUCK)进行实验分析。实验采用MATLAB作为仿真软件,利用PWM 波驱动降压斩波电路为直流电动机提供驱动电压,并通过调节PWM波的占空比来调节电动机的启动电压使达到调节电动机转速的电路设计。 关键词:S-Function;PWM调制;Buck变换器;闭环控制;直流电动机 第一章概述 直流变换技术(亦称直流斩波技术,DC-DC),作为电力电子技术领域非常活跃的一个分支,在近几年里,得到了充分的发展。随着电动牵引技术的发展,特别是电子信息类产品的大量涌现,直流变换技术已经广泛应用于生产,生活的各个领域。由于其有良好的可操作性,被大量应用到电机的调速系统中,很好的解决了电动机调速的不可控性。 BUCK电路作为一种最基本的DC-DC变换电路,由于其简单、实用性在各种电源产品中均得到广泛的应用。其电路主要器件有电力电子开关(IGBT或MOSFET)、电感、电容、续流二极管。通过对开关的调节控制电压,其一般采用软开关控制方法,即采用脉宽调制技术(PWM),通过改变占空比来调节输出电压的大小。其与直流调速系统组成的脉宽调制变换器—直流电机调速系统,简称直流脉宽调速系统,即PWM直流调速系统。存在:1)主电路简单、功率器件少;2)开关频率高、电流容易连续、谐波小;3)低速性能好、稳态精度高;4)低速性能好,稳态精度高,动态抗干扰能力强等优点。 使用MATLAB等仿真分析,再做实物研究,已经逐渐成为电力电子技术研究的主要方法。 本次课程设计使用MATLAB友好的工作平台和编辑环境进行模型编辑工作,运用它的s函数编辑一个简单的脉冲发生器,要求它的占空可调;运用数学处理功能来处理仿真时的实时数据,利用传递函数构造直流电机转速的数学模型,运用它广泛的模块集合工具箱里的Simulink进行电路模型搭建和系统仿真,控制电路的占空比从而控制输出电压的大小,进而调节电机的转速,同时采用负反馈的控制方式,调节转速在一个恒定值。

2--Buck直流变换器的工作原理及动态建模

2--Buck直流变换器的工作原理及动态建模

2 Buck直流变换器的工作原理及动态建模 2.1 DC/DC变换器的概念7【】15【】19【】 将一个固定的直流电压变换成可变的直流 电压称之为DC/DC变换,亦称为直流斩波。用斩波器斩切直流的基本思想是:如果改变开关的 动作频率,或者改变直流电流通和断的时间比例,就可以改变加到负载上的电压、电流的平均值。Buck变换器又称降压变换器、串连开关稳压电源、三端开关型降压稳压器。 基本的DC/DC变换器按输入输出之间是否有电气隔离可分为两类:隔离型DC/DC变换器和非隔离型DC/DC变换器。非隔离型DC/DC 变换器中存在四种基本的变换器拓扑,它们是降压式(Buck)型,升压式(Boost)型,升降压式(Buck-boost)型,Cuk型,此外还有Sepic型和Zeta型变换器。 2.2 二电平Buck直流变换器的工作原理及主电路图2【】13【】25【】26【】 1 主电路拓扑 Buck变换器是一种输出电压等于或小于输入电压的单管非隔离直流变换器。它的拓扑为电压源、串联开关和电流负载组合而成。如图2.1所示: 图2.1 Buck电路主电路拓扑 为了分析稳态特性,简化推导公式的过程,特作

如下假定。 (1) 开关晶体管、二极管均是理想元件。也就是可以瞬间的导通和截至,而且导通时降压为零,截至时漏电流为零。 (2) 电感、电容是理想元件。电感工作在线性区而未饱和,寄生电阻为零,电容的等效串联电阻为零。 (3) 输出电压中的纹波电压与输出电压的比值小到允许忽略。 Buck 变换器的工作原理:当开关管S 导通时,电容开始充电,i U 通过向负载传递能量,此时,L i 增加,电感内的电流逐渐增加,储存的磁场能量也逐渐增加,而续流二极管因反向偏置而截至;当S 关断时,由于电感电流L i 不能突变,故L i 通过二极管VD 续流,电感电流逐渐减小,由于二极管VD 的单向导电性,L i 不可能为负,即总有L 0i ,从而可在负载上获得单极性的输出电压。 根据晶体管的开关特性,在管子的基极加入开关信号,就能控制它的导通和截至,对于NPN 晶体管,当基极加入正向信号时,将产生积极电流b i ,基极正向电压电压升高,b i 也随之升高,b i 达到一定数值后,集电极电流c i 达到最大值,其后继续增加b i ,b i 基本上保持不变,这种现象称为饱和。在饱和状态下,晶体管的集射极电压很小,可以忽略不计。因此晶体管的饱和状态相当于开关的接通状态。当基极加入反向偏压时,晶体管截至,集电极电流c i 接近于零,而晶体管的集射极电压接近于电源电压。晶体管的这种状态相当于开关的断开状态,通常称为截至状态,或称为关断状态。 2.3 Buck 变换器的工作模式 5【】8【】27【】29【】 由Buck 变换器的工作原理可以看出,电感可以工作在电流连续的方式下,也可能工作在电流

反激式变换器(Flyback Converter)的工作原理

反激式变换器(Flyback Converter)的工作原理 反激式变换器以其电路结构简单,成本低廉而深受广大开发工程师的喜爱,它特别适合小功率电源以及各种电源适配器.但是反激式变换器的设计难点是变压器的设计,因为输入电压范围宽,特别是在低输入电压,满负载条件下变压器会工作在连续电流模式(CCM),而在高输入电压,轻负载条件下变压器又会工作在不连续电流模式(DCM);另外关于CCM模式反激变压器设计的论述文章极少,在大多数开关电源技术书籍的论述中, 反激变压器的设计均按完全能量传递方式(DCM模式)或临界模式来计算,但这样的设计并未真实反映反激变压器的实际工作情况,变压器的工作状态可能不是最佳.因此结合本人的实际调试经验和心得,讲述一下不完全能量传递方式(CCM) 反激变压器的设计. 二.反激式变换器(Flyback Converter)的工作原理 1).反激式变换器的电路结构如图一. 2).当开关管Q1导通时,其等效电路如图二(a)及在导通时初级电流连续时的波形,磁化曲线如图二(b).

当Q1导通,T1之初级线圈渐渐地会有初级电流流过,能量就会储存在其中.由于变压器初级与次级侧之线圈极性是相反的,因此二极管D1不会导通,输出功率则由Co来提供.此时变压器相当于一个串联电感Lp,初级线圈电流Ip可以表示为: Vdc=Lp*dip/dt 此时变压器磁芯之磁通密度会从剩磁Br增加到工作峰值Bw. 3.当Q1截止时, 其等效电路如图三(a)及在截止时次级电流波形,磁化曲线如图三(b).

当Q1截止时,变压器之安匝数(Ampere-Turns NI)不会改变,因为?B并没有相对的改变.当?B向负的方向改变时(即从Bw降低到Br),在变压器所有线圈之电压极性将会反转,并使D1导通,也就是说储存在变压器中的能量会经D1,传递到Co和负载上. 此时次级线圈两端电压为:Vs(t)=Vo+Vf (Vf为二极管D1的压降). 次级线圈电流: Lp=(Np/Ns)2*Ls (Ls为次级线圈电感量) 由于变压器能量没有完全转移,在下一次导通时,还有能量储存在变压器中,次级电流并没有降低到0值,因此称为连续电流模式或不完全能量传递模式(CCM). 三.CCM模式下反激变压器设计的步骤 1. 确定电源规格. 1. .输入电压范围Vin=85—265Vac; 2. .输出电压/负载电流:Vout1=5V/10A,Vout2=12V/1A; 3. .变压器的效率?=0.90

有源钳位正激变化器的工作原理

第2章有源箝位正激变换器的 工作原理 令狐采学 2.1 有源箝位正激变换器拓扑的选择 单端正激变换器具有结构简单、工作可靠、成本低廉、输入输出电气隔离、易于多路输出等优点,因而被广泛应用在中小功率变换场合。但是它有一个固有缺点:在主开关管关断期间,必须附加一个复位电路,以实现高频变压器的磁复位,防止变压器磁芯饱和[36]。传统的磁复位技术包括采用第三个复位绕组技术、无损的LCD箝位技术以及RCD 箝位技术。这三种复位技术虽然都有一定的优点,但是同时也存在一些缺陷[37-39]。

(1)第三复位绕组技术采用第三个复位绕组技术正激变换器的优点是技术比较成熟,变压器能量能够回馈给电网。 它存在的缺点是:第三复位绕组使得变压器的设计和制作比较复杂;变压器磁芯不是双向对称磁化,因而利用率较低;原边主开关管承受的电压应力很大。 (2)RCD箝位技术采用RCD箝位技术正激变换器的优点是电路结构比较简单,成本低廉。 它存在的缺点是:在磁复位过程中,磁化能量大部分都消耗在箝位网络中,因而效率较低;磁芯不是双向对称磁化,磁芯利用率较低。 (3)LCD箝位技术采用无损的LCD箝位技术正激变换器的优点是磁场能量能够全部回馈给电网,效率较高。

它存在的缺点是:在磁复位过程中,箝位网络的谐振电流峰值较大,增加了开关管的电流应力和通态损耗,因而效率较低;磁芯不是双向对称磁化,磁芯利用率较低。 而有源箝位正激变换器是在传统的正激式变换器的基础上,增加了由箝位电容和箝位开关管串联构成的有源箝位支路,虽然与传统的磁复位技术相比,有源箝位磁复位技术增加了一个箝位开关管,提高了变换器的成本,但是有源箝位磁复位技术有以下几个优点: (1)有源箝位正激变换器的占空比可以大于0.5,使得变压器的原副边匝比变大,从而可以有效地减少原边的导通损耗; (2)在变压器磁复位过程中,寄生元件中存储的

2buck直流变换器的工作原理及动态建模

DC/DC 变换器的概念7【】15【】19【】 将一个固定的直流电压变换成可变的直流电压称之为DC/DC 变换,亦称为直流斩波。用斩波器斩切直流的基本思想是:如果改变开关的动作频率,或者改变直流电流通和断的时间比例,就可以改变加到负载上的电压、电流的平均值。Buck 变换器又称降压变换器、串连开关稳压电源、三端开关型降压稳压器。 基本的DC/DC 变换器按输入输出之间是否有电气隔离可分为两类:隔离型DC/DC 变换器和非隔离型DC/DC 变换器。非隔离型DC/DC 变换器中存在四种基本的变换器拓扑,它们是降压式(Buck )型,升压式(Boost)型,升降压式(Buck-boost)型,Cuk 型,此外还有Sepic 型和Zeta 型变换器。 二电平Buck 直流变换器的工作原理及主电路图2【】13【】25【】26【】 1 主电路拓扑 Buck 变换器是一种输出电压等于或小于输入电压的单管非隔离直流变换器。它的拓扑为电压源、串联开关和电流负载组合而成。如图所示: 图 Buck 电路主电路拓扑 为了分析稳态特性,简化推导公式的过程,特作如下假定。 (1) 开关晶体管、二极管均是理想元件。也就是可以瞬间的导通和截至,而且导通时降压为零,截至时漏电流为零。 (2) 电感、电容是理想元件。电感工作在线性区而未饱和,寄生电阻为零,电容的等效串联电阻为零。 (3) 输出电压中的纹波电压与输出电压的比值小到允许忽略。 Buck 变换器的工作原理:当开关管S 导通时,电容开始充电,i U 通过向负载传递能量,此时,L i 增加,电感内的电流逐渐增加,储存的磁场能量也逐渐增加,而续流二极管因反向偏置而截至;当S 关断时,由于电感电流L i 不能突变,故L i 通过二极管VD 续流,电感电流逐渐减小,由于二极管VD 的单向导电性,L i 不可能为负,即总有L 0i ,从而可在负载上获得单极性的输出电压。 根据晶体管的开关特性,在管子的基极加入开关信号,就能控制它的导通和截至,对于NPN 晶体管,当基极加入正向信号时,将产生积极电流b i ,基极正向电压电压升高,b i 也随之升高,b i 达到一定数值后,集电极电流c i 达到最大值,其后继续增加b i ,b i 基本上保持不变,这种现象称为饱和。在饱和状态下,晶体管的集射极电压很小,可以忽略不计。因此晶体管的饱和状态相当于开关的接通状态。当基极加入反向偏压时,晶体管截至,集电极电流 c i 接近于零,而晶体管的集射极电压接近于电源电压。晶体管的这种状态相当于开关的断开 状态,通常称为截至状态,或称为关断状态。

正激式开关电源详解

正激式变压器开关电源工作原理 时间:2012-09-0414:50:17来源:作者: 正激式变压器开关电源工作原理 正激式变压器开关电源输出电压的瞬态控制特性和输出电压负载特性,相对来说比较好,因此,工作比较稳定,输出电压不容易产生抖动,在一些对输出电压参数要求比较高的场合,经常使用。 1-6-1.正激式变压器开关电源工作原理 所谓正激式变压器开关电源,是指当变压器的初级线圈正在被直流电压激励时,变压器的次级线圈正好有功率输出。 图1-17是正激式变压器开关电源的简单工作原理图,图1-17中Ui是开关电源的输入电压,T是开关变压器,K是控制开关,L是储能滤波电感,C是储能滤波电容,D2是续流二极管,D3是削反峰二极管,R是负载电阻。 在图1-17中,需要特别注意的是开关变压器初、次级线圈的同名端。如果把开关变压器初线圈或次级线圈的同名端弄反,图1-17就不再是正激式变压器开关电源了。 我们从(1-76)和(1-77)两式可知,改变控制开关K的占空比D,只能改变输出电压(图1-16-b中正半周)的平均值Ua,而输出电压的幅值Up不变。因此,正激式变压器开关电源用于稳压电源,只能采用电压平均值输出方式。 图1-17中,储能滤波电感L和储能滤波电容C,还有续流二极管D2,就是电压平均值输出滤波电路。其工作原理与图1-2的串联式开关电源电压滤波输出电路

完全相同,这里不再赘述。关于电压平均值输出滤波电路的详细工作原理,请参看“1-2.串联式开关电源”部分中的“串联式开关电源电压滤波输出电路”内容。 正激式变压器开关电源有一个最大的缺点,就是在控制开关K关断的瞬间开关电源变压器的初、次线圈绕组都会产生很高的反电动势,这个反电动势是由流过变压器初线圈绕组的励磁电流存储的磁能量产生的。因此,在图1-17中,为了防止在控制开关K关断瞬间产生反电动势击穿开关器件,在开关电源变压器中增加一个反电动势能量吸收反馈线圈N3绕组,以及增加了一个削反峰二极管 D3。 反馈线圈N3绕组和削反峰二极管D3对于正激式变压器开关电源是十分必要的,一方面,反馈线圈N3绕组产生的感应电动势通过二极管D3可以对反电动势进行限幅,并把限幅能量返回给电源,对电源进行充电;另一方面,流过反馈线圈N3绕组中的电流产生的磁场可以使变压器的铁心退磁,使变压器铁心中的磁场强度恢复到初始状态。 由于控制开关突然关断,流过变压器初级线圈的励磁电流突然为0,此时,流过反馈线圈N3绕组中的电流正好接替原来励磁电流的作用,使变压器铁心中的磁感应强度由最大值Bm返回到剩磁所对应的磁感应强度Br位置,即:流过反馈线圈N3绕组中电流是由最大值逐步变化到0的。由此可知,反馈线圈N3绕组产生的感应电动势在对电源进行充电的同时,流过反馈线圈N3绕组中的电流也在对变压器铁心进行退磁。 图1-18是图1-17中正激式变压器开关电源中几个关键点的电压、电流波形图。图1-18-a)是变压器次级线圈N2绕组整流输出电压波形,图1-18-b)是变压器次级线圈N3绕组整流输出电压波形,图1-18-c)是流过变压器初级线圈N1绕组和次级线圈N3绕组的电流波形。

BUCK变换器设计

BUCK变换器设计报告 一、BUCK变换器原理 降压变换器(Buck Converter)就是将直流输入电压变换成相对低的平均直流输出电压。它的特点是输出电压比输入的电压低,但输出电流比输入电流高。它主要用于直流稳压电源。 二、BUCK主电路参数计算及器件选择 1、BUCK变换器的设计方法 利用MATLAB和PSPICE对设计电路进行设计,根据设计指标选取合适的主电路及主电路元件参数,建立仿真模型,并进行变换器开环性能的仿真,再选取合适的闭环控制器进行闭环控制系统的设计,比较开环闭环仿真模型的超调量、调节时间等,选取

性能优良的模型进行电路搭建。 2、主电路的设计指标 输入电压:标称直流48V,范围43~53V 输出电压:直流24V,5A 输出电压纹波:100mV 电流纹波:0.25A 开关频率:250kHz 相位裕量:60° 幅值裕量:10dB 3、BUCK主电路 主电路的相关参数: 1=4×10-6s 开关周期:T S= s f 占空比:当输入电压为43V时,D max=0.55814 当输入电压为53V时,D min=0.45283

输出电压:V O =24V 输出电流I O =5A 纹波电流:Δi L =0.25A 纹波电压:ΔV L =100mV 电感量计算:由Δi L = 2L v -V o max -in DT S 得: L=L o max -in i 2v -V ΔD min T S=25 .022453?-×0.4528×4×10-6=1.05×10-4H 电容量计算:由ΔV L =C i L 8ΔT S 得: C=L L V 8i ΔΔT S =1 .0825 .0?×4×10-6=1.25×10-6F 而实际中,考虑到能量存储以及输入和负载变化的影响,C 的取值一般要大于该计算值,故取值为120μF 。 实际中,电解电容一般都具有等效串联电阻,因此在选择的过程中要注意此电阻的大小对系统性能的影响。通常钽电容的ESR 在100毫欧姆以下,而铝电解电容则高于这个数值,有些种类电容的ESR 甚至高达数欧。ESR 的高低与电容的容量、电压、频率和温度等多因素有关,一般对于等效串联电阻过大的电容,我们可以采用电容并联的方法减小此串联电阻。此处取R ESR =50m Ω。 4、主电路的开环传递函数 in ESR ESR V sC R R sL sC R R s d ) 1//() 1 //()(s V s G O vd +++==)()( ) (s )1(C 1)1(s G 2 vd C R R L R R L s V C sR ESR ESR in ESR +++++=)(

反激式连续模式变换器设计

连续电流模式反激变压器的设计 DesignofFlybackTransformerwith ContinuingCurrentModel 作者:深圳市核达中远通电源技术有限公司-万必明 摘要:本文首先介绍了反激变换器(FlybackConverter)的工作原理,然后重点介绍一种连续电流模式反激变压器的设计方法以及多路输出各次级电流有效值的计算. 关键词:连续电流模式(不完全能量传递方式)、不连续电流模式(完全能量传递方式)、有效值、峰值. Keywords:ContinuingCurrentModel、DiscontinuingCurrentModel、virtualvalue、peakvalue. 一.序言 反激式变换器以其电路结构简单,成本低廉而深受广大开发工程师的喜爱,它特别适合小功率电源以及各种电源适配器.但是反激式变换器的设计难点是变压器的设计,因为输入电压范围宽,特别是在低输入电压,满负载条件下变压器会工作在连续电流模式(CCM),而在高输入电压,轻负载条件下变压器又会工作在不连续电流模式(DCM);另外关于CCM模式反激变压器设计的论述文章极少,在大多数开关电源技术书籍的论述中,反激变压器的设计均按完全能量传递方式(DCM模式)或临界模式来计算,但这样的设计并未真实反映反激变压器的实际工作情况,变压器的工作状态可能不是最佳.因此结合本人的实际调试经验和心得,讲述一下不完全能量传递方式(CCM)反激变压器的设计.

二.反激式变换器(FlybackConverter)的工作原理 1).反激式变换器的电路结构如图一. 2).当开关管Q1导通时,其等效电路如图二(a)及在导通时初级电流连续时的波形,磁化曲线如图二(b). Vdc 图一 图二(a)

正激反激原理对比分析

反激式开关电源的优点和缺点 1 反激式开关电源的电压和电流的输出特性要比正激式开关电源的差。 反激式开关电源在控制开关接通期间不向负载提供功率输出,仅在控制开关关断期间才把存储能量转化为反电动势向负载提供输出,但控制开关的占空比为0.5时,变压器次级线圈输出的电压的平均值约等于电压最大值的的二分之一,而流过负载的电流正好等于变压器次级线圈最大电流的四分之一。即电压脉动系数等于2,电流脉动系数等于4。反激式开关电源的电压脉动系数,和正激式开关电源的脉动系数基本相同,但是电流的脉动系数是正激式开关电源的电流脉动系数的两倍。由此可知,反激式开关电源的电压和电流的输出特性要比正激式开关电源的差。特别是,反激式开关电源使用的时候,为了防止电源开关管过压击,起占空比一般都小于0.5,此时,流过变压器次级线圈的电流会出现断续,电压和电流的脉动系数都会增加,其电压和电流的输出特性将会变得更差。 2 反激式开关电源的瞬态控制特性相对来说比较差。 由于反激式开关电源仅在开关关断期间才向负载提供能量输出,当负载电流出现变化时,开关电源不能立即对输出电压或电流产生反应,而需要等到下一个周期事,通过输出电压取样和调宽控制电路的作用,开关电源才开始对已经过去了的事情进行反应,即改变占空比,因此,反激式开关电源的瞬态控制特性相对来说比较差。有时,当负载电流变化的频率和相位与取样、调宽控制电路输出的电压的延时特性在相位保持一致的时候,反激式开关电源输出电压可能会产生抖动,这种情况在电视机的开关电源中最容易出现。 3 反激式开关电源变压器初级和次级线圈的漏感都比较大,开关电源变压器的工作效率低。 反激式开关电源变压器的铁芯一般需要留一定的气隙,一方面是为了防止变压器的铁芯因流过变压器的初级线圈的电流过大,容易产生磁饱和。另一方面是因为变压器的输出功率小,需要通过调整电压器的气隙和初级线圈的匝数,来调整变压器初级线圈的电感量的大小。因此,反激式开关电源变压器初级和次级线圈的漏感都比较大,从而会降低开关电源变压器的工作效率,并且漏感还会产生反电动势,容易把开关管击穿。 4 反激式开关电源的优点是电路比较简单,体积比较小,反激式开关电源输出电压受占空比的调制幅度,相对于正激式开关电源来要高很多。 反激式开关电源的优点是电路比较简单,比正激式开关电源少用了一个大的储能滤波电感,以及一个续流二极管,一次,反激式开关电源的体积要比正激式开关电源的体积小,且成本也要低。此外,反激式开关电源输出电压受占空比的调制幅度,相对于正激式开关电源来要高很多,因此,反激式开关电源要求调控占空比的误差信号幅度要比较低,误差信号放大器的增益和动态范围也要较小。由于这些优点,目前,反激式开关电源在家电领域中还是被广泛的应用。 5 反激式开关电源多用于功率较小的场合或是多路输出的场合。 6 反激式开关电源不需要加磁复位绕组。 在反激式开关电源中,在开关管关断的时候,反激式变换器的变压器储能向负载释放,磁芯自然复位,不需要加磁复位措施。

相关文档
最新文档