磁约束聚变堆及ITER实验包层模块设计研究进展

磁约束聚变堆及ITER实验包层模块设计研究进展
磁约束聚变堆及ITER实验包层模块设计研究进展

超导磁体

4.9 超导磁体 4.9.1 概述 磁体系统是谱议的关键部件之一,它提供高强度和一定均匀度的恒定磁场,供主漂移室测量带电粒子的径迹,用以研究基本粒子间的相互作用和规律。超导磁体利用轭铁提供磁场回路。 根据BESIII 物理工作的需要,要求主漂移室有高的动量分辨率,但主漂移室的动量分辨率主要由室内物质的多次库仑散射决定,此时改进室的空间分辨率和测量次数(增加灵敏丝的层数)以改进测量统计性都不能改进动量分辨率,而增加磁场强度可以达到这一目的。但另一方面,如果磁场强度过高,更多的低能量粒子会陷在漂移室内打圈而很难测量。综合各种因素,选择北京谱仪磁铁的中心磁场设计值为1.0T 。 为避免在粒子径迹拟合时做过多的离线计算机校正,要求径迹区内磁场不均匀度较小。但由于线圈工艺复杂,体积宏大,加工生产中必然会产生不圆度。另外由于各子探测器电子学的需要,轭铁上电缆孔很多,参照BESII 的情况,目前仍将不均匀度指标定在≤5%。基于主漂移室IV 动量分辨率的要求,磁场测量精度应≤0.1%。 4.9.2 超导磁体设计 4.9.2.1 磁体基本参数设计及计算 根据北京谱仪BESIII 的物理要求,参照国际上同类磁体的设计进经验,确定采用单层线圈结构,间接冷却方式,超导电缆采用基于纯铝稳定体的设计。根据总体和内部子探测器的尺寸要求,初步确定磁体外形尺寸长度为4.91m ,内直径为2.75m ,外直径为3.4m ,线圈的长度为3.52m ,线圈中心直径为2.95m 。 若取线圈电流I 为3000A ,nI B 00μ=,其中T B 10=,可得1m 长的线圈匝数为n ≈266匝,超导电缆沿线圈轴向方向的厚度为3.7mm ,考虑到匝间的绝缘层的厚度后,线圈总匝数为921匝。考虑到线圈绕制时,由于超导电缆的连接会减少线圈的有效匝数,现将工作电流定为3150A 。 线圈的储能l D B l S B V B H E ???=??? =?=42121)21(2 0202πμμ = 9.5兆焦耳。从 n D B n S B ??=??=Φ42π=6063.6韦伯,dt dI L dt d =Φ,I L Φ =得出电感L = 2.1亨利。 考虑到在发生失超时,线圈吸收全部储能,最大温升控制在70K 以下,从超导电缆的焓差,可以确定超导电缆沿线圈径向方向的高度尺寸为20mm 。 超导线圈通电后,会产生很大的径向扩张力,需要设计一个支撑圆筒来箍住线圈,支撑筒必须是无磁材料,具有良好的焊接性能和机械强度。国外一般采

模块化设计方法的设计流程

BJ-EPM240T100学习板实验教程 模块化设计方法的设计流程 将这种模块化设计思路运用于FPGA/CPLD设计,将大规模复杂系统按照一定规则划分成若干模块,然后对每个模块进行设计输入、综合,并将实现结果约束在预先设置好的区域内,最后将所有模块的实现结果有机地组织起来,就能完成整个系统的设计。 (1)顶层模块的设计:项目管理者需要完成顶层模块的设计输入与综合,为进行Modular Design实现阶段的第一步—初始预算阶段(Initial Budgeting Phase)做准备。 (2)子模块的设计:每个项目成员相对独立地并行完成各自子模块的设计输入和综合,为进行Modular Design实现阶段的第二步—子模块的激活模式实现(ActiveModule Implementation)做准备。 模块化设计的实现步骤是整个模块化设计流程中最重要、最特殊的,它包含: (1)初始预算–本阶段是实现步骤的第一步,对整个Modular Design起着指导性的作用。在初始预算阶段,项目管理者需要为设计的整体进行位置布局,只有布局合理,才能够在最大程度上体现Modular Design的优势;反之,如果因布局不合理而在较后的阶段需要再次进行初始预算,则需要对整个实现步骤全面返工。 (2)子模块的激活模式实现(Active ModuleImplementation)--在该阶段,每个项目成员并行完成各自子模块的实现。 (3)模块的最后合并(Final Assembly)--在该阶段项目管理者将顶层的实现结果和所有子模块的激活模式实现结果有机地组织起来,完成整个设计的实现步骤。 模块化设计中模块划分的基本原则为: 子模块功能相对独立,模块内部联系尽量紧密,而模块间的连接尽量简单。

最新电磁铁设计

直流电磁铁设计 共26 页 编写: 校对:

直流电磁铁设计 电磁铁是一种执行元件,它输入的是电能,输出的是机械能。电能和机械能的变换是通过具体的电磁铁结构来实现的。合理的电磁铁结构是能量变换效率提高的保证。电磁铁设计的任务是合理的确定电磁铁的各种结构参数。确定电磁铁的各种结构参数是一个相当复杂的任务,下面我们探讨确定电磁铁结构参数的一般方法。电磁铁吸合过程是一个动态过程,设计是以静态进行计算. 一、基本公式和一般概念 1、均匀磁场B=S Φ(T ) 2、磁势F=NI,电流和匝数的乘积(A ) 3、磁场强度H=L NI (A/m ),建立了电流和磁场的关系。 该公式适用于粗细均匀的磁路 4、磁导率μ=H B 建立了磁场强度和磁感应强度(磁通密度)的关系。 μ0=4π×10-7享/米 相对磁导率μr = μμ 5、 磁通Φ=M R NI 磁阻R M =s l μ 这称为磁路的欧姆定律,由于铁磁材料的磁导率μ不是常数, 使用磁阻计算磁路并不方便,磁阻计算一般只用于定性。

6、磁感应强度的定义式B=qv F ,磁感应强度与力的关系。 7、真空中无限长螺线管B=μ0nI 。对于长螺线管,端面处的 B=2 1μ0nI 。 面积Ⅰ为断电后剩留的能量,面积Ⅱ为作功前电磁铁储存的能 量,面积Ⅲ为电磁铁作的功。

我们的目的是使Ⅰ和Ⅱ的面积最小,Ⅲ的面积最大。 面积Ⅰ表示电磁铁作完功后的剩磁,(1)减小面积Ⅰ可用矫顽力小的电铁。(2)提高制造精度,使吸合后气隙最小,但要防止衔铁粘住。 面积Ⅱ表示作功前所储存的能量,在衔铁位置一定时,取决于漏磁通,漏磁通大,面积Ⅱ就大。 9、机械效率 A K1= A A:输出的有效功 A0:电磁铁可能完成的最大功。 10、重量经济性系数 G K2= A G=电磁铁重量。 A0:电磁铁可能完成的最大功。 K2不仅取决于磁效率和机械效率,而且还取决于磁性材料的正确利用,电磁铁的类型和主要外形尺寸之间保持合理的比例关系。11、结构系数Kφ 每一类型的电磁铁,都有一定的吸力和行程。按最优设计方法设计的电磁铁重量最轻。一般来说,长行程的电磁铁比短行积的电磁铁长,吸力大的电磁铁比吸力小的电磁铁外径大。 为了按最小材料消耗率比较电磁铁,引入结构系数K J这个判据。

磁约束核聚变关键能量转换部件的磁流体力学探究

磁约束核聚变关键能量转换部件的磁流体力学探究 【摘要】新科技革命的到来,现代工业化生活所耗费的能量大部分来源于不可再生能源,这些能源非常有限,一旦耗尽,世界将会面临一场关于能源短缺的浩劫。近年来我国的磁约束核聚变用于工程技术研究和物力体力学研究方面取得了相当可观的成绩,该技术在很大程度上可以解决能源危机问题。本文详细阐述了磁约束核聚变的相关概念,分析了磁约束聚变与关键能量转换部件装置类别,重点介绍了核聚变反应堆以及磁流体力学实践运用。 【关键词】磁约束核聚变;磁流体力学;关键能量转换部件 0.引言 当今世界,无论是工业生产还是日常生活,所用到的能源绝大部分是来源于不可再生的化石燃料资源,这些不可再生的资源非常有限,现今许多国家正面临严峻的能源短缺问题。因此,核聚变能的运用在解决能源危机问题方面意义重大。磁约束核聚变作为可控核聚变的种类之一,在克服核聚变反应物的缺陷时又能够保证散发出强大的能源供应,目前世界各国相继投入了对磁约束核聚变的研究,陆续建立了不同磁场位置和形体的实验装置,重点研究磁约束核聚变关键能量转换部件的磁流体力学。 1.磁约束核聚变概念分析 磁约束核聚变是一种结合磁场引力和高热等离子体能量来实现核聚变反应的高科技,这个步骤的具体做法是,首先对已知燃料进行加热处理,让燃料变成等离子体形态,然后利用磁场引力的作用,抑制住高热等离子中的带电粒子,让带电粒子呈现螺旋状线性运动,最后对等离子体进行再次高温加热,直到发生核聚变反应。 2.磁约束聚变与装置类别分析 在20世纪六、七十年代,磁约束等离子燃烧核聚变研究已经经过了多次尝试和研究,依然取得了许多突破性的进展,世界各国相继创建了许多种功能各异、花样繁多的用于实现磁约束等离子燃烧核聚变反应的科学实验装置,主要有托卡马克、多极场、仿星器、磁场镜等不同磁场位形的装置[1]。这些高科技试验装置的创建目的就是为了研究使磁约束等离子体的稳定性发生改变以及能量损耗的形成原理,并力图寻找出克服高温等离子体不稳定性和能量损耗的方法。为实现磁约束核聚变反应常用的装置是托卡马克装置,这个装置主要起到引流、等离子高温加热等作用,与其它装置相比较而言,托卡马克污染较少、安全性更高、运行稳定等优势。托卡马克是一种圆状环形强力磁场装置(如图1所示),由于其结构造型特殊,圆状环形的强力磁场以及极向磁场的相对稳定作用,使得高温等离子体的稳定性加强,抑制高温等离子体中带电粒子的消耗,并且通过高温等离子体中的带电粒子实现对等离子体的抑制、稳定以及运动方向等方面的控制,采用中性束摄入以及高温频率波加热装置对等离子体进行控制,将等离子体中带电粒子电流维持在未消耗状态。目前托卡马克已经成为磁约束反应研究的重点使用装置,并将成为最有可能实现核聚变反应走向商业化运作的有效途径。

模块化设计方法及其在机械设计中的应用

模块化设计方法及其在机械设计中的应用 摘要:随着社会经济的发展,为了提高企业生产效率,模块化设计理念在机械设计领域日益广泛,其对于整合市场、优化结构具有重要意义。我们要树立创新意识,加强其在机械设计中的研究运用,实现模块化的转变。 关键词:模块化;设计方法;机械设计 随着技术的发展和经验的总结,在机械设计中,越来越多的设计方相继出现,并逐渐得到广泛的运用。在实际工作中传统的机械包装方法的弊端日益显现,越来越多不适应机械设计的需要,而模块化设计方法逐渐得到广泛的运用。 1 机械产品模块化涵义 模块化就是以它的观点去对产品或者系统进行策划和生产方案,在某个限度内的一样或者存在差异的功能、相异规格的产品探究讨论,区分并设计。机械产品的模块化主要可从以下几方面进行分析: (1)功能需求集,指的是市场和客户对模块化产品基本功能要求的合集。产品的功能需求是进行产品模块化的重要内容,是产品发展的重要方向。 (2)功能模块,强调的为产品里所能够充分发挥其性能因素的作用. (3)结构模块,指的是功能模块的具体结构,一般由部件或子结构模块组成。 (4)模块接口,指的是描述结构模块组合时相互间的几何、物理关系的结合面,模块接口是模块组合的重要依据。 (5)基础模块,通用型接口模块,能够满足基本功能,而得以实现的定向模块功能演进的模块形式。 2 模块化设计 2.1 模块划分标准 为了让人们对模块化设计方法在机械设计中运用有更为详细的了解,对模块化的设计进行划分,在数控立式车床设计中,运用模块化设计方法,其中最为关键的内容是进行功能与结构分析,这是决定设计效果的关键内容。因此,设计开始前,要对模块进行处理,详细划分模块。当前,还没有任何一种标准可以作为模块划分原则。这里,依据不同侧重点,对不同模块进行划分。模块具有独立性,

实验六报告

实验6 模块化程序设计 一.实验目的: (1)熟悉子程序库的建立步骤。 (2)熟悉对库文件的修改(添加、删除)。 二.实验内容: 主模块A编程:设计一个能实现加、减、乘、除计算的程序,要求该程序接受从键盘输入的两个十六进制数,调用相应的程序模块执行相应的计算后,计算结果以十六进制数输出。 模块B编程:实现两个十六进制数相加。 模块C编程:实现两个十六进制数相减。 模块D编程:实现两个十六进制数相乘。 模块E编程:实现两个十六进制数相除。 (1)将各模块分别汇编为.OBJ文件; (2)应用LIB命令建立子程序库TST.LIB,里面包含BINHEX.OBJ和HEXD.OBJ。 (3)将各模块ZHSY2_3_A.OBJ、ADDOPT.OBJ、SUBOPT.OBJ、MULOPT.OBJ、DIVOPT.OBJ、INNUM.OBJ、OUTNUM.OBJ和子程序库TST.LIB相连接为一个可执行程序ZHSY2_3_A.EXE。 (4)应用DEBUG命令调试ZHSY2_3_A.EXE,注意调试时T命令和P命令的应用。 1、编译: c:\masm .asm 2、链接: c:\link .obj 3、调试: c:\debug .exe 4、运行: c:\ .exe (1)1、编译:子程序 C:\masm .asm c:\masm>masm 6-1 Microsoft (R) Macro Assembler Version 5.00 Copyright (C) Microsoft Corp 1981-1985, 1987. All rights reserved. Object filename [6-1.OBJ]: Source listing [NUL.LST]: Cross-reference [NUL.CRF]: 50352 + 415152 Bytes symbol space free 0 Warning Errors 0 Severe Errors c:\masm>masm 6-2 Microsoft (R) Macro Assembler Version 5.00 Copyright (C) Microsoft Corp 1981-1985, 1987. All rights reserved. Object filename [6-2.OBJ]: Source listing [NUL.LST]: Cross-reference [NUL.CRF]:

[液位,磁体,低温]超导磁体低温液位监测单元的设计与实现

超导磁体低温液位监测单元的设计与实现 引言 超导磁体相对于常规磁体而言,具有励磁线圈电流密度大、电流稳定性高、功耗小、体积小和运转费用低等优点,可满足用户对磁场高强度、高均匀度和高稳定度等性能的要求,在科学研究、医疗诊断、交通运输和电力系统等领域有着广阔的应用前景,其中采用了超导磁体的核磁共振(NMR)谱仪和磁共振成像(MRI)仪更是发展形成了一个产值巨大的市场.随着国民经济和科教医卫事业的迅速发展,我国对超导 NMR 和 MRI仪器设备的需求也在飞速增长,但是这些仪器设备的核心技术与制造基本上控制在少数发达国家手中,为了打破国外的技术垄断并满足国内市场的巨大需求,我国科研机构目前正在积极开展超导仪器设备的自主创新研制. 1 液氦和液氮的液位测量原理 1.1 液氦液位的测量原理 液氦的测量使用电阻式传感器,其测量原理如图 1 所示.使用一根铌钛超导丝制成的液位传感器插入液氦中,其中I+端和I-端连接电流源的正负极,V+端和V-端输出超导丝的电压.测量时,浸没在液氦中的那部分超导丝呈超导态,电阻为 0;而液面之上的超导丝由于加热电阻的作用呈正常态.通过测量传感器的电阻变化量,即可检测液氦液面的变化. 1.2 液氮液位的测量原理 液氮的测量使用电容式液位传感器,其测量原理如图 2 所示,电容传感器由两个同轴不锈钢管构成,中间使用聚四氟乙烯绝缘材料固定两个管子的位置,外管的管壁上开有若干流通孔,使液氮能在电容传感器中自由流入或流出.由于空气和液氮的介电常数不同,当液位变化时,传感器的电容量也相应变化,可以检测出液位的变化. 2 液位监测单元的硬件设计 2.1 硬件整体设计 液位监测单元的硬件整体架构如图 3 所示,液位监测单元硬件电路主要由模拟信号处理电路和以 STM32ARM 微控制器为核心的控制系统组成. 2.2 压控电流源的设计 为了适应不同规格的电阻传感器对电流源的需求,由微控制器所产生的PWM 输出经过光耦合器的隔离耦合以及比较器的缓冲后,再经过低通滤波后输出一个直流电压以控制电流源. 2.3 电压-频率转换电路

家具模块化设计方法实例分析

家具模块化设计方法实例分析 1前言 当前,消费者对家具的个性化需求日益凸显,如何满足这种需求已经成为越来越多家具企业发展的关键。要做到既符合现代机械化生产的发展主流,又节约成本,且能提高产品的市场竞争力。这确实为难了不少的家具企业。有一坐企业尝试通过从销售终端满足个性化,但众多形态各异、尺寸繁多的家具定单从销售端传送至生产和设计部门,却带来了新的矛盾:设计任务艰巨、生产设计难排、产品质量难以保证,甚至由于部件尺寸的相近导致出错率增加、生产效率低下。有一些敢于吃螃蟹的企业尝试从设计入手,通过标准零部件的设计、组合成新产品来满足这种“个性化”“的需求。但遗憾的是,这种做法并未带来预期的效果,单一的产品导致了销售客额和顾客满意率的下降。所以,如何实现产品的个性化?是从销售端,还是从设计与生产端着手呢?这是家具企业必须根据企业现状做出回答的问题。定制是从销售端解决问题,而模块化设计是从设计端解决问题,旨在通过设计具有标准性和通用性的功能模块,达到组合成多样化的家具的目的。毫无疑问,模块化设计在家具业具有很大的发展潜力,它既能解决个性化需求的问题,还能做到低成本与高效率。 模块化设计属于方法学的范畴,在其他工业行业中已经得到了长足的发展。由于家具消费环塘和制造环境的变化,模块化设计以其特有的优势,开始在家具行业尤其是办公家具中应用。而对于民用家具,

近年来个性化需求与家具企业的生产矛盾日益突出,有关模块化设计的探索才刚刚开始。鉴于国内尚无系统的家具模块化设计理论来指导企业的实践,本文着重以衣橱为例,详细具体地分析单个家具的非模块化设计过程,以进一步明确家具模块化设计的必要性和可操作性。 2 设计概念及设计方法 家具模块化设计指的是在对家具进行功能分析的基础上,划分并设计出一系列的家具功能模块,通过功能模块的选择与组合构成不同的家具,以满足市场多样化需求的设计方法。与传统的设计方法相比较,家具模块化设计呈现出许多新特征。首先,它是针对模块和家具产品系统的设计,既要设计模块,又要设计家具成品。其次,它以标准化、通用化的零部件快速组合成家具,能实现家具的多样化。模块化设计不同于标准化设计,标准化设计带来的是单一的产品,而模块化设计则不然,在设计之初就考虑模块可组合成产品的多样性。因此模块化设计是在标准化设计基础之上,实现产品多样化的一种方法。 根据家具模块化设计的概念,笔者提出从三个层次展开家具的模块化设计。第一层次是家具模块化总体设计。这个阶段主要是进行模块化系统的总体策划,确定模块化实施的范围。良好的模块化总体设计,是模块化设计得以实现的基础。第二层次是家具模块设计,这是模块化设计系统具体化的过程,是承上启下的环节。模块化设计的好坏,直接影响到模块化家具组合的最终效果。第三层次是家具模块化产品设计。这个阶段主要是选择模块,评价模块可能组合方式的合理

实验七 用函数实现模块化程序设计

河南工业大学C语言实验报告 专业班级:生物11级1班学号:201112910118姓名:l刘路路指导老师:朱红莉评分: 实验题目:用函数实现模块化程序设计 实验目的:熟练掌握函数的定义、调用、声明 实验内容:P218-219 习题1、2、4 实验步骤:(具体程序及运行结果) 7.1写两个函数,分别求两个整数的最大公约数和最小公倍数,用主函数调用这两个函数,并输出结果。两个整数由键盘输入。 #include int main() {int hcf(int,int); int lcd(int,int,int); int u,v,h,l; scanf("%d,%d",&u,&v); h=hcf(u,v); printf("H.C.F=%d\n",h); l=lcd(u,v,h); printf("L.C.D=%d\n",l); return 0; } int hcf(int u,int v) {int t,r; if (v>u) {t=u;u=v;v=t;} while ((r=u%v)!=0) {u=v; v=r;} return(v); } int lcd(int u,int v,int h) { return(u*v/h); } 7.3写一个判素数的函数,在主函数输入一个整数,输出是否为素数的信息。 #include int main() {int prime(int); int n; printf("input an integer:"); scanf("%d",&n);

if (prime(n)) printf("%d is a prime.\n",n); else printf("%d is not a prime.\n",n); return 0; } int prime(int n) {int flag=1,i; for (i=2;i #define N 3 int array[N][N]; int main() { void convert(int array[][3]); int i,j; printf("input array:\n"); for (i=0;i

《玩磁铁》教学设计

《“玩”磁铁》 一、前言: 磁铁是科学课中经典的内容,也是学生非常感兴趣的。几十年来,很多教师在这节课中进行尝试探索。冀教版在三年级下册安排了《磁》这一单元,包括14课“磁铁的力量”、15课“制作小磁针”、16课“磁的应用”三节课。其中14课安排了四个活动,1、磁铁能吸引哪些物体?2、哪种情况吸得多?3、磁铁的什么部位吸引力最强?4、磁极的指向。15课安排了2个活动,1、磁极的相互作用,2、自制小磁针。教材的设计非常全面涵盖了磁铁的主要性质。 在反复的课堂教学实践中我们发现:如果整齐划一的按照教材编写的顺序去讲,课堂上气氛很沉闷,学生探究热情不高。后来通过跟学生调察交流我们剖析原因,发现磁铁某些性质学生在幼儿园学过或在家里玩过,如“磁铁吸铁”几乎所有同学都知道。如果让学生再统一猜想、统一实验、统一归纳就滞后了学生认知水平,学生感觉没有难度,所以兴趣不高,也浪费时间。 但又存在另外一种现象,学生的认识毕竟是局限的、片面的、零碎的、不系统,教师的职责应该是在学生已有认知基础上让学生得到发展、得到提升。如:学生可能都知道磁铁能吸铁,但对磁铁名字的由来,磁铁还能吸引那些金属等等,知道的就很少。这让我想起特级教师路培琦老师的一句话“教材只是一个例子”,教师要依托教材,但不拘泥于教材,让教材为我们的教学服务。本着这样的思想,我们打破了教材的编排体系,将教材要求学生知道的“磁铁能吸铁、磁铁越近吸得越多、磁铁两端吸得多、指南北、同极相斥异极相吸、磁化”重点体验,并在完成教学目标

同时进行适当的拓宽、拓深。同时创造机会允许部分学生发现并探究磁铁其他性质,以此满足不同学生的认知需求。 本课的教学设计最大的特色就是为学生营造开放的学习环境,给学生更广阔的自主选择空间。并根据三年级学生的年龄特点,给学生心理上的安全感,以“玩”为主线,让孩子在“玩”中亲历科学、体验科学。使学生在“玩”中获得物质科学知识,提高探究技能同时提升学生的科学精神、科学态度和价值观,从而“玩”出一个新境界。现将本课的具体艺术特色阐述如下: 二、教学设计特色: 1、以“学生”为主体,教学设计多元化,为不同层次的学生提供个性化的学习空间。 (1)教学目标多元化 由于学生在生活中经常见到磁铁,对于磁铁的一些特性有或多或少的了解,因此对于本课的教学目标,我们不做统一硬性的规定。每个学生都可以根据自己已有的经验、兴趣爱好、能力,自主选择探究目标。比如:有的学生在生活中就发现磁铁可以吸引铁质的物体,因此在课上这些学生就可以选择其它材料,探究磁铁的其他特性。这样的设计可以让每一个孩子都在原有的基础上得到发展。 (2)教学内容多元化 由于教学目标多元化,孩子们探究的内容也就随之多元化。在课上孩子们有的探究磁铁能吸铁;有的探究磁铁磁力大小;有的探究磁铁同极相斥,异极相吸;还

产品模块化设计

当今制造业企业一方面必须利用产品的批量化、标准化和通用化来缩短上市周期、降低产品成本、提高产品质量,另一方面还要不断地进行产品创新使产品越来越个性化,满足客户的定制需求。这样,如何平衡产品的标准化、通用化与定制化、柔性化之间的矛盾,成为赢得竞争的关键能力。平台化、模块化的产品设计和生产可以在保持产品较高通用性的同时提供产品的多样化配置,因此平台化、模块化的产品是解决定制化生产和批量化生产这对矛盾的一条出路。 以下总结了推行模块设计过程需要关注的要点: 1 产品模块化设计各个部门远景目标: 1)产品开发:产品开发过程分解为平台开发和产品开发过程,专门的团队进行平台的设计和优化,新产品的开发由平台通过 变量配置实现; 2)产品制造:产品制造部门按照产品平台分配产线和装配资源; 3)供应链管理:实现零库存,根据模块的要求选择能够承接模块设计和开发的供应商; 4)市场部门:实现按订单制定产品开发和制造计划。 2 模块化实施过程: 1)产品系列平台划分,采用“产品型号组方法”则是对整个目标 市场划分所进行的全部变型型号的规划和开发。新产品规划要

定义一组变型型号。配置应当与市场定位关联,其实际定义应 当与产品性能的部分关联,并体现出不同变型型号之间的差异。 2)产品模块划分,可以采用MFD方法进行模块划分,步骤包括: a 定义客户需求,利用卡诺模型区分客户需求与满意度关 系、使用QFD方法定义客户需求与产品性能的对应关系; b 选择技术方法,定义产品功能树,使用波氏方法选择 技术方法;使用DPM矩阵描述技术方法与产品性能的对 应关系; c 产生模块概念,定义模块驱动与技术解决方案的对应关 系,最理想的模块技术解决方法是可以自己组合成一个模 块,至少可以作为一个模块的基础; 不够优化的技术解决 方法应该和其他技术解决方法整合在一起组成模块。 d 评估模块概念,定义模块接口,优化模块接口。 e 模块优化,创建模块规格说明,进行模块优化,进行 经济和技术上的评价。 3)选项变量定义;在一个平台上定义许可的选项/选项集,定义选项之间的关系和约束。 3 模块化设计考核指标 1)部署通用产品结构的型号组/ 全部型号组; 2)通用模块实例/ 全部的模块实例; 3)CAD/PDM系统中零部件族的利用率;

电磁铁设计计算书

电磁铁设计计算书 河北科技大学电气工程学院 张刚 电磁铁设计中有许多计算方法,但有许多计算原理表达的不够清晰,本人参照“电 磁铁设计手册”一书,对相关内容进行了整理补充,完成了一个直流110V 拍合式电磁铁的计算。 设计一个拍合式电磁铁,它的额定工作行程为4mm ,该行程时的电磁吸力为0.8公 斤,用在电压110V 直流电路上,线圈容许温升为65℃。 1) 初步设计 第一步:计算极靴直径 电磁铁的结构因数为: 0.8 2.2F K φδ = = ≈ 查空气气隙磁感应强度与结构因数的经济表格,如下图所示: 从图中可查得,气隙磁感应强度最好取为p B =2000Gs 。 极靴的表面积为: 2 2 2500050000.852000n p S F cm B ????==?= ? ? ????? 极靴直径为: 445 2.52 3.14 n n S d cm π ?= = = 取n d =2.5cm ,则2 4.9n S cm =。磁感应强度p B 增加为2040Gs 。 第二步,计算铁芯直径 材料采用低碳钢,其磁感应强度取cm B =11000Gs ,漏磁系数σ取2,则:

222040 4.9 1.1811000 p n cm cm B S S cm B σ??= = = 铁芯直径为: 1.52c d cm = = = 取 1.5c d cm =,则2 1.77cm S cm = 第三步,计算线圈磁动势 线圈的磁动势NI 为工作气隙磁动势、铁芯磁动势和非工作气隙磁动势的和,记 为: ()()()cm n NI NI NI NI δ=++ 计算中,可取: ()()()cm n NI NI a NI += 这里a=0.15~0.3,也就是铁芯磁动势和非工作气隙磁动势的和约占总磁动势的 15%~30%。 因此,线圈的磁动势应为: ()()() 42 7 102040100.4109321141010.3p p B B NI a a δ μδμπ---????==?=≈--?-安匝 系统一般要求电压降到85%U n 时仍能正常工作,在额定电压U n 下的磁动势为: ()1 10950.85 NI NI = =安匝 计算温升时,一般取额定电压U n 的1.05~1.1倍,此时的磁动势为: ()2 1.051150NI NI =?=安匝 第四步,计算线圈尺寸 1)推导计算线圈厚度公式 线圈的温升公式为: m P S θμ= ? 这里: θ:温升,单位℃; P :功率,单位W ; m μ:线圈的散热系数,单位2/W cm ?℃;

家具模块化设计方法实例分析(1).doc

家具模块化设计方法实例分析 1 前言 当前,消费者对家具的个性化需求日益凸显,如何满足这种需求已经成为越来越多家具企业发展的关键。要做到既符合现代机械化生产的发展主流,又节约成本,且能提高产品的市场竞争力。这确实为难了不少的家具企业。有一坐企业尝试通过从销售终端满足个性化, 但众多形态各异、尺寸繁多的家具定单从销售端传送至生产和设计部门,却带来了新的矛盾:设计任务艰巨、生产设计难排、产品质量难以保证,甚至由于部件尺寸的相近导致出错率增加、生产效率低下。 有一些敢于吃螃蟹的企业尝试从设计入手,通过标准零部件的设计、组合成新产品来满足这种个性化”的需求。但遗憾的是,这种做法并未带来预期的效果,单一的产品导致了销售客额和顾客满意率的下降。所以,如何实现产品的个性化?是从销售端,还是从设计与生产 端着手呢?这是家具企业必须根据企业现状做出回答的问题。定制是从销售端解决问题,而模块化设计是从设计端解决问题,旨在通过设计具有标准性和通用性的功能模块,达到组合成多样化的家具的目的。毫无疑问,模块化设计在家具业具有很大的发展潜力,它既能解决个性化需求的问题,还能做到低成本与高效率。 模块化设计属于方法学的范畴,在其他工业行业中已经得到了长足的发展。由于家具消费环塘和制造环境的变化,模块化设计以其特 有的优势,开始在家具行业尤其是办公家具中应用。而对于民用家具, 近年来个性化需求与家具企业的生产矛盾日益突出,有关模块化设计的探索才刚刚开始。鉴于国内尚无系统的家具模块化设计理论来指导企业的实践,本文着重以衣橱为例,详细具体地分析单个家具的非模块化设计过程,以进一步明确家具模块化设计的必要性和可操作性。 2 设计概念及设计方法 家具模块化设计指的是在对家具进行功能分析的基础上,划分并设计出一系列的家具功能模块,通过功能模块的选择与组合构成不同的家具,以满足市场多样化需求的设计方法。与传统的设计方法相比较,家具模块化设

天然药物化学实验模块化教学设计

天然药物化学实验模块化教学设计摘要:模块化教学是依据教学目的将教学内容划分成不同层次模块,每个教学模块中都包含了特定的教学内容和教学目标,各模块之间相互关联、层层递进,构成一个完整的教学系统。该文探索了天然药物化学实验课程模块化教学设计思路,力求提高教学效果,达到提升学生创新研究能力的目的。 关键词:生药学/教育;教学;天然药物化学;实验教学;模块化设计 “天然药物化学”是药学专业主干课程,具有很强的实践性,因此天然药物化学实验课是教学的重要环节。因此,我校于2017年将天然药物化学实验课设置为一门独立的课程,教学时数与理论课学时数相同,均为72学时,旨在通过实验教学使学生掌握天然药物中所含有效成分的结构类型、理化性质、提取分离、检识和结构鉴定的基本理论、基本知识和基本技能,训练和培养学生操作能力,提高学生动手能力和分析问题解决问题的能力;更重要的是培养学生具备天然药物新药研发的素质,使学生具备科学研究的思维、素质及严谨的科学作风。 1天然药物化学实验课程存在的问题 根据课程特点,我校天然药物化学实验安排了9次实验,每次实验8学时,学生每两周进行一次实验,由于间隔时间太长导致实验缺乏连贯性,学生对实验缺乏整体认识;其次,为强化规范化操作练习,教师提供给学生“菜谱式”操作流程,学生只需照单操作,这种教学模

式导致学生思维僵化,不会解决实际问题,更难以适应企业生产、科学研究等工作的实际需要[1]。教学组对学生发放实验课满意度调查问卷,并通过分析发现:大部分学生对天然药物化学实验课很感兴趣,但认为创新型和设计型实验项目不够,有的学生提出增加一些与毕业设计或就业相关的实验,如天然化妆品、保健品的制备等,可见学生并不满足于被动操作和机械重复,对实验教学提出更高的要求[2]。 2天然药物化学实验模块化教学设计思路 “教学有法,教无定法”。为了使学生成为学习的主体,锻炼和培养学生的综合素质和创新能力,发挥学生的主观能动性,教学组依据天然药物化学实验教学大纲,将教学内容或组合或分解成相应的模块(表1),根据培养目标确定技能目标,明确学生在各个模块中需要掌握的教学内容,并最终实现培养目标。模块一的设计思路:本模块的实验项目多为经典验证性内容,旨在强化学生基本操作技能,如药材的前处理、回流、煎煮、过滤、结晶与重结晶、萃取、薄层色谱与柱色谱等,其目标是培养学生掌握天然药物提取分离有效成分的基本操作技能,并加以熟练运用,提高学生操作技能。模块二的设计思路:由于传统菜单式、验证性实验内容不能很好调动学生的积极性和求知欲,以应用和成果导向为目的的实验项目尤其能够激发学生的主观能动性[3]。例如我校天然药物化学学科多年来围绕新疆特色植物资源,结合课程的研究性和实践性特点,利用充足的研究经费和科研创新,开展了一系列研究,经过多年的积淀和发展,获得了丰硕的科研成果,并挑选成熟的科研成果引入实验教学,如我们对肉苁蓉的研究取得系

电磁铁设计

电磁铁设计

直流电磁铁设计

直流电磁铁设计 电磁铁是一种执行元件,它输入的是电能,输出的是机械能。电能和机械能的变换是通过具体的电磁铁结构来实现的。合理的电磁铁结构是能量变换效率提高的保证。电磁铁设计的任务是合理的确定电磁铁的各种结构参数。确定电磁铁的各种结构参数是一个相当复杂的任务,下面我们探讨确定电磁铁结构参数的一般方法。电磁铁吸合过程是一个动态过程,设计是以静态进行计算. 一、基本公式和一般概念 1、均匀磁场B= S Φ (T ) 2、磁势F=NI,电流和匝数的乘积(A ) 3、磁场强度H= L NI (A/m ),建立了电流和磁场的关系。 该公式适用于粗细均匀的磁路 4、磁导率μ= H B 建立了磁场强度和磁感应强度(磁通密度)的关系。 μ0=4π×10-7享/米 相对磁导率μr =0 μμ 5、 磁通Φ= M R NI 磁阻R M = s l μ 这称为磁路的欧姆定律,由于铁磁材料的磁导率μ不是常数,使用磁阻计算磁路并不方便,磁阻计算一般只用于定性。

6、磁感应强度的定义式B= qv F ,磁感应强度与力的关系。 7、真空中无限长螺线管B=μ0nI 。对于长螺线管,端面处的 B=2 1μ0nI 。 面积Ⅰ为断电后剩留的能量,面积Ⅱ为作功前电磁铁储存的能量,面积Ⅲ为电磁铁作的功。

我们的目的是使Ⅰ和Ⅱ的面积最小,Ⅲ的面积最大。 面积Ⅰ表示电磁铁作完功后的剩磁,(1)减小面积Ⅰ可用矫顽力小的电铁。(2)提高制造精度,使吸合后气隙最小,但要防止衔铁粘住。 面积Ⅱ表示作功前所储存的能量,在衔铁位置一定时,取决于漏磁通,漏磁通大,面积Ⅱ就大。 9、机械效率 A K1= A A:输出的有效功 A0:电磁铁可能完成的最大功。 10、重量经济性系数 G K2= A G=电磁铁重量。 A0:电磁铁可能完成的最大功。 K2不仅取决于磁效率和机械效率,而且还取决于磁性材料的正确利用,电磁铁的类型和主要外形尺寸之间保持合理的比例关系。11、结构系数Kφ 每一类型的电磁铁,都有一定的吸力和行程。按最优设计方法设计的电磁铁重量最轻。一般来说,长行程的电磁铁比短行积的电磁铁长,吸力大的电磁铁比吸力小的电磁铁外径大。 为了按最小材料消耗率比较电磁铁,引入结构系数K J这个判据。

国家磁约束核聚变能发展研究专项

国家磁约束核聚变能发展研究专项 项目申请书 项目名称: 申报单位: 项目负责人: 申报日期: 1

中华人民共和国科学技术部制 2

项目摘要(1,000字左右) 简述开展项目研究的重要性和必要性、拟解决的关键问题、主要研究内容和目标、课题设置。 申请书正文(不超过30,000字) 一、立项依据 开展项目研究的重要性和必要性。 二、国内外研究现状和发展趋势 国际最新研究进展和发展趋势,国内研究现状和水平,相关研究工作取得突破的可能性等。 三、拟解决的关键科学技术问题和主要研究内容 详细阐述围绕国家磁约束核聚变能发展研究专项任务所要解决的科学技术问题。主要研究内容要围绕关键问题,系统、有机地形成一个整体来详细阐述,重点要突出,避免分散或拼盘现象。 四、阶段性目标和总体目标 详细阐述项目的总体目标和阶段性目标,要有具体、可考核的考核指标。 3

五、总体研究方案 结合主要研究内容阐述学术思路、技术途径及其创新性,与国内外同类研究相比的特色和取得突破的可行性分析等。 六、课题设置 围绕项目所要解决的关键问题、研究重点和预期目标合理设置课题。说明课题设置的思路、各课题间的有机联系以及与项目预期目标的关系;详细、具体叙述各课题的名称、主要研究内容和目标、承担单位、课题负责人及主要学术骨干和经费比例等。 七、现有工作基础和条件 1. 项目承担单位在所申报项目相关研究方面的工作基础和取得的主要研究成果。 2. 项目实施所具备的工作条件,包括实验平台和大型仪器设备等,国家实验室、国家重点实验室和重大科学工程等重要研究基地在项目中所起的作用等。 3. 项目申报单位近五年承担的与所申报项目直接相关的国家科技计划重大、重点项目的完成情况,与所申报项目的关联和 4

C语言 实验三 模块化程序设计

实验三模块化程序设计 (3学时) 【实验目的】 1. 掌握一维数组和二维数组的定义、赋值和输入输出的方法。 2. 掌握字符数组和字符串函数的使用。 3. 掌握与数组有关的算法。 4. 掌握函数定义的方法。 5. 掌握函数实参与形参的传递方式。 6. 掌握函数的嵌套调用和递归调用的方法。 7. 了解全局变量和局部变量、动态变量、静态变量的概念和使用方法。 【实验内容】 任务1 数组的基本定义与应用 1. 定义一个10个元素的int数组a,输入10个数,并输出。 参考程序: main() {int i,a[10]; for(i=0;i<10;i++) scanf("%d",&a[i]); for(i=0;i<10;i++) printf("%5d",a[i]); printf("\n"); } 运行结果: 2. 寻找整数数组num中的最大值及其所在的下标。 参考程序:main() {int i,max,p,a[10]; printf("please enter 10 data:\n"); for(i=0;i<10;i++) scanf("%d",&a[i]); max=a[0];p=0; for(i=1;i<10;i++) 淮南师范学院电气信息工程学院 1

if(a[i]>max) {max=a[i];p=i;} printf("max is:%d\n",max); printf("point is:%d\n",p+1); } 运行结果: 3. 实现对n个数的数列从小到大排序。(比较交换法、选择法、冒泡法) 参考程序:冒泡法 #include main() {int i,j,n,a[100];int temp;clrscr(); printf("enter the number:\n"); scanf("%d",&n); for(i=0;ia[j+1]) {temp=a[j];a[j]=a[j+1];a[j+1]=temp;} printf("\n output the sorted array\n"); for(i=0;i

磁约束

一. 概述 众所周知,以一定速度进入均匀磁场中的带电粒子作螺旋线运动。进入非均匀磁场中的带电粒子将如何运动呢?现以典型的喇叭形磁场为例,用一种简明的方法进行分析,阐明了磁约束的基本原理及其在核聚变中的重要应用。 二. 带电粒子在喇叭形磁场中的运动 常见的典型的喇叭形磁场如图15-1所示。 为了方便起见,设图15-1示的磁场是关于Z 轴对称的空间缓变的;喇叭形磁场,它可用下表示 其中 为常数, 和 分别为柱坐标系中Z 轴和径向方向的单位矢量,a 是一个微小的参数,它表达了 随Z 和r 的缓慢变化。 电荷为q ,质量为m 的粒子以一定速度 (假定 之大小远小于真空中的光速) 进入图15-1所示的磁场中,它将如何运动呢? 现将带电粒子的速度分解为平行于的纵向分量与垂直于的横向分量 。 带电粒子在 的z 分量 作用下,类似 于在均匀磁场中的带电粒子作螺旋线运动。但由于 随Z 增大而增强,其回旋

半径将逐渐减小,因此带电粒 子的轨道是一条会聚螺旋线,如图15-2 所示。 磁场的径向分量虽小,但对带电粒子的运动产生十分重要的作用,出现了十分有趣的特征。由径向磁场产生的洛仑兹力为: (2) 其中使带电粒子的横向速度之大小增加,因由 于的空间缓变,甚微,所以为圆柱坐标系中 方向的单位矢量)。 (2)式中第二项以表示,即: (3) (3)式所示之分力与方向相反,将使减小。可见磁场使带电粒 子的增加,减小。然而在稳定的磁场中运动的带电粒子的总动能是不变的。即: 常数(4) 从(4)式出发,由的变化可找出带电粒子横向速度的变化规律。今将(4)式对时间求导数得:(5) 其中

相关文档
最新文档