初中数学一题多变一题多解(一)

初中数学一题多变一题多解(一)
初中数学一题多变一题多解(一)

“一题多变”(一)

一、“一题多变”的作用:

在平时的数学教学过程中实施一题多变的训练,可以提高学生学习数学的积极性,增强学习数学的兴趣:

1、新课中,实施一题多变,以简单题入手由浅入深,可使大部分学生对当堂课内容产生兴趣。

2、习题课中,把较难题改成多变题目,让学生找到突破口,对难题也产生兴趣。

3、学生自己能够将题目中的问题或某一条件改变,对知识进行重组,自己将题目中的问题或某一条件进行改变,对已学知识进行重组,探索出新知识,解决新问题。不就题论题,能多思多变。

在完成一个数学题的解答时,有必要对该题的内容、形式、条件、结论,做进一步的探讨,以真正掌握该题所反映的问题的实质。如果能对一个普通的数学题进行一题多变,从变中总结解题方法;从变中发现解题规律,从变中发现“不变”,必将使人受益匪浅。

二、“一题多变”的常用方法有:

1、变换命题的条件与结论;

2、变换题型;

3、深化条件,保留结论;

4、减弱条件,加强结论;

5、探讨命题的推广;

6、考查命题的特例;

7、生根伸枝,图形变换;

8、接力赛,一变再变等等。

三、一题多变,挖掘习题涵量:

1、变换命题的条件与结论

即通过对习题的条件或结论进行变换,而对同一个问题从多个角

度来研究。这种训练可以增强学生解题的应变能力,培养思维的广阔

性和深刻性,从而培养创新思维的品质。

例1、如图,在梯形ABCD中,AB∥CD,BC=AB+CD,E是AD

中点。求证:∠BEC=90°.

变换1:如图,在梯形ABCD中,AB∥CD,BC=AB+CD,E是AD

中点。求证:CE⊥BE.

变换2:如图,在梯形ABCD中,AB∥CD,CE⊥BE., E是AD中点.求证:BC=AB+CD.变换3:如图,在梯形ABCD中,AB∥CD,BC=AB+CD, CE⊥BE.判断E是AD中点吗?为什么?

变换4:如图,在梯形ABCD中,AB∥CD,BC=AB+CD,CE⊥BE.求证:AE=ED.

2、变换题型

即将原题重新包装成新的题型,改变单调的习题模式,从而训练学生解各种题型的综合能力,培养学生思维的适应性和灵活性,有助于学生创新思维品质的养成。

例2:如图,已知△ADE中,∠DAE=120°,B、C

分别是DE上两点,且△ABC是等边三角形,求证:BC2

= BD·CE。

分析:本题为证明题,具有探索性,可引导学生从结

论出发找到需证明△ABD∽△ECA,从而使问题变得容易

解决。

变换一:改为填空题,如图,已知△ADE中,

∠DAE=120°,B、C分别是DE上两点,且△ABC是等边三角形,则线段BC、BD、CE 满足的数量关系是。

本题表面上虽是对原题的简单形式变换,但实质上有探究的思想,即需要将BC分别代换为AB、AC,从而归结为找△ABD与△ECA的关系问题。

变换二:改为选择题,如图,已知△ADE中,∠DAE=120°,B、C分别是DE上两点,且△ABC是等边三角形,则下列关系式错误的是()

A.∠ADB= ∠EAC B.AD2 = DE·BD

C.BC2 = BD·CE D.AE2 = DE·BD

本题名为选择题,实为要探究得出图中共有三对相似三角形,从而得知A、B、C选项均正确,选D。

变换三:改为计算题, 如图,已知△ADE中,∠DAE=120°,B、C分别是DE上两点,且△ABC是边长为4的等边三角形,且BD=2,求CE的长。

仍然要探究出线段BC、BD、CE满足的数量关系,从而转化为知二求一的问题。

变换四:改为开放题,如图,已知△ADE中,∠DAE=120°,B、C分别是DE上两点,且△ABC是等边三角形, 则图中有哪些线段是另外两条线段的比例中项?

结论的开放,给学生更多的思考空间,锻炼了学生开放型思维的能力。

由上述四种题型的变换,把同样的数学思想方法渗透到不同的题型中,既锻炼了学生适应不同题型的能力,又加深了对数学思想方法的理解运用,既激活了学生的思维,又活跃了课堂气氛,看似浪费了时间,实质触及到思维的灵魂,收到了事半功倍的效果。

3、深化条件,保留结论

在平时的习题教学中,如果我们灵活地改变题目的条件,巧妙地把一个题目化成一组要求不同或难度不断变化的题组,不仅可以使学生易于掌握应用之要领,也可使学生能从前一个较简单问题的解答中领悟到解决后一个较复杂问题的途径。从而达到举一反三的目的。例如,根据下列条件,求二次函数的解析式:

①、已知抛物线经过(1,3),(-1,4),(0,4)三点;

②、已知抛物线经过顶点(2,4),且过原点;

③、已知抛物线经过(6,0)点,且x=4时,有最小值8;

④、把抛物线y=2x2-4x-5向左又向上各平移3个单位;

⑤、已知y=ax2+bx+c,当x=1和x=2时都有y=5,且y的最大值是14;

(思考方法、解略)

4、接力赛,一变再变

①、(32-1)×(32+1)= 。

②、(32-1)×(32+1)×(34+1)×(38+1)×……×(364+1)= 。

③、3×(32+1)×(34+1)×(38+1)×……×(364+1)= 。

④、(32+1)×(34+1)×(38+1)×……×(364+1)= 。

⑤、(32+1)×(34+1)×(38+1)×……×(364+1)+9= 。

通过一题多变培养学生寻找共性,克服困难的信心,将知识网路化、系统化。

初中数学一题多解与一题多变详解

初中数学一题多解与一题多变 时代在变迁,教育在进步,理念在更新。前两年提出考试要改革,有了《指导意见》,于是一批批探索性、开放性和应用性试题不断涌现;如今又提出课程要改革,有了《课程标准》,其中突出了学生自主探索的学习过程,强调应用数学和创新能力的培养,鼓励教师创造性教学,学生学会学习。 面临这种崭新的教育形势,我们会思考这样一些问题:教学要如何从静态转为动态?怎样有效地指导学生独立地分析问题、解决问题,形成有效的学习策略,提高效益?该如何引导和组织学生从事观察、实验、猜想、验证、推理与交流等数学活动,激发学生的学习兴趣和创新意识,培养创新能力?等等。我个人在实际教学过程中,对这些问题作过一些深思和一些尝试,其中比较突出的是引导学生进行一题多解和一题多变的训练。下面,我提出几个实例来分析其引导过程与方法,抛砖引玉,仅供参考。 一、一题多解,多解归一 对于"一题多解",我是从两个方面来认识和解释的:其一,同一个问题,用不同的方法和途径来解决;其二,同一个问题,其结论是多元的,即结论开放性问题。一题多解,有利于沟通各知识的内涵和外延,深化知识,培养发散性和创造性思维;多解归一,有利于提炼分析问题和解决问题的通性、通法,从中择优,培养聚合思维。 例1:如图,已知D 、E 在BC 上,AB=AC ,AD=AE , 求证:BD=CE. E D C B A

(本题来自《几何》第2册69页例3) 思路与解法一:从△ABC和△ADE是等腰三角形这一角度出发,利用"等腰三角形底边上的三线合一"这一重要性质,便得三种证法,即过点A作底边上的高,或底边上的中线或顶角的平分线。其通法是"等腰三角形底边上的三线合一",证得BH=CH. 思路与解法二:从证线段相等常用三角形全等这一角度出发,本题可设法证△ABD≌△ACE或证△ABE≌△ACD,于是又得两种证法,而证这两对三角形全等又都可用AAS、ASA、SAS进行证明,所以实际是六种证法。其通性是"全等三角形对应边相等"。 思路与解法三:从等腰三角形的轴对称性这一角度出发,于是用叠合法可证。 例2:已知,如图,在⊙O中,AD是直径,BC是弦,AD⊥BC,E 添加字母,不写推理过程) D 思路与解法一:从相等的线段这一角度出发,可得如下结论: 1.OA=OD; 2.BE=CE; 3.AB=AC; 4.BD=CD.

例谈高中数学一题多解和一题多变的意义

例谈高中数学一题多解和一题多变的意义 杨水长 摘 要:高中数学教学中,用一题多解和一题多变的形式,可以使所学的知识得到活化,融会贯通,而且可以开阔思路,培养学生的发散思维和创新思维能力,从而达到提高学生的学习兴趣,学好数学的效果。 关键词:一题多变 一题多解 创新思维 数学效果 很大部分的高中生对数学的印象就是枯燥、乏味、不好学、没兴趣.但由于高考“指挥棒”的作用,又只能硬着头皮学.如何才能学好数学?俗话说“熟能生巧”,很 多人认为要学好数学就是要多做.固然,多做题目可以 使学生提高成绩,但长期如此,恐怕也会使学生觉得数学越来越枯燥。 我觉得要使学生学好数学,首先要提高学生的学 习兴趣和数学思维能力。根据高考数学“源于课本, 高于课本”的命题原则,教师在教学或复习过程中可 以利用书本上的例题和习题,进行对比、联想,采取 一题多解与一题多变的形式进行教学.这是提高学生数学学习兴趣和思维能力的有效途径。下面举例说明: 例题: 已知tanα=4 3 ,求sinα,cosα的值 分析:因为题中有sinα、cosα、tanα,考虑他们之间的关系,最容易想到的是用同角三角函数关系式和方程解此题: 法一 根据同角三角函数关系式tanα= 4 3= α αcos sin , 且sina2α + cos2α =1。 两式联立,得出:cos2α=2516,cosα= 5 4 或者 cosα= -54 ;而sinα=53或者sinα=-53 。 分析:上面解方程组较难且繁琐,充分利用用同角三角函数关系式“1”的代换,不解方程组,直接求解就简洁些: 法二 tanα=4 3 :α在第一、三象限 在第一象限时: cos2α = ααcos sin cos 2 2 2 5+=αtan 2 11+=2516 cosα=5 4 sinα=αcos 21-=5 3 而在第三象限时: cosa=- 5 4 sina=- 53 分析:利用比例的性质和同角三角函数关系式,解此题更妙: 法三 tanα= 43= αα cos sin ?4cos α= 3sin α ?4cos α= 3sin α= ± 3 4cos sin 2 2 2 2 ++α α ∴sinα=53,cosα= 54 或sinα=-53,cosα=-54 分析: 上面从代数法角度解此题,如果单独考虑sinα、cosα、tanα,可用定义来解此题。初中时,三角函数定义是从直角三角形引入的,因此我们可以尝试几何法来解之: 法四 当α为锐角时,由于tana=4 3,在直角△ABC 中,设α=A,a=3x,b=4x ,则勾股定理,得,c=5x sinA=AB BC = 53 ,cosA=AB AC =5 4

初中数学十大常见解题方法

初中数学十大常见解题方法 1、配方法:所谓配方,就是把一个解析式利用恒等变形的方法,把其中的某些项配成一个或几个多项式正整数次幂的和形式。通过配方解决数学问题的方法叫配方法。其中,用的最多的是配成完全平方式。配方法是数学中一种重要的恒等变形的方法,它的应用非常广泛,在因式分解、化简根式、解方程、证明等式和不等式、求函数的极值和解析式等方面都经常用到它。 2、因式分解法:因式分解,就是把一个多项式化成几个整式乘积的形式。因式分解是恒等变形的基础,它作为数学的一个有力工具、一种数学方法在代数、几何、三角函数等的解题中起着重要的作用。因式分解的方法有许多,除中学课本上介绍的提取公因式法、公式法、分组分解法、十字相乘法等外,还有如利用拆项添项、求根分解、换元、待定系数等等。 3、换元法:换元法是数学中一个非常重要而且应用十分广泛的解题方法。我们通常把未知数或变数称为元,所谓换元法,就是在一个比较复杂的数学式子中,用新的变元去代替原式的一个部分或改造原来的式子,使它简化,使问题易于解决。 4、判别式法与韦达定理:一元二次方程ax2+bx+c=0(a、b、c∈R,a≠0)根的判别式△=b2-4ac,不仅用来判定根的性质,

而且作为一种解题方法,在代数式变形,解方程(组),解不等式,研究函数乃至解析几何、三角函数运算中都有非常广泛的应用。 韦达定理除了已知一元二次方程的一个根,求另一根;已知两个数的和与积,求这两个数等简单应用外,还可以求根的对称函数,计论二次方程根的符号,解对称方程组,以及解一些有关二次曲线的问题等,都有非常广泛的应用。 5、待定系数法:在解数学问题时,若先判断所求的结果具有某种确定的形式,其中含有某些待定的系数,而后根据题设条件列出关于待定系数的等式,最后解出这些待定系数的值或找到这些待定系数间的某种关系,从而解答数学问题,这种解题方法称为待定系数法。它是中学数学中常用的重要方法之一。 6、构造法:在解题时,我们常常会采用这样的方法,通过对条件和结论的分析,构造辅助元素,它可以是一个图形、一个方程(组)、一个等式、一个函数、一个等价命题等,架起一座连接条件和结论的桥梁,从而使问题得以解决,这种解题的数学方法,我们称为构造法。运用构造法解题,可以使代数、三角、几何等各种数学知识互相渗透,有利于问题的解决。 7、反证法:反证法是一种间接证法,它是先提出一个与命题的结论相反的假设,然后,从这个假设出发,经过正确的

小学数学一题多解与一题多变

小学数学一题多解与一题多变B 摘要:在本文里,一题多用特指渗透于同一数学问题里的不同的数学思想;而一题多变则是指对同类数学问题的不同问法与解答的归纳,并进而构建数学模型。在小学数学教学过程中,教师可结合教学内容和学生的实际情况,采取多种形式的训练,培养学生思维的敏捷性和灵活性,以达到诱导学生思维发散,培养发散思维能力的目的。 关键词:数学,一题多解,一题多变,创造性,创设思维 思维的广阔性是发散思维的又一特征。思维的狭窄性表现在只知其一,不知其二,稍有变化,就不知所云。反复进行一题多解、一题多变的训练,是帮助学生克服思维狭窄性的有效办法。可通过讨论,启迪学生的思维,开拓解题思路,在此基础上让学生通过多次训练,既增长了知识,又培养了思维能力。教师在教学过程中,不能只重视计算结果,要针对教学的重难点,精心设计有层次、有坡度,要求明确、题型多变的练习题。要让学生通过训练不断探索解题的捷径,使思维的广阔性得到不断发展。要通过多次的渐进式的拓展训练,使学生进入广阔思维的佳境。 一、一题多解,有利于加强学生的思维训练 一题多解,指对同一数学问题的结论可以由多种途径获得。就是启发和引导学生从不同角度、不同思路,运用不同的方法和不同的运算过程,解答同一道数学问题,它属于解题的策略问题。上这种课的主要目的有三条:一是为了充分调动学生思维的积极性,提高他们综合运用已学知识解答数学问题的技能技巧;二是为了锻炼学生思维的灵活性,促进他们长知识、长智慧;三是为了开阔学生的思路,引导学生灵活地掌握知识的纵横联系,培养和发挥学生的创造性。 心理学研究表明,在解决问题的过程中,如果主体所接触到的不是标准的模

初中数学说题

初中数学教师基本功比赛一等奖说题稿 中考数学压轴题历来是初三师生关注的焦点,它一般有动态问题、开放性题型、探索性题型、存在性题型等类型,涉及到代数、几何多个知识点,囊括初中重要的数学思想和方法。对于考生而言,中考压轴题是一根标尺,可以比较准确的衡量学生综合解题能力以及数学素养,同时它的得失,可以直接影响到学生今后的发展。下面我就2012年德州市数学中考第23题第2问进行讲评。 中考题 如图所示,现有一张边长为4的正方形纸片ABCD ,点P 为正方形AD 边上的一点(不与点A 、点D 重合)将正方形纸片折叠,使 点B 落在P 处,点C 落在G 处,PG 交DC 于H ,折痕为EF ,连接BP 、BH . (1)求证:∠APB =∠BPH ; (2)当点P 在AD 边上移动时,△PDH 的周长是否发生变化?并证明你 的结论; (3)设AP 为x ,四边形EFGP 的面积为S ,求出S 与x 的函数关系式,试问S 是否存在最小值?若存在,求出这个最小值;若不存在,请说明理由. 1.审题分析 本题涉及的知识点有:折叠问题;勾股定理;全等三角形的判定与性质;相似三角形的判定与性质;正方形的性质。本题通过翻折将全等变换,相似构造,勾股定理运用,融进正方形,不失一道好的压轴题,很值得推敲。由于此图形是正方形,因此里面隐含着很多直角,这是学生所不注意的地方,也正是解决问题的突破口和切入点。题目的难点是学生无法将分散的条件集中到有效的图形上进行解决,总有“老虎吃天无从下口”的感觉。用好直角三角形和构造直角三角形是解决此题的关键。由于此题综合性较强,条件较分散,对学生分析问题的能力要求较高,因此难度较大,难度系数是0.19。 2.解题过程 同一个问题,从不同的角度探究与分析,可有不同的解法。一题多解,有利于沟通各知识的联系,培养学生思维的发散性和创造性。 思路与解法一:从线段AD 上有三个直角这一条件出发,运用“一线三角两相似”这一规律(见课件),可将条件集中到△EAP 与△PDH 上,通过勾股定理、相似三角形的判定与性质来解决。 解法如下: P H G F E D C B A 图1

高三数学《一题多解 一题多变》试题及详解答案

高三《一题多解 一题多变》题目 一题多解 一题多变(一) 原题:482++=x mx x f )( 的定义域为R ,求m 的取值范围 解:由题意0482≥++x mx 在R 上恒成立 0>∴m 且Δ0≤,得4≥m 变1:4823++=x mx x f log )(的定义域为R ,求m 的取值范围 解:由题意0482>++x mx 在R 上恒成立 0>∴m 且Δ0<,得4>m 变2:)(log )(4823++=x mx x f 的值域为R ,求m 的取值范围 解:令=t 482++x mx ,则要求t 能取到所有大于0的实数, ∴ 当0=m 时,t 能取到所有大于0的实数 当0≠m 时,0>m 且Δ0≥4≤0?m < 40≤≤∴m 变3:182 23++=x n x mx x f log )(的定义域为R,值域为[]20,,求m,n 的值 解:由题意,令[]911 82 2,∈+++=x n x mx y ,得0-8--2=+n y x x m y )( m y ≠时,Δ0≥016-)(-2≤++?mn y n m y - ∴ 1和9时0162=++-)(-mn y n m y 的两个根 ∴ 5==n m ∴ 当m y =时,08 ==m n x - R x ∈ ,也符合题意 ∴5==n m 一 题 多 解- 解不等式523<<3-x 解法一:根据绝对值的定义,进行分类讨论求解

(1)当03-≥x 2时,不等式可化为53-<x x x x ?-3-或且 综上:解集为}{0x 1-<<<<或43x x 解法三:利用等价命题法 原不等式等价于 -33-2x 5-53-<<<<或x 23,即0x 1-<<<<或43x 解集为}{0x 1-<<<<或43x x 解法四:利用绝对值的集合意义 原不等式可化为 2 5 23<<23-x ,不等式的几何意义时数轴上的点23到x 的距离大于 23,且小于2 5 ,由图得, 解集为} {0x 1-<<<<或43x x 一题多解 一题多变(二) 已知n s 是等比数列的前n 想项和,963s s s ,,成等差数列,求证: 852a a a ,,成等差数列 法一:用公式q q a s n n 一一111)(=,

初中数学典型错题分析报告

初中数学解答错典型例题分析与反思 杨青春 众所周知,初中学生的心理正从依赖向独立过度,因此这正是培养学生自信心和自我调节能力的时机。在新课程教学的要求下,数学教学变得更加强调学生的自主学习和自主探究。因此,在这个过程中,出现认知上的偏差也是正常的。作为教师,就应该深刻认识到这个时期的学生的心理特征以及从提高学生数学素质的根本点出发,对学生出现的错题进行深刻分析和反思。相信这样的一个分析和反思,是可以成为学生以后学习的积极动力的。在下面的文章中,将具体从初中一些数学典型错题进行分析与反思。 (一)解答错典型题——几何证明题 初中数学涉及到几何证明的问题。对于几何,很多学生都会感到比较困扰。因此,在初中几何数学的教学中,教师应该针对学生的特点,找出适合学生的教学方法。 【典型解答错例题】在△ABC中,D是BC边上的一点,E是AD的中点,过A点作BC的平行线交CE的延长线于点F,且AF=BD,连接BF;如图所示: (1)求证BD=CD; (2)AB=AC,试判断四边形AFBD的形状。 【错解】(1)证明:∵AF//BC ∴∠AFE=∠DCE 又∵∠AFE=∠CED ∵E是AD的中点

∴AE=DE ∴△AEF≌△CED ∴AF=CD 又∵AF=BD ∴BD=CD (2)四边形AFBD是平行四边形 证明:∵AF//BC即AF//BD 又∵AF=BD ∴四边形AFBD是平行四边形 【错误原因】题目主要考查的是几何图形边相等的证明以及判断图形形状。错解的答案中(2)的结论是错误的。从边平行和对应边相等推出图形是平行四边形是正确的,可是题目中还给出了△ABC中,D是BC边上的一点,还给出如果AB=AC这一条件,学生在完成这一题时忽视了给的如果这一已知条件,考虑和分析问题不全面。 【正解】四边形AFBD是矩形 证明:∵AF//BC即AF//BD 又∵AF=BD ∴四边形AFBD是平行四边形 又∵AB=AC ∴△ABC是等腰三角形 又∵BD=CD即D是BC的中点 ∴AD是BC边上的高

中考数学专题训练---一题多变

中考数学专题训练-------一题多变 1、已知如图:在四边形ABCD 中,E 、F 、G 、H 分别是AB 、BC 、CD 、DA 边上的中点,求证:四边形EFGH 是平行四边形。 分析:欲证四边形EFGH 是平行四边形,根据条件需从边上着手分析,由E 、F 、G 、H 分别是各边上的中点,可联想到三角形的中位线定理,连结AC 后,EF 和GH 的关系就明确了,此题也便得证。(证明略) 变式1:顺次连结矩形四边中点所得的四边形是菱形。 变式2:顺次连结菱形四边中点所得的四边形是矩形。 变式3:顺次连结正方形四边中点所得的四边形是正方形。 变式4:顺次连结等腰梯形四边中点所得的四边形是菱形。 变式5:若AC =BD ,AC ⊥BD ,则四边形EFGH 是正方形。 变式6:在四边形ABCD 中,若AB =CD ,E 、F 、G 、H 分别为AD 、BC 、BD 、AC 的中点,求证:EFGH 是菱形。 娈式6图 娈式7图 变式7:如图:在四边形ABCD 中,E 为边AB 上的一点,△ADE 和△BCE 都是等边三角形,P 、Q 、M 、N 分别是AB 、BC 、CD 、DA 边上的中点,求证:四边形PQMN 是菱形。 2、在正方形ABCD 的CD 边上取一点G ,在CG 上向原正方形外作正方形GCEF , 求证:DE ⊥BG ,DE=BG 。 变式:如图,ABCD 、CEFG 是正方形,E 在CD 上,直线BE 、DG 交于H ,且HE ·HB =4-BD 、AH 交于M ,当E 在线段CD (不与C 、D 重合)上运动时,下列四个结论:① BE ⊥GD ;② AH 、GD 所夹的锐角为45°;③ ;④ 若BE 平分∠DBC ,则正方形ABCD 的面积为4。其中正确的结论个数有(D ) A. 1个 B. 2个 C. 3个 D. 4个 由①对,知∠BHD=90,由∠BAD=90知:A 、B 、H 、D 四点共圆,∴∠AHD=∠ABD=45.∴②对。 由△DBE ∽△DAM ∴AM BE AD BD AM BE 22=∴==∵DG=BE ∴AM DG 2=∴③对。 由BE 平分∠DBC 知:∠HDE=∠DBH ,∴△HDE ∽△HBD ∴2242-=?=HB HE DH .∴DH=2816212-=∴DG DG ()CG BC CG BC BG BD DG CG DC =-∴+===+12222 , 例2图

初中数学一题多变、一题多解

C B A S 2 S 3 S 1 C B A S 3 S 2 S 1 S 3 S 2S 1 C B A 一题多解、一题多变 原题条件或结论的变化 所谓条件或结论的变化,就是对某一问题的条件或结论进行变化探讨,并针对问题的内涵与外延进行深入与拓展,从而得到一类变式题组。通过对问题的分析解决,使我们掌握某类问题的题型结构,深入认识问题的本质,提高解题能力。 例1 求证:顺次连接平行四边形各边中点所得的四边形是平行四边形。 变式1 求证:顺次连接矩形各边中点所得的四边形是菱形。 变式2 求证:顺次连接菱形各边中点所得的四边形是矩形。 变式3 求证:顺次连接正方形各边中点所得的四边形是正方形。 变式4 顺次连接什么四边形各边中点可以得到平行四边形? 变式5 顺次连接什么四边形各边中点可以得到矩形? 变式6 顺次连接什么四边形各边中点可以得到菱形? …… 通过这样一系列变式训练,使学生充分掌握了四边形这一章节所有基础知识和基本概念,强化沟通了常见特殊四边形的性质定理、判定定理、三角形中位线定理等,极大地拓展了学生的解题思路,活跃了思维,激发了兴趣。 一、几何图形形状的变化 如图1,分别以Rt ABC 的三边为边向外作三个正方形,其面积分别为321S S S 、、,则 321S S S 、、之间的关系是 图1 图2 图3

E S 3 S 2 S 1 D C B A S 3S 2 S 1 A B C D A B C D S 3S 2 S 1 变式1:如图2,如果以Rt ?ABC 的三边为直径向外作三个半圆,其面积分别为321S S S 、、,则321S S S 、、之间的关系是 变式2:如图3,如果以Rt ?ABC 的三边为边向外作三个正三角形,其面积分别为 321S S S 、、,则321S S S 、、之间的关系是 变式3:如果以Rt ?ABC 的三边为边向外作三个一般三角形,其面积分别为321S S S 、、,为使321S S S 、、之间仍具有上述这种关系,所作三角形应满足什么条件?证明你的结论。 ,2,90,//,44321321S S S S S S BC AB DA AB DC BCD ADC DC AB ABCD 、、,则、、,其面积分别为为边向梯形外作正方形、、分别以且中,梯形:如图变式=?=∠+∠之间的关系是 图4 图5 图6 ,2,90,//,55321321S S S S S S BC AB DA AB DC BCD ADC DC AB ABCD 、、,则、、形,其面积分别为为边向梯形外作正三角、、分别以 且中,梯形:如图变式=?=∠+∠之间的关系是 ,2,90,//,66321321S S S S S S BC AB DA AB DC BCD ADC DC AB ABCD 、、,则、、,其面积分别为为直径向梯形外作半圆、、分别以且中,梯形:如图变式=?=∠+∠之间的关系是 上述题组设置由易到难,层次分明,把学生的思维逐渐引向深入。这样的安排不仅使学生复习了勾股定理,又在逐渐深入的问题中品尝到成功的喜悦;既掌握了基础知识,也充分认识了问题的本质,可谓是一举两得。 二、图形内部结构的变化 例2.已知:如图7,点C 为线段AB 上一点,?ACM 、?CBN 是等边三角形。

初中数学一题多解与一题多变

____________________________________________________________________________________________ 初中数学一题多解与一题多变 时代在变迁,教育在进步,理念在更新。前两年提出考试要改革,有了《指导意见》,于是一批批探索性、开放性和应用性试题不断涌现;如今又提出课程要改革,有了《课程标准》,其中突出了学生自主探索的学习过程,强调应用数学和创新能力的培养,鼓励教师创造性教学,学生学会学习。 面临这种崭新的教育形势,我们会思考这样一些问题:教学要如何从静态转为动态?怎样有效地指导学生独立地分析问题、解决问题,形成有效的学习策略,提高效益?该如何引导和组织学生从事观察、实验、猜想、验证、推理与交流等数学活动,激发学生的学习兴趣和创新意识,培养创新能力?等等。我个人在实际教学过程中,对这些问题作过一些深思和一些尝试,其中比较突出的是引导学生进行一题多解和一题多变的训练。下面,我提出几个实例来分析其引导过程与方法,抛砖引玉,仅供参考。 一、一题多解,多解归一 对于"一题多解",我是从两个方面来认识和解释的:其一,同一个问题,用不同的方法和途径来解决;其二,同一个问题,其结论是多元的,即结论开放性问题。一题多解,有利于沟通各知识的内涵和外延,深化知识,培养发散性和创造性思维;多解归一,有利于提炼分析问题和解决问题的通性、通法,从中择优,培养聚合思维。 例1:如图,已知D 、E 在BC 上,AB=AC ,AD=AE , E D C B A

求证:BD=CE. (本题来自《几何》第2册69页例3) 思路与解法一:从△ABC和△ADE是等腰三角形这一角度出发,利用"等腰三角形底边上的三线合一"这一重要性质,便得三种证法,即过点A作底边上的高,或底边上的中线或顶角的平分线。其通法是"等腰三角形底边上的三线合一",证得BH=CH. 思路与解法二:从证线段相等常用三角形全等这一角度出发,本题可设法证△ABD≌△ACE或证△ABE≌△ACD,于是又得两种证法,而证这两对三角形全等又都可用AAS、ASA、SAS进行证明,所以实际是六种证法。其通性是"全等三角形对应边相等"。 思路与解法三:从等腰三角形的轴对称性这一角度出发,于是用叠合法可证。 例2:已知,如图,在⊙O中,AD是直径,BC是弦,AD⊥BC,E 添加字母,不写推理过程) D 思路与解法一:从相等的线段这一角度出发,可得如下结论: 1.OA=OD; 2.BE=CE; ____________________________________________________________________________________________

例谈高中数学一题多解和一题多变的意义

例谈高中数学一题多解和一题多变的意义 摘 要:高中数学教学中,用一题多解和一题多变的形式,可以使所学的知识得到活化,融会贯通,而且可以开阔思路,培养学生的发散思维和创新思维能力,从而达到提高学生的学习兴趣,学好数学的效果。 关键词:一题多变 一题多解 创新思维 数学效果 很大部分的高中生对数学的印象就是枯燥、乏味、不好学、没兴趣.但由于高考“指挥棒”的作用,又只能硬着头皮学.如何才能学好数学?俗话说“熟能生巧”,很 多人认为要学好数学就是要多做.固然,多做题目可以 使学生提高成绩,但长期如此,恐怕也会使学生觉得数学越来越枯燥。 我觉得要使学生学好数学,首先要提高学生的学 习兴趣和数学思维能力。根据高考数学“源于课本, 高于课本”的命题原则,教师在教学或复习过程中可 以利用书本上的例题和习题,进行对比、联想,采取 一题多解与一题多变的形式进行教学.这是提高学生数学学习兴趣和思维能力的有效途径。下面举例说明: 例题: 已知tanα=43 ,求sinα,cosα的值 分析:因为题中有sinα、cosα、tanα,考虑他们之间的关系,最容易想到的是用同角三角函数关系式和方程解此题: 法一 根据同角三角函数关系式tanα= 43= α αcos sin , 且sina2α + cos2α =1。 两式联立,得出:cos2α=2516,cosα= 5 4 或者 cosα= -54 ;而sinα=53或者sinα=-53 。 分析:上面解方程组较难且繁琐,充分利用用同角三角函数关系式“1”的代换,不解方程组,直接求解就简洁些: 法二 tanα=43 :α在第一、三象限 在第一象限时: cos2α = αα cos sin cos 2 2 2 5+=αtan 2 11+= 2516 cosα=54 sinα=αcos 21-=5 3 而在第三象限时: cosa=- 5 4 sina=- 53 分析:利用比例的性质和同角三角函数关系式,解此题更妙: 法三 tanα= 43= αα cos sin ?4cos α= 3sin α ?4cos α= 3sin α= ± 3 4cos sin 2 2 2 2 ++α α ∴sinα=53,cosα= 54 或sinα=-53,cosα=-54 分析: 上面从代数法角度解此题,如果单独考虑sinα、cosα、tanα,可用定义来解此题。初中时,三角函数定义是从直角三角形引入的,因此我们可以尝试几何法来解之: 法四 当α为锐角时,由于 tana=43 ,在直角△ ABC 中,设α=A,a=3x,b=4x ,则勾股定理,得,c=5x sinA=AB BC = 53 ,cosA=AB AC =54 ∴sinα= 53 ,cosα=54

初中数学一题多解与一题多变(1)

初中数学一题多解与一题多变 北兴中学 王成录 时代在变迁,教育在进步,理念在更新。前两年提出考试要改革,有了《指导意见》,于是一批批探索性、开放性和应用性试题不断涌现;如今又提出课程要改革,有了《课程标准》,其中突出了学生自主探索的学习过程,强调应用数学和创新能力的培养,鼓励教师创造性教学,学生学会学习。 面临这种崭新的教育形势,我们会思考这样一些问题:教学要如何从静态转为动态?怎样有效地指导学生独立地分析问题、解决问题,形成有效的学习策略,提高效益?该如何引导和组织学生从事观察、实验、猜想、验证、推理与交流等数学活动,激发学生的学习兴趣和创新意识,培养创新能力?等等。我个人在实际教学过程中,对这些问题作过一些深思和一些尝试,其中比较突出的是引导学生进行一题多解和一题多变的训练。下面,我提出几个实例来分析其引导过程与方法,抛砖引玉,仅供参考。 一、一题多解,多解归一 对于"一题多解",我是从两个方面来认识和解释的:其一,同一个问题,用不同的方法和途径来解决;其二,同一个问题,其结论是多元的,即结论开放性问题。一题多解,有利于沟通各知识的内涵和外延,深化知识,培养发散性和创造性思维;多解归一,有利于提炼分析问题和解决问题的通性、通法,从中择优,培养聚合思维。 例1:如图,已知D 、E 在BC 上,AB=AC ,AD=AE , 求证:BD=CE. E D C B A

(本题来自《几何》第2册69页例3) 思路与解法一:从△ABC和△ADE是等腰三角形这一角度出发,利用"等腰三角形底边上的三线合一"这一重要性质,便得三种证法,即过点A作底边上的高,或底边上的中线或顶角的平分线。其通法是"等腰三角形底边上的三线合一",证得BH=CH. 思路与解法二:从证线段相等常用三角形全等这一角度出发,本题可设法证△ABD≌△ACE或证△ABE≌△ACD,于是又得两种证法,而证这两对三角形全等又都可用AAS、ASA、SAS进行证明,所以实际是六种证法。其通性是"全等三角形对应边相等"。 思路与解法三:从等腰三角形的轴对称性这一角度出发,于是用叠合法可证。 例2:已知,如图,在⊙O中,AD是直径,BC是弦,AD⊥BC,E 为垂足,由这些条件你能推出哪些结论?(要求:不添加辅助线,不添加字母,不写推理过程) 思路与解法一:从相等的线段这一角度出发,可得如下结论: 1.OA=OD; A Array 2.BE=CE; 3.AB=AC; 4.BD=CD. D

2014高中数学 一题多变一题多解特训(一)

高中数学一题多解和一题多变 根据高考数学“源于课本,高于课本”的命题原则,教师在教学或复习过程中可以利用书本上的例题和习题,进行对比、联想,采取一题多解与一题多变的形式进行教学.这是提高学生数学学习兴趣和思维能力的有效途径。下面举例说明: 一题多解和一题多变(一) 类型一:一题多解 例题: 已知tan α=43 ,求sin α,cos α的值 分析:因为题中有sin α、cos α、tan α,考虑他们之间的关系,最容易想到的是用同角三角函数关系式和方程解此题: 法一 根据同角三角函数关系式tan α= 43= αα cos sin ,且sina2α + cos2α =1。 两式联立,得出:cos2α=2516,cos α= 54 或者cos α= -54 ;而s in α=53或者sin α=-53 。 分析:上面解方程组较难且繁琐,充分利用用同角三角函数关系式“1”的代换,不解方程组,直接求解就简洁些: 法二 tan α=43 :α在第一、三象限 在第一象限时: cos2α = ααcos sin cos 2 2 2 5+=αtan 2 11+=25 16 cos α=54 sin α=αcos 2 1-=5 3 而在第三象限时: cosa=- 54 sina=- 53 分析:利用比例的性质和同角三角函数关系式,解此题更妙:

法三 tan α= 43= αα cos sin ?4cos α= 3sin α ?4cos α= 3sin α = ± 3 4cos sin 2 2 2 2 ++α α ∴sin α=53,cos α= 54 或sin α=-53,cos α=-54 分析: 上面从代数法角度解此题,如果单独考虑sin α、cos α、tan α,可用定义来解此题。初中时,三角函数定义是从直角三角形引入的,因此我们可以尝试几何法来解之: 法四 当α为锐角时,由于tana=43 ,在直角△ABC 中,设α=A,a=3x,b=4x ,则勾股定理,得, c=5x sinA=AB BC = 53 ,cosA=AB AC =54 ∴sin α= 53 ,cos α=54 或sin α= -53 ,cos α= -54 分析 :用初中三角函数定义解此题,更应该尝试用三角函数高中的定义解此题,因为适用范围更广: 法五 当α为锐角时,如下图所示,在单位圆中,设α=∠AOT , 因为tan α= 43 ,则T 点坐 标是T(1, 43 ),由勾股定理得:OT= ?? ? ??+432 1= 45

一题多解与一题多变

一题多解与一题多变 -----培养学生能力的捷径 江苏省东台中学 张曙东 (《物理教学》1996.11) 高考把对学生能力的考核放在首要位置,体现了对学生能力的重视。目前正处在 世纪之交、知识爆炸的时期,知识日新月异,今天书本上学和知识,明天可能已被更新,面对未来人类的生存和发展,靠的下是现知识,而对未来人的能力,这样才能去下断发现、不断创造。而对学生的能力培养途径很多,“一题多解”可谓培养学生能力的捷径。通过“一题多解”和“一题多变”可帮助学生对所学知识全面系统地回顾、再现、应用,多角度去分析问题、解决问题,通过“一题多变”可由浅入深,下同层次地挖掘、全方位地去分析问题、解决问题。这对学生的理解能力、推理能力、分析综合能力、应用数学工具处理物理问题的能力得到全面提高,这样可起到举一反三、纲举目张、事倍功半的效果。以下略举两例敬请同行斧正。 [例1].A 、B 两木块靠在一起放在水平面上,它们与水平面的滑动摩擦系数为0.25,B 的质量为0.2千克,一颗水平飞来的子弹依次穿过A 、B ,在子弹穿 过A 的过程中A 和B 一直没有分离,子弹在B 内的时间t 为0.01秒,穿出B 后,A 和B 都继续向前运动,当A 刚停止时,B 和A 之间的距离S 为1米,B 的速v 为5米/秒,子弹在两木块中阻力恒为f ,重力加速度g 取10米/秒2,求;(1)f 的大小,(2)在子弹进入B 的过程中,木块B 前进的距离S X [剖析] 本题由于地面有摩擦力,故相互作用力的系统动量不守恒,不能由动量守恒定律、能量守恒定律列方程求解,必须另辟蹊径。 [分析和解] (1)方法一:运用牛顿定律结合运动学公式 设子弹刚穿进B 时,A 、B 物体具有共同速度vA 刚穿出B 时B 物的速度为VB ,B 的质量为子弹在B 中穿行时(如图2所示),B 的加速度 g m f m mg f a μμ-=-=;则 t g m f v at v v A A A )(μ-+=+= (1) g v t A A A μ= 物体滑行时间 方法二:运用动量定理 对B 全过程由动量定理得: )(A A A v v m gt m t f -=-?μ (1) 对A 由动能定理有: )(:)1()2(,计算过程略式得式代入将则有即t mv f mv t m g v t g v m t g m A A A A A A A A = =?=?=?μμμ (2) (2)方法一:运用牛顿定律结合运动学公式 B 的总位移)(22t g v v v t v v s A B B A B -+++= μ A 滑行的总位 g v s A μ22 = 由位移关系s B-s A=s 得:s g v t g v v v t v v A A B B A =--+++μμ2)(222 将t m mg f v v A B μ-+ =代入上式,可解得:v m ft g vt s v A +?+ =μ2)2( 由(1)问的结论t mv f = 得:ft=mv 代入上式,化简得: . 10001 .05 2.0:)2)(1()2()( N N t m v f t g v g v gt v v t g v t t t B B B B A A A =?==----------=-=∴-=-=解得联立物体滑行时间则μμμμ

初中几何的习题一题多解与一题多变-最新文档(可编辑修改word版)

初中几何的习题一题多解与一题多变 数学课程标准中,要求使学生经历站在不同角度,探索分析和解决问题的方法这一重要过程。使学生能够体验到解决问题的多样性方式,能够掌握分析及解决问题的基本技巧和方法 。数学中“一题多解”和“一题多变”,被普遍看作是培养学生能力,以及开发学生智力,最佳途径之一,能够培养出学生的发散性思维,以及创造性思维,提高学生对几何的学习兴趣。 一、初中几何“一题多解”和“一题多变”的相关问题 初中生在学习几何的过程中,鉴于其概念和定理繁多,又要求学生需要具有较强的综合性能力,且巧妙多变的解题方法,导致学生学习的时候,有一种困难的感觉,提高了教师实施教学的难度。在教学过程中,不仅要帮助学生理清概念和定理的条件、结论,而且有效将其系统化、条理化,进而建立较为完整的、独立的知识结构体系。其中,为之重要的是要牢固掌握课本习题灵活多变的解题方法,比较各种方法,更深刻的领悟相关的概念与定理,归纳各种习题的解决方法,灵动的掌握各种

题型,以至于可以轻巧熟练地运用相关的概念和定理来推理论证,提升学生的解题能力。通过课本习题,多角度思考问题,寻求解题的一般规律,从而引领学生入门。 二、“一题多解”和“一题多变”需注重学生“猜测”能力 “一题多解”和“一题多变”在教学之中,往往能起到一座桥的作用,在最近发展区之中,将学生从已知的彼岸,渡到未知的彼岸。教师在教学生平面几何的过程中,不仅要教会学生怎么证明,而且重点是教会学生猜测和思考。因为猜测可以导致发现,所有证题者在解决数学问题时,都要猜测,都是先猜测后证明的。这就要求教师教学时要创立一个激发学生积极性思维、主动猜测的意境,提高学生自主探索的能力。为了调动学生思维的主动性,形成有益的思维方式,教师要鼓励和引导学生去猜,千万不要制止,哪怕是不合理的猜测,更不要把全部的秘密立即说出来,由学生自己猜测出来不仅可以开阔他们的证题的思路,而且对培养学生探究以及深究问题能力有很大的帮助。 三、几何“一题多解”和“一题多变” 我们都知道,知识都是静态的,但是我们的思维是活动的。几何的习题是固定的,但是它能够为我们呈现出的变化,却是无

初中数学一题多变一题多解(二)

一题多解一题多变(二) 1、一题多解,培养思维的发散性 一题多解实际上是解题或证明定理、公式的变式,因为它的实质是以不同的论证方式反映条件和结论问的同一必然的本质联系,运用这种变式教学,可以引导学生对同一材料,从不同角度、从不同方位、用各种途径、多种方法思考问题,探求不同的解答方案,这样,既可暴露学生解题的思维过程,增加教学透明度,又能够拓广学生思路,使学生熟练掌握知识的内在联系,使思维向多方向发展,培养思维的发散性。这方面的例子很多,尤其是几何证明题。 已知:点O是等边△ABC内一点, OA=4,OB=5,OC=3 求∠AOC的度数。 练习:把此题适当变式: 变式在△ABC中,AB=AC,∠BAC=90° OA=4,OB=6,OC=2 求∠AOC的度数。 变式2:如图,点O是等边△ABC内一点,∠AOB=110°, ∠BOC=135° 试问:(1)以OA、OB、OC为边能否构成一个三角形?若能,请求出三角形各内角的度数;若不能,请说明理由. (2)如果∠AOB的大小保持不变,那么当∠BOC等于多少度时, 以OA、OB、OC为边的三角 形是一个直角三角形?

2、一题多变,培养思维的灵活性 一题多变是题目结构的变式,是指变换题目的条件或结论,或者变换题目的形式,而题目的实质不变,以便从不同角度,不同方面揭示题目的本质,用这种方式进行教学,能使学生随时根据变化了的情况积极思索,设法想出解决的办法,从而防止和消除呆板和僵化,培养思维的灵活性。一题多变可以改变条件,保留结论;也可以保留条件,改变结论;或者同时改变条件和结论;也可以将某项条件与结论对换等等。 例如:已知:C 为AB 上一点,△ACM 和△CBN 为等边三角形(如图所示) 求证:AN=BM (分析:如对此题多做一些引申,既可以培养学生的探索能力,又可培养学生的创新素质) 探索一:设CM 、CN 分别交AN 、BM 于P 、Q ,AN 、BM 交于点R 。问此题中还有其他的边相等以及特殊角、特殊图形吗?给予证明。 探索二:△ACM 和△BCN 如在AB 两旁,其它条件不变,AN=BM 成立吗? 探索三:△ACM 和△BCN 分别为以AC 、BC 为底且顶角相等的等腰三角形,其它条件不变,AN=BM 成立吗? 探索四:A 、B 、C 三点不在一条直线上时,其它条件不变,AN=BM 成立吗? 探索五:A 、B 、C 三点不在一条直线上时,△ACM 和△BCN 分别变为正方形ACME 和正方形BCNF ,其它条件不变,AN=BM 成立吗? 这样教学,不仅提高了学生运用所学知识解决数学问题的能力,而且培养了学生的创新能力,发展了学生的求异思维。 练习:(1)如图,在△ABC 中,AB=AC ,点P 是BC 边上任意一点,PE ⊥AB 于E ,PF ⊥AC 于F ,BD ⊥AC 于D 求证:BD=PE+PF M N C

初中数学一题多解题

初中数学一题多解题例题一、两个连续奇数的积是323,求出这两个数方法一、 设较小的奇数为x,另外一个就是x+2 x(x+2)=323 解方程得:x1=17,x2=-19 所以,这两个奇数分别是: 17、19,或者-17,-19 方法二、 设较大的奇数x,则较小的奇数为323/x 则有:x-323/x=2 解方程得:x1=19,x2=-17 同样可以得出这两个奇数分别是: 17、19,或者-17,-19 方法三、 设x为任意整数,则这两个连续奇数分别为: 2x-1,2x+1 (2x-1)(2x+1)=323 即4x^2-1=323 x^2=81 x1=9,x2=-9

2x1-1=17,2x1+1=19 2x2-1=-19,2x2+1=-17 所以,这两个奇数分别是: 17、19,或者-17,-19 方法四、 设两个连续奇数为x-1,x+1 则有x^2-1=323 x^2=324=4*81 x1=18,x2=-18 x1-1=17,x1+1=19 x2-1=-19,x2+1=-17 所以,这两个奇数分别是: 17、19,或者-17,-19 例题二、某人买13个鸡蛋、5个鸭蛋、9个鹌鹑蛋,共用去9.25元;如果买2个鸡蛋,4个鸭蛋,3个鹌鹑蛋,则共用去3.20元,试问只买鸡蛋、鸭蛋、鹌鹑蛋各一个,共需多少钱? 解:设鸡、鸭、鹌鹑三种蛋的单价分别为x 、y 、z 元,则根据题意,得 13599251243320 2x y z x y z ++=<>++=<> ?? ?.. 分析:此方程组是三元一次方程组,由于只有两个三元一次方程,因而要分别求出x 、y 、z 的值是不可能的,但注意到所求的是x y z ++的代数和,因此,我们可通过变形变换得到多种解法。 1. 凑整法 解1: <>+<> 123 ,得5344153x y z ++=<>. <>+<>23,得7735().x y z ++= ∴++=x y z 105. 答:只买鸡蛋、鸭蛋、鹌鹑蛋各一个,共需1.05元(下面解法后的答均省略) 解2:原方程组可变形为

相关文档
最新文档