ULSAB-AVC汽车车身高强度用钢相关资料(英文)

ULSAB-AVC汽车车身高强度用钢相关资料(英文)
ULSAB-AVC汽车车身高强度用钢相关资料(英文)

Appendix III Rev’d 6 June 2001

Technical Transfer Dispatch #6

ULSAB-AVC Body Structure Materials

May 2001

FOREWORD

1.0Introduction

2.0Materials Selected for the ULSAB-AVC Body Structure

3.0Advanced High Strength Steel Microstructures, Behavior, and Alloy Design

4.0Materials Selection Process for ULSAB-AVC

5.0Forming Assessment

Appendices:

I ULSAB-AVC Body Structure Parts List

II ULSAB-AVC Steel Grades Portfolio

III Considerations in the Selection of Advanced High Strength Steels for ULSAB-AVC IV Examples of ULSAB-AVC Forming Simulations

FOREWORD

Program Background

ULSAB-AVC (Advanced Vehicle Concepts) is the most recent addition to the global steel industry’s series of initiatives offering steel solutions to the challenges facing automakers around the world to increase the fuel efficiency of automobiles, while improving safety and performance and maintaining affordability. This program follows the UltraLight Steel Auto Body (ULSAB) program (results announced worldwide in 1998). As with the ULSAB Program, the ULSAB-AVC Consortium commissioned P ORSCHE E NGINEERING S ERVICES, I NC., Troy, Mich. USA, to provide design and engineering management for ULSAB-AVC.

In the ULSAB-AVC program, P ORSCHE E NGINEERING S ERVICES, I NC. takes a holistic approach to the development of a new vehicle architecture that offers cost-efficient steel solutions to mass reduction challenges. ULSAB-AVC will present advanced vehicle concepts to help automakers use steel more efficiently and provide a steel-based structural platform for achieving:

?Anticipated crash safety requirements for 2004,

?Significantly improved fuel efficiency,

?Optimized environmental performance regarding emissions, source reduction and recycling,

?High volume manufacturability at affordable cost.

Technical Transfer Dispatches (TTD)

To encourage valuable dialogue, the ULSAB-AVC Program provides periodic communications in the form of TTDs to key contacts within the automotive industry to keep key expert automotive staff informed about Program progress. TTD #6 provides critical information about the application of advanced high strength steels (AHSS) to vehicle design, offering important design considerations in using these advanced steels. Also included in this TTD are examples of the effective collaboration process between steel suppliers and design engineers to achieve the fully optimized use of AHSS and documentation of properties for the steel grades used in the ULSAB-AVC body structures.

It is important to note that the information reported in this dispatch related to ULSAB-AVC’s design is work in progress, subject to change as the engineering process is completed. The final program results, to be delivered to the global automotive community in early 2002, could be different than what is included here. However, from our experience with previous dispatches, we believe that allowing our customers to review the work in progress not only provides an avenue for exchange and feedback but also contributes helpful input to our customers’ own research efforts.

For more information or to provide feedback, please contact your local ULSAB-AVC Member Company or ULSAB-AVC program management as follows:

Ed Opbroek, Program Director

ULSAB-AVC

Tel. (513) 422-1844

Fax. (513) 424-0270

E-mail. EdOpbroek@https://www.360docs.net/doc/dc4002206.html,

1.0 Introduction

Engineered steels provide automotive designers and manufacturers with the unique option of combining lightweighting with the traditional steel advantages of low cost and eco-efficiency. This was clearly demonstrated by the ULSAB Program and was achieved, in part, through the extensive use of both high strength steels (HSS) and ultra high strength steels (UHSS).

The HSS grades used in ULSAB utilized mostly conventional microalloy approaches. The goals for ULSAB-AVC are more aggressive than for ULSAB because of the need to reduce the added mass required to satisfy future safety mandates. For ULSAB-AVC, it is therefore appropriate to also consider the application of newer types of high strength steels, the so-called advanced high strength steels (AHSS), to assist in achieving the overall aims of the program through the design of an efficient lightweight body structure.

In contrast to ULSAB, where a key focus was to demonstrate the manufacturing feasibility of the aggressive use of readily available HSS and modern manufacturing processes (e.g. tailored blanks, hydroforming, assembly laser welding), ULSAB-AVC is a concept program. This provides an opportunity to expand the list of candidate steels by considering those steels that are currently available and those that will become available by 2004. To coordinate this, it was first necessary to adopt a consistent nomenclature of the various grades of steels.

1.1 ULSAB-AVC Steel Nomenclature

Methods used to classify steels vary considerably. To provide a consistent nomenclature, the ULSAB-AVC Consortium adopted a standard practice that defines both yield strength (YS) and ultimate tensile strength (UTS). In this classification system, steels are identified as: XX aaa/bbb Where XX= Type of steel

aaa= Minimum YS in MPa, and

bbb= Minimum UTS in MPa.

The steel type designator uses the following classification:

Conventional Types_____________Advanced High Strength (AHSS) Types *_ Mild = Mild steel DP = Dual phase

IF= Interstitial-free CP= Complex phase

IS= Isotropic TRIP= Transformation-induced plasticity BH= Bake hardenable Mart= Martensitic

CMn= Carbon-manganese

HSLA= High strength, low alloy * refer to Section 3.0 for further description

As an example, a classification of DP 500/800 refers to dual phase steel with 500 MPa minimum yield strength and 800 MPa minimum ultimate tensile strength.

1.2 The Rationale for Advanced High Strength Steels

Consistent with the terminology adopted for ULSAB, High Strength Steels (HSS) are defined as those steels with yield strengths from 210–550 MPa; Ultra-High Strength Steels (UHSS) are defined as steels with yield strengths greater than 550 MPa. The yield strengths of Advanced High Strength Steels (AHSS) overlap the range of strengths between HSS and UHSS, as shown in Figure 1. The principal differences Array between conventional HSS and AHSS are

due to their microstructures. AHSS are

multi-phase steels, which contain

martensite, bainite, and/or retained austenite

in quantities sufficient to produce unique

mechanical properties. Compared to

conventional micro-alloyed steels, AHSS

exhibit a superior combination of high

strength with good formability. This

combination arises primarily from their high

strain hardening capacity as a result of their

lower yield strength (YS) to ultimate tensile

strength (UTS) ratio.

For conventional steels, reduced formability is one of the consequences when selecting steels with higher strength levels. To overcome this, recent steel developments, which can facilitate further lightweighting of automotive structures, have targeted this phenomenon. The family of steels based on multi-phase microstructures typify the development of improved material concepts to enhance formability.

The multi-phase AHSS family includes dual phase (DP), transformation induced plasticity (TRIP) and complex phase (CP), products. Figure 1 data show the relative strengths and formability (measured by total elongation) of conventional strength steels, such as mild (Mild) and interstitial free (IF) steels; conventional HSS such as carbon-manganese (CMn), bake hardenable (BH), isotropic (IS), high strength IF (IF), high strength, low alloy (HSLA). Figure 1 also shows advanced high strength steels (AHSS) such as dual phase (DP), transformation induced plasticity (TRIP), complex phase (CP), and martensite (Mart) steels.

Although not displayed in Figure 1, another category of steels, known as press hardened or hot-formed steels are also of interest, especially for those components with a complicated shape but

requiring ultra high strength levels. These grades are, essentially, martensitic grades.

2.0 Materials Selected for the ULSAB-AVC Body Structure

The materials selected for the ULSAB-AVC Body Structure are illustrated as Figure 2 (C-Class) and Figure 3 (PNGV-Class), with the steel grades selected collated as Table 1. The pie charts of Figure 4 enable a comparison to be made of the materials used in ULSAB and in ULSAB-AVC and indicate that the complete body structure of ULSAB-AVC is comprised of high strength steel. Stamping, roll forming and hydroforming are the only processes used for the manufacture of all components. Initially, it was considered that hot-formed steels would be required for some parts. However, component geometry (shape) modifications enabled all such parts to be replaced with components made by less expensive stamping or roll forming processes. A complete list of the materials selected for each part is provided as Appendix I, and the materials properties utilized provided as Appendix II.

The data of Figure 4 illustrate that the body structures of both the PNGV-Class and C-Class ULSAB-AVC designs utilize approximately 85% of Advanced High Strength Steels, with the clear majority of components being designed using dual phase steels. The relatively simple shapes of the components in this concept design had a significant influence on the types of steels selected. In particular, for a number of components, both DP and TRIP steels were viable candidates for selection. The choice of a less-costly DP grade was enabled since part geometry rendered the superior formability of TRIP steels redundant, based on the first-approximation one-step forming simulations. In the case of the floor pan, TRIP 450/800 was selected rather than a DP grade. This particular component undergoes significant deformation during manufacture, so that manufacturing feasibility will benefit from the additional forming capacity of the TRIP grade. In addition, practical experience on similar components has indicated that one step forming simulations may not be completely reliable in predicting the manufacturing feasibility for such components. The selection of TRIP 450/800, therefore, provides a greater margin of manufacturing feasibility than would be the case with DP grades.

It must, of course, be emphasized that ULSAB-AVC is only one possible solution to achieve lightweight steel body structures. Consequently, the particular AHSS selected for each component was based on the specific designs used in ULSAB-AVC. The steels selected should be considered as useful guidelines for similar components in other automotive designs. The material selected by other automotive manufacturers will be based on a balanced consideration of their specific factors — manufacturability, performance and cost. Based on ULSAB-AVC experience, component design is of paramount importance.

To provide for a deeper appreciation of the rationale for materials selection, the following sections provide an overview of the metallurgical concepts of AHSS and the selection process used in ULSAB-AVC, including the use of forming simulations to assess manufacturing feasibility.

Table 1. Steel Grades selected for the final ULSAB-AVC body structure concept design.

Steel Grade

YS

(MPa)

UTS

(MPa)

Total EL

(%)

n-value1

(5-15%)r-bar

K-value2

(MPa) Flat sheet, as shipped properties

BH 210/34021034034-390.18 1.8582 BH 260/37026037029-340.13 1.6550 DP 280/60028060030-340.21 1.01082 IF 300/42030042029-360.20 1.6759 DP 300/50030050030-340.16 1.0762 HSLA 350/45035045023-270.14 1.1807 DP 350/60035060024-300.14 1.0976 DP 400/70040070019-250.14 1.01028 TRIP 450/80045080026-320.240.91690 DP 500/80050080014-200.14 1.01303 CP 700/80070080010-150.13 1.01380 DP 700/1000700100012-170.090.91521 Mart 950/120095012005-70.070.91678 Mart 1250/1520125015204-60.0650.92021 Straight tubes, as shipped properties

DP 280/60045060027-300.15 1.01100 DP 500/80060080016-220.10 1.01250 Mart 950/1200115012005-70.020.91550 YS and UTS are minimum values, others are typical values

Total EL % - Flat Sheet (A50 or A80), Tubes (A5)

1n-value is calculated in the range of 5 to 15% true strain (if applicable).

2K-value is the magnitude of true stress extrapolated to a true strain of 1.0. It is a material property parameter frequently used by one-step forming simulation codes.

3.0 AHSS Microstructure, Mechanical Behaviour, and Alloy Design

The fundamental metallurgy of conventional low- and high-strength steels is generally well understood by manufacturers and users of steel products. Since the metallurgy and processing of AHSS grades is, however, somewhat novel compared to conventional steels, they will be described briefly to provide a baseline understanding of how their unique mechanical properties evolve from their unique processing and structure.

3.1 Dual Phase (DP) Steels

steels is comprised of soft ferrite and,

depending on strength, between 20 and

70% volume fraction of hard phases,

normally martensite*. Figure 5 displays

the microstructure of a DP ferrite +

martensite steel with 350 MPa yield

strength and 600 MPa. The soft ferrite

phase is generally continuous, giving these

steels excellent ductility. When these

steels deform, however, strain is

concentrated in the lower strength ferrite

phase, creating the unique high work

hardening rate exhibited by these steels.

The work hardening rate along with

excellent elongation combine to give DP

steels much higher ultimate tensile

strength than conventional steels of similar

yield strength. Figure 6 illustrates this,

where the quasi-static stress-strain

behavior of high strength, low alloy (HSLA) steel is compared with that of a DP steel of similar yield strength. The DP steel exhibits higher initial work hardening rate, uniform and total elongation, ultimate tensile strength, and lower YS/TS ratio than the similar yield strength HSLA. DP and other AHSS also have another important benefit compared with conventional steels. The bake hardening effect, which is the increase in yield strength resulting from prestraining (representing the work hardening due to stamping or other manufacturing process) and elevated temperature aging (representing the curing temperature of paint bake ovens) continues to increase with increasing strain. Conventional bake hardening effects, of BH steels for example, remain somewhat constant after prestrains of about 2%. The extent of the bake hardening effect in AHSS depends on the specific chemistry and thermal histories of the steels. DP steels are designed to provide ultimate tensile strengths of up to 1000 MPa.———————————————————————————————————————*In some instances, especially for hot rolled steels requiring enhanced capability to resist stretching on a blanked edge (as typically measured by hole expansion capacity), the

microstructure can also contain significant quantities of bainite.

In DP steels, carbon enables the formation of martensite at practical cooling rates. That is, it increases the hardenability of the steel.Manganese, chromium, molybdenum,vanadium and nickel added individually or in combination also increase hardenability.Carbon also strengthens the martensite as a ferrite solute strengthener, as do silicon and phosphorus. Silicon also strengthens the martensite since it helps to partition carbon to the austenite to increase its hardenability and the strength of the resultant martensite phase.These additions are carefully balanced, not only to produce unique mechanical properties,but also to minimize any difficulties with resistance spot welding, which is, in general good. However, when welding the highest strength grade (DP 700/1000) to itself, the spot weldability may require welding practice adjustments.

3.2 Transformation Induced Plasticity (TRIP) Steels The microstructure of TRIP steels consists of a continuous ferrite matrix containing a dispersion of hard second phases--martensite and/or bainite. These steels also contain retained austenite in volume fractions greater than 5%. A typical TRIP steel microstructure is shown in Figure 7.

During deformation, the dispersion of hard second phases in soft ferrite creates a high work hardening rate, as observed in the DP steels. However, in TRIP steels, the retained austenite also progressively transforms to martensite with increasing strain, thereby increasing the work hardening rate at higher strain levels. This is schematically illustrated in Figure 8, where the stress-strain behavior of HSLA, DP and TRIP steels of approximately similar yield strengths are compared. The TRIP steel has a lower initial work hardening rate than the DP steel, but the hardening rate persists at higher strains where that of the DP begins to diminish.

Actual Microstructure

The work hardening rates of DP and TRIP

conventional HSS, providing DP and

TRIP with significant formability

advantages. This is particularly useful

when designers take advantage of the high

work hardening rate (and increased Bake

Hardening effect) and design to as-formed

mechanical properties. High work

hardening rate persists to higher strains in

TRIP steels, providing a slight advantage

over DP in the most severe stretch forming

applications.

TRIP steels use higher quantities of carbon

and silicon and/or aluminum than DP

steels to lower the martensite finish

temperature to below ambient temperatures to form the retained austenite phase. The strain level at which retained austenite begins to transform to martensite can be designed by adjusting carbon content. At lower carbon levels, the retained austenite begins to transform almost immediately upon deformation, increasing work hardening rate and formability during the stamping process. At higher carbon contents, the retained austenite is more stable and begins to transform only at strain levels beyond those produced during stamping and forming. At these carbon levels the retained austenite persists into the final part. It transforms to martensite during subsequent deformation, such as a crash event, and provides greater crash energy absorption. TRIP steels can therefore be engineered or tailored to provide excellent formability for manufacturing complex AHSS parts or to exhibit high work hardening during crash deformation to provide excellent crash energy absorption. The additional alloying requirements of TRIP steels degrade their resistance spot welding behavior. This can be addressed somewhat by modification of the welding cycles used (for example, pulsating welding or dilution welding).

3.3 Complex Phase (CP) Steels

Complex phase steels typify the transition to steel with very high ultimate tensile strengths. CP steels consist of a very fine microstructure of ferrite and a higher volume fraction of hard phases, that are further strengthened by fine precipitates. They use many of the same alloy elements found in DP and TRIP steels, but additionally have small quantities of niobium, titanium and/or vanadium to form fine strengthening precipitates. Complex phase steels provide ultimate tensile strengths of 800 MPa and greater. Under the conditions of strain and strain rates typically encountered in a crash, this AHSS absorbs greater energy. Complex phase steels are characterized by high deformability, high energy absorption, and high residual deformation capacity. Typical candidate applications for CP steels are those that require high energy absorption capacity in the elastic and low-plastic range, such as bumper and B-Pillar

reinforcements.

3.4 Martensitic (Mart) Steels

In martensitic steels, the austenite that exists during hot rolling or annealing is transformed almost entirely to martensite during quenching on the run-out table or in the cooling section of the annealing line.(This structure can also be developed with post-forming heat treatment) Martensitic steel microstructure largely contains lath martensite as shown in Figure 9.

Martensitic steels provide the highest strengths, up to 1500 MPa ultimate tensile strengths. Martensitic steels are often subjected to post-quench tempering to improve ductility, and can provide remarkable formability even at extremely high strengths.

Carbon is added to martensitic steels to increase hardenability and also to strengthening the martensite. The data of Figure 10 (5) illustrate the relationship between carbon content and 0.2% offset yield strength in untempered martensite.Manganese, silicon, chromium,molybdenum, boron, vanadium, and nickel are also used in various combinations to increase hardenability.3.5

Advanced High Strength Steel Processing

All AHSS are produced by controlling the cooling rate from the austenite or austenite plus ferrite phase, either on the runout table of the hot mill (for hot rolled products) or in the cooling section of the continuous annealing furnace (continuously annealed or hot dip coated products). AHSS cooling patterns and resultant microstructures are schematically illustrated on the continuous cooling-transformation diagram. See in Figure 11.Martensitic steels are produced from the austenite phase by rapid quenching to

Figure 10. Relation between carbon content and

transform most of the austenite to martensite. Dual phase ferrite + martensite steels are produced by controlled cooling from the austenite phase (in hot rolled products) or from the two-phase ferrite + austenite phase (for continuously annealed and hot dip coated products) to transform some austenite to ferrite before rapid cooling to transform the remaining austenite to martensite. TRIP steels typically require the use of an isothermal hold at an intermediate temperature, which produces some bainite. The higher silicon and carbon content of TRIP steels also results in significant volume fractions of retained austenite in the final microstructure. Complex phase steels also follow a similar cooling pattern, but here, the chemistry is adjusted to produce less retained austenite and form fine precipitates to strengthen the martensite and bainite phases.

4.0 Materials Selection Process for ULSAB-AVC

The materials selection process used in ULSAB-AVC was significantly different from that employed in ULSAB. For the ULSAB Program, the design was based on static mechanical properties and utilized commonly available materials, since it was in large measure a validation-of-concepts exercise.

It is well known that steels display positive strain rate dependence. That is, at the higher rates of strain typically associated with, for example, crash events, steels have higher strengths and consequently higher energy absorption. Preliminary studies (see also Appendix III) confirmed that utilization of this phenomenon could assist in lightweighting. Accordingly, it was decided to utilize this experience in the design of the body structure of ULSAB-AVC. In addition, because of the relative new use of AHSS for automotive applications, it was also determined that the engineering experience of the vehicle designers would be supplemented with analytical FEA simulations to assess forming behavior.

Steel members of the ULSAB-AVC Consortium were initially surveyed as to steels currently available, those under development and those anticipated to be available by 2004. These materials were compiled along with their associated high strain rate properties and utilized in the initial C-Class and PNGV-Class body structure concept designs. These initial designs were based on yield strength considerations. In the final concept design, specific grades of AHSS were selected in a manner that best paired their unique mechanical properties with the structural demands of specific ULSAB-AVC components. A detailed description of the considerations used to select AHSS for ULSAB-AVC applications is described in Appendix III.

5.0 Forming Assessment

To assess the forming behavior of the steels selected, one step forming simulations were performed for all major components. The key focus of these analyses was to provide simultaneous engineering assistance to Porsche Engineering Services, Inc. (PES) to:?Assess formability of the part and evaluate possible changes in design

?Facilitate the selection of steels for applications traditionally considered very difficult or impossible to form, based on engineering experience

?Identify alternative steel grades to facilitate down-gauging

?Identify alternatives to expensive materials or processes, such as press-hardened grades.

One-step forming simulation provides a first approximation of forming behavior but does not take into account tooling geometry and boundary conditions. The one-step analyses indicated that the initial concept designs were feasible and provided PES with confidence in the appropriateness of their concept designs; the one-step analyses also identified opportunities for further reductions in mass (through down gauging) and materials costs. The concept design then underwent a series of evolutions to optimize safety or crash performance, stiffness and mass. In some instances, these evolutions resulted in significant modifications of some components and required, for example, the use of tailor welded blanks. To validate the manufacturing feasibility of these changes, selected components were also subjected to forming simulation. Illustrative examples of these forming simulations are collated as Appendix IV.

TTD6-Appendix I -- ULSAB-AVC Body Structure Parts List26May2001

ULSAB-AVC

Advanced Vehicle Concepts

Technical transfer Dispatch #6 (TTD6)

Appendix I - ULSAB-AVC Body Structure Parts List

Yield Strength Tensile Strength C-Class D/E-Class AVC 11008Cowl Front 0.80DP 500800S 4.416 4.416AVC 11015Dash

0.65DP 280600S 4.381 4.381AVC 11045Header Front

0.70IF 300420S 0.6860.686AVC 11064Support Header Front RH 0.70DP 280600S 0.2310.231AVC 11065Support Header Front LH 0.70DP 280600S 0.2310.231AVC 11075Crossmember Back Panel 0.65DP 280600S 0.8320.832AVC 11082Crossmember Kick-Up 0.70DP 7001000S 2.002 2.002AVC 11083Crossmember Tunnel

0.70HSLA 350450S 0.6020.602AVC 11088Bulkhead Crash Box Dash RH 1.20DP 7001000S 2.376 2.376AVC 11089Bulkhead Crash Box Dash LH

1.20DP 7001000S

2.376 2.376AVC 11116Assy Reinf Rail Rear Suspension Attach RH 1.30DP 500800S 0.4550.455AVC 11117Assy Reinf Rail Rear Suspension Attach LH 1.30DP 500800S 0.4550.455AVC 11128Plate Crash Box Rail Front Attach (x2)

3.00DP 7001000S 0.6000.600AVC 11134Crossmember Support Front Seat Front RH 0.70CP 700800S 0.5670.567AVC 11135Crossmember Support Front Seat Front LH 0.70CP 700800S 0.5670.567AVC 11136Closeout Lower Crash Box Dash RH 0.90DP 500800S 1.161 1.161AVC 11137Closeout Lower Crash Box Dash LH 0.90DP 500800S 1.161 1.161AVC 11138Closeout Inner Crash Box Dash RH 0.80DP 400700S 1.072 1.072AVC 11139Closeout Inner Crash Box Dash LH 0.80DP 400700S 1.040 1.040AVC 11146A-Post Inner RH 0.90DP 7001000S 1.152 1.152AVC 11147A-Post Inner LH

0.90DP 7001000S 1.152 1.152AVC 11153Crossmember Rear Suspension 1.00DP 7001000S 2.640 2.640AVC 11168Reinf Rail Rear Spring Attach RH 1.20HSLA 350450S 0.1440.144AVC 11169Reinf Rail Rear Spring Attach LH

1.20HSLA 350450S 0.1440.144AVC 11182Reinf Rail Rear Suspension C-Member RH 1.50HSLA 350450S 0.7650.765AVC 11183Reinf Rail Rear Suspension C-Member LH 1.50HSLA 350450S 0.7650.765AVC 11190Bracket Support Front Seat Rear (x2) 1.20DP 500800S 0.5760.576AVC 11192Reinf Crash Box Dash RH 1.00DP 400700S 1.170 1.170AVC 11193Reinf Crash Box Dash LH 1.00DP 400700S 1.170 1.170AVC 11194Reinf Tunnel

0.70Mart 9501200S 2.394 2.394AVC 11196Closeout Outer Crash Box Dash RH 0.80DP 400700S 2.344 2.344AVC 11197Closeout Outer Crash Box Dash LH 0.80DP 400700S 2.344 2.344AVC 11202Reinf Waist B-Pillar Inner RH 1.50Mart 12501520S 0.8850.885AVC 11203Reinf Waist B-Pillar Inner LH

1.50Mart 12501520S 0.8850.885AVC 11216Bracket Member Body Side Inner Att Rear RH 1.20DP 500800S 0.3960.396AVC 11217Bracket Member Body Side Inner Att Rear LH 1.20DP 500800S 0.3960.396AVC 11224Bracket Crossmember Inst Panel Attach RH 1.20HSLA 350450S 0.1320.132AVC 11225Bracket Crossmember Inst Panel Attach LH 1.20HSLA 350450S 0.1320.132AVC 11226A-Brace Cowl Front 1.00DP 500800S 0.9800.980AVC 11227A-Brace Cowl Rear 1.00DP 500800S 0.8200.820

AVC 21016Floor Front RH 0.65TRIP 450800S 4.219AVC 21017Floor Front LH

0.65TRIP 450800S 4.219AVC 21020Body Side Outer RH

1 1.50DP 7001000S/TWB

3.64520.70BH 2603708.3583 1.80DP 7001000 3.618AVC 21021Body Side Outer LH

1 1.50DP 7001000S/TWB

3.64520.70BH 2603708.4143 1.80DP 7001000 3.618AVC 21036Wheelhouse Inner RH

10.60DP 500800S/TWB

1.3202 1.40DP 70010000.9663 1.10DP 70010000.616AVC 21037Wheelhouse Inner LH

10.60DP 500800S/TWB

1.3202 1.40DP 70010000.9663

1.10DP 70010000.616AVC 21038Wheelhouse Outer RH 0.60DP 280600S 1.074AVC 21039Wheelhouse Outer LH 0.60DP 280600S 1.092AVC 21046Roof 0.65DP 300500HFS 9.464AVC 21049Tunnel

0.65DP 300500S 5.122AVC 21050Member Rail Front RH

1 1.50DP Tube 500800HFT/TWT 1.8452

2 1.30DP Tube 500800 6.331AVC 21051Member Rail Front LH 1 1.50DP Tube 500800HFT/TWT 1.84522 1.30DP Tube 500800 6.331AVC

21069Floor Rear

10.60BH 210340S/TWB

5.83822 1.10DP 350600 2.5192

3 1.10DP 350600 2.2554

0.70

DP

700

1000

1.988

B l a n k N Gage (mm)Material Type Process Code Part Number Name

Yield Strength Tensile Strength C-Class D/E-Class

B l a n k N Gage (mm)Material Type Process Code Part Number Name

AVC 21070Gutter C-Pillar RH 0.65BH 210340S 0.403AVC 21071Gutter C-Pillar LH 0.65BH 210340S 0.403AVC 21072C-Pillar Inner RH 0.65DP 500800S 0.774AVC 21073C-Pillar Inner LH 0.65DP 500800S 0.774AVC 21074Back Panel 0.60DP 300500S 2.532

AVC 21076Rail Rear RH

1 1.80DP 7001000S/TWB 3.1682

2 1.10DP 5008000.737AVC 21077Rail Rear LH

1 1.80DP 7001000S/TWB 3.16822

1.10DP 5008000.737AVC 21080Body Side Inner Rear RH 0.70IF 300420S

2.541AVC 21081Body Side Inner Rear LH 0.70IF 300420S 2.541AVC 21086Rocker Inner RH 1 1.50DP 7001000S/TWB 1.81520.70DP 7001000 2.345AVC 21087Rocker Inner LH 1 1.50DP 7001000S/TWB 1.81520.70DP 7001000 2.345AVC 21115Header Rear

0.65DP 350600S 1.807AVC 21132Member Body Side Inner RH 1.00DP Tube 500800HFT 7.120AVC 21133Member Body Side Inner LH

1.00DP Tube 500800HFT 7.120AVC 21154B-Pillar Inner RH 0.70Mart 9501200S 1.610AVC 21155B-Pillar Inner LH

0.70Mart 9501200S 1.610AVC 21188Rail Rear Outer Floor Extension RH 1.10DP 500800S 0.319AVC 21189Rail Rear Outer Floor Extension LH 1.10DP 500800S 0.319AVC 21214Support Back Panel

0.60DP 300500S 1.020

AVC 21215Extension C-Member Kick-Up (x2) 1.20Mart Tube

9501200ST 0.480AVC 21218Reinf B-Pillar Lower RH 0.70DP 7001000S 0.595AVC 21219Reinf B-Pillar Lower LH

0.70DP 7001000S 0.595AVC 21220

Reinf B-Pillar Rocker Rear RH

1 1.20DP 7001000S/TWB 3.216

2 1.40DP 7001000 2.184AVC 21221Reinf B-Pillar Rocker Rear LH 1 1.20DP 7001000S/TWB 3.2162

1.40DP 7001000

2.184AVC 21228Crossmember Roof

0.70DP 7001000S 0.490AVC 21232Reinf Waist B-Pillar Outer RH 0.80DP 7001000S 0.104AVC 21233Reinf Waist B-Pillar Outer LH 0.80DP 7001000S 0.104

AVC 31016Floor Front RH 0.65TRIP 450800S 4.459AVC 31017Floor Front LH

0.65TRIP 450800S 4.459AVC

3

1036

Wheelhouse Inner RH

10.60DP 500800S/TWB

1.3562 1.40DP 70010000.9663 1.10DP 70010000.660AVC 31037Wheelhouse Inner LH

10.60DP 500800S/TWB

1.3562 1.40DP 70010000.9663

1.10DP 70010000.660AVC 31038Wheelhouse Outer RH 0.60DP 280600S 1.134AVC 31039Wheelhouse Outer LH 0.60DP 280600S 1.146AVC 31049Tunnel

0.65DP 300500S 5.252AVC 31050Member Rail Front RH

1 1.50DP Tube 500800HFT/TWT 1.8453

2 1.30DP Tube 500800 6.604AVC 31051Member Rail Front LH 1 1.50DP Tube 500800HFT/TWT 1.84532 1.30DP Tube 500800 6.604AVC

31069Floor Rear

10.60BH 210340S/TWB

7.9323

2 1.10DP 350600 3.135

3 1.10DP 350600 2.88240.70DP 7001000 2.002AVC 31074Back Panel 0.60DP 300500S 2.172AVC 31076Rail Rear RH 1 1.80DP 7001000S/TWB 3.16832 1.10DP 500800 1.408AVC 31077Rail Rear LH 1 1.80DP 7001000S/TWB 3.16832

1.10DP 500800 1.408AVC 31124Support Header Rear RH 0.70IF 300420S 0.336AVC 31125Support Header Rear LH 0.70IF 300420S 0.336AVC 31126Header Rear 0.70IF 300420S 0.938AVC 31127Roof

0.65DP 300500HFS 8.905AVC 31130Member Body Side Inner RH 1.00DP Tube 500800HFT 7.070AVC 31131Member Body Side Inner LH

1.00DP Tube 500800HFT 7.070AVC 31156Package Tray Upper 0.60DP 280600S

2.316AVC 3

1157

Package Tray Lower

0.60

DP

280

600

S

2.208

Yield

Strength Tensile Strength C-Class

D/E-Class B l a n k N Gage (mm)Material Type

Process Code Part Number Name

AVC 31160Support Package Tray Lower RH 1.20IF 300420S 0.852AVC 31161Support Package Tray Lower LH 1.20IF 300420S 0.852AVC 31162Rocker Inner RH 1 1.50DP 7001000S/TWB 1.81520.70DP

7001000 2.527AVC 31163Rocker Inner LH 1 1.50DP

7001000S/TWB 1.81520.70DP

7001000 2.527AVC

3

1170

Body Side Outer RH 1 1.50DP

7001000S/TWB

3.64520.70BH 2603700.2803 1.80DP 70010009.1084 1.20DP 7001000 2.14850.70BH

260370 5.649AVC 31171

Body Side Outer LH 1 1.50DP

7001000S/TWB

3.64520.70BH 2603700.2803 1.80DP 70010009.1084 1.20DP 7001000 2.14850.70BH

260370 5.712AVC 31172Body Side Inner Rear RH 0.70IF 300420S 2.555AVC 31173Body Side Inner Rear LH 0.70IF 300420S 2.555AVC 31178Gutter Deck Lid RH 0.70BH 260370S 0.385AVC 31179Gutter Deck Lid LH 0.70BH 260370S 0.385AVC 31188Rail Rear Outer Floor Extension RH 1 1.10DP

500800S/TWB 0.913

20.60BH

2103400.378AVC 31189Rail Rear Outer Floor Extension LH 1 1.10DP

500800S/TWB 0.913

20.60BH

2103400.378AVC 31201Crossmember Package Tray 1.00DP Tube 280600ST 2.540AVC 31208B-Pillar Inner RH 0.70Mart 9501200S 1.491AVC 31209B-Pillar Inner LH 0.70Mart 9501200S 1.491AVC 31212Extension C-Member Supt Front Seat Rr (x2) 1.20Mart Tube 9501200ST 0.456AVC 31214Support Back Panel 0.60DP 300500S 1.068AVC 31222Reinf B-Pillar Lower RH 1.00DP 7001000S 1.430AVC 31223Reinf B-Pillar Lower LH 1.00DP 7001000S 1.430AVC 31230Reinf Waist B-Pillar Outer RH 0.80DP 7001000S 0.120AVC 31231Reinf Waist B-Pillar Outer LH 0.80DP 700

1000

S

0.120AVC -1900

Brackets, Reinforcements and Hinges Estimated (not designed)

3.746 5.042 TOTAL

201.776

218.124

Manufacturing Process

Stamped

Stamped / Tailor Welded Blanks Hydroformed Tube

Hydroformed Tube / Tailor Welded Tubes Hydroformed Sheet Roll Formed

Straight or Shaped Tube

Steel Types

Bake Hardenable Carbon Manganese Complex Phase Dual Phase

High Strength, Low Alloy Interstitial-Free Isotropic Steel Martensitic Mild Steel

Press Hardening

Transformation-Induced Plasticity

ST HFT/TWT HFS RF HFT Code S S/TWB TRIP

BH HSLA CMn DP Mild IF IS Code Mart PrHd CP

ULSAB-AVC

Advanced Vehicle Concepts Technical transfer Dispatch #6 (TTD6) Appendix II - ULSAB-AVC Steel Grades Portfolio

ULSAB-AVC Steel Grades Portfolio

Steel Grade

YS

(MPa)

UTS

(MPa)

Total EL

(%)

n-value1

(5-15%)r-bar

K-value2

(MPa) (flat sheet, as shipped properties)

BH 210/34021034034-390.18 1.8582 BH 260/37026037029-340.13 1.6550 DP 280/60028060030-340.21 1.01082

IF 300/42030042029-360.20 1.6759 DP 300/50030050030-340.16 1.0762 HSLA 350/45035045023-270.14 1.1807 DP 350/60035060024-300.14 1.0976 DP 400/70040070019-250.14 1.01028 TRIP 450/80045080026-320.240.91690 DP 500/80050080014-200.14 1.01303 CP 700/80070080010-150.13 1.01380 DP 700/1000700100012-170.090.91521 Mart 950/120095012005-70.070.91678 Mart 1250/1520125015204-60.0650.92021 (straight tubes, as shipped properties)

DP 280/60045060027-300.15 1.01100 DP 500/80060080016-220.10 1.01250 Mart 950/1200115012005-70.020.91550 YS and UTS are minimum values, others are typical values

Total EL % - Flat Sheet (A50 or A80), Tubes (A5)

1n-value is calculated in the range of 5 to 15% true strain (if applicable).

2K-value is the magnitude of true stress extrapolated to a true strain of 1.0. It is a material property parameter frequently used by one-step forming simulation codes.

钢结构设计总说明

钢结构设计总说明 1.工程概况: 1.1项目名称:浙江环球房地产集团有限公司迪荡新城B2地块。 1.2工程地址:浙江省绍兴市;使用功能:空中连廊。 1.3设计范围:钢结构空中连廊。 2.本工程的主要设计依据: 本工程钢结构的设计、制作、安装须依照以下《规范》和《规程》进行。 2.1《建筑结构可靠度设计统一标准》 2.2《建筑结构荷载规范》(GB50009-2001)(2006年版)(GB50068-2001) 2.3《建筑抗震设计规范》(GB50011-2001)(2008年版) 2.4《钢结构设计规范》(GB50017-2003) 2.5《高层民用建筑钢结构技术规程》(JGJ99-98) 2.6《建筑钢结构焊接技术规程》(JGJ81-2002) 2.7《钢结构高强度螺栓连接的设计,施工及验收规程》(JGJ82-91) 2.8《涂装前钢材表面锈蚀等级和除锈等级》(GB8923-88) 2.9《建筑设计防火规范》(GB50016-2006) 2.10《钢结构防火涂料应用技术规范》(CECS24) 2.11 2.12《钢结构工程施工质量验收规范》(GB50205-2001) 2.13《圆柱头焊钉》(GB10433-89) 以上各规程、规范、标准、在以下条款中简称《规范》和《规程》。 2.14委托方提供的其它设计资料。 2.15设计荷载标准值: (1)基本风压:0.45kN/m (2)基本雪压:0.45kN/m (3)屋面恒载:8.00kN/m (4)屋面活载:1.00kN/m (5)楼面恒载:5.00kN/m (6)楼面活载:3.50kN/m 2.16 设计标高、尺寸 (1)本工程室内标高%%p0.000相当于地戡报告指定标高现场定,室内外高差为0.450米。 (2)本工程的所注尺寸单位为毫米,建筑标高尺寸单位为米。 3.设计总的要求: 3.1本工程所用材料(包括钢材、焊接材料、高强度螺栓等),应完全符合现行规范、规程及标准的要求。 3.2钢材: (1)本工程使用的钢材要求如下: 所有主钢梁及构件材质均采用Q345GJ-D级钢,支撑等次构件采用Q345GJ-D级钢。其质量应符合现行国家标准《碳素结构钢》GB/T700的规定。

钢结构英文翻译对照

Steel structure 面积:area 结构形式:framework 坡度:slope 跨度:span 柱距:bay spacing 檐高:eave height 屋面板:roof system 墙面板:wall system 梁底净高: clean height 屋面系统: roof cladding 招标文件: tender doc 建筑结构结构可靠度设计统一标准: unified standard for designing of architecture construction reliablity 建筑结构荷载设计规范: load design standard for architecture construction 建筑抗震设计规范: anti-seismic design standard for architecture 钢结构设计规范: steel structure design standard 冷弯薄壁型钢结构技术规范: technical standard for cold bend and thick steel structure 门式钢架轻型房屋钢结构技术规范: technical specification for steel structure of light weight building with gabled frames 钢结构焊接规程: welding specification for steel structure 钢结构工程施工及验收规范: checking standard for constructing and checking of steel structure 压型金属板设计施工规程: design and construction specification for steel panel 荷载条件:load condition 屋面活荷载:live load on roof 屋面悬挂荷载:suspended load in roof 风荷载:wind load 雪荷载:snow load 抗震等级:seismic load 变形控制:deflect control 柱间支撑X撑:X bracing 主结构:primary structure 钢架梁柱、端墙柱: frame beam, frame column, and end-wall column 钢材牌号为Q345或相当牌号,大型钢厂出品:Q345 or equivalent, from the major steel mill 表面处理:抛丸除锈Sa2.5级,环氧富锌漆,两底两面,总厚度为125UM。表面喷涂防火材料,防火等级为:柱2小时,梁1.5小时 surface treatment: shot blasting to Sa2.5,zinc rich epoxy paint. 2primer paint and 2 finish paint .total dry film thickness 125um. Spraying fireproof painting on surface, for column 2hours and beam 1.5hours. 次结构包括:屋面檩条、围梁、门窗开口加强等,工厂轧制成C型、Z型截面,工厂预冲孔。Secondary structure included purlins, girts, roof opening and wall opening reinforcement, prepunched and rolled to C or Z section on factory machine. 材质:热浸镀锌卷材,Q345或相当牌号,大型钢厂出品或进口。Material : hot-dipped galvanized steel coil, Q345 or equivalent, from the major domestic steel mills or imported.

钢结构设计说明精

钢结构设计说明 一、工程概况 (1结构体系:下部为混凝土框架结构体系,上部固定屋面为钢结构悬挑桁架结构体系。 (2支撑形式:悬梁桁架结构支撑于下部混凝土结构柱和外圈落地钢结构内外柱上。 二、结构设计依据 (一结构设计施工遵循的规范,规程及规定 (1建筑结构可靠设计统一标准GB50068-2001 (2 建筑结构荷载规范GB50009-2001(2006年版 (3抗震设防分类标准GB50223-2008 (4建筑抗震设计规范GB50011-2001(2008年版 (5钢结构设计规范GB50107-2003 (6建筑钢结构焊接技术规程JGJ81-2002 (7混凝土结构设计规范GB50010-2002 (8冷弯薄壁型钢结构技术规范GB50018-2002 (9高层民用建筑钢结构技术规程JGJ99-98 (10建筑地基基础设计规范JGJ5007-2002 JGJ61-2003 网壳结构技术规程(11. (12网架结构设计与施工规程JGJ7-91 (13钢结构高强度螺栓连接的设计施工及验收规程JGJ82-2002 (14建筑钢结构防火设计规范CECS200:2006 (15建筑桩基技术规范JGJ94-2008 (16建筑地基处理技术规范JGJ79-2002 (17建筑基坑支护技术规程JGJ120-99 (18建筑基桩检测技术规范JGJ106-2003,J256-2003 (19钢结构工程施工质量验收规范GB50205-2001 (20优质碳素钢结构GB/T699-1999 (21碳素钢结构GB/T700-88 (22低合金高强度结构钢GB/T1591-94 (23碳钢焊条GB/T5117-95 (24低合金高强度结构钢GB/T5118-95 (25埋弧焊用碳钢焊丝和焊剂GB/T5293-1999 (26低合金钢埋弧焊用焊剂GB/T12740 (27熔化焊用焊丝GB/T14957-94 (28气体保护电弧焊用碳钢,低合金钢焊丝GB/T8110-95 (29六角头螺栓GB/T5782 GB/T5782 级-C六角头螺栓(30. (31钢结构用高强度大六角螺栓螺母垫圈技术要求GB/T1228-1231 (32涂装前钢材表面锈蚀等级和涂装GB8932 (33钢结构防火涂料应用技术规程CECS:24-90

车用钢板的知识普及

车用钢板的知识普及 钢板, 知识 汽车车身外壳绝大部分是金属材料,主要用钢板。现代汽车的钢板用什么方式防锈?为什 么有些轿车声称车身防锈蚀年限达10年以上? 镀锌薄钢板广泛应用在汽车上,这是因为它有良好的抗腐蚀能力。早年人们在试验中发现,将铁和锌放人盐水中,二者无任何导线联结时,铁和锌都会生锈,铁生红锈,锌生“白锈”;若在二者间用导线联结起来,则铁不会生锈而锌生“白锈”,这样锌就保护了铁,这种现象叫牺牲阳极保护。工程师正是将这种现象运用到实际生产中,生产了镀锌钢板。经研究,在镀锌量350克/平方米(单面)时,镀锌钢板在屋外的寿命(生红锈),田园地带约为15一18年,工业地带大约3一5年,这比普通钢板长几倍甚至十几倍。 从20世纪70年代开始轿车车身钢板采用镀锌薄钢板,装配时镀锌面置于汽车内侧,提高车身耐蚀性能,非镀锌面置于汽车外侧,喷涂油漆。随着汽车对耐腐蚀性能的要求不断提高,镀锌钢板不断增加镀锌层重量,还出现了双层镀锌钢板。但由于增加镀锌重量也会使电镀锌的电能消耗大幅增加,导致材料成本的上升,因此20世纪70年代末又出现一种采用热浸镀锌工艺生产的镀锌钢板,称为热镀锌钢板。这种镀锌钢板用连续热镀锌工艺:冷轧板(注*)→加热→冷却至镀锌温度→镀锌→冷却→矫直。为了满足汽车对镀锌钢板的各种要求,一些生产厂家在镀锌生产线上对镀锌钢板进行扩散退火等特殊处理,以使钢板表面形成一种“锌-铁”合金镀层,其特点是涂漆后的焊接性和耐腐蚀性比纯锌镀层板要好。以后还出现了诸如“锌-铝-硅”、“锌-铝-铼”等合金化热镀锌钢板,使得热镀锌钢板的耐腐蚀性成倍提高,与油漆间 的结合性能长期稳定。 目前轿车已经广泛使用镀锌钢板,采用的镀锌钢板厚度从0.5至3.0毫米,其中车身复盖件多用0.6至0.8毫米的镀锌钢板。德国奥迪轿车的车身部件绝大部分采用镀锌钢板(部分用铝合金板),美国别克轿车采用的钢板80%以上是双面热镀锌钢板,上海帕萨特车身的外复盖件采用电镀锌工艺,内复盖件内部采用热镀锌工艺,可以使车身防锈蚀保质期长达11年。 材料是影响汽车质量的重要因素。在现代汽车中,车身材料占全车材料的很大部分。为了提高汽车行驶的经济性,减轻汽车重量是世界各大车厂的目标,近年来汽车上越来越多使用了铝或塑料等非钢铁材料做车身部件,例如奥迪A2全铝制车身,日产SUV“奇骏”用塑料做前翼子板,更多的乘用车保险杠用塑料制成。在日益广泛使用非钢铁材料做车身部件的形势下,高度依赖汽车制造业的钢铁企业将面临直接的威胁。因此,研制和发展轻质、高强度的汽车钢板 成为多年来钢铁企业的一个热点。

汽车配件管理2013 二 汽车常见易损件和常用材料

单元二汽车常见易损件和常用材料 学习目标 完成本单元学习后,你应能: 1.掌握汽车发动机、底盘、电气设备和车身的易损件。 2.了解车用燃料的种类与质量要求。 3.了解车用汽油、车用轻柴油、发动机润滑油的作用与质量要求。 4.了解车辆齿轮油和润滑脂的作用与质量要求。 5.了解汽车制动液的作用与质量要求。 6.了解发动机冷却液的作用与质量要求。 建议学时:6学时 一、汽车常见易损件 1.发动机易损件 1)汽缸体(图2-1) 汽缸体除汽缸正常磨损可进行镗磨加大尺寸予以修理外,在冬季因缸体未放尽积水被冻裂,运行中因气缸缺少冷切冷却水被过热膨胀裂缝漏水,以及在行车事故中被碰撞损坏和孔径数次镗削扩大至极限。有一定的消耗量,属于正常应备品种,数量应视地区销售情况而定。 图2-1 汽缸体 2)汽缸套 汽缸套常见故障有缸孔自然磨损、外径压配不当漏水(湿式缸套)、缸壁因敲缸损伤,或在突发

情况下如连杆螺栓松脱被连杆击穿等,必备品,耗量较大,应有一定的备量。 3)汽缸盖(图2-2) 除未发现的制造缺陷如隐藏裂纹、排气门座压配松弛等引起的漏水现象外,主要是使用不当和自然疲劳损坏。常备品,应有一定的备量。 图2-2 汽缸盖 4)汽缸盖衬垫(图2-3) 常见故障有缸盖紧固螺栓或螺栓拧紧力失准或松弛,制造上的缺陷,漏水造成热化学腐蚀等,结果封闭汽缸孔边缘部位烧蚀泄漏、水孔边缘部分热腐蚀缺损使封闭失效。一次性使用配件,消耗量很大,通常有作为随车主要维修备用品,应有较多库存备量。

图2-3 汽缸盖衬垫 5)活塞 活塞的常见故障有自然磨损,在发动机过热时会造成部分铝合金属熔蚀发生拉缸或咬死,磨损后配合间隙过大、积碳早燃时会击伤、裂缝等。主要易损件,消耗量大、规格多,是营销必备品种。 6)活塞环(图2-4) 常见故障有因活塞拉缸被折断,自然磨损,弹性衰减等。主要易损件,消耗量大、规格多,是营销必备品种。 图2-4 活塞环 7)活塞销 常见故障有外径自然磨损,在特殊工况下或制造上未检出的隐藏裂缝造成的折断。主要易损件,消耗量大、规格多,是营销必备品种。 8)活塞销衬套 常见故障有自然磨损,因缺油高热烧损及压配合间隙过大引起衬套走外圆等。主要易损件,消耗量大、规格多,是营销必备品种。 9)连杆(图2-5) 受力矩杆体扭曲、大头小头孔座因轴孔磨损或断油造成的过度磨损松旷、螺栓孔螺纹损坏等。虽属易耗件,但相对销量较少,应有一定备品以应需要。

钢结构术语中英文对照

钢结构术语中英文对照 强度strength 承载能力load-carrying capacity 脆断brittle fracture 强度标准值characteristic value of strength 强度设计值design value of strength 一阶弹性分析first order elastic analysis 阶弹性分析second order elastic analysis 屈曲buckling 腹板屈曲后强度post-buckling strength of web plate 通用高厚normalizde web slenderness 整体稳定overall stability 有效宽度effective width 有效宽度系数effective width factor 长细比slenderness ratio 换算长细比equivalent slenderness ratio 支撑力nodal bracing force 无支撑纯框架unbraced frame 强支撑框架frame braced with strong bracing system 弱支撑框架frame braced with weak bracing system 摇摆柱leaning column 柱腹板节点域panel zone of column web 球形钢支座spherical steel bearing 橡胶支座couposite rubber and steel support 主管chord member 支管bracing member 隙节点gap joint 搭接节点overlap joint 平面管节点uniplanar joint 空间管节点multiplanar joint 组合构件built-up member 钢与混凝土组合梁composite steel and concrete beam A acceptable quality 合格质量 acceptance lot 验收批量 aciera 钢材 against slip coefficient between frictionsurface of high-strength bolted connection 高强度螺栓摩擦面抗滑移系数 allowable ratio of height to sectionalthickness of masonry wall or column 砌体墙、柱容许高厚比 allowable slenderness ratio of steel member 钢构件容许长细比

汽车车身涂装的常用的材料

常用涂装材料 涂料的基本知识 涂料可分为两大类;有机涂料和无机涂料。有机涂料,广泛用于金属、木材、塑料等材料表面的保护和装饰;无机涂料主要用于在土建领域。汽车涂装用涂料为有机涂料。 一、涂料的组成与作用 1、涂料的组成 油料(桐油亚麻油等植物油类) 树脂(天然树脂、虫胶等) 涂料由五大类组成颜料(钛白、氧化锌、氧化铁红、黄黑等) 溶剂(稀释剂) 辅助、材料(添料、固化剂流平剂催干剂等)油料树脂是涂料组成中的基础,是主要成膜物质常称为固着剂或粘接剂。 能够把颜料等其它成膜物质粘接起来形成涂料起到保护表面和装饰的作用。涂料中没有这两大部分,就不能形成牢固的涂膜,而涂料的许多特性,主要取决于这两大性能,颜料使涂料有一定的着色能力,呈现一定的颜色,增加涂层厚度和遮盖力,起到调色装饰和标志作用是涂料中的次要成膜物质。 溶剂包括助溶剂、稀释剂两种,溶剂能溶解并稀释涂料中的成膜物质,改善涂层厚度性能。稀释剂的主要作用是用来调整涂料的粘度,以利于形成均匀光滑的涂层。

辅助材料在涂料中的作用是辅助成膜物质改善涂料的性能和成膜后的质量;增塑剂用来提高涂层的韧性(增加涂料与塑料的粘合力)。(中间起了一个两面胶相似的意思)。防潮剂用来防止因施工环境温度太大时引起涂层泛白等问题。 2、涂料的结构组分 按涂料的组成和结构类型不同,可将涂料区分为溶剂型涂料,光固化涂料等。涂料的组成不同就构成了不同的涂料品种,常用的有各种性质的清漆,色漆、腻子等。 ①清漆:涂料组分中没有加入颜料和体质颜料而呈清澈透明的胶质液体涂料。 ②色漆:涂料组分中加有颜料的不透明涂料。 3、涂料的作用 涂料是一种成膜物质,涂料是国民经济中一种不可缺少的重要材料 ①保护作用 涂料作用②装饰作用 ③特殊作用 ①保护作用:物体表面被涂后,涂料可使物面(车身表面金属层)与空气、水分、日光、以及有害气体和微生物等隔离,因而可以保护物面防止腐饰和老化,延长使用寿命。 ②装饰作用:不同的民族和不同地区的人们,对颜色有着不同的喜好,涂料中的颜料,能够赋予物体表面各种不同的色彩,从而使物体与环境的色彩协调。给人以不同的质量感觉。

钢结构设计说明

泉厦高速公路晋江收费站出入口 页脚内容 钢结构设计说明 一、 工程概况: 1. 本工程为景德镇瓷器市场钢结构工程。长度44.0m ,跨度36.3.0m ,柱高:3-6m ,柱横距:6.05m ,柱纵距:7.33m,建筑面积:1600.0平方米,总钢结构建筑面积3200平方米。以实际发生量面积为准。 2. 本图中所注尺寸除标高以米为单位外,其余均为毫米为单位,±0.000标高是以室内地面标高为绝对标高。 3. 本工程结构形式:主体采用轻钢结构。柱为H 型钢350*175*7*11,楼架主架为H 型钢400*200*8*13,副架为H 型钢250*125*6*9 4. 楼面:楼面为0.6mm 厚750型楼层板。檩条采用H 型钢,材质:Q235B 。 5. 屋面柁为H 型钢200*100*5.5*8;檩条采用C 型钢120*50*20*2。彩钢板为玻璃丝棉板。 6. 结构合理使用年限20年。 7. 图中未尽事宜,由建设方、设计方协商解决。 二、 结构设计说明: 设计依据的技术规范与规程; 1、《建筑结构荷载规范》 (GB50009-2012) 2、《钢结构设计规范》 (GBJ50017-2003) 3、《冷弯薄壁型钢结构技术规范》 (GBJ18-2002) 4、《钢结构工程施工质量验收规范》 (GB50205-2001) 5、《建筑地基基础设计规范》 (GB50007-2011) 6、《碳钢焊条》 (GB/T5117-95) 7、《涂装前钢材表面锈蚀等级和除锈等级》 (GB8923.1-2011) 8、《建筑防腐蚀工程施工及验收规范》 (GB50212-2002) 三、设计荷载标准值 1、恒载:结构自重(包括屋面板、檩条、保温层及钢架自重)。 2、活载:计算楼面钢架2KN/㎡计算,计算屋面钢架0.32KN/㎡计算,檩条:0.5KN/㎡。 3、雪载:0.20KN/㎡ 4、风载:基本风压0.55KN/㎡ 四、结构材料 1、本钢结构工程采用H 型钢组焊而成,均采用Q235-B.钢,其化学成分和力学性能应符合《碳素结构钢技术条件》(GB700-88)标准中的有关规定。 2、檩条及其次要构件均采用Q235钢,其材料性能应符合《碳素结构钢技术条件》(GB700-88)标准中的有关规定。 五、钢结构的制作: 1、H 型钢焊接时,应按图放样制作。采用工装夹具控制屋架几何尺寸,减少焊接变形。 2. H 型钢组焊三肢格式人字型钢屋架上、下弦五,对接接头,以增强其焊接强度,以保证接头强度足够。 3、C 型钢檩条与檩托的连接,采用焊接连接。 4、除H 型钢对接焊缝为二级焊缝外,其余焊缝均为三级焊缝。施工单位制作钢件时,应选择合理的焊接工艺,避免焊缝产生气孔,夹渣、裂纹、焊不透、飞溅、咬边等焊接缺陷。 六、钢结构防锈处理, 1、对结构用主构件进行人工除锈,除锈等级达St2级的要求。 2、涂装:底漆为灰防锈油漆两道,干漆膜厚度达到规定之要求。

钢结构英文单词

工程用语 1、 Steel material 钢材 parent metal母材 plank板材 planking铺板 backfilling plate 、padding plate垫板 connecting plate连接板 fringe plate翼缘板 gusset plate节点板 ten let样板 web plate腹板 intermediate stiffener中间加劲肋 edge stiffener边缘加劲肋 longitudinal stiffener纵向加劲肋 steel column base钢柱脚 steel pipe、steel tube钢管 steel support钢支座 steel strip钢带 steel section型钢 steel plate element钢板件 steel plate钢板 steel wire钢丝 stiffener加劲肋 allowable slenderness ratio of steel member 钢构件容许长细比2、 hot-rolled section steel热轧型钢 angle steel 角钢 channel槽钢 flat bar扁钢 shaped steel型钢 steel column钢柱 seamless steel tube无缝钢管 profiled steel sheet压型钢板 purling檩条 Steel beam 梁 box girder 箱形梁 cantilever beam 挑梁 continuous beam连续梁 simply supported beam简支梁 girder主梁

钢结构设计说明

钢结构设计说明 一、工程概况: 1.本工程为景德镇瓷器市场钢结构工程。长度44.0m,跨度36.3.0m,柱高:3-6m,柱横距:6.05m, 柱纵距:7.33m,建筑面积:1600.0平方米,总钢结构建筑面积3200平方米。以实际发生量面积为准。 2.本图中所注尺寸除标高以米为单位外,其余均为毫米为单位,±0.000标高是以室内地面标高为 绝对标高。 3.本工程结构形式:主体采用轻钢结构。柱为H型钢350*175*7*11,楼架主架为H型钢 400*200*8*13,副架为H型钢250*125*6*9 4.楼面:楼面为0.6mm厚750型楼层板。檩条采用H型钢,材质:Q235B。 5.屋面柁为H型钢200*100*5.5*8;檩条采用C型钢120*50*20*2。彩钢板为玻璃丝棉板。 6.结构合理使用年限20年。 7.图中未尽事宜,由建设方、设计方协商解决。 二、结构设计说明: 设计依据的技术规范与规程; 1、《建筑结构荷载规范》(GB50009-2012) 2、《钢结构设计规范》(GBJ50017-2003) 3、《冷弯薄壁型钢结构技术规范》(GBJ18-2002) 4、《钢结构工程施工质量验收规范》(GB50205-2001) 5、《建筑地基基础设计规范》(GB50007-2011) 6、《碳钢焊条》(GB/T5117-95) 7、《涂装前钢材表面锈蚀等级和除锈等级》(GB8923.1-2011) 8、《建筑防腐蚀工程施工及验收规范》(GB50212-2002) 三、设计荷载标准值 1、恒载:结构自重(包括屋面板、檩条、保温层及钢架自重)。 2、活载:计算楼面钢架2KN/㎡计算,计算屋面钢架0.32KN/㎡计算,檩条:0.5KN/㎡。 3、雪载:0.20KN/㎡ 4、风载:基本风压0.55KN/㎡ 四、结构材料 1、本钢结构工程采用H型钢组焊而成,均采用Q235-B.钢,其化学成分和力学性能应符合《碳素结构钢技术条件》(GB700-88)标准中的有关规定。 2、檩条及其次要构件均采用Q235钢,其材料性能应符合《碳素结构钢技术条件》(GB700-88)标准中的有关规定。 五、钢结构的制作: 1、H型钢焊接时,应按图放样制作。采用工装夹具控制屋架几何尺寸,减少焊接变形。 2.H型钢组焊三肢格式人字型钢屋架上、下弦五,对接接头,以增强其焊接强度,以保证接头强度足够。 3、C型钢檩条与檩托的连接,采用焊接连接。 4、除H型钢对接焊缝为二级焊缝外,其余焊缝均为三级焊缝。施工单位制作钢件时,应选择合理的焊接工艺,避免焊缝产生气孔,夹渣、裂纹、焊不透、飞溅、咬边等焊接缺陷。 六、钢结构防锈处理, 1、对结构用主构件进行人工除锈,除锈等级达St2级的要求。 2、涂装:底漆为灰防锈油漆两道,干漆膜厚度达到规定之要求。

钢结构专业术语英文简称与中文对照

University beam (UB)----通用梁(工字梁) University columns (UC)----通用柱 Rolled steel angles (RSA)----角钢 RSC----C型钢(槽钢) Rectangular hollow sections (RHS)----矩形中空型钢 Square hollow sections (SHS)-----正方形中空型钢 Circular hollow sections (CHS)----圆形中空型钢 High strength friction GRIP (HSFG)----高强度摩擦紧固螺栓 Tension control (TC)----拉力控制 All flux -----合金焊剂 All-weld-metal test specimen------全焊缝金属试件(完全由焊缝金属组成的缩短断面试件) Automatic welding-----自动焊接 Back gouging-----清根 Backing----衬垫 base metal----母材 Bevel angle----破口面角度 Box tubing-----箱型管 Butt joint ---- 对接接头 Butt weld ---- 对接焊缝 Cap pass ---- 盖面焊道 Complete penetration ---- 完全熔透

Corner joint ---- 角接接头 contract documents ---- 合同文件 contractor ---- 承包商 contractor’s Inspector ---- 承包商检验员 ESW (electroslag welding) ---- 电渣焊 FCA W(flux cored arc welding) ---- 药芯焊丝电弧焊

汽车车身钢板的规格及选用

汽车车身钢板的规格及选用 汽车车身外壳绝大部分是金属材料,主要用钢板。现代汽车的钢板用什么方式防锈?为什么有些轿车声称车身防锈蚀年限达10年以上? 镀锌薄钢板广泛应用在汽车上,这是因为它有良好的抗腐蚀能力。早年人们在试验中发现,将铁和锌放人盐水中,二者无任何导线联结时,铁和锌都会生锈,铁生红锈,锌生“白锈”;若在二者间用导线联结起来,则铁不会生锈而锌生“白锈”,这样锌就保护了铁,这种现象叫牺牲阳极保护。工程师正是将这种现象运用到实际生产中,生产了镀锌钢板。经研究,在镀锌量350克/平方米(单面)时,镀锌钢板在屋外的寿命(生红锈),田园地带约为15一18年,工业地带大约3一5年,这比普通钢板长几倍甚至十几倍。 从20世纪70年代开始轿车车身钢板采用镀锌薄钢板,装配时镀锌面置于汽车内侧,提高车身耐蚀性能,非镀锌面置于汽车外侧,喷涂油漆。随着汽车对耐腐蚀性能的要求不断提高,镀锌钢板不断增加镀锌层重量,还出现了双层镀锌钢板。但由于增加镀锌重量也会使电镀锌的电能消耗大幅增加,导致材料成本的上升,因此20世纪70年代末又出现一种采用热浸镀锌工艺生产的镀锌钢板,称为热镀锌钢板。这种镀锌钢板用连续热镀锌工艺:冷轧板(注*)→加热→冷却至镀锌温度→镀锌→冷却→矫直。为了满足汽车对镀锌钢板的各种要求,一些生产厂家在镀锌生产线上对镀锌钢板进行扩散退火等特殊处理,以使钢板表面形成一种“锌-铁”合金镀层,其特点是涂漆后的焊接性和耐腐蚀性比纯锌镀层板要好。以后还出现了诸如“锌-铝-硅”、“锌-铝-铼”等合金化热镀锌钢板,使得热镀锌钢板的耐腐蚀性成倍提高,与油漆间的结合性能长期稳定。 目前轿车已经广泛使用镀锌钢板,采用的镀锌钢板厚度从0.5至3.0毫米,其中车身复盖件多用0.6至0.8毫米的镀锌钢板。德国奥迪轿车的车身部件绝大部分采用镀锌钢板(部分用铝合金板),美国别克轿车采用的钢板80%以上是双面热镀锌钢板,上海帕萨特车身的外复盖件采用电镀锌工艺,内复盖件内部采用热镀锌工艺,可以使车身防锈蚀保质期长达11年。 材料是影响汽车质量的重要因素。在现代汽车中,车身材料占全车材料的很大部分。为了提高汽车行驶的经济性,减轻汽车重量是世界各大车厂的目标,近年来汽车上越来越多使用了铝或塑料等非钢铁材料做车身部件,例如奥迪A2全铝制车身,日产SUV“奇骏”用塑料做前翼子板,更多的乘用车保险杠用塑料制成。在日益广泛使用非钢铁材料做车身部件的形势下,高度依赖汽车制造业的钢铁企业将面临直接的威胁。因此,研制和发展轻质、高强度的汽车钢板成为多年来钢铁企业的一个热点。 目前汽车生产中,使用得最多的是普通低碳钢板。低碳钢板具有很好的塑性加工性能,强度和刚度也能满足汽车车身的要求,同时能满足车身拼焊的要求,因此在汽车车身上应用很广。为了满足汽车制造业追求轻量化的要求,钢铁企业推出高强度汽车钢材系列钢板。这种高强度钢板是在低碳钢板的基础上采用强化方法得到的,抗拉强度得到大幅增强。利用高强度特性,可以在厚度减薄的情况下依然保持汽车车身的机械性能要求,从而减轻了汽车重量。例如BH钢板是在低强度的条件下,经过冲压成形之后,进行烤漆加工热处理,以提高其抗拉强度。对比之下,以往生产的强度在440MPa的钢板,在采用这种加工技术以后强度可增加到500MPa。原来用厚度1毫米钢板做侧面板,用高强度钢板只需厚度0.8毫米。采用高强度钢板还可以有效地提高汽车车身的抗冲击性能,防止在行驶中由于路面的砂石飞溅碰撞产生凹痕,延长了汽车的使用寿命。

钢结构中英文(个人整理版)

钢结构中英文对照 从施工规范及相关文件资料整理Leo-QQ-778468076 材料 钢板steel plate 钢管steel plate 垫板padding plate 垫块backfilling 地脚螺栓anchor bolt 预埋螺栓embedded bolt 螺母nut 垫圈washer 铆钉rivet 螺丝钉screw 高强螺栓high-strength bolt 大六角头高强螺栓big hexagonal high-strength bolt 型钢section steel,shaped steel 自攻螺钉tapping screw 波形屋面瓦wave roof tile 钢丝网steel-wire mesh 防腐材料anticorrosive material 防火涂料fireproof paint 防锈漆anticorrosive paint 底漆primer 面漆nominated painting 构件 零件part 部件component 构件element 钢柱steel column 钢柱脚steel column base 钢支座steel support 实腹式钢柱solid-web steel column 带牛腿钢柱the steel column with bracket 主梁main beam 次梁secondary beam 檩条purlin 吊车梁crane girder 系杆tie beam 系梁tie beam 屋架roof truss 坡口groove

屋盖roof system 屋面板roof board,roof slab,roof plate 天窗架skylight truss 拱形屋架arch-shaped roof truss 三角形屋架triangle roof truss 梯形屋架trapezoid roof truss 中拼单位intermediate assembled structure 空间刚度单元space rigid unit 环境温度ambient temperature 预拼装test assembling 连接connection 螺栓连接钢构bolted steel structure 摩擦型高强螺栓连接high-strength bolted friction-type connection 不焊透对接焊接partial penetrated butt weld 焊透对接焊接penetrated butt weld 焊钉(栓钉)焊接stud welding 数据及单位 抗震设计earthquake-resistant design 层高storey height 净高net height 计算长度effective length 计算高度effective height 计算跨度effective span 净跨net span 净重net weight 吨ton 千克kilogram 面积area 立方的cubic 平方(正方形的,矩形的)square 容积capacity 米meter 厘米centimeter 毫米millimeter 微米micrometer 工具及机械 焊机welding machine 自动焊机automatic welding machine 自动埋弧焊机submerged arc automatic welding machine 手动电弧焊机manual arc welding machine

(汽车行业)汽车车身新材料的应用及发展方向

(汽车行业)汽车车身新材料的应用及发展方向

汽车车身新材料的应用及发展趋势 现代汽车车身除满足强度和使用寿命的要求外,仍应满足性能、外观、安全、价格、环保、节能等方面的需要。在上世纪八十年代,轿车的整车质量中,钢铁占80%,铝占3%,树脂为4%。自1978年世界爆发石油危机以来,作为轻量化材料的高强度钢板、表面处理钢板逐年上升,有色金属材料总体有所增加,其中,铝的增加明显;非金属材料也逐步增长,近年来开发的高性能工程塑料,不仅替代了普通塑料,而且品种繁多,在汽车上的应用范围广泛。本文着重介绍国内外在新型材料应用方面的情况及发展趋势。 高强度钢板 从前的高强度钢板,拉延强度虽高于低碳钢板,但延伸率只有后者的50%,故只适用于形状简单、延伸深度不大的零件。当下的高强度钢板是在低碳钢内加入适当的微量元素,经各种处理轧制而成,其抗拉强度高达420N/mm2,是普通低碳钢板的2~3倍,深拉延性能极好,可轧制成很薄的钢板,是车身轻量化的重要材料。到2000年,其用量已上升到50%左右。中国奇瑞汽车X公司和宝钢合作,2001年在试制样车上使用的高强度钢用量为262kg,占车身钢板用量的46%,对减重和改进车身性能起到了良好的作用。低合金高强度钢板的品种主要有含磷冷轧钢板、烘烤硬化冷轧钢板、冷轧双相钢板和高强度1F冷轧钢板等,车身设计师可根据板制零件受力情况和形状复杂程度来选择钢板品种。含磷高强度冷轧钢板:含磷高强度冷轧钢板主要用于轿车外板、车门、顶盖和行李箱盖升板,也可用于载货汽车驾驶室的冲压件。主要特点为:具有较高强度,比普通冷轧钢板高15%~25%;良好的强度和塑性平衡,即随着强度的增加,伸长率和应变硬化指数下降甚微;具有良好的耐腐蚀性,比普通冷轧钢板提高20%;具有良好的点焊性能;烘烤硬化冷轧钢板:经过冲压、拉延变形及烤漆高温时效处理,屈服强度得以提高。这种简称为BH钢板的烘烤硬化钢板既薄又有足够的强度,是车身外板轻量化设计首选材料之壹;冷轧双向钢板:具有连续屈服、屈强比低和加工硬化高、兼备高强度及高塑性的特点,如经烤漆后其强度可进壹步提高。适用于形状复杂且要求强度高的车身零件。主要用于要求拉伸性能好的承力零部件,如车门加强板、保险杠等;超低碳高强度冷轧钢板:在超低碳钢(C≤0.005%)中加入适量的钛或铌,以保证钢板的深冲性能,再添加适量的磷以提高钢板的强度。实现了深冲性和高强度的结合,特别适用于壹些形状复杂而强度要求高的冲压零件。 轻量化迭层钢板 迭层钢板是在俩层超薄钢板之间压入塑料的复合材料,表层钢板厚度为0.2~0.3mm,塑料层的厚度占总厚度的25%~65%。和具有同样刚度的单层钢板相比,质量只有57%。隔热防振性能良好,主要用于发动机罩、行李箱盖、车身底板等部件。铝合金 和汽车钢板相比,铝合金具有密度小(2.7g/cm3)、比强度高、耐锈蚀、热稳定性好、易成形、可回收再生等优点,技术成熟。德国大众X公司的新型奥迪A2型轿车,由于采用了全铝车身骨架和外板结构,使其总质量减少了135kg,比传统钢材料车身减轻了43%,使平均油耗降至每百公里3升的水平。全新奥迪A8通过使用性能更好的大型铝铸件和液压成型部件,车身零件数量从50个减至29个,车身框架完全闭合。这种结构不仅使车身的扭转刚度提高了60%,仍比同类车型的钢制车身车重减少50%。由于所有的铝合金都能够回收再生利用,深受环保人士的欢迎。根据车身结构设计的需要,采用激光束压合成型工艺,将不同厚度的铝板或者用铝板和钢板复合成型,再在表面涂覆防具有良好的耐腐蚀性。 镁合金 镁的密度为1.8g/cm3,仅为钢材密度的35%,铝材密度的66%。此外它的比强度、比刚度高,阻尼性、导热性好,电磁屏蔽能力强,尺寸稳定性好,因此在航空工业和汽车工业中得到了广泛的应用。镁的储藏量十分丰富,镁可从石棉、白云石、滑石中提取,特别是海水的

钢架结构建筑设计总说明

5.方茴说:“那时候我们不说爱,爱是多么遥远、多么沉重的字眼啊。我们只说喜欢,就算喜欢也是偷偷摸摸的。” 6.方茴说:“我觉得之所以说相见不如怀念,是因为相见只能让人在现实面前无奈地哀悼伤痛,而怀念却可以把已经注定的谎言变成童话。” 7.在村头有一截巨大的雷击木,直径十几米,此时主干上唯一的柳条已经在朝霞中掩去了莹光,变得普普通通了。 8.这些孩子都很活泼与好动,即便吃饭时也都不太老实,不少人抱着陶碗从自家出来,凑到了一起。 9.石村周围草木丰茂,猛兽众多,可守着大山,村人的食物相对来说却算不上丰盛,只是一些粗麦饼、野果以及孩子们碗中少量的肉食。 钢架结构建筑设计总说明 一、工程概况 (根据实际情况写) 二、设计依据 1、国家、广西现行的有关法规、规范、通则及规定。 《民用建筑设计通则》(GB50350-2005) 《建筑设计防火规范》(GB50016-2006) 《办公建筑设计规范》(JGJ67-89) 《汽车库建筑设计规范》(JGJ100-98) 《汽车库、修车库、停车场设计防火规范》(GB5067-97) 《建筑内部装修设计防火规范》(GB50222-95) 建筑部《建筑工程设计文件编制深度的规定》 《建筑抗震设计规范》(GB50011-2001)2008年版 2、主管部门批复的总平方案以及对本工程方案文本的批复的审批意见。 3、甲方提供的有关资料及设计要求、场地的地质报告及有关技术资料、文字说明。 1.“噢,居然有土龙肉,给我一块!” 2.老人们都笑了,自巨石上起身。而那些身材健壮如虎的成年人则是一阵笑骂,数落着自己的孩子,拎着骨棒与阔剑也快步向自家中走去。

钢结构术语和符号(中英文对照)

钢结构术语和符号(中英文对照) 一、术语 1、强度:构件截面材料或连接抵抗破坏的能力。强度计算是防止结构构件或连接因材料强度被超过而破坏的计算。 2、承载能力:结构或构件不会因强度、稳定或疲劳等因素破坏所能承受的最大内力;或塑性分析形成破坏机构时的最大内力;或达到不适应于继续承载的变形时的内力。 3、脆断:一般指钢结构在拉应力状态下没有出现警示性的塑性变形而突然发生的脆性断裂。 4、强度标准值:国家标准规定的钢材屈服点(屈服强度)或抗拉强度。 5、强度设计值:钢材或连接的强度标准值除以相应抗力分项系数后的数值。 6、一阶弹性分析:不考虑结构二阶变形对内力产生的影响,根据未变形的结构建立平衡条件,按弹性阶段分析结构内力及位移。

7、二阶弹性分析:考虑结构二阶变形对内力产生的影响,根据位移后的结构建立平衡条件,按弹性阶段分析结构内力及位移。 8、屈曲:杆件或板件在轴心压力、弯矩、剪力单独或共同作用下突然发生与原受力状态不符的较大变形而失去稳定。 9、腹板屈曲后强度:腹板屈曲后尚能继续保持承受荷载的能力。 10、通用高厚比:参数,其值等于钢材受弯、受剪或受压屈服强度除以相应的腹板抗弯、抗剪或局部承压弹性屈曲应力之商的平方根。 11、整体稳定:在外荷载作用下,对整个结构或构件能否发生屈曲或 失稳的评估。 12、有效宽度:在进行截面强度和稳定性计算时宽度。假定板件有效的那 13、有效宽度系数:板件有效宽度与板件实际宽度的比值。 14、计算长度:构件在其有效约束点间的几何长度乘以考虑杆端变形情况和所受荷载情况的系数而得的等

效长度,用以计算构件的长细比。计算焊缝连接强度时采用的焊缝长度。 15、长细比:构件计算长度与构件截面回转半径的比值。 16、换算长细比:在轴心受压构件的整体稳定计算中,按临界力相等的原则,将格构式构件换算为实腹构件进行计算时所对应的长细比或将弯扭与扭转失稳换算为弯曲失稳时采用的长细比。 17、支撑力:为减小受压构件(或构件的受压翼缘)的自由长度所设置的侧向支承处,在被支撑构件(或构件受压翼缘)的屈曲方向,所需施加于该构件(或构件受压冀缘)截面剪心的侧向力。 18、无支撑纯框架:依靠构件及节点连接的抗弯能力,抵抗侧向荷载的框架。 19、强支撑框架:在支撑框架中,支撑结构(支撑桁架、剪力墙、电梯井等)抗侧移刚度较大,可将该框架视为无侧移的框架。 20、弱支撑框架:在支撑框架中,支撑结构抗侧移刚度较弱,不能将该框架视为无侧移的框架。

(汽车行业)汽车车身涂装的常用的材料

(汽车行业)汽车车身涂装的常用的材料

常用涂装材料 涂料的基本知识 涂料可分为俩大类;有机涂料和无机涂料。有机涂料,广泛用于金属、木材、塑料等材料表面的保护和装饰;无机涂料主要用于在土建领域。汽车涂装用涂料为有机涂料。 壹、涂料的组成和作用 1、涂料的组成 油料(桐油亚麻油等植物油类) 树脂(天然树脂、虫胶等) 涂料由五大类组成颜料(钛白、氧化锌、氧化铁红、黄黑等) 溶剂(稀释剂) 辅助、材料(添料、固化剂流平剂催干剂等) 油料树脂是涂料组成中的基础,是主要成膜物质常称为固着剂或粘接剂。 能够把颜料等其它成膜物质粘接起来形成涂料起到保护表面和装饰的作用。涂料中没有这俩大部分,就不能形成牢固的涂膜,而涂料的许多特性,主要取决于这俩大性能,颜料使涂料有壹定的着色能力,呈现壹定的颜色,增加涂层厚度和遮盖力,起到调色装饰和标志作用是涂料中的次要成膜物质。 溶剂包括助溶剂、稀释剂俩种,溶剂能溶解且稀释涂料中的成膜物质,改善涂层厚度性能。稀释剂的主要作用是用来调整涂料的粘度,以利于形成均匀光滑的涂层。 辅助材料在涂料中的作用是辅助成膜物质改善涂料的性能和成膜后的质量;增塑剂用来提高涂层的韧性(增加涂料和塑料的粘合力)。(中间起了壹个俩面胶相似的意思)。防潮剂用来防止因施工环境温度太大时引起涂层泛白等问题。 2、涂料的结构组分 按涂料的组成和结构类型不同,可将涂料区分为溶剂型涂料,光固化涂料等。涂料的组成不同就构成了不同的涂料品种,常用的有各种性质的清漆,色漆、腻子等。 ①清漆:涂料组分中没有加入颜料和体质颜料而呈清澈透明的胶质液体涂料。 ②色漆:涂料组分中加有颜料的不透明涂料。 3、涂料的作用 涂料是壹种成膜物质,涂料是国民经济中壹种不可缺少的重要材料 ①保护作用 涂料作用②装饰作用 ③特殊作用 ①保护作用:物体表面被涂后,涂料可使物面(车身表面金属层)和空气、水分、日光、以及有害气体和微生物等隔离,因而能够保护物面防止腐饰和老化,延长使用寿命。 ②装饰作用:不同的民族和不同地区的人们,对颜色有着不同的喜好,涂料中的颜料,能够赋予物体表面各种不同的色彩,从而使物体和环境的色彩协调。给人以不同的质量感觉。 ③特殊作用:各种不同颜色的涂料,给人们心里带来不同的感觉,能够用这些色代表不同的示意。如不同颜色的图案被用来示出各种交通标志。(举例说壹下红、绿灯方面的知识)。提醒驾驶员遵守有关交通规则。 涂料的分类 1、涂料分类 国外的涂料产品都是根据各国的具体情况进行分类的,没有统壹的国际标准,所以不同的国家使用不同品种的涂料,应首先理解其涂料产品的类别,否则会导致图装质量事故。(举例各种涂料的使用方法和性质问题) 2、涂料命名

相关文档
最新文档