数字信号处理基础知识

数字信号处理基础知识
数字信号处理基础知识

数字信号处理基础知识

基础知识

第一章

1、连续时间信号的特征是:时间

离散时间信号的特征是:时间,幅值。

2、数字信号的特征是。

3、“数字信号处理”学科迅速发展的两大标志是。

第二章

|

1、数字序列的自变量只能取。

2、δ(n)与u(n)的关系是:δ,。

3、x (n ) =A cos(3ππn +) 的周期是 46

4、并联系统的单位冲激响应h (n ) 串联系统的单位冲激响应h (n ) 。

5、系统零状态响应y (n ) 与单位冲激响应 h (n ) 的关系是。

6、单位冲激响应h (n ) 表征了系统的时域特征,系统稳定的充要条件是果的充要条件是。

7、线性时不变系统可以用来描述。

<

8、X (e j ω) 是以/离散)函数。

9、离散时间傅里叶变换存在的充分条件是。

10、设连续信号x (t ) 为带限信号,最高频率为Ω0,则取样频率Ωs 应满足。

11、离散时间信号的抽取仍然要(满足/不满足)奈奎斯特抽样定理。也称

为。

12、序列在单位圆上的z 变换是单位取样响应在单位圆上的Z 变换是

13、系统的频域特性通过来表征。

14、若系统是稳定的,则系统函数

!

15、S 平面与Z 平面之间的映射关系为。

16、设序列是由连续信号抽样得到的,。

17、设输入x 1(n),x 2(n)对应的响应分别为y 1(n),y 2(n),则线性系统应满足

18、设输入x(n)对应的响应为y(n),若满足。该系统为非移变系统。

19、若x(n)为实序列,则其偶部的离散时间傅里叶变换为叶变换为。

1-z -1

20、设一因果系统H (z ) =,则系统零点为,极点为,收1-0. 81z -2

敛域为,系统是否稳定。

第三章

1、设x (n ) 是一个长度为N 的序列,且DFT[x (n )]=X(k ) ,则有X(N -k )=。

2、设两个有限长序列的长度分别为N 、M ,则序列的线性卷积长度为。若用两序列的循环卷积计算线性卷积,则循环卷积的长度应满足。序列延长部分的值用

3、设序列的长度为N ,则对序列Z 变换取样不失真的条件是取样点数M 应满足

4、FFT 算法主要利用了W N k 的两个性质:和。

5、时间抽选基2FFT 算法应遵循两个规则:和

?

6、时间抽选基2FFT 算法的基本运算单元为,输入x(n)不按自然顺序排列,但输入顺序恰好是正序输入的。

7、设序列长度为N=2M ,采用时间抽选基2FFT 算法,则序列的N 点DFT 需要经过次分解,才能变成2点DFT 来计算,每次分解均由个蝶形组成。

8、设N=256,计算机计算一次复数乘法需要100微秒,计算一次复数加法需要20微秒,则直接计算DFT 的时间为:,利用FFT 计算的时间为。

9、设信号频率分辨率F=4Hz,信号最高频率f 0=1kHz,则最小记录长度t p 点的最大时间间隔T= ,一个记录长度中的最少点数为。

10、蝶形运算的一个优点是可以进行运算,节省存储空间。

第四章

1、IIR 数字滤波器的基本网络结构有:直接I 型,,

@

2、FIR 数字滤波器的基本网络结构有:,等。其中直接型也称为,或,结构。

3、FIR 数字滤波器的一个最吸引人的特点是其相位可以是激响应具有特性。

4、线性相位FIR 滤波器的零点必须是设某线性相位滤波器的一个零点为z 1=1+i ,则通过z1零点能推知的其它零点个数为,它们分别是。

5、若某线性相位FIR 滤波器的冲激响应是偶对称的,则它的系统函数多项式的系数具有

6、冲激响应不变法遵循的原则是

7、实际的滤波器允许通带和阻带有一定的起伏存在。其中,巴特沃斯低通滤波器的幅频特性:通带内,阻带内;切比雪夫I 型滤波器的幅频特性:通带内,阻带内;切比雪夫II 型滤波器的幅频特性:通带内,阻带

内。椭圆滤波器的幅频特性:通带内,阻带内。

8、FIR 数字滤波器的两种主要设计方法是,

9、设某模拟低通滤波器是因果稳定的,则利用冲激响应不变法和双线性变换法设计出来的数字滤波器具有的特性。

10、在一般情况下,用窗函数设计FIR 滤波器时,。

数字信号处理实验一

一、实验目的 1. 通过本次实验回忆并熟悉MATLAB这个软件。 2. 通过本次实验学会如何利用MATLAB进行序列的简单运算。 3. 通过本次实验深刻理解理论课上的数字信号处理的一个常见方法——对时刻n的样本附近的一些样本求平均,产生所需的输出信号。 3. 通过振幅调制信号的产生来理解载波信号与调制信号之间的关系。 二、实验内容 1. 编写程序在MATLAB中实现从被加性噪声污染的信号中移除噪声的算法,本次试验采用三点滑动平均算法,可直接输入程序P1.5。 2. 通过运行程序得出的结果回答习题Q1.31-Q1.33的问题,加深对算法思想的理解。 3. 编写程序在MATLAB中实现振幅调制信号产生的算法,可直接输入程序P1.6。 4. 通过运行程序得出的结果回答习题Q1.34-Q1.35的问题,加深对算法思想的理解。 三、主要算法与程序 1. 三点滑动平均算法的核心程序: %程序P1.5 %通过平均的信号平滑 clf; R=51; d=0.8*(rand(R,1)-0.5);%产生随噪声 m=0:R-1; s=2*m.*(0.9.^m);%产生为污染的信号 x=s+d';%产生被噪音污染的信号 subplot(2,1,1); plot(m,d','r-',m,s,'g--',m,x,'b-.');

xlabel('时间序号n');ylabel('振幅'); legend('d[n]','s[n]','x[n]'); x1=[0 0 x];x2=[0 x 0];x3=[x 0 0]; y=(x1+x2+x3)/3; subplot(2,1,2); plot(m,y(2:R+1),'r-',m,s,'g--'); legend('y[n]','s[n]'); xlabel('时间序号n');ylabel('振幅'); 2. 振幅调制信号的产生核心程序:(由于要几个结果,因此利用subplot函数画图) %程序P1.6 %振幅调制信号的产生 n=0:100; m=0.1;fH=0.1;fL=0.01; m1=0.3;fH1=0.3;fL1=0.03; xH=sin(2*pi*fH*n); xL=sin(2*pi*fL*n); y=(1+m*xL).*xH; xH1=sin(2*pi*fH1*n); xL1=sin(2*pi*fL1*n); y1=(1+m1*xL).*xH; y2=(1+m*xL).*xH1; y3=(1+m*xL1).*xH; subplot(2,2,1); stem(n,y); grid; xlabel('时间序号n');ylabel('振幅');title('m=0.1;fH=0.1;fL=0.01;'); subplot(2,2,2); stem(n,y1); grid; xlabel('时间序号n');ylabel('振幅');title('m=0.3;fH=0.1;fL=0.01;'); subplot(2,2,3); stem(n,y2); grid; xlabel('时间序号n');ylabel('振幅');title('m=0.3;fH=0.3;fL=0.01;'); subplot(2,2,4); stem(n,y3); grid;

数字信号处理实验1,2,3,4

实验一 连续时间系统的时域和频域分析相关MATLAB 函数1.设描述连续时间系统的微分方程为:)()()()()()()()(01)1(1)(01)1(1)(t f b t f b t f b t f b t y a t y a t y a t y a m m m m n n n n +'+++=+'+++---- 则可用向量和表示该系统,即 a b ] ,,,,[011a a a a a n n -=],,,,[011b b b b b m m -=注意,向量和的元素一定要以微分方程时间求导的降幂次序排列,且缺项要用0补齐。a b 如微分方程)()()(2)(3)(t f t f t y t y t y +''=+'+''表示该系统的向量为 ]2 3 1[=a ]1 0 1[=b (1)求解冲激响应:impulse()函数impulse()函数有以下四种调用格式: ① impulse(b,a) 该调用格式以默认方式绘制由向量和定义的连续时间系统的冲激响应的时域波形。a b ② impulse(b,a,t)该调用格式绘制由向量和定义的连续时间系统在时间范围内的冲激响应的时a b t ~0域波形。③ impulse(b,a, t1:p:t2)该调用格式绘制由向量和定义的连续时间系统在时间范围内,且以时间间a b 21~t t 隔均匀抽样的冲激响应的时域波形。p ④ y=impulse(b,a,t1:p:t2)该调用格式并不绘制系统冲激响应的波形,而是求出由向量和定义的连续时间系a b 统在时间范围内以时间间隔均匀抽样的系统冲激响应的数值解。21~t t p (2)求解阶跃响应:step()函数 step()函数也有四种调用格式:① step(b,a) ② step(b,a,t) ③ step(b,a, t1:p:t2) ④ y=step(b,a,t1:p:t2) 上述调用格式的功能与impulse()函数完全相同。

数字信号处理基础实验指导书

《数字信号处理》实验指导书 光电工程学院二○○九年十月

实验一离散时间信号分析 一、实验目的 1.掌握各种常用的序列,理解其数学表达式和波形表示。 2.掌握在计算机中生成及绘制数字信号波形的方法。 3.掌握序列的相加、相乘、移位、反转等基本运算及计算机实现与作用。 4.掌握线性卷积软件实现的方法。 5.掌握计算机的使用方法和常用系统软件及应用软件的使用。 6.通过编程,上机调试程序,进一步增强使用计算机解决问题的能力。 二、实验原理 1.序列的基本概念 离散时间信号在数学上可用时间序列来表示,其中代表序列的第n个数字,n代表时间的序列,n的取值范围为的整数,n取其它值没有意义。离散时间信号可以是由模拟信号通过采样得到,例如对模拟信号进行等间隔采样,采样间隔为T,得到一个有序的数字序列就是离散时间信号,简称序列。 2.常用序列 常用序列有:单位脉冲序列(单位抽样)、单位阶跃序列、矩形序列、实指数序列、复指数序列、正弦型序列等。 3.序列的基本运算 序列的运算包括移位、反转、和、积、标乘、累加、差分运算等。 4.序列的卷积运算 上式的运算关系称为卷积运算,式中代表两个序列卷积运算。两个序列的卷积是一个序列与另一个序列反褶后逐次移位乘积之和,故称为离散卷积,也称两序列的线性卷积。其计算的过程包括以下4个步骤。 (1)反褶:先将和的变量换成,变成和,再将以纵轴为对称轴反褶成。 (2)移位:将移位,得。当为正数时,右移位;当为负数时,左

移位。 (3)相乘:将和的对应点值相乘。 (4)求和:将以上所有对应点的乘积累加起来,即得。 三、主要实验仪器及材料 微型计算机、Matlab软件6.5或更高版本。 四、实验内容 1.知识准备 认真复习以上基础理论,理解本实验所用到的实验原理。 2.离散时间信号(序列)的产生 利用MATLAB或C语言编程产生和绘制下列有限长序列: (1)单位脉冲序列 (2)单位阶跃序列 (3)矩形序列 (4)正弦型序列 (5)任意序列 3.序列的运算 利用MATLAB编程完成上述两序列的移位、反转、加法、乘法等运算,并绘制运算后序列的波形。 4.卷积运算 利用MATLAB编制一个计算两个序列线性卷积的通用程序,计算上述两序列,并绘制卷积后序列的波形。 5.上机调试并打印或记录实验结果。 6.完成实验报告。 五、实验报告要求 1. 简述实验原理及目的。 2. 给出上述序列的实验结果。 3. 列出计算卷积的公式,画出程序框图,并列出实验程序清单 (可略)(包括必要的程序说明)。 4. 记录调试运行情况及所遇问题的解决方法。 5. 给出实验结果,并对结果做出分析。 6. 简要回答思考题。 1 如何产生方波信号序列和锯齿波信号序列? 2 实验中所产生的正弦序列的频率是多少?是否是周期序列?

数字信号处理实验报告一

武汉工程大学 数字信号处理实验报告 姓名:周权 学号:1204140228 班级:通信工程02

一、实验设备 计算机,MATLAB语言环境。 二、实验基础理论 1.序列的相关概念 2.常见序列 3.序列的基本运算 4.离散傅里叶变换的相关概念 5.Z变换的相关概念 三、实验内容与步骤 1.离散时间信号(序列)的产生 利用MATLAB语言编程产生和绘制单位样值信号、单位阶跃序列、指数序列、正弦序列及随机离散信号的波形表示。 四实验目的 认识常用的各种信号,理解其数字表达式和波形表示,掌握在计算机中生成及绘制数字信号波形的方法,掌握序列的简单运算及计算机实现与作用,理解离散时间傅里叶变换,Z变换及它们的性质和信号的频域分

实验一离散时间信号(序列)的产生 代码一 单位样值 x=2; y=1; stem(x,y); title('单位样值 ') 单位阶跃序列 n0=0; n1=-10; n2=10; n=[n1:n2]; x=[(n-n0)>=0]; stem(n,x); xlabel('n'); ylabel('x{n}'); title('单位阶跃序列');

实指数序列 n=[0:10]; x=(0.5).^n; stem(n,x); xlabel('n'); ylabel('x{n}'); title('实指数序列');

正弦序列 n=[-100:100]; x=2*sin(0.05*pi*n); stem(n,x); xlabel('n'); ylabel('x{n}'); title('正弦序列');

随机序列 n=[1:10]; x=rand(1,10); subplot(221); stem(n,x); xlabel('n'); ylabel('x{n}'); title('随机序列');

数字信号处理基础书后题答案中文版

Chapter 2 Solutions 2.1 最小采样频率为两倍的信号最大频率,即44.1kHz 。 2.2 (a)、由ω = 2πf = 20 rad/sec ,信号的频率为f = 3.18 Hz 。信号的奈奎斯特采样频率为6.37 Hz 。 (b)、3 5000π=ω,所以f = 833.3 Hz ,奈奎斯特采样频率为1666.7 Hz 。 (c)、7 3000π=ω,所以f = 214.3 Hz ,奈奎斯特采样频率为428.6 Hz 。 2.3 (a) 1258000 1f 1T S S ===μs (b)、最大还原频率为采样频率的一半,即4000kHz 。 2.4 ω = 4000 rad/sec ,所以f = 4000/(2π) = 2000/π Hz ,周期T = π/2000 sec 。因此,5个周期为5π/2000 = π/400 sec 。对于这个信号,奈奎斯特采样频率为2(2000/π) = 4000/π Hz 。所以采样频率为f S = 4(4000/π) = 16000/π Hz 。因此5个周期收集的采样点为(16000/π samples/sec )(π/400 sec) = 40。 2.5 ω = 2500π rad/sec ,所以f = 2500π/(2π) = 1250 Hz ,T = 1/1250 sec 。因此,5个周期为5/1250 sec 。对于这个信号,奈奎斯特采样频率为2(1250) = 2500 Hz ,所以采样频率为f S = 7/8(2500) = 2187.5 Hz 。采样点数为(2187.5 点/sec)(5/1250 sec) = 8.75。这意味着在模拟信号的五个周期内只有8个点被采样。事实上,对于这个信号来说,在整数的模拟周期中,是不可能采到整数个点的。 2.6 2.7 信号搬移发生在kf S ± f 处,换句话说,频谱搬移发生在每个采样频率的整数倍 0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 频率/kHz

数字信号处理实验一

实验一 离散时间信号分析 班级 信息131班 学号 201312030103 姓名 陈娇 日期 一、实验目的 掌握两个序列的相加、相乘、移位、反褶、卷积等基本运算。 二、实验原理 1.序列的基本概念 离散时间信号在数学上可用时间序列)}({n x 来表示,其中)(n x 代表序列的第n 个数字,n 代表时间的序列,n 的取值范围为+∞<<∞-n 的整数,n 取其它值)(n x 没有意义。离散时间信号可以是由模拟信号通过采样得到,例如对模拟信号)(t x a 进行等间隔采样,采样间隔为T ,得到)}({nT x a 一个有序的数字序列就是离散时间信号,简称序列。 2.常用序列 常用序列有:单位脉冲序列(单位抽样)) (n δ、单位阶跃序列)(n u 、矩形序列)(n R N 、实指数序列、复指数序列、正弦型序列等。 3.序列的基本运算 序列的运算包括移位、反褶、和、积、标乘、累加、差分运算等。 4.序列的卷积运算 ∑∞ -∞==-= m n h n x m n h m x n y )(*)()()()( 上式的运算关系称为卷积运算,式中代表两个序列卷积运算。两个序列的卷积是一个序列与另一个序列反褶后逐次移位乘积之和,故称为离散卷积,也称两序列的线性卷积。其计算的过程包括以下4个步骤。 (1)反褶:先将)(n x 和)(n h 的变量n 换成m ,变成)(m x 和)(m h ,再将)(m h 以纵轴为对称轴反褶成)(m h -。

(2)移位:将)(m h -移位n ,得)(m n h -。当n 为正数时,右移n 位;当n 为负数时,左移n 位。 (3)相乘:将)(m n h -和)(m x 的对应点值相乘。 (4)求和:将以上所有对应点的乘积累加起来,即得)(n y 。 三、主要实验仪器及材料 微型计算机、Matlab6.5 教学版、TC 编程环境。 四、实验内容 (1)用Matlab 或C 语言编制两个序列的相加、相乘、移位、反褶、卷积等的程序; (2)画出两个序列运算以后的图形; (3)对结果进行分析; (4)完成实验报告。 五、实验结果 六、实验总结

数字信号处理复习总结-最终版

绪论:本章介绍数字信号处理课程的基本概念。 0.1信号、系统与信号处理 1.信号及其分类 信号是信息的载体,以某种函数的形式传递信息。这个函数可以是时间域、频率域或其它域,但最基础的域是时域。 分类: 周期信号/非周期信号 确定信号/随机信号 能量信号/功率信号 连续时间信号/离散时间信号/数字信号 按自变量与函数值的取值形式不同分类: 2.系统 系统定义为处理(或变换)信号的物理设备,或者说,凡是能将信号加以变换以达到人们要求的各种设备都称为系统。 3.信号处理 信号处理即是用系统对信号进行某种加工。包括:滤波、分析、变换、综合、压缩、估计、识别等等。所谓“数字信号处理”,就是用数值计算的方法,完成对信号的处理。 0.2 数字信号处理系统的基本组成 数字信号处理就是用数值计算的方法对信号进行变换和处理。不仅应用于数字化信号的处理,而且

也可应用于模拟信号的处理。以下讨论模拟信号数字化处理系统框图。 (1)前置滤波器 将输入信号x a(t)中高于某一频率(称折叠频率,等于抽样频率的一半)的分量加以滤除。 (2)A/D变换器 在A/D变换器中每隔T秒(抽样周期)取出一次x a(t)的幅度,抽样后的信号称为离散信号。在A/D 变换器中的保持电路中进一步变换为若干位码。 (3)数字信号处理器(DSP) (4)D/A变换器 按照预定要求,在处理器中将信号序列x(n)进行加工处理得到输出信号y(n)。由一个二进制码流产生一个阶梯波形,是形成模拟信号的第一步。 (5)模拟滤波器 把阶梯波形平滑成预期的模拟信号;以滤除掉不需要的高频分量,生成所需的模拟信号y a(t)。 0.3 数字信号处理的特点 (1)灵活性。(2)高精度和高稳定性。(3)便于大规模集成。(4)对数字信号可以存储、运算、系统可以获得高性能指标。 0.4 数字信号处理基本学科分支 数字信号处理(DSP)一般有两层含义,一层是广义的理解,为数字信号处理技术——DigitalSignalProcessing,另一层是狭义的理解,为数字信号处理器——DigitalSignalProcessor。 0.5 课程内容 该课程在本科阶段主要介绍以傅里叶变换为基础的“经典”处理方法,包括:(1)离散傅里叶变换及其快速算法。(2)滤波理论(线性时不变离散时间系统,用于分离相加性组合的信号,要求信号频谱占据不同的频段)。 在研究生阶段相应课程为“现代信号处理”(AdvancedSignalProcessing)。信号对象主要是随机信号,主要内容是自适应滤波(用于分离相加性组合的信号,但频谱占据同一频段)和现代谱估计。 简答题: 1.按自变量与函数值的取值形式是否连续信号可以分成哪四种类型? 2.相对模拟信号处理,数字信号处理主要有哪些优点? 3.数字信号处理系统的基本组成有哪些?

数字信号处理基础书后题答案中文版

数字信号处理基础书后题答案中文版

Chapter 2 Solutions 2.1 最小采样频率为两倍的信号最大频率,即44.1kHz 。 2.2 (a)、由ω = 2πf = 20 rad/sec ,信号的频率为f = 3.18 Hz 。信号的奈奎斯特采样频率为6.37 Hz 。 (b)、35000π =ω,所以f = 833.3 Hz ,奈奎斯特采样频率为1666.7 Hz 。 (c)、7 3000π =ω,所以f = 214.3 Hz ,奈奎斯特采样频率为428.6 Hz 。 2.3 (a) 1258000 1f 1T S S === μs (b)、最大还原频率为采样频率的一半,即4000kHz 。 2.4 ω = 4000 rad/sec ,所以f = 4000/(2π) = 2000/π Hz ,周期T = π/2000 sec 。因此,5个周期为5π/2000 = π/400 sec 。对于这个信号,奈奎斯特采样频率为2(2000/π) = 4000/π Hz 。所以采样频率为f S = 4(4000/π) = 16000/π Hz 。因此5个周期收集的采样点为(16000/π samples/sec )(π/400 sec) = 40。 2.5 ω = 2500π rad/sec ,所以f = 2500π/(2π) = 1250 Hz ,T = 1/1250 sec 。因此,5个周期为5/1250 sec 。对于这个信号,奈奎斯特采样频率为2(1250) = 2500 Hz ,所以采样频率为f S = 7/8(2500) = 2187.5 Hz 。采样点数为(2187.5 点/sec)(5/1250 sec) = 8.75。这意味着在模拟信号的五个周期内只有8个点被采样。事实上,对于这个信号来说,在整数的模拟周期中,是不可能采到整数个点的。 2.7 信号搬移发生在kf S ± f 处,换句话说,频谱搬移发生在每个采样频率的整数 倍 -200 200 400 600 800 1000 1200 0.10.20.30.40.50.60.70.80.91 幅度 频

数字信号处理实验报告(实验1_4)

实验一 MATLAB 仿真软件的基本操作命令和使用方法 实验容 1、帮助命令 使用 help 命令,查找 sqrt (开方)函数的使用方法; 2、MATLAB 命令窗口 (1)在MATLAB 命令窗口直接输入命令行计算3 1)5.0sin(21+=πy 的值; (2)求多项式 p(x) = x3 + 2x+ 4的根; 3、矩阵运算 (1)矩阵的乘法 已知 A=[1 2;3 4], B=[5 5;7 8],求 A^2*B

(2)矩阵的行列式 已知A=[1 2 3;4 5 6;7 8 9],求A (3)矩阵的转置及共轭转置 已知A=[1 2 3;4 5 6;7 8 9],求A' 已知B=[5+i,2-i,1;6*i,4,9-i], 求B.' , B' (4)特征值、特征向量、特征多项式 已知A=[1.2 3 5 0.9;5 1.7 5 6;3 9 0 1;1 2 3 4] ,求矩阵A的特征值、特征向量、特征多项式;

(5)使用冒号选出指定元素 已知:A=[1 2 3;4 5 6;7 8 9];求A 中第3 列前2 个元素;A 中所有列第2,3 行的元素; 4、Matlab 基本编程方法 (1)编写命令文件:计算1+2+…+n<2000 时的最大n 值;

(2)编写函数文件:分别用for 和while 循环结构编写程序,求 2 的0 到15 次幂的和。

5、MATLAB基本绘图命令 (1)绘制余弦曲线 y=cos(t),t∈[0,2π]

(2)在同一坐标系中绘制余弦曲线 y=cos(t-0.25)和正弦曲线 y=sin(t-0.5), t∈[0,2π] (3)绘制[0,4π]区间上的 x1=10sint 曲线,并要求: (a)线形为点划线、颜色为红色、数据点标记为加号; (b)坐标轴控制:显示围、刻度线、比例、网络线 (c)标注控制:坐标轴名称、标题、相应文本; >> clear;

数字信号处理实验1认识实验

实验1认识实验-MATLAB语言上机操作实践 一、实验目的 ㈠了解MATLAB语言的主要特点、作用。 ㈡学会MATLAB主界面简单的操作使用方法。 ㈢学习简单的数组赋值、运算、绘图、流程控制编程。 二、实验原理 ㈠简单的数组赋值方法 MATLAB中的变量和常量都可以是数组(或矩阵),且每个元素都可以是复数。 在MATLAB指令窗口输入数组A=[1 2 3;4 5 6;7 8 9],观察输出结果。然后,键入:A(4,2)= 11 键入:A (5,:) = [-13 -14 -15] 键入:A(4,3)= abs (A(5,1)) 键入:A ([2,5],:) = [ ] 键入:A/2 键入:A (4,:) = [sqrt(3) (4+5)/6*2 –7] 观察以上各输出结果。将A式中分号改为空格或逗号,情况又如何?请在每式的后面标注其含义。 2.在MATLAB指令窗口输入B=[1+2i,3+4i;5+6i ,7+8i], 观察输出结果。 键入:C=[1,3;5,7]+[2,4;6,8]*i,观察输出结果。 如果C式中i前的*号省略,结果如何? 键入:D = sqrt (2+3i) 键入:D*D 键入:E = C’, F = conj(C), G = conj(C)’ 观察以上各输出结果, 请在每式的后面标注其含义。 3.在MATLAB指令窗口输入H1=ones(3,2),H2=zeros(2,3),H3=eye(4),观察输出结果。 ㈡、数组的基本运算 1.输入A=[1 3 5],B= [2 4 6],求C=A+B,D=A-2,E=B-A 2.求F1=A*3,F2=A.*B,F3=A./B,F4=A.\B, F5=B.\A, F6=B.^A, F7=2./B, F8=B.\2 *3.求B',Z1=A*B’,Z2=B’*A 观察以上各输出结果,比较各种运算的区别,理解其含义。 ㈢、常用函数及相应的信号波形显示 例1:显示曲线f(t)=2sin(2πt),(t>0) ⅰ点击空白文档图标(New M-file),打开文本编辑器。 ⅱ键入:t=0:0.01:3; (1) f=2*sin(2*pi*t); (2) plot(t,f); title(‘f(t)-t曲线’); xlabel(‘t’),ylabel(‘f(t)’);

数字信号处理试题和答案

一. 填空题 1、一线性时不变系统,输入为x(n)时,输出为y(n);则输入为2x(n)时,输出为2y(n) ;输入为x(n-3)时,输出为y(n-3) 。 2、从奈奎斯特采样定理得出,要使实信号采样后能够不失真还原,采样频率fs与信号最高频率 f max关系为:fs>=2f max。 3、已知一个长度为N的序列x(n),它的离散时间傅立叶变换为X(e jw),它的N点离散傅立叶变换X(K)是关于X(e jw)的N 点等间隔采样。 4、有限长序列x(n)的8点DFT为X(K),则X(K)= 。 5、用脉冲响应不变法进行IIR数字滤波器的设计,它的主要缺点是频谱的交叠所产生的现象。 6.若数字滤波器的单位脉冲响应h(n)是奇对称的,长度为N,则它的对称中心是(N-1)/2 。 7、用窗函数法设计FIR数字滤波器时,加矩形窗比加三角窗时,所设计出的滤波器的过渡带比较窄,阻带衰减比较小。 8、无限长单位冲激响应(IIR)滤波器的结构上有反馈环路,因此是递归型结构。 9、若正弦序列x(n)=sin(30nπ/120)是周期的,则周期是N= 8 。 10、用窗函数法设计FIR数字滤波器时,过渡带的宽度不但与窗的类型有关,还与窗的采样点数有关 11.DFT与DFS有密切关系,因为有限长序列可以看成周期序列的主值区间截断,而周期序列可以看成有限长序列的周期延拓。 12.对长度为N的序列x(n)圆周移位m位得到的序列用x m(n)表示,其数学表达式为x m(n)= x((n-m))N R N(n)。 13.对按时间抽取的基2-FFT流图进行转置,并将输入变输出,输出变输入即可得到按频率抽取的基2-FFT流图。 14.线性移不变系统的性质有交换率、结合率和分配律。 15.用DFT近似分析模拟信号的频谱时,可能出现的问题有混叠失真、泄漏、栅栏效应和频率分辨率。 16.无限长单位冲激响应滤波器的基本结构有直接Ⅰ型,直接Ⅱ型,串联型和并联型四种。 17.如果通用计算机的速度为平均每次复数乘需要5μs,每次复数加需要1μs,则在此计算机上计算210点的基2 FFT需要10 级蝶形运算,总的运算时间是______μs。 二.选择填空题 1、δ(n)的z变换是 A 。

数字信号处理基础实验报告_

本科生实验报告 实验课程数字信号处理基础 学院名称地球物理学院 专业名称地球物理学 学生姓名 学生学号 指导教师王山山 实验地点5417 实验成绩 二〇一四年十一月二〇一四年十二月

填写说明 1、适用于本科生所有的实验报告(印制实验报告册除外); 2、专业填写为专业全称,有专业方向的用小括号标明; 3、格式要求: ①用A4纸双面打印(封面双面打印)或在A4大小纸上用蓝黑色水笔书写。 ②打印排版:正文用宋体小四号,1.5倍行距,页边距采取默认形式(上下2.54cm, 左右2.54cm,页眉1.5cm,页脚1.75cm)。字符间距为默认值(缩放100%,间距:标准);页码用小五号字底端居中。 ③具体要求: 题目(二号黑体居中); 摘要(“摘要”二字用小二号黑体居中,隔行书写摘要的文字部分,小4号宋体); 关键词(隔行顶格书写“关键词”三字,提炼3-5个关键词,用分号隔开,小4号黑体); 正文部分采用三级标题; 第1章××(小二号黑体居中,段前0.5行) 1.1 ×××××小三号黑体×××××(段前、段后0.5行) 1.1.1小四号黑体(段前、段后0.5行) 参考文献(黑体小二号居中,段前0.5行),参考文献用五号宋体,参照《参考文献著录规则(GB/T 7714-2005)》。

实验一生成离散信号并计算其振幅谱 并将信号进行奇偶分解 一、实验原理 单位脉冲响应h(t)=exp(-a*t*t)*sin(2*3.14*f*t)进行离散抽样,分别得到t=0.002s,0.009s,0.011s采样的结果。用Excel软件绘图显示计算结果。并将信号进行奇偶分解,分别得到奇对称信号h(n)-h(-n)与偶对称信号h(n)+h(-n)。用Excel 软件绘图显示计算结果。 二、实验程序代码 (1)离散抽样 double a,t; a=2*f*f*log(m); int i; for(i=0;i

数字信号处理实验一信号、-系统及系统响应

数字信号处理实验一信号、-系统及系统响应

西安郵電學院数字信号处理课内实验 报告书 系部名称:计算机系 学生姓名:常成娟 专业名称:电子信息科学与技术 班级:电科0603 学号:04062095(22号) 时间: 2008-11-23

实验一: 信号、 系统及系统响应 一. 实验目的 (1) 熟悉连续信号经理想采样前后的频谱变化关系, 加深对时域采样定理的理解。 (2) 熟悉时域离散系统的时域特性。 (3) 利用卷积方法观察分析系统的时域特性。 (4) 掌握序列傅里叶变换的计算机实现方法, 利用序列的傅里叶变换对连续信号、 离散信号及系统响应进行频域分析。 二. 实验原理与方法 采样是连续信号数字处理的第一个关键环节。 对一个连续信号xa(t)进行理想采样的过程可用(10.3.1)式表示。 ( 10.3.1)其中 (t)为xa(t)的理想采样, p(t)为周期冲激脉冲, 即 (10.3.2) (t)的傅里叶变换 (j Ω)为 (10.3.3) 将(10.3.2)式代入(10.3.1)式并进行傅里叶变换, (10.3 .4) 式中的xa(nT)就是采样后得到的序列x(n), 即 x(n)的傅里叶变换为 (10.3 .5) 比较(10.3.5)和(10.3.4)可知 ^ ()()() a a x t x t p t =^x ()()n p t t nT δ∞ =-∞ =-∑^x ^ a X 1()[()] a a s m X j X j m T ∞ ?=-∞ Ω=Ω-Ω∑^()[()()]()()()j t a a n j t a n j t a n X j x t t nT e dt x t t nT e dt x nT e dt δδ∞∞ -Ω-∞=-∞ ∞ ∞-Ω-∞=-∞∞ -Ω=-∞ Ω=-=-=∑?∑?∑()() a x n x nT =()()j j n n X e x n e ωω∞ -=-∞ =∑

数字信号处理基础实验报告 (2)

成都理工大学 《信号处理基础》实验 开设时间:2013—2014学年第2学期

题目1:信号的产生和显示 一、实验目的: 认识基本信号 通过使用MATLAB 设计简单程序, 掌握对MATLAB 的基本使用方法 二、实验原理: 找出下列表达式的信号与:正弦信号、最小相位信号、最大相位信号、零相位信号的对应关系。 1、sin60t 2、e-60t sin60t 3、(1- e-60t)sin60t 4、e60t sin60t 三、实验内容: 产生上述信号的信号并显示 (1)t=[-pi/30:0.001:pi/30]; f=sin(60*t); plot(t,f) 产生图形如下:

(2)t=[0:0.001:pi/30]; f=exp(-60*t).*sin(60*t); plot(t,f) 产生图形如下:

(3)t=[-5*pi/30:0.001:5*pi/30]; f=(1-exp(-60*t)).*sin(60*t); plot(t,f) 产生图形如下: (4) t=[-pi/30:0.001:pi/30]; f=exp(6*t).*sin(60*t); plot(t,f) 产生如下波形:

四、实验结果与讨论: 讨论上述信号的特点 从第一个波形图可以看出,它的波形与正弦函数sin(t)的相像,只是相位上有改变,是一个正弦信号。最大相位信号的能量集中在后面,最小相位能量集中在前面,所以第二个是一个最小相位,第四个是一个最大相位信号。第三个由于波形在t>0时没有,所以是一个零相位信号。 题目2:频谱分析与显示 一、实验目的 初步认识频谱分析

实验一 基于Matlab的数字信号处理基本

实验一 基于Matlab 的数字信号处理基本操作 一、 实验目的:学会运用MA TLAB 表示的常用离散时间信号;学会运用MA TLAB 实现离 散时间信号的基本运算。 二、 实验仪器:电脑一台,MATLAB6.5或更高级版本软件一套。 三、 实验内容: (一) 离散时间信号在MATLAB 中的表示 离散时间信号是指在离散时刻才有定义的信号,简称离散信号,或者序列。离散序列通常用)(n x 来表示,自变量必须是整数。 离散时间信号的波形绘制在MATLAB 中一般用stem 函数。stem 函数的基本用法和plot 函数一样,它绘制的波形图的每个样本点上有一个小圆圈,默认是空心的。如果要实心,需使用参数“fill ”、“filled ”,或者参数“.”。由于MATLAB 中矩阵元素的个数有限,所以MA TLAB 只能表示一定时间范围内有限长度的序列;而对于无限序列,也只能在一定时间范围内表示出来。类似于连续时间信号,离散时间信号也有一些典型的离散时间信号。 1. 单位取样序列 单位取样序列)(n δ,也称为单位冲激序列,定义为 ) 0() 0(0 1)(≠=?? ?=n n n δ 要注意,单位冲激序列不是单位冲激函数的简单离散抽样,它在n =0处是取确定的值1。在MATLAB 中,冲激序列可以通过编写以下的impDT .m 文件来实现,即 function y=impDT(n) y=(n==0); %当参数为0时冲激为1,否则为0 调用该函数时n 必须为整数或整数向量。 【实例1-1】 利用MATLAB 的impDT 函数绘出单位冲激序列的波形图。 解:MATLAB 源程序为 >>n=-3:3; >>x=impDT(n); >>stem(n,x,'fill'),xlabel('n'),grid on >>title('单位冲激序列') >>axis([-3 3 -0.1 1.1]) 程序运行结果如图1-1所示。 图1-1 单位冲激序列

数字信号处理实验1

clc; clear; M=26;N=32;n=0:M; xa=0:M/2; xb=ceil(M/2)-1:-1:0; xn=[xa,xb]; Xk=fft(xn,512); Xk1=abs(Xk); X32k=fft(xn,32); X32k1=abs(X32k); x32n=ifft(X32k); X16k=X32k(1:2:N); X16k1=abs(X16k); x16n=ifft(X16k,N/2); figure(1); subplot(3,2,1); stem(Xk1); subplot(3,2,2); stem(X32k1); subplot(3,2,3); stem(x32n); subplot(3,2,4); stem(X16k1); subplot(3,2,5); stem(x16n); Lx=41;N=5;M=10; hn=ones(1,N);hn1=[hn zeros(1,Lx-N)]; n=0:Lx-1; xn=cos(pi*n/10)+cos(2*pi*n/5); yn=fftfilt(hn,xn,M); figure(1); subplot(3,1,1); stem(hn1); subplot(3,1,2); stem(xn); subplot(3,1,3); stem(yn);

clc; clear; n=0:31; A=3; y=A*exp((0.8+j*314)*n); subplot(2,1,1); stem(y); Az=[0.7 0.3]; Bz=[1 -0.8 -0.5]; subplot(2,1,2); zplane(Bz,Az);

数字信号处理上机实验答案(全)1

第十章 上机实验 数字信号处理是一门理论和实际密切结合的课程,为深入掌握课程内容,最好在学习理论的同时,做习题和上机实验。上机实验不仅可以帮助读者深入的理解和消化基本理论,而且能锻炼初学者的独立解决问题的能力。本章在第二版的基础上编写了六个实验,前五个实验属基础理论实验,第六个属应用综合实验。 实验一 系统响应及系统稳定性。 实验二 时域采样与频域采样。 实验三 用FFT 对信号作频谱分析。 实验四 IIR 数字滤波器设计及软件实现。 实验五 FIR 数字滤波器设计与软件实现 实验六 应用实验——数字信号处理在双音多频拨号系统中的应用 任课教师根据教学进度,安排学生上机进行实验。建议自学的读者在学习完第一章后作实验一;在学习完第三、四章后作实验二和实验三;实验四IIR 数字滤波器设计及软件实现在。学习完第六章进行;实验五在学习完第七章后进行。实验六综合实验在学习完第七章或者再后些进行;实验六为综合实验,在学习完本课程后再进行。 10.1 实验一: 系统响应及系统稳定性 1.实验目的 (1)掌握 求系统响应的方法。 (2)掌握时域离散系统的时域特性。 (3)分析、观察及检验系统的稳定性。 2.实验原理与方法 在时域中,描写系统特性的方法是差分方程和单位脉冲响应,在频域可以用系统函数描述系统特性。已知输入信号可以由差分方程、单位脉冲响应或系统函数求出系统对于该输入信号的响应,本实验仅在时域求解。在计算机上适合用递推法求差分方程的解,最简单的方法是采用MA TLAB 语言的工具箱函数filter 函数。也可以用MATLAB 语言的工具箱函数conv 函数计算输入信号和系统的单位脉冲响应的线性卷积,求出系统的响应。 系统的时域特性指的是系统的线性时不变性质、因果性和稳定性。重点分析实验系统的稳定性,包括观察系统的暂态响应和稳定响应。 系统的稳定性是指对任意有界的输入信号,系统都能得到有界的系统响应。或者系统的单位脉冲响应满足绝对可和的条件。系统的稳定性由其差分方程的系数决定。 实际中检查系统是否稳定,不可能检查系统对所有有界的输入信号,输出是否都是有界输出,或者检查系统的单位脉冲响应满足绝对可和的条件。可行的方法是在系统的输入端加入单位阶跃序列,如果系统的输出趋近一个常数(包括零),就可以断定系统是稳定的[19]。系统的稳态输出是指当∞→n 时,系统的输出。如果系统稳定,信号加入系统后,系统输出的开始一段称为暂态效应,随n 的加大,幅度趋于稳定,达到稳态输出。 注意在以下实验中均假设系统的初始状态为零。 3.实验内容及步骤 (1)编制程序,包括产生输入信号、单位脉冲响应序列的子程序,用filter 函数或conv 函数求解系统输出响应的主程序。程序中要有绘制信号波形的功能。 (2)给定一个低通滤波器的差分方程为

数字信号处理 实验一

数字信号处理实验一 序列的绘图 一、实验目的: 1.了解MATLAB的实验环境; 2.充分熟悉subplot函数的使用; 3.能够画出单位脉冲序列及单位阶跃序列的图形; 4.能够画出矩形序列及正弦序列的图形。 二、实验步骤: 1.打开MATLAB,了解三个区域(工作区、命令区、历史记录区)的作用; 2.用help查找subplot函数的使用情况; 3.编辑并生成函数impseq.m(单位脉冲序列) function [x,n] = impseq(n0,n1,n2) % 产生 x(n) = delta(n-n0); n1 <= n,n0 <= n2 % [x,n] = impseq(n0,n1,n2) if ((n0 < n1) | (n0 > n2) | (n1 > n2)) error('参数必须满足 n1 <= n0 <= n2') end n = [n1:n2]; %x = [zeros(1,(n0-n1)), 1, zeros(1,(n2-n0))]; x = [(n-n0) == 0]; 以及函数stepseq.m(单位阶跃序列) function [x,n] = stepseq(n0,n1,n2) % 产生 x(n) = u(n-n0); n1 <= n0 <= n2 % [x,n] = stepseq(n0,n1,n2) if ((n0 < n1) | (n0 > n2) | (n1 > n2)) error('参数必须满足n1 <= n0 <= n2') end n = [n1:n2]; %x = [zeros(1,(n0-n1)), ones(1,(n2-n0+1))]; x = [(n-n0) >= 0]; 主函数test1.m n=[-5:5];

数字信号处理实验1概论

数字信号处理实验2 ——离散系统频率响应和零极点分布姓名:李倩 学号:13081403 班级:通信四班 指导教师:周争

一.实验原理 离散时间系统的常系数线性差分方程: ∑ak*y(n-k)=∑br*x(n-r) 求一个系统的频率响应: H(e^jw)=(∑br*e^(-jwr))/( ∑ak*e^(-jwk)) 其中的r和k都是从零开始的。H(e^jw)是以2pi为周期的连续周期复函数,将其表示成模和相位的形式: H(e^jw)=|H(e^jw)|*e^(jarg[H(e^jw)]) 其中|H(e^jw)|叫做振幅响应(幅度响应),频率响应的相位arg[H(e^jw)]叫做系统的相位响应。 将常系数线性差分方程的等式两边求FT,可以得到系统的频率响应与输入输出的频域关系式: H(e^jw)=Y(e^jw)/X(e^jw) 将上式中的e^jw用z代替,即可得系统的系统函数: H(z)=Y(z)/X(z) H(z)=∑h(n)*z^(-n)(n的取值从负无穷到正无穷) H(z)=( ∑br*z^(-r))/( ∑ak*z^(-k)) 将上式的分子、分母分别作因式分解,可得到LTI系统的零极点增益表达式为: H(z)=g∏(1-zr*z^(-1))/∏(1-pk*z^(-1)) 其中g为系统的增益因子,pk(k=1,2,3,…,N)为系统的极点,zr(r=1,2,3,…,M)为系统的零点。通过系统的零极点增益表达式,可

以判断一个系统的稳定性,对于一个因果的离散时间系统,若所有的极点都在单位圆内,则系统是稳定的。 二.实验内容 一个LTI离散时间系统的输入输出差分方程为 y(n)- 三.程序与运行结果 (1)编程求上述两个系统的输出,并分别画出系统的输入和输出波形 程序:

数字信号处理基础综合复习题

数字信号处理模拟试题1(2014年秋季学期) 1. 已知模拟信号013()cos()cos()4 a x t t t =Ω+Ω, 其中,44012210/, 10/63 rad s rad s ππΩ= ?Ω=? 以f s =10kHz 进行采样,得到()x n 。 (1)判断是否满足采样定理要求并说明原因; (2)写出序列()x n 的表达式,并求其周期; (3)截取N 点长序列利用DFT 进行频谱分析,要分辨出各个频率分量,N 的最小值为多少? 2. 一个15点长序列x(n)和6点长序列y(n)(第一个非零点均从n=0开始),各作15点DFT ,得到X(k)和Y(k),再求X(k)Y(k)的IDFT ,得到f(n),问 f(n)的哪些点对应于 x(n)*y(n)应该得到的点? 3.序列x(n)长度为N (N 为偶数),且满足()(2),0,1,...,21x n x n N n N =-+=-,证明: x(n)的N 点DFT X(k)仅有奇次谐波,即:X(k)=0,k 为偶数 4. 设()j X e ω为序列1()()2n x n u n ??= ???的傅里叶变换。令()y n 表示一个长度为10的有限长序列,其10点DFT 用()Y k 表示,已知21010()()()j k Y k X e R k π=,即()Y k 对应于()j X e ω的(0,2)π区间上的10个等间隔样本。求()y n 。 5. 设有一谱分析用的信号处理器,抽样点数必须为2的整数幂,假定没有采用任何特殊数据处理措施,要求频率分辨力≤10Hz ,如果采用的抽样时间间隔为0.1ms ,试确定 (1)最小记录长度; (2)允许处理的信号的最高频率; (3)在一个记录中的最少点数。 6.已知某系统的系统函数为12112921123()11111423 z z H z z z z -------=?+-+ (1)画出级联型的结构流图: (2)画出直接Ⅱ型的结构流图。 (3)级联型结构与直接型结构相比有什么特点? 7. 下图为某FIR 系统的级联型流图。 x

相关文档
最新文档