数学物理方程试卷及答案

数学物理方程试卷及答案
数学物理方程试卷及答案

参考解答: 一、 填空题

1. A 定解 B 初值(或Cauchy 问题) C 存在性、唯一性和稳定性

2. D 双曲

3. E (1)(2)(4)

4. F [x-3t,x+t] ,G 决定区域

5. H 22

2(21)(1,2,)4n n L πλ-== I

(21)cos (1,2,)2n x X n L

π-== 二、解:无界区域上波动方程2

00,,0

|(),|()

tt tt t t t u a u x t u x u x ?ψ==?=-∞<<+∞>??==?? 的达朗贝尔公式为:

22

()()1(,)()2

2x at

x at x at x at u x t d a

??ψξξ+--++=

+

? 对于本题所给半无界区域上的自由端点定解问题,只需对初始条件作偶延拓,即令:

2(),()||x x x x ?ψ==即可,2a = ,代入达朗贝尔公式得

2222222

2(2)(2)1()||2224,25(4)

,24

x t

x t

x t x t u x d x xt t x t

x t x t ξξ

+--++=+??++≥?=?+

?? 二、

解:设(,)()()u x t X x T t =,则()''()4''()()X x T t X x T t =,

分离变量成为''()''()

4()()T t X x T t X x λ==-,则''()()0,'(0)'(1)0''()4()0X x X x X X T t T t λλ+===??+=?

, 解前一方程,得固有值22(0,1,2,

)n n n λπ==和固有函数()cos X x n x π=,

代入方程''()4()0T t T t λ+=中可得()cos 2sin 2T t A n t B n t ππ=+,

1,2,3,)n =(

由叠加原理,原方程有解1

(,)(cos 2sin 2)cos n

n

n u x t A n t B

n t n x πππ∞

==

+∑。

考虑所给初值条件,有:0

1sin cos 02cos n n n

n x A n x B n n x

ππππ∞

=∞

=?

=????=??

∑∑ ,

则1

002sin A xdx ππ==?,1

0202sin cos 4

(1)n n A x n xdx n n πππ

?

?

==-??-?

?为奇数为偶数

,0n B =

故,原问题的定解为2

1

2

4

(,)cos 4cos 2(41)n u x t n t n x n πππ

π∞

==

--∑

。 四、解:首先,作变换(,)(,)(,)u x t v x t w x t =+,将边界齐次化,只需令(,)(1)w x t x t α

α=≥ 原定解问题就可化为

函数(,)v x t 的定解问题:22010(1)2|0,|0,|0

t t xx x x x t v x v tx x t e v v v αααα-===?+---=-+?

?===??,特别地,当2α=时泛定方程可进一步化为

更简单的形式t t xx v v e -=。

然后,对上述方程求由齐次泛定方程导出的方程''()()0X x X x λ+=在边界'(0)(1)0X X ==时的固有值

221

()(1,2,)2n n λπ=-=和固有函数1()cos()2

X x n x π=-,(1,2,)n = 利用常数变易法构造满足原泛定方程

的解11(,)()cos()2n n v x t T t n x π∞

==-∑ 代入得:221

11

('()()())cos()22t n n n T t n T t n x e ππ∞

=+--=∑。

由于1

14(1)11cos()(21)2n n n x n ππ-+∞

=-=--∑,可令12214(1)'()()()2(21)(0)0

n t

n n n

e T t n T t n T ππ-?-+-=

?-??=?

解得221

()12

22

32(1)()

()(21)(4(21))

n t

n t

n e e T t n n πππ-----=

-+-, 故原方程的解为:221

()12

222

1

32(1)()1

(,)cos()(21)(4(21))2n t

n t

n e e u x t x t n x n n ππππ---+∞=--=+

--+-∑ 五、解:

I 22

22

4()42

1

11()()222x x jx j x

j x

f x F e

d e

e

d e

e

d β

βωωβωωβ

ωωωωπ

π

π

-

-

+∞

+∞

+∞

--

--∞

-∞

-∞

=

=

=

=

?

?

?

II 对所给初值问题关于变量x 作Fourier 变换,记(,)[(,)](,)i x U y F u x t u x t e dx ωω+∞

--∞

==

?

并设(,)f x t 的Fourier 变换为(,)F t ω ,()x ?的Fourier 变换为()ωΦ,得:220[,]|[]

t dU

a U F t dt U ωωω=?=-+?

??=Φ? ,

对其求解可得2

2

2

2

22

22

4()4()

(,)()(,)[()](,)x x a t a t t

t a t

a t U t e

F t e d F x F F F d ξωω

ξωωξξ?ωξξ-

-

---=Φ+=+??.

进行Fourier 逆变换,并利用卷积性质,有:

2

2222

2

222

2

()4()

40440

(,)((,()(,)(2)(2,)x a t a t

t

t

a a t

t

u x t d f x x e d f x t e

d x

e d d

f x t e d ηηξηηξ

ηη?ηηξηξη

?ηηηξη?ηξξη

--

-

-+∞

+∞

-∞

-∞

-

-

+∞

+∞

-∞

-∞

+∞+∞

---∞

-∞

=+-=-+

--=

-+

--????

?

?

六、I

证:令取x t =

,()()((/()y x x P x t P t t Y t ααα===,

则112'()('()(''()(''()2'()(1)())y x t Y t t Y t y x t Y t t Y t t Y t q ααααααααα---=+=++-

代入方程2

2

'''()0x y pxy q x r y ++-=中,变形为2

2

''()(2)'()((1))()0t Y t p tY t x qr p Y t αααα+++-++-= 若令121,2p p αα-+==

,方程成为:222

1''()'()((1))()04

x Y x xY x x qr p Y x ++---= 这是一个n 阶Bessel

方程(/2)n =

II 解:对所给方程,取3,4,6p q r ===

得11,252

p

n α-=

=-== 知所给方程化成的Bessel 方程是5阶的,有通解12()()()n n Y t c J t c Y t =+,

因此,原方程的通解为1

1525()((2)(2))y x x c J x c Y x -=+。

成都理工大学数学物理方程试题

《数学物理方程》模拟试题 一、填空题(3分10=30分) 1.说明物理现象初始状态的条件叫( ),说明边界上的约束情况的条件叫( ),二者统称为 ( ). 2.三维热传导齐次方程的一般形式是:( ) . 3 .在平面极坐标系下,拉普拉斯方程算符为 ( ) . 4.边界条件 是第 ( )类边界条件,其中为边界. 5.设函数的傅立叶变换式为,则方程的傅立叶变换 为 ( ) . 6.由贝塞尔函数的递推公式有 ( ) . 7.根据勒让德多项式的表达式有= ( ). 8.计算积分 ( ) . 9.勒让德多项式的微分表达式为( ) . ?f u n u S =+??)(σS ),(t x u ),(t U ω2 2 222x u a t u ??=??=)(0x J dx d )(3 1)(3202x P x P +=?-dx x P 2 1 12)]([)(1x P

10.二维拉普拉斯方程的基本解是() . 二、试用分离变量法求以下定解问题(30分):1. 2.? ? ? ? ?? ? ? ? < < = ? ? = = = > < < ? ? = ? ? = = = = 3 0,0 , 3 ,0 0 ,3 0, 2 3 2 2 2 2 2 ,0 x t u x x t x x u t u t t x u u u ? ? ? ? ?? ? ? ? = = = > < < ? ? = ? ? = = = x t x x u t u u u u t x x 2 ,0 ,0 ,4 0, 4 2 2

3. ???? ? ????<<=??===><<+??=??====20,0,8,00,20,162002022 222x t u t x x u t u t t x x u u u

最新数学物理方程期末试卷

最新数学物理方程期末试卷 出卷人:欧峥 1、长度为 l 数学物理方程期末试卷sin A t ω的力的作用,右端系在弹性系数为 k 的弹性支承上面;初始位移为(),x ?初始速度为().x ψ试写出相应的定解问题.(10分) 2、长为l 的均匀杆,侧面绝热,一端温度为0度,另一端有已知的恒定热流进 入,设单位时间流入单位截面积的热量为q ,杆的初始温度分布是() 2x l x -,试 写出其定解问题.(10分) 3、试用分离变量法求定解问题(10分): .? ?? ?? ?? ??===><??? ==?????=+= ????? 5、利用行波法,求解波动方程的特征问题(又称古尔沙问题)(10分):

???? ???==??=??=+=-).()(002 22 22x u x u x u a t u at x at x ψ? ())0()0(ψ?= 6、用达朗贝尔公式求解下列一维波动方程的初值问题(10分) ?????=??=>+∞<<-∞+??=??==0 ,2sin 0,,cos 0022 2 22t t t u x u t x x x u a t u 7、用积分变换法求解定解问题(10分): ???? ???=+=>>=???==,1,10,0,1002y x u y u y x y x u 8、用积分变换法求解定解问题(10分): ?? ?==>∈=0)0,(,sin )0,(0,,2x u x x u t R x u a u t xx tt 9、用格林函数法求解定解问题(10分): 222200, y 0, () , .y u u x y u f x x =???+=

数学物理方法综合试题及答案

复变函数与积分变换 综合试题(一) 一、单项选择题(本大题共10小题,每小题2分,共20分) 在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。错选、多选或未选均无分。 1.设cos z i =,则( ) A . Im 0z = B .Re z π= C .0z = D .argz π= 2.复数3(cos ,sin )55z i ππ =--的三角表示式为( ) A .443(cos ,sin )55i ππ- B .443(cos ,sin )55i ππ- C .44 3(cos ,sin )55i ππ D .44 3(cos ,sin )55 i ππ-- 3.设C 为正向圆周|z|=1,则积分 ?c z dz ||等于( ) A .0 B .2πi C .2π D .-2π 4.设函数()0 z f z e d ζζζ= ? ,则()f z 等于( ) A .1++z z e ze B .1-+z z e ze C .1-+-z z e ze D .1+-z z e ze 解答: 5.1z =-是函数 4 1) (z z cot +π的( ) A . 3阶极点 B .4阶极点 C .5阶极点 D .6阶极点 6.下列映射中,把角形域0arg 4 z π << 保角映射成单位圆内部|w|<1的为( ) A .4411z w z +=- B .44-11z w z =+ C .44z i w z i -=+ D .44z i w z i +=- 7. 线性变换[]i i z z i z a e z i z i z a θω---= =-++- ( ) A.将上半平面Im z >0映射为上半平面Im ω>0 B.将上半平面Im z >0映射为单位圆|ω|<1 C.将单位圆|z|<1映射为上半平面Im ω>0 D.将单位圆|z|<1映射为单位圆|ω|<1 8.若()(,)(,)f z u x y iv x y =+在Z 平面上解析,(,)(cos sin )x v x y e y y x y =+,则(,)u x y = ( ) A.(cos sin )y e y y x y -) B.(cos sin )x e x y x y -

数学物理方程第二版答案解析(平时课后知识题作业任务)

数学物理方程第二版答案 第一章. 波动方程 §1 方程的导出。定解条件 4. 绝对柔软逐条而均匀的弦线有一端固定,在它本身重力作用下,此线处于铅垂平衡位置,试导出此线的微小横振动方程。 解:如图2,设弦长为l ,弦的线密度为ρ,则x 点处的张力)(x T 为 )()(x l g x T -=ρ 且)(x T 的方向总是沿着弦在x 点处的切线方向。仍以),(t x u 表示弦上各点在时刻t 沿垂直于x 轴方向的位移,取弦段),,(x x x ?+则弦段两端张力在u 轴方向的投影分别为 )(sin ))(();(sin )(x x x x l g x x l g ?+?+--θρθρ 其中)(x θ表示)(x T 方向与x 轴的夹角 又 . sin x u tg ??=≈θθ 于是得运动方程 x u x x l t u x ???+-=???)]([22ρ∣x u x l g x x ??--?+][ρ∣g x ρ 利用微分中值定理,消去x ?,再令0→?x 得 ])[(2 2x u x l x g t u ??-??=??。 5. 验证 2 221),,(y x t t y x u --= 在锥2 22y x t -->0中都满足波动方程 222222y u x u t u ??+??=??证:函数2221),,(y x t t y x u --=在锥2 22y x t -->0内对变量t y x ,,有

二阶连续偏导数。且 t y x t t u ?---=??-2 3 222)( 22 52222 32222 2) (3) (t y x t y x t t u ?--+---=??- - )2()(2 2223 222y x t y x t ++?--=- x y x t x u ?--=??- 23 222)( ()() 225222232222 23x y x t y x t x u - ---+--=?? ( )()222 252222y x t y x t -+- -=- 同理 ()()222 25 2222 22y x t y x t y u +---=??- 所以 ()() .22 22 2225222222 2t u y x t y x t y u x u ??=++--=??+ ??- 即得所证。 §2 达朗贝尔公式、 波的传抪 3.利用传播波法,求解波动方程的特征问题(又称古尔沙问题) ??? ? ???==??=??=+=-).()(0022222x u x u x u a t u at x at x ψ? ())0()0(ψ?= 解:u(x,t)=F(x-at)+G(x+at) 令 x-at=0 得 )(x ?=F (0)+G (2x ) 令 x+at=0 得 )(x ψ=F (2x )+G(0)

数学物理方法期末考试规范标准答案

天津工业大学(2009—2010学年第一学期) 《数学物理方法》(A)试卷解答2009.12 理学院) 特别提示:请考生在密封线左侧的指定位置按照要求填写个人信息,若写在其它处视为作弊。本试卷共有四道大题,请认真核对后做答,若有疑问请与监考教师联系。 一 填空题(每题3分,共10小题) 1. 复数 i e +1 的指数式为:i ee ; 三角形式为:)1sin 1(cos i e + . 2. 以复数 0z 为圆心,以任意小正实数ε 为半径作一圆,则圆内所有点的集合称为0z 点的 邻域 . 3. 函数在一点可导与解析是 不等价的 (什么关系?). 4. 给出矢量场旋度的散度值,即=????f ? 0 . 5. 一般说来,在区域内,只要有一个简单的闭合曲线其内有不属 ------------------------------- 密封线 ---------------------------------------- 密封线 ---------------------------------------- 密封线--------------------------------------- 学院 专业班 学号 姓名 装订线 装订线 装订线

于该区域的点,这样的区域称为 复通区域 . 6. 若函数)(z f 在某点0z 不可导,而在0z 的任意小邻域内除0z 外处处可导,则称0z 为)(z f 的 孤立奇点 . 7. δ函数的挑选性为 ? ∞ ∞ -=-)()()(00t f d t f ττδτ. 8. 在数学上,定解条件是指 边界条件 和 初始条件 . 9. 常见的三种类型的数学物理方程分别为 波动方程 、 输运方程 和 稳定场方程 . 10. 写出l 阶勒让德方程: 0)1(2)1(222 =Θ++Θ -Θ-l l dx d x dx d x . 二 计算题(每小题7分,共6小题) 1. )(z 的实部xy y x y x u +-=22),(,求该解析函数

数学物理方程期末考试试题(A)答案

孝感学院

解:设)()(t T x X u =代于方程得: 0''=+X X λ,0)1(''2=++T a T λ(8’) x C x C X λλsin cos 21+=,t a C t a C T 22211sin 1cos λλ+++= 由边值条件得: 22)( ,0l n C πλ== l x n t a A t a B u n n n πλλcos )1sin 1cos (221+++=∑∞= ?= l n dx l x n x l B 0cos )(2π?,?+=l n dx l x n x a l A 02cos )(12πψλ(15’) 证明:设代入方程: ?? ???====-=).(),(),(),0()(02102t g t l v t g t v x v v a v t xx t ? 设21,v v 都是方程的解设21v v v -=代入方程得: ?? ???====-=0),(,),0(0002t l v t v v v a v t xx t 由极值原理得0=v 唯一性得证。(8’)由 ≤-21v v ετ≤-2 1v v ,稳定性得证由u e v ct -=知u 的唯一性稳定性 得证。(15’)

解:设),(ηξp 是第一象限内一点,在该点放置单位点电荷,其对称点),(ηξ-p 格林函数: 22)()(1ln 21),,,(ηξπηξ-+-= y x y x G 22)()(1ln 21ηξπ++--y x (8’) ] )[(22220ηξπη+-=??-=??=x y G n G y 方程的解:dx x x f u ?+∞∞-+-=22)()(),(ηξπ ηηξ(15’) 五、证明下列初边值问题解的唯一性.(20分) ),,,()(2t z y x f u u u a u zz yy xx tt =++- ),,,(0z y x u t ?== ),,,(0 z y x u t t ψ== ).,,,(t z y x g u =Γ 其中,),,(,0Ω∈>z y x t Γ为Ω的边界. 解:设21,u u 都是方程的解设21u u u -=代入方程得: 0)(2=++-zz yy xx tt u u u a u 00==t u 00 ==t t u .0=Γu 设dxdydz u u u a u t E z y x t ])([21)(22222???Ω +++= =dt t dE )(dxdydz u u u u u u a u u zt z yt y xt x tt t ])([22???Ω +++ dxdydz u u u a u u zz yy xx tt t ])([[2 2??? Ω++-= 0=(10’)

数学物理方法试卷(全答案).doc

嘉应学院物理系《数学物理方法》B课程考试题 一、简答题(共70 分) 1、试阐述解析延拓的含义。解析延拓的结果是否唯一( 6 分) 解析延拓就是通过函数的替换来扩大解析函数的定义域。替换函数在原定义域上与替换前的函数 相等。 无论用何种方法进行解析延拓,所得到的替换函数都完全等同。 2、奇点分为几类如何判别(6分) 在挖去孤立奇点Zo 而形成的环域上的解析函数F( z)的洛朗级数,或则没有负幂项,或则 只有有限个负幂项,或则有无限个负幂项,我们分别将Zo 称为函数 F( z)的可去奇点,极点及本性奇点。 判别方法:洛朗级数展开法 A,先找出函数f(z)的奇点; B,把函数在的环域作洛朗展开 1)如果展开式中没有负幂项,则为可去奇点; 2)如果展开式中有无穷多负幂项,则为本性奇点; 3)如果展开式中只有有限项负幂项,则为极点,如果负幂项的最高项为,则为m阶奇点。 3、何谓定解问题的适定性( 6 分) 1,定解问题有解; 2,其解是唯一的; 3,解是稳定的。满足以上三个条件,则称为定解问题 的适定性。 4、什么是解析函数其特征有哪些( 6 分) 在某区域上处处可导的复变函数 称为该区域上的解析函数. 1)在区域内处处可导且有任意阶导数 . u x, y C1 2)这两曲线族在区域上正交。 v x, y C2 3)u x, y 和 v x, y 都满足二维拉普拉斯方程。(称为共轭调和函数 ) 4)在边界上达最大值。 4、数学物理泛定方程一般分为哪几类波动方程属于其中的哪种类型( 6 分)

数学物理泛定方程一般分为三种类型:双曲线方程、抛物线方程、椭圆型偏微分方程。波动方程属于其中的双曲线方程。 5、写出 (x) 挑选性的表达式( 6 分) f x x x 0 dx f x 0 f x x dx f 0 f (r ) ( r R 0 ) dv f ( R 0 ) 、写出复数 1 i 3 的三角形式和指数形式( 8 分) 6 2 cos isin 1 3 2 i 2 三角形式: 2 sin 2 cos 2 1 i 3 cos i sin 2 3 3 1 指数形式:由三角形式得: 3 i z e 3 、求函数 z 在奇点的留数( 8 分) 7 1)( z 2) 2 (z 解: 奇点:一阶奇点 z=1;二阶奇点: z=2 Re sf (1) lim (z 1) z 1 ( z 1)( z 2) 2 z 1

高等数学物理方程

高等数学物理方程 一、课程编码:1800005 课内学时: 64 学分: 4 二、适用学科专业:理论物理、凝聚态物理 三、先修课程:常微分方程、复变函数、数学物理方法 四、教学目标 通过本课程的学习使研究生 1. 了解数学物理方程的物理基础; 2. 了解数学物理方程的基本内容和最新发展概况; 3. 了解数学物理的基本方法和一些必要的技巧; 4. 掌握求解最重要的边值或边值初值问题的关键步骤和方法以及对解的检验。 五、教学方式 课堂讲授。 六、主要内容及学时分配 1. 偏微分方程的分类 10 学时1.1 一般概念 1.2 柯西问题、柯西-柯娃列夫斯卡娅定理 1.3 柯西问题的推广、特征的概念(*) 1.4 含一个未知函数的二阶方程在一点的标准型及其分类 1.5 两个自变量的二阶偏微分方程在一点的邻域内的标准型 2. 双曲型方程 20 学时2.1 (一维)波动方程的导出(物理起源)及定解条件 2.2 其他双曲型方程(*) 2.3 (一维)波动方程的柯西问题及其传播波法 2.4 (一维)波动方程的混合问题及其分离变量法 2.5 高维波动方程的柯西问题 3. 椭圆型方程 21 学时3.1 拉普拉斯方程(包括物理起源、定解条件、曲线坐标系下的拉氏方程等) 3.2 调和函数的一般性质(包括格林公式、极值原理、解的唯一性与稳定性等) 3.3 最简单区域的边界问题的分离变量法 3.4 源函数 3.5 势论与积分方程 3.6 双调和方程(*) 4. 抛物型方程 8 学时4.1 热传导方程的物理起源 4.2 定解问题的提法 4.3 热传导方程的求解 4.4 极值原理、定解问题解的唯一性与稳定性 5. 特殊函数与正交多项式 5 学时5.1 特殊函数的方程及边界问题的提法 5.2 柱函数(*)

最新数学物理方程期末考试试题及答案

数学物理方程期末考试试题及答案 一、求解方程(15分) ?????===-=+=-. )()(0002x u x u u a u at x at x xx tt ψ? 其中)0()0(ψ?=。 解:设? ??+=-at x at x ηξ=则方程变为: 0=ξηu ,)()(at x G at x F u ++-=(8’)由边值条件可得: )()0()2(),()2()0(x G x F x x G F ψ?=+=+ 由)0()0(ψ?=即得: )0()2 ()2( ),(?ψ?--++=at x at x t x u 。 二、利用变量分离法求解方程。(15分) ?????==≥==∈=-====)(,)(, 0,0,),(,00002x u x u t u u Q t x u a u t t t l x x xx tt ψ? 其中l x ≤≤0。0>a 为常数 解:设)()(t T x X u =代于方程得: 0''=+X X λ,0''2=+T a T λ(8’) x C x C X λλsin cos 21+=,at C at C T λλsin cos 21+= 由边值条件得:

21)( ,0l n C πλ== l x n at A at B u n n n πλλsin )sin cos (1+=∑∞= ?=l n dx l x n x l B 0sin )(2π?,?=l n dx l x n x an A 0sin )(2πψπ 三.证明方程02=--cu u a u xx t )0(≥c 具有狄利克雷边界条件的初边值问题解的唯一性与 稳定性. (15分) 证明:设u e v ct -=代入方程: ?? ???====-=).(),(),(),0()(02102t g t l v t g t v x v v a v t xx t ? 设21,v v 都是方程的解设21v v v -=代入方程得: ?? ???====-=0),(,),0(0002t l v t v v v a v t xx t 由极值原理得0=v 唯一性得证。(8’)由 ≤-21v v ετ≤-2 1v v ,稳定性得证由u e v ct -=知u 的唯一性稳定性 得证。 四.求解二维调和方程在半平面上的狄利克雷问题(15分). ,0,0>=++=?z u u u u zz yy xx ).(0x f u z == 解:设),,(ζηξp 是上半平面内一点,在该点放置单位点电荷,其对称点 ),,(?ηξ-p 格林函数: 222)()()(141 ),,,(?ηξπ ηξ-+-+--=z y x y x G 222)()()(141 ?ηξπ++-+-+z y x

《数学物理方程讲义》课程教学大纲

《数学物理方程讲义》课程教学大纲第一部分大纲说明 一、课程的作用与任务 本课程教材采用的是由高等教育出版社出版第二版的《数学物理方程讲义》由姜礼尚、陈亚浙、刘西垣、易法槐编写 《数学物理方程讲义》课程是中央广播电视大学数学与应用数学专业的一门限选课。数学物理方程是工科类及应用理科类有关专业的一门基础课。通过本课程的学习,要求学生了解一些典型方程描述的物理现象,使学生掌握三类典型方程定解问题的解法,重点介绍一些典型的求解方法,如分离变量法、积分变换法、格林函数法等。本课程涉及的内容在流体力学、热力学、电磁学、声学等许多学科中有着广泛的应用。为学习有关后继课程和进一步扩大数学知识面奠定必要的数学基础。该课程所涉内容,不仅为其后续课程所必需,而且也为理论和实际研究工作广为应用。它将直接影响到学生对后续课的学习效果,以及对学生分析问题和解决问题的能力的培养。数学物理方程又是一门公认的难度大的理论课程。 二、课程的目的与教学要求 1 了解下列基本概念: 1) 三类典型方程的建立及其定解问题(初值问题、边值问题和混合问题)的提法,定解条件的物理意义。 2) 偏微分方程的解、阶、维数、线性与非线性、齐次与非齐次的概念,线性问 题的叠加原理。 3) 调和函数的概念及其基本性质(极值原理、边界性质、平均值定理)。 2 掌握下列基本解法

1) 会用分离变量法解有界弦自由振动问题、有限长杆上热传导问题以及矩形域、 圆形域内拉普拉斯方程狄利克雷问题;会用固有函数法解非齐次方程的定值问题,会用辅助函数和叠加原理处理非齐次边值问题; 2) 会用行波法(达郎贝尔法)解无界弦自由振动问题,了解达郎贝尔解的物理 意义;了解齐次化原理及其在解无界弦强迫振动问题中的应用; 3) 会用傅立叶变换法及拉普拉斯变换法解无界域上的热传导问题及弦振动问 题; 4) 了解格林函数的概念及其在求解半空间域和球性域上位势方程狄利克雷问题中的应用; 5)掌握二阶线性偏微分方程的分类 二、课程的教学要求层次 教学要求层次:有关定义、定理、性质等概念的内容按“知道、了解、理解”三个层次要求;有关计算、解法、公式和法则等方法的内容按“会、掌握、熟练掌握” 三个层次要求。 第二部分学时、教材与教学安排一、学时分配 本课程共3学分,讲授54学时(包括习题课)学时分配如下: 项目内容学时电视学时 IP课学时 第一章方程的导出和定解条件 6 第二章波动方程 14 第三章热传导方程 14 第四章位势方程 14 第五章二阶线性偏微分方程的分类 6 合计 54 二、教学安排

【最最最最最新】数学物理方法试卷(附答案)

福师大物理系《数学物理方法》B 课程考试题 一、简答题(共70分) 1、试阐述解析延拓的含义。解析延拓的结果是否唯一?(6分) 解析延拓就是通过函数的替换来扩大解析函数的定义域。替换函数在原定义域上与替换前的函数相等。 无论用何种方法进行解析延拓,所得到的替换函数都完全等同。 2、奇点分为几类?如何判别?(6分) 在挖去孤立奇点Zo而形成的环域上的解析函数F(z)的洛朗级数,或则没有负幂项,或则只有有限个负幂项,或则有无限个负幂项,我们分别将Zo称为函数F(z)的可去奇点,极点及本性奇点。 判别方法:洛朗级数展开法 A,先找出函数f(z)的奇点; B,把函数在的环域作洛朗展开 1)如果展开式中没有负幂项,则为可去奇点; 2)如果展开式中有无穷多负幂项,则为本性奇点; 3)如果展开式中只有有限项负幂项,则为极点,如果负幂项的最高项为,则为m阶奇点。 3、何谓定解问题的适定性?(6分) 1,定解问题有解;2,其解是唯一的;3,解是稳定的。满足以上三个条件,则称为定解问题的适定性。 4、什么是解析函数?其特征有哪些?(6分) 在某区域上处处可导的复变函数 称为该区域上的解析函数. 1)在区域内处处可导且有任意阶导数. 2) () () ? ? ? = = 2 1 , , C y x v C y x u 这两曲线族在区域上正交。 3)()y x u,和()y x v,都满足二维拉普拉斯方程。(称为共轭调和函数) 4)在边界上达最大值。 4、数学物理泛定方程一般分为哪几类?波动方程属于其中的哪种类型?(6分)

数学物理泛定方程一般分为三种类型:双曲线方程、抛物线方程、椭圆型偏微分方程。波动方程属于其中的双曲线方程。 5、写出)(x δ挑选性的表达式(6分) ()()()()()()?????????=-==-???∞ ∞∞-∞∞ -)()()(00000R f dv R r r f f dx x x f x f dx x x x f δδδ 6、写出复数2 31i +的三角形式和指数形式(8分) 三角形式:()3sin 3cos 231cos sin 2 321isin cos 222ππ? ?ρ??ρi i i +=++=+=+ 指数形式:由三角形式得: 313πρπ?i e z === 7、求函数 2)2)(1(--z z z 在奇点的留数(8分) 解: 奇点:一阶奇点z=1;二阶奇点:z=2 1)2)(1()1(lim Re 21)1(=????? ?---=→z z z z sf z

数学物理方程期末试卷

2012学年第二学期数学与物理方程期末试卷 出卷人:欧峥 1、长度为 l 的弦左端开始时自由,以后受到强度为sin A t ω的力的作用,右端系在弹性系数为k 的弹性支承上面;初始位移为(),x ?初始速度为().x ψ试写出相应的定解问题。(10分) 2、长为l 的均匀杆,侧面绝热,一端温度为0度,另一端有已知的恒定热流进入,设单位时间流入单位截面积的热量为q ,杆的初始温度分布是() 2 x l x -,试写出其定解问题。(10分) 3、试用分离变量法求定解问题(10分): .? ?? ?? ?? ??===><??? ==?????=+= ????? 5、利用行波法,求解波动方程的特征问题(又称古尔沙问题)(10分):

???????==??=??=+=-).()(002 22 2 2x u x u x u a t u at x at x ψ? ())0()0(ψ?= 6、用达朗贝尔公式求解下列一维波动方程的初值问题(10分) ?????=??=>+∞<<-∞+??=??==0 ,2sin 0,,cos 0022 2 22t t t u x u t x x x u a t u 7、用积分变换法求解定解问题(10分): ???? ???=+=>>=???==,1,10,0,1002y x u y u y x y x u 8、用积分变换法求解定解问题(10分): ?? ?==>∈=0)0,(,sin )0,(0,,2x u x x u t R x u a u t xx tt 9、用格林函数法求解定解问题(10分): 22220 0, y 0, () , .y u u x y u f x x =???+=

物理书籍整理

科普: 《定性与半定量物理学》赵凯华 《边缘奇迹:相变和临界现象》于渌 《QED: A Strange Theory about Light and Matter》Feynman 《大宇之形》丘成桐 《Gauge Fields, Knots and Gravity》Baez 《趣味力学》别莱利曼 《趣味刚体力学》刘延柱(小书,挺有意思) 考研习题集用超星图书里的那本清华大学编写的普通物理学考研辅导教材(大约这个名字) 数学分析: 书目: 《数学分析教程》常庚哲 《数学分析新讲》张筑生 《数学分析》卓里奇 《数学分析八讲》辛钦 《数学分析讲义》陈天权 《数学分析习题课讲义》谢惠民等 《数学分析习题集》北大版? 《特殊函数概论》王竹溪 线性代数Linear Algebra 内容:行列式、矩阵代数、线性方程组、线性空间、线性变换、欧几里得空间、n元实二次型等。 书目: 《高等代数简明教程》蓝以中 《Linear Algebra and Its Applications》Gilbert Strang 《Linear Algebra and Its Applications》Peter D. Lax 《Linear Algebra and Its Applications》David C. Lay 力学Mechanics 先修课程:高等数学 内容:质点运动学、质点动力学、动量定理和动量守恒定律、功和能及碰撞问题、角动量、刚体力学、固体的弹性、振动、波动和声、流体力学、相对论简介。 书目: 《力学》赵凯华 《力学》舒幼生 《经典力学》朗道 《An Introduction To Mechanics》Daniel Kleppner、Robert Kolenkow 狭义相对论:《狭义相对论》刘辽 《The Principle of Relativity》Einstein 广义相对论:《Einstein Gravity in a Nutshell》Zee 《Spacetime and Geometry》Carroll

数学物理方程与特殊函数-模拟试题及参考答案

成都理工大学 《数学物理方程》模拟试题 一、填空题(3分?10=30分) 1.说明物理现象初始状态的条件叫( ),说明边界上的约束情况的条件叫( ),二者统称为 ( ). 2.三维热传导齐次方程的一般形式是:( ) . 3 .在平面极坐标系下,拉普拉斯方程算符为 ( ) . 4.边界条件 f u n u S =+??)(σ是第( )类边界条件,其中S 为边 界. 5.设函数),(t x u 的傅立叶变换式为),(t U ω,则方程22 222x u a t u ??=??的傅立叶变换为 ( ) . 6.由贝塞尔函数的递推公式有 =)(0x J dx d ( ) . 7.根据勒让德多项式的表达式有)(3 1)(3 202x P x P += ( ). 8.计算积分 =? -dx x P 2 1 1 2)]([( ) . 9.勒让德多项式)(1x P 的微分表达式为( ) . 10.二维拉普拉斯方程的基本解是( ) . 二、试用分离变量法求以下定解问题(30分): 1.??? ? ? ????<<=??===><

2.???? ? ?? ??===><<<+??=??====20,0,8,00,20,16200202 2 2 22x t u t x x u t u t t x x u u u 三、用达朗贝尔公式求解下列一维波动方程的初值问题(10分) ?? ???=??=>+∞<<-∞+??=??==0 ,2sin 0,,cos 0022 2 22t t t u x u t x x x u a t u 四、用积分变换法求解下列定解问题(10分): ??? ? ???=+=>>=???==, 1, 10,0,1002y x u y u y x y x u 五、利用贝赛尔函数的递推公式证明下式(10分): )(1)()(' 0' '02x J x x J x J -= 六、在半径为1的球内求调和函数u ,使它在球面上满足 θ21cos ==r u ,即所提问题归结为以下定解问题(10分):

数学物理方程期末试卷

2012学年第二学期数学与物理方程期末试卷 出卷人:欧峥 、长度为 的弦左端开始时自由,以后受到强度为sin A t ω的力的作用,右端系在弹性系数为 的弹性支承上面;初始位移为(),x ?初始速度为().x ψ试写出相应的定解问题。 分 、长为l 的均匀杆,侧面绝热,一端温度为 度,另一端有已知的恒定热流进入,设单位时间流入单位截面积的热量为q ,杆的初始温度分布是 ()2 x l x -,试写出其定解问题。 分 、试用分离变量法求定解问题 分 : ?????????===><

222sin cos ,(0,0)(0,)3,(,)6 4(,0)31,(,0)sin tt xx t u a u x x x l t l l u t u l t x u x u x x l l πππ?=+<<>???==?????=+= ????? 、利用行波法,求解波动方程的特征问题(又称古尔沙问题) 分 : ???????==??=??=+=-). ()(0022222x u x u x u a t u at x at x ψ? ())0()0(ψ?= 、用达朗贝尔公式求解下列一维波动方程的初值问题( 分) ?????=??=>+∞<<-∞+??=??==0,2sin 0,,cos 0022222t t t u x u t x x x u a t u 、用积分变换法求解定解问题( 分): ???????=+=>>=???==,1, 10 ,0,1002y x u y u y x y x u 、用积分变换法求解定解问题 分 :

数学物理方程习题解答案

数学物理方程习题解 习题一 1,验证下面两个函数: (,)(,)sin x u x y u x y e y == 都是方程 0xx yy u u += 的解。 证明:(1 )(,)u x y = 因为322 2 22 2222 2222 22 322 222 2222 2222 222222 222222 1 1()22 () 2()()11()22()2()()0()() x xx y yy xx yy x u x x y x y x y x x x y u x y x y y u y x y x y x y y y y x u x y x y x y y x u u x y x y =-? ?=- +++-?-=-=++=-??=-+++-?-=-=++--+=+=++ 所以(,)u x y =是方程0xx yy u u +=的解。 (2)(,)sin x u x y e y = 因为 sin ,sin cos ,sin x x x xx x x y yy u y e u y e u e y u e y =?=?=?=-? 所以 sin sin 0x x xx yy u u e y e y +=-= (,)sin x u x y e y =是方程0xx yy u u +=的解。 2,证明:()()u f x g y =满足方程 0xy x y uu u u -=

其中f 和g 都是任意的二次可微函数。 证明:因为 ()()u f x g y = 所以 ()(),()()()() ()()()()()()()()0 x y xy xy x y u g y f x u f x g y u f x g y uu u u f x g y f x g y g y f x f x g y ''=?=?''=?''''-=?-??= 得证。 3, 已知解的形式为(,)()u x y f x y λ=+,其中λ是一个待定的常数,求方程 430xx xy yy u u u -+= 的通解。 解:令x y ξλ=+则(,)()u x y f ξ= 所以2 (),()x xx u f u f ξλξλ'''=?=? (),(),()xy y yy u f u f u f λξξξ'''''=?== 将上式带入原方程得2 (43)()0f λλξ''-+= 因为f 是一个具有二阶连续可导的任意函数,所以2 -430 λλ+=从而12 =3,1λλ=, 故1122(,)(3),(,)()u x y f x y u x y f x y =+=+都是原方程的解,12,f f 为任意的二阶可微函数,根据迭加原理有 12(,)(3)()u x y f x y f x y =+++为通解。 4,试导出均匀等截面的弹性杆作微小纵振动的运动方程(略去空气的阻力和杆的重量)。 解:弹性杆的假设,垂直于杆的每一个截面上的每一点受力与位移的情形都是相 同的,取杆的左端截面的形心为原点,杆轴为x 轴。在杆上任意截取位于 [,]x x x +?的一段微元,杆的截面积为s ,由材料力学可知,微元两端处的相对伸长(应 变)分别是 (,)u x t x ??与(,)u x x t x ?+??,又由胡克定律,微元两端面受杆的截去部分的拉力分别为()(,)u SE x x t x ??与()(,)u SE x x x x t x ?+?+??,因此微元受杆的截去部分的作用力的合力为:()(,)()(,)u u SE x x x x t SE x x t x x ??+?+?-??

数学物理方程考试试题及解答

数学物理方程试题(一) 一、填空题(每小题5分,共20分) 1.长为π的两端固定的弦的自由振动,如果初始位移为x x 2sin ,初始速度为 x 2cos 。则其定解条件是 2. 方程 03 =??-??x u t u 的通解为 3.已知边值问题???===+0 )()0(0 )()('"πλX X x X x X ,则其固有函数)(x X n = 4.方程0)(222'"2=-++y n x xy y x α的通解为 二.单项选择题(每小题5分,共15分) 1. 拉普拉斯方程 02 2 22 =??+ ??y u x u 的一个解是( ) (A )xy e y x u x sin ),(= (B )2 2 ),(y x y x u += (C )2 2 1 ),(y x y x u += (D )2 2 ln ),(y x y x u += 2. 一细杆中每点都在发散热量,其热流密度为),(t x F ,热传导系数为k ,侧面绝热,体密度为ρ,比热为c ,则热传导方程是 ( ) (A ) ρc t x F x u a t u ),(2 2 2 2 2 + ??=?? (B ) ρ c t x F x u a t u ),(2 2 2 + ??=?? (C ) ρ c t x u x F a t F ),(2 2 2 2 2 + ??=?? (D) ρ c t x u x F a t F ),(2 2 2 + ??=?? (其中ρ c k a =2) 3. 理想传输线上电压问题??? ??? ?=??=??=??=x aA t u x A x u x u a t u t ωωωsin ,cos )0,(0 2 2 222 ( 其中C L a 12 = )的解为( ) (A ))(cos ),(at x A t x u +=ω (B )t a x A t x u ωωcos cos ),(= (C )t a x A t x u ωωsin cos ),(= (D ))(cos ),(t a x A t x u -=ω

《数学物理方程》教学大纲

《数学物理方程》教学大纲 (Equations of Mathematical Physics ) 一. 课程编号:040520 二. 课程类型:限选课 学时/学分:40/2.5 适用专业:信息与计算科学专业 先修课程:数学分析,高等代数,常微分方程、复变函数 三. 课程的性质与任务: 本课程是信息与计算科学专业的一门限选课程。数理方程主要是指在物理学、力学以及工程技术中常见的一些偏微分方程。通过本课程的学习,要求学生掌握数学物理方程的基本知识、解偏微分方程的经典方法与技巧。本课程主要讲述三类典型的数学物理方程,即波动方程、热传导方程、调和方程的物理背景、定解问题的概念和古典的求解方法, 如波动方程的分离变量法、D`Alembert解法、积分变换法、Green函数法,变分法等。 四、教学主要内容及学时分配 (一)典型方程和定解条件的推导(7学时) 一些典型方程的形式, 定解条件的推导。偏微分方程基本知识、方程的分类与化简、迭加原理与齐次化原理。 (二)分离变量法(7学时) 三类边界条件下的分离变量法, 圆域内二维拉普拉斯方程定解问题的求法,求解一类非齐次方程的定解问题,非齐次边界条件的处理方法. (三)积分变换法(8学时) Fourier变换和Laplace变换的定义和基本性质,Fourier变换和Laplace变换的在求解数学物理方程中的应用。 (四)行波法(7学时) 一维波动方程的求解方法,高维波动方程的球面平均法,降维法 (五)格林函数(6学时)

微积分中学中的几个重要公式;调和函数的Green公式和性质;格林函数;格林函数的性质;格林函数的求解方法。 (六)变分法(5学时) 变分法的一些基本概念,泛函极值的必要条件、泛函的条件极值问题 五、教学基本要求 通过教师的教学,使学生达到下列要求 (一)掌握典型方程和定解条件的表达形式,了解一些典型方程的推导过程,会把一个物理问题转化为定解问题。掌握偏微分方程的基本概念,掌握关于两个变量的二阶线性偏微分方程的分类和化简,掌握迭加原理与齐次化原理。 (二)掌握分离变量法在三种定解条件下的求解步骤,理解圆域内二维拉普拉斯方程定解问题的求法, 会求解非齐次方程的定解问题,掌握非齐次边界条件的处理方法。 (三)掌握达朗贝尔公式的推导过程和物理意义,掌握解决柯西始值问题的行波法。了解依赖区间、决定区域、特征线、影响区域和决定区域的概念。掌握三维波动方程的初值问题的径向对称解,了解高维波动方程初值问题的球面平均法和降维法。 (四)掌握Fourier变换和Laplace变换的定义和基本性质,会Fourier变换和Laplace变换的在求解某些简单的数学物理方程定解问题。 (五)掌握Green第一公式和第二公式。掌握调和函数的Green公式和性质,理解格林函数的基本性质。会求半空间和球域上的格林函数。 (六)掌握变分法的基本概念,会求解几类典型的变分问题的解。 六、课程内容的重点和深广度要求 教学基本要求中的数学物理方程的基本知识、解偏微分方程的经典方法与技巧是本课程的重点,此外,学生对下列各项也应给予注意: 1.线性偏微分方程的分类与化简。 2.固有值问题,关于固有值与固有函数讨论。 3.方程与边界条件同时齐次化的简易方法。 4. Fourier变换和Laplace变换的定义和基本性质。 5. 格林函数的定义和基本性质 6. 泛函极值的必要条件、泛函的条件极值问题。

相关文档
最新文档