工程结构损伤识别的柔度方法研究进展

工程结构损伤识别的柔度方法研究进展
工程结构损伤识别的柔度方法研究进展

桥梁的检测方法详细讲解

桥梁检查及检测的目的在于通过对桥梁的技术状况及缺陷和损伤的性质、部位、严重程度及发展趋势,弄清出现缺陷和损伤的主要原因,以便能分析评价既存缺陷和损伤对桥梁质量和使用承载能力的影响,并为桥梁维修和加固设计提供可靠的技术数据和依据。因此,桥梁检查是进行桥梁养护、维修与加固的先导工作,是决定维修与加固方案可行和正确与否的可靠保证。按照检查的范围、深度、方式和检查结果的用途等的不同,桥梁检查归纳为日常检查、定期检查和特殊检查。按照《公路养护技术规范》规定,日常检查和定期检查由公路管理机构和具有一定检查经验并受过专门桥梁检查培训及熟悉桥梁设计、施工等方面知识的检查工程师,按规定周期,对桥梁主体及附属结构的技术状况进行定期跟踪的全面检查,提交检查成果文件,提出养护建议,如有特殊检查需求,则限制交通进行特殊检查。 1桥梁外观检查方法与要点

外观检查包括桥梁总体性与局部构造几何尺寸的量测、结构病害的检查与量测 等,不同桥型在检查方面各有侧重点。一般来说,从总体上可将桥梁分为三部分: (1)上部结构,在梁式桥中主要指主梁; (2)下部结构,一般包括基础与承台、拱圈拱顶裂缝、墩的位移、桩以及桥台等; (3)附属结构一般应着重检查桥面铺装、伸缩缝、栏杆等,其它的还有梁桥 部分检查端部的斜裂缝与跨中部位的裂缝、挠度等检查要点。对于钢筋混凝土桥梁类型,主要是检测钢筋(保护层厚度、锈蚀状况测试)与混凝土(碳化深度、强度等级与耐久性有关的含碱量和氯离子含量);对于材料检测类型,则主要是检查桥梁结构材料的无损或微损检测,这也是当前的重点研究领域;结构资料则主要是掌握桥梁的原施工工艺、结构设计以及桥梁的结构维修养护历史等过程,从而根据相关规范作为标准分析桥梁质量状况。此外,为了提高检查效率, 可采购用于桥面检测的先进高新技术仪器,如激光雷达,就是用来测量整桥;双频带红外线自动温度成像系统,可用来检测桥面;探地雷达成像系统,可用来检测桥面板等。 2荷载试验法

旋涡及防涡措施

进口旋涡及防涡、减涡措施综述 作者:黄贤荣单位:江西省水利规划设计院(现在河海大学读研)一、前言 在水工隧洞进口和抽水蓄能电站进(出)水口、水电站引水管道等入流进口,时常出现吸气漏斗旋涡。本文就进口旋涡的危害性、产生机理、影响因素及防治措施展开讨论,提供了工程切实可行的防涡方法,并列举工程实例供防涡梁设计参考。 二、旋涡的危害性 强烈的旋涡将对工程造成相当大的危害,会严重降低进流量,引起机组或结构振动,降低机组效率,卷吸漂浮物并堵塞或损坏拦污栅等,现分述如下: 1、降低泄流能力 由于气芯的存在,过流断面减小,从而过流能力降低。另外,由于存在切向运动水流,从而增加了水头损失,共同作用的结果则导致泄流能力减小。 2、形成气囊,影响洞内水流稳定 由于气囊的存在,气囊到洞口处破碎,导致有压流与无压流交替出现,因而洞内水流及出流呈现极不稳定的阵发状态。 3、增大洞身脉动压力 有资料显示,相同流量时的同一测点,在有旋涡时的脉动压力可增大2倍以上,有旋涡时水流对洞身衬砌材料的破坏不容忽视。 4、吸入水面漂浮物 水面漂浮物均可能被吸入洞口,造成洞口堵塞或损坏拦污栅等,也可能对过往船只及人员造成威胁。 三、旋涡的产生 1、旋涡产生吸气现象的原因 r,边上的旋涡的流速分布如图2,旋涡中心部分(有涡流动部分)的半径为 0 u,速度环量为R。接近旋涡中心部分,流速按双曲线规律增加而压强降流速为 低,见图3。可见旋涡中心部分的压强变化,是按抛物线规律分布的,压强随着向心面下降。说明旋涡吮吸物体的性质,以及水在旋涡处水面呈漏斗状降低的现

象。旋涡较大,即0u 较大,旋涡中心点的压强2/20 0u p p c ρ-=较小,当小到低于大气压时,旋涡将产生吸气现象。 2、旋涡的影响因素 进水口的旋涡有两种,即立轴旋涡和横轴旋涡,立轴旋涡更容易造成进气。普遍认为,旋涡运动的影响因素主要有行近水流的速度环量、进水口的淹没水深、进水口的流量(或流速)和边界条件。 在实际运行过程中,进水口处的环流一般是由地形或引渠的几何形状变化引 起的,进口结构平面布置和地形不对 称,断面上流速分布不均匀,使行近进 水口的水流具有一定的初始环量,从而 在不同流速水头下产生强度不同的旋 涡。要减轻或消除水流的环流强度,往 往采取改变边界条件的方式来达到这 一目的。 淹没水深d H /是主要因素之一, 根据试验产生吸气旋涡的d H /范围 是: 对于垂直的旋涡d H /< 3 ~ 5,对 于水平旋涡d H /< 2。因此在高水位时 问题不大,在低水位时就要注意。H 、 d 的意义,如图1所示。 Gardo 根据29个水电站进水口的 原型观测分析结果认为,最小的淹没深 度H ,与引水道口高度d ,以及闸门处的流速V 有关,即 2/1C V d H = 式中,C 为系数,当进流对称时,用0.55,当来流左右不对称时,更易发生轴旋涡,系数C 增大为0.73。 Pennino 等总结了13个侧式、井式进水口的模型试验,认为进水口的佛汝德数应小于0.23。 23.0/'<=gH V F 式中 g ——重力加速度; 'H ——进口中心线以上的最小淹没深度。 上述条件,均指行近流速流态较好,即比较均匀对称时,才不出现吸气旋涡。若设计不当,即使满足上述要求的数值,也会发生吸气旋涡;相反,如果采取一定的防涡吸气措施,即使淹没深度小于上述计算值时,也还有可能不进气。 此外,如果进水口流道不够平顺或尺寸不足,也容易发生回流、脱离和吸气。 四、防治旋涡的措施 由海姆霍兹( Hel mholts)定理知,涡管或涡丝既不能在流体中间开始亦不能终止,它必须呈闭合环形,或者从流体边界上开始和终止。可见,消涡和防涡要

浅析桥梁结构损伤检测方法

浅析桥梁结构损伤检测方法 摘要:对桥梁检测方法和技术方面进行了论述,以上塘路高架桥工程健康检测为背景,通过对既有结构状态和检测结果的分析,对未来桥梁检测提出几点建议,为桥梁的优先加固提供了依据。 关键词:桥梁检测;结构状态;优先加固 abstract: the testing methods and technology bridges are discussed in this paper, the above pond road viaduct project health detection as the background, through both structure of state and the analysis of test results, for bridge test future put forward several proposals, the priority for the bridge reinforcement to provide the basis. keywords: bridge detection; structure state; priority reinforcement 中图分类号: k928 文献标识码: a 文章编号: 0 引言 桥梁是联系城市和地区的纽带与喉咙,直接左右着公路的生命,因此,必须确保其工程质量,始终使其处于良好的工作状态。这么众多的桥梁,在主体结构建成后有无隐患?在通车运行前桥梁的状态如何?在运行中的状态如何?有没有运行隐患?如果有,是否严重到影响桥梁使用?应当重点防护或修复的部位在那里?已经使用多年的桥梁还有多少年限,由于种种原因需要立即知道桥梁当前的状态是否还适宜通行使用?能否通过重载车辆、或超过

土木工程随机风场数值模拟研究的进展

土木工程随机风场数值模拟研究的进展 来源:工业洗衣机 https://www.360docs.net/doc/de14441785.html, 风荷载是大跨空间结构、高层和高耸结构、桅式结构、大跨度桥梁等土木工程结构的主要设计荷载之一。 风荷载的确定手段主要有风洞试验、现场实测、数值模拟等。但前两类风荷载确定手段均较为复杂,且耗时耗资巨大,因而仅仅针对特定的工程结构才进行。通过数值模拟方法得到的风速时程满足风主要统计特性的任意性,而且比实际记录更具有代表性,因而在实际工程中被广泛使用。首先简要介绍大气边界层风的特性与风荷载的作用特点,接着重点讨论了土木工程风工程中平稳高斯、非平稳高斯、非高斯随机风场的模拟技术,最后对该领域的进展情况给出了一些展望。 1 风的基本特性1·1风的概述大气边界层内风特性的研究是风工程研究的基础。大气边界层是指受地球表面磨擦力影响的大气层,大气边界层的高度随气象条件、地形和地面粗糙度的不同而有差异,大致是在离地面400 m~1 000 m的范围。大气边界层内的风是大气层中空气相对地球表面的运动,一种随机的湍流流动。它的形成主要是由于大气层吸收地球表面辐射热导致空气温度、密度、湿度不均匀,从而在大气层中形成压差,引起空气流动。长期以来,人们对它进行了大量的研究工作,期望能用一个理论模型来准确描述,但未能实现。目前仅对100m 高度以下的地表层的风特性比较了解,将风特性分为平均风特性和脉动风特性来进行研究。风速观测记录表明:在较平阔的地形中,风场中某一点的风速可以分为风场内大气流动的平均速度和在此点的紊流速度(脉动风速)两个部分。前者是宏观上大

气整体运动形成的,方向一般为水平纵向,大小只与高度有关;后者是局部的紊流运动形成的,由于紊流的随机性,风场中各点的脉动风速各不相同。因此,可以对平均速度和脉动速度分别进行计算,再迭加得到总的风速。 在笛卡尔坐标系下,三维风场中任一点的风速可以表示为:U =U(z) +u(x,y,z, t)v =v(x,y,z, t)w =w(x,y,z, t)(1)式中:x轴为横向,即风的主流方向;y轴为纵向,与风的主流方向垂直;z轴为竖向,亦与风的主流方向垂直;U(z)为主流方向的平均风速;u(x,y,z, t)、v(x,y,z, t)、w(x,y,z, t)为脉动风速在三个方向上的投影,大小随时间变化; t表示时间。 由于自然风在x、y、z三个方向上的脉动分量间的相关性较弱,且目前对三个脉动分量之间的相关关系缺乏卓有成效的研究,实际应用中通常不考虑风速在x、y、z三个方向之间的相关性,而仅考虑风速在空间上的相关性,从而在理论上将三维相关的风场简化为三个方向上独立的一维风速场,亦即将三维相关的多变量随机过程简化为三个独立的一维多变量随机过程。 1·2平均风特性平均风特性包括平均风速、平均风向、风速廓线和风频曲线。大气流动平均风速受天气变化的影响比较大,在不考虑剧烈的天气变化(台风)情况下,根据每10 min间隔的大气流动速度的平均值来计算。平均风速沿着高度变化的规律即风速廓线是表征风特性的最重要指标之一。风速廓线可以用对数律或指数律表示: UUs=zzsα或UUs=ln(z/z0)ln(zs/z0)(2)其中:Us为标准高度zs处平均风速;α为地面粗糙度系数;z0为地面粗糙度。对数形式对于近地面的下部摩擦层较适合,可以很好地表达高度较低(离地100 m以下)大气层的强风轮廓。指数形式在地面

工程中风压-风荷载理论定义和计算方法

第一章风、风速、风压和风荷载 第一节风的基本概念 风是空气从气压大的地方向气压小的地方流动而形成的。气流一遇到结构的阻塞,就形成高压气幕。风速愈大,对结构产生的压力也愈大,从而使结构产生大的变形和振动。结构物如果抗风设计不当,或者产生过大的变形会使结构不能正常地工作,或者使结构产生局部破坏,甚至整体破坏。 风引起对结构作用的风荷载,是各种工程结构的重要设计荷载。风荷载对于高耸结构(如塔、烟囱、桅杆等)、高层房屋、桥梁、起重机、冷却塔、输电线塔、屋盖等高、细、长、大结构,常常起着主要的作用。因而,风力的研究,对工程结构,特别对上述工程结构,是设计计算中必不可少的一部分。 对结构安全产生影响的是强风,可分为热带低压、热带风暴、台风或飓风、寒潮风暴、飑风、龙卷风等。 不同的季节和时日,町以有不同的风向,给结构带来不同的影响。每年强度最大的风对结构影响最大,此时的风向常称为主导风向,可从该城市(地区)的风玫瑰图得出。由于风玫瑰图是由气象台得出的,建筑所在地的实际风向可能与此不同,因而在结构风丁程上,除了某些参数需考虑风向外,一般都可假定最大风速出现在各个方向上的概率相同,以较偏于安全地进行结构设计。关于需考虑风向的参数将在下面有关章节中加以说明。 风可以有一定的倾角,相对于水平一般最大可在±10°到—10°内变化。这样,结构上除水平分风力外,还存在上下作用的竖向分风力。竖向分风力对细长的竖向结构,例如烟囱等,一般只引起竖向轴力的变化,对这类工程来讲并不重要,因而只有像大跨度屋盖和桥梁结构,竖向分风力才应该引起我们的注意。但其值也较水平风力为小,但属于同一数量级。 根据大量风的实测资料可以看出,在风的时程曲线中,瞬时风速。包含两种成分:一种是长周期部分,其值常在10min以上;另一种是短周期部分,常只有几秒左右。图1—1是风从开始缓慢上升至稳定值后的一个时程曲线示意图。根据上述两种成分,实用上常把风分为平均风(即稳定风)和脉动风(即阵风脉动)来加以分析。平均风是在给定的时间间隔内,把风对建筑物的作用力的速度、方向以及其他物理量都看成不随时间而改变的量,考虑到风的长周期远远地大于一般结构的自振周期,因而这部分风 虽然其本质是动力的,但其作用与静力作用相近,因此可认为,其作用性质相当于静力。脉动风是由于风的不规则性引起的,它的强度是随时间按随机规律变化的。由于它周期较短,因而应按动力来分析,其作用性质完全是动力的。 研究表明,脉动风的影响与结构周期、风压、受风面积等有直接影响,这些参数愈大,影响也愈大,兼之结构上还有平均风作用,因而对于高、细、长、大等柔性结构,风的影响起着很大的、甚至决定性的作用。 第二节风力强度表示法 不同的风有不同的特征,但它的强度常用风速来表达。最常用的风速分类有两种,即范围风速和工程风速。 一、范围风速 将风的强度划分为等级,用一般风速范围来表达。常用的有:蒲福风速表;福基达龙卷风风力等级表。 (一)蒲福风速表

生物工程的最新进展和研究热点

当今世界,我们所处的这个时代,是科学技术飞速发展、知识信息爆炸的知识经济时代,世界各国都在相互竞争,竞争的焦点集中在科学技术上,谁的科技发达,谁的综合国力就强大。 现在世界七大高新技术分别是:现代生物技术、航天技术、信息技术、激光技术、自动化技术、新能源技术和新材料技术。 其中生物技术列在首位,生物技术之所以令世界各国如此重视,是因为它是解决人类所面临的诸如食物短缺、人类健康、环境污染和资源匮乏等重大问题上有着不可比拟的优越性,还因为它与理、工、农、医等科技的发展、与伦理道德、法律等社会问题都有着密切的关系。 高新技术的重要特征之一是学科横向渗透,纵向加深,综合交错,发展迅速。所以世界各国争相投巨资发展,确定生物技术为21世纪经济和科技发展的优先领域。 基因工程 基因工程( 又称DNA 重组技术、基因重组技术) , 是20 世纪70 年代初兴起的技术科学, 是用人工的方法将目的基因与载体进行DNA重组, 将DNA 重组体送入受体细胞, 使它在受体细胞内复制、转录、翻译, 获得目的基因的表达产物。这种跨越天然物种屏障, 把来自任何生物的基因置于毫无亲缘关系的新的寄主生物细胞之中的能力, 是基因工程技术区别于其他技术的根本特征。 基因工程技术是一项极为复杂的高新生物技术, 它利用现代遗传学与分子生物学的理论和方法, 按照人类所需, 用DNA 重组技术对生物基因组的结构和组成进行人为修饰或改造, 从而改变生物的结构和功能, 使之有效表达出人类所需要的蛋白质或人类有益的生物性状。基因工程从诞生至今, 仅有30 年的历史, 然而, 无论是在基础理论研究领域, 还是在生产实际应用方面, 都已取得了惊人的成绩。首先,基因工程给生命科学自身的研究带来了深刻的变化。目前科学家已完成了多种细胞器的基因组全序列测定工作。其次, 基因工程具有广泛的应用价值, 能为工农业生产、医药卫生、环境保护开辟新途径。 基因组研究应该包括两方面的内容:以全基因组测序为目标的结构基因组学和以基因功能鉴定为目标的功能基因组学,又被称为后基因组研究,成为系统生物学的重要方法。 我国在结构生物学研究方面具有较好的基础。60年代,我国科学家在世界上首次人工合成了胰岛素;70年代初又测定出1.8 埃; 分辨率的猪胰岛素三维结构,成为世界上为数不多的能够测定生物大分子三维结构的国家,这些研究工作处于当时的世界先进水平。 基因克隆是70年代发展起来的一项具有革命性的研究技术,可概括为∶分、切、连、转、选。 "分"是指分离制备合格的待操作的DNA,包括作为运载体的DNA和欲克隆的目的DNA;"切"是指用序列特异的限制性内切酶切开载体DNA,或者切出目的基因;"连"是指用DNA连接酶将目的DNA同载体DNA连接起来,形成重组的DNA分子;"转"是指通过特殊的方法将重组的DNA 分子送入宿主细胞中进行复制和扩增;"选"则是从宿主群体中挑选出携带有重组DNA分子的个体。基因工程技术的两个最基本的特点是分子水平上的操作和细胞水平上的表达,而分子水平上的操作即是体外重组的过程,实际上是利用工具酶对DNA分子进行"外科手术"。DNA克隆涉及一系列的分子生物学技术,如目的DNA片段的获得、载体的选择、各种工具酶的选用、体外重组、导入宿主细胞技术和重组子筛选技术等等。从不同的重组DNA分子获得的转化子中鉴定出含有目的基因的转化子即阳性克隆的过程就是筛选。目前发展起来的成熟筛选方法如下:(一)插入失活法 外源DNA片段插入到位于筛选标记基因(抗生素基因或β-半乳糖苷酶基因)的多克隆位点后,

哈工大结构风工程课后习题答案

结构风工程课后思考题参考答案 二、大气边界层风特性 1 对地表粗糙度的两种描述方式:指数律和对数律(将公式写上)。 2 非标准地貌下的风速换算原则(P14)和方法(P15公式)。 3 脉动风的生成:近地风在流动过程中由于受到地表因素的干扰,产生大小不同的涡旋,这些涡旋的迭加作用在宏观上表现为速度的随机脉动。在接近地面时,由于受到地表阻力的影响,导致风速减慢并逐步发展为混乱无规则的湍流。 脉动风的能量及耗散机制:而湍流运动可以看做是能量由低频脉动向高频脉动过渡,并最终被流体粘性所耗散的过程。在低频区漩涡尺度较大,向中频区(惯性子区)、高频区(耗散区)漩涡尺度逐渐减小,小尺度涡吸收由惯性子区传递过来的能量,能量最终被流体粘性所耗散。 4 Davenport谱的特点:先写出公式 通过不同水平脉动风速谱的比较: (1)D谱不随高度变化,而其他谱(如Kaimal谱、Solari谱、Karman谱)则考虑了近地湍流随高度变化的特点;(D谱不随高度变化,在高频区符合-5/3律,没有考虑近地湍流随高度变化的特点;) (2)D谱的谱值比其它谱值偏大,会高估结构的动力反应,计算结果偏于保守。 (3)S u(0)=0,意味着L u=0,与实际不符。 5 湍流度随高度及地面粗糙程度的变化规律:随地面粗糙度的增大而增大,随高度的增加而减小。 积分尺度随高度及地面粗糙程度的变化规律:大量观测结果表明,大气边界层中的湍流积分尺度是地面粗糙度的减函数,而且随着高度的增加而增加。 功率谱随高度及地面粗糙程度的变化规律:随着高度增大和粗糙度的减小,能量在频率上的分布趋于集中,谱形显得高瘦;随着高度减小和粗糙度的增大,能量在频率上的分布趋于分散,谱形显得扁平。 相干函数随高度及地面粗糙程度的变化规律:随地面粗糙度的增大而减小,随高度的增加而增大。 6 阵风因子与峰值因子的区别:阵风因子G=U’/U,是最大风速与平均风速的比值;峰值因子g=u max/σu是最大脉动风速与脉动风速均方根的比值。 联系:二者可以相互换算:G=(U’+gσu)/U’=1+gσu/U’=1+gI U。 三、钝体空气动力学理论 1 钝体绕流的主要特征有: (1)粘性效应:气体粘性随温度升高而增大,液体粘性随温度升高而减小。

桥梁结构健康监测

桥梁结构健康监测

目录 1. 桥梁结构健康监测的概念 0 2. 桥梁结构健康监测系统 0 2.1. 监测内容 0 2.2. 数据传输 (1) 2.3. 数据分析处理和控制 (2) 2.4. 大型桥梁结构健康监测系统 (2) 2.5. 桥梁结构健康监测的现状与发展方向 (3) 3. 桥梁结构健康监测系统的意义 (4) 3.1. 桥梁结构健康监测系统的主要作用包括: (4) 3.2. 桥梁健康监测意义 (4) 4. 现有桥梁结构监测系统存在的问题 (5) 5. 结语 (6)

桥梁结构健康监测 1.桥梁结构健康监测的概念 交通是社会的经济命脉,桥梁是交通的咽喉,交通不畅会制约社会的经济发展,所以保障桥梁的功能性、耐久性,尤其是安全性至关重要。为保证桥梁安全运行、避免严重事故发生,对桥梁结构进行健康监测应运而生,桥梁结构健康监测是以科学的监测理论与方法为基础,采用各种适宜的检验、检测手段获取数据,为桥梁结构设计方法、计算假定、结构模型分析提供验证;对结构的主要性能指标和特性进行分析,及早预见、发现和处理桥梁结构安全隐患和耐久性缺陷,诊断结构突发和累计损伤发生位置与程度,并对发生后果的可能性进行判断与预测。通过对桥梁结构健康状态的监测与评估,为桥梁在各种气候、交通条件下和桥梁运营状况异常时发出预警信号,为桥梁维护、维修与管理措施提供依据,并通过及时采取措施达到防止桥梁坍塌、局部破坏,保障和延长桥梁的使用寿命的目的。 2.桥梁结构健康监测系统 2.1.监测内容 数据采集与测量的内容主要为:变形(沉降、位移、倾斜)、应力、动力特性、温度、外观检测等。 1)变形监测 采取适宜的测量手段,对桥梁主体结构关键部位的沉降、位移、倾斜量进行监测。常用监测变形的方法有:导线测量法、几何水准测量法、GPS测定三维位移量法、自动极坐标实时差分测量法和自动全站仪三维坐标非接触量测等。 2)应力监测 桥梁运营状态中主体结构的应力变化是由于主体结构的外部条件和内部状态变化引起

结构风工程研究进展

2. CFD数值模拟 计算流体力学(简称CFD)的理论基础是在流体基本方程(连续性方程、动量守恒方程、能量守恒方程)控制下,通过不同的离散方法建立离散点的集合(即用离散点来代替流体运动中在时间域和空间域上连续的场变影,求解这些离散点上变量间关系的代数方程组,其求解结果即为场变量的近似值。通过CFD模拟,我们可以得到复杂问题的流场内各个位置上的基本物理量(如速度、压力等)的分布,以及这些物理量随时间的变化情况图. 3 CFD数值模拟影响因素分析 计算区域、进口边界条件、湍流模型和网格划分等各种相关因素对CFD数值模拟结果准确度都有影响。研究结果表明,在各种影响因素中,计算区域影响相对较小,而进口边界条件、网格划分和湍流模型的影响相对较大,而且进口边界条件中速度分布对计算结果的影响大于湍流强度分布对计算结果的影响,是进口边界条件中的关键部分。同时,CFD模拟还要在计算机资源的限制下,在尽可能模拟实际流场的条件下,需对计算域的大小、边界条件的设定方而做相应简化和选择。 4 CFD湍流模型的选择 目前,湍流模型主要有:标准的k-ε模型,RNG k-ε模型,k-εω模型,剪切应力输运(SST) k-ω模型,SSG RSM模型和BSL RSM模型。各类湍流模型或多或少存在一些不足,因而构建新的模型或者改进现有模型,使其适合结构风工程计算仍然是CFD研究的一项课题。 8结论 CFD技术是结构风工程研究的巨大飞跃,CFD计算所得平均风场特性已经被工程实践所认可,而且已达到实用化程度,针对工程实际,选用合理的数值模拟技术使其更广泛的应用于科研和工程中是关键所在;大涡模拟技术也在国内外取得了喜人的进展,用大涡模拟能真实地再现建筑物结构表而湍流特性,已然成为结构风工程研究的热点,但大涡模拟也存在计算量大、数值稳定性不好等问题,丞待研究解决。. 2 1湍流模型与数值参数选择 基于通常流线体流动规律适用的湍流模式对于结构风场这类特殊的流动现

浅析结构风工程的研究方法

浅析结构风工程的研究方法 摘要:结构风工程是土木工程领域的一个热门话题,已经引起了越来越多人的关注和研究。本文介绍了结构风工程的历史,脉动风的概率特性,并总结了结构风工程的研究方法,可以为结构风工程的研究提供一定参考。 关键词:结构风工程;脉动风;研究方法;健康监测 一. 结构风工程的历史 工程结构的抗风是工程结构设计必须面对的重大课题。结构风工程就是研究风和结构的相互作用, 亦称结构风效应问题, 特别是动力风效应,即风致振动问题。 风工程的第一个历史转折点是1760年,John Smenton提出了最早的风力计算公式:。第一个转折点的意义是对于平均风作用的认识。 第二个历史转折点是1879年泰河铁路桥梁的倒塌和1889年埃菲尔铁塔的建成。泰河铁路桥是一个84跨的铁桁架桥,被一阵30-35m/s 的风吹倒,而此桥梁的设计风速是36m/s. 埃菲尔铁塔在设计的时候就考虑了脉动风的影响。第二个转折点的意义是认识到了脉动风的影响。 第三个历史转折点是1940年,美国塔科马大桥的倒塌。塔科马悬索桥主跨853米,建好不到4个月,就在一场风速不到20m/s的在海峡产生上下和来回扭曲振动而倒塌了。第三个转折点的意义是人们认识到了风的动力作用。 21世纪结构长大化、高耸化以及外形复杂化的趋势使结构风工程研究面临新的挑战, 需要对现行的理论和方法进行精细化的改进和发展, 同时开展有效风振控制方法的研究, 为解决大型复杂结构的风工程问题作好准备。 二. 脉动风的概率特性 风荷载包括平均风对结构的静力荷载和脉动风对结构的动力荷载。脉动风荷载是随机荷载,它使结构产生随机振动。要分析结构在脉动风作用下的随机响应,必须了解脉动风的概率特性,包括其概率分布、功率谱、空间相关性等。 脉动风特性包括脉动风速、风向变化、湍流强度、湍流积分尺度、脉动风功率谱和空间相关系数等。脉动风特性对工程结构的风荷载和风响应有重要的影响,是大气边界层中风特性研究的重点。目前主要困难是缺少对大气湍流运动的实测数据,因此,在工程结构设计中选用风参数时不尽合理,一般偏于保守。另外,以风谱而言,目前国际上通用的是Davenport谱、Harris谱和Kaimal谱,它们是属于中性大气稳定度下的功率谱,其谱峰及峰值频率不尽相同。 脉动风速功率谱须由强风观测得到的风速记录得出。常有两种途径:

桥梁健康监测答案

第1题桥梁健康监测的主要内容为() A、外部环境监测,通行荷载监测,结构关键部位内力监测,结构几何形态监测,结构自 振特性监测,结构损伤情况监测等; B、风载、应力、挠度、几何变位、自振频率; 广| C、外观检查、病害识别、技术状况评定; D、主要材质特性、承载能力评定。 第2题对于连续刚构桥梁外部环境监测的最重要内容为 () A风速、风向; B、温度; C湿度; 广D降雨量; 第3题通行荷载监测重点关注参数为() A、通行车辆尺寸和数量; -B、通行车辆的轴重和轴距,交通流量; yd C、大件运输车辆; D、超限运输车辆。 第4题下列哪项不是桥梁结构关键部位内力主要监测内容() ' A、斜拉桥索力; 厂一B、梁式桥主梁跨中截面应力; C钢管混凝土拱桥的拱脚截面应力; "'I D、梁式桥桥墩内力。

第5题下列哪项不是结构几何形态主要监测内容 () 广A、连续刚构桥的墩底沉降; :厂| B、连续梁桥的主梁挠度; 冷| C系杆拱桥的吊杆伸长量;拱桥 厂D斜拉桥墩(塔)顶偏位。 第6题某桥梁监测结果发现该桥的自振频率有逐渐降低趋势,表明该桥()广A、刚度增大,振动周期变长,技术状况好; 广I B、刚度增大,振动周期变短,技术状况好; ^*| C、刚度降低,振动周期变长,技术状况变差; D、刚度降低,振动周期变短,技术状况变差。 第7题结构损伤监测内容不含() A、损伤部位、范围; B、、损伤类型; C、损伤开展情况; * D、损伤原因。 第8题下列不属于桥梁健康监测使用的环境监测设备的是 () A、风速仪; B、风向仪; C雨量计和蒸发计; 厂 D温度传感器。

桥梁结构健康监测系统的意义

桥梁结构健康监测系统的意义 桥梁结构健康监测系统的主要作用包括: 1) 设计验证,确保 桥梁安全;2) 及时发现桥梁损伤;3) 为桥梁维护管理提供技术依 据;4) 辅助桥梁日常交通管理 尽管( 截止到2006年) 我们国家现有桥梁已经达到了50万 余座,但是有些地方的桥梁管理者对现有桥梁的管理仍然是被 动式的,也就是当桥梁发生安全事故的时候才对桥梁进行维护 ( 检测和加固) 这种被动式的管理不可避免的会带来桥梁安全 事故的频繁发生 结构检测与健康监测概况工程结构一般会受到两种损伤一突发性损伤和累积性损伤。突发性损伤由突发事件引起,使损伤在短期内达到或超过一定限值;累积损伤则有缓慢积累的性质,达一定程度会引起破坏影响安全和使用。健康检测能够在突发性损伤发生时及时做出判断和警报,以便采取处理措施,防止发生进一步的破坏和引发其它事故。对于累积损伤,能够定期对损伤的状态做出描述,以便根据情况采取相应措施。二、桥梁健康监测意义(一)监控与评估。桥梁健康检测的基本内涵是通过对桥梁结构状态的监控与评估,为工程在特殊气候、交通条件下或运营状况严重异常时发出预警信号,为桥梁维护、维修与管理决策提供依据和指导。为此,监测系统通常对以下几个方面进行监控:①桥梁结构在正常环境与交通条件下运营的物理与力学状态;②桥梁重要非结构构件和附属设施的工作状态;③结构构件耐久性;④工程所处环境条件等等。(二)设计验证。由于大型桥梁的力学和结构特点以及所处的特定环境,在大桥设计阶段安全掌握和预测其力学特性和行为特性是非常困难的。因此,通过桥梁健康检测所获得的实际结构的动静力行为来检验大桥的理论模型和计算假定具有重要意义。不仅对设计理论和设计模型有验证作用,而且有益于新的设计理论的形成。(三)研究与发展。桥梁健康监测带来的将不仅是监测系统和某种特定桥梁设计的反思,它还可能并成为桥梁研究的现场实验室。由于运营中的桥梁结构及其环境所获得信息不仅是理论研究和实验室调查的补充,而且可以提供有关结构行为与环境规律的最真实的信息。三、健康监测系统(一)大型桥梁健康监测系统。大型桥梁健康监测系统一般应包括以下几部分内容: 1、传感系统。由传感器、二次仪表及高可靠性的工控机等部分组成。 2、信号采集与处理系统。实现多种信息源、不同物理信号的采集与预处理,并根据系统功能要求对数据进行分解、变换以获取所需要的参数,以一定的形式存储起来。 3、通信系统。将处理过的数据传输到监控中心。 4、监控中心。利用可实现诊断功能的各种软硬件对接收到的数据进行诊断,包括结构是否受到损伤以及损伤位置、损伤程度等。传感器监测到的实时信号,经过采集与处理曲通信系统传送到监控中心进行分析和判断,从而对结构的健康状况作出评估。若结构出现异常行为,则由监控中心发出预警信号,并对检测出来的损伤进行定性、定位和定量分析同时提供维修建议。(二)信号的分析与处理。桥梁结构的健康状况是由测试的信号来

桥梁结构检测与鉴定

桥梁结构检测与鉴定 学号: 姓名: 专业: 2014年12月19日

桥梁结构检测与鉴定 一、桥梁结果检测与鉴定概述 1.1 我国公路桥梁现状 截至2008年底,我国共有公路桥梁59 万座,其中混凝土结构桥梁占90%以上,已成为世界在用桥梁的大国。但随时间的增长,桥梁耐久性、安全性降低,我国公路路网有3万余座危桥急需加固改造,桥梁维修加固与养护管理面临诸多的世界性难题,是国内外桥梁界研究的热点。而在我国公路桥梁中大部分主要分布在技术标准低、通行能力差的县乡公路上,设计荷载标准大多为汽—13、拖—60 或汽—15、挂—80,其中还有相当一部分桥梁的荷载标准仅为汽—10, 履带—50,甚至低于汽车—10 级。桥梁长期在自然环境(大气腐蚀、温度、湿度变化) 和使用环境(荷载作用与频率的增加、材料与结构的疲劳)的作用下,总会逐渐产生损坏现象,这是一个不可逆转的过程。我国早期建造的桥梁大量使用钢筋混凝土结构,这些桥梁现已运营20~40 年,大多混凝土桥梁将步入老化期,这些桥梁处于一种带病、超负荷工作状态。桥梁承载能力低、通行能力差是我国公路路网通行能力低的一个重要影响因素。如何对桥梁实际状态做出评估,确切评定其承载能力,以便采用科学合理的经济适用方法进行加固、加宽等的技术改造,改善其适应度,提高公路路网通行能力,这是我国公路管养部门今后相当长的一段时期内所面临的一大紧迫任务。 1.2 保证桥梁运营安全的对策开展桥梁检测、评定与维修加固,是保证桥梁安全服役,保证路网畅通的重要举措。多年来国内很多专家学者在这一技术领域开展了比较系统的研究,主要技术内容围绕:1、桥梁状况与使用功能评价;2、耐久性状况与承载能力评定;3、维修加固;4、试验检测技术及其关键设备 二、桥梁检测工作程序及项目目前桥梁养护管理制度下,我国桥梁检查的分类按照检查的范围、深度、方式和检查结果的用途等的不同,大致可归纳为下列三类:1、经常检查(巡视检查、日常检查);2、定期检查;3、特殊检查。

进入21世纪的桥梁风工程研究

收稿日期:2001-11-10 作者简介:项海帆(1935-),男,浙江杭州人,教授,博士生导师,中国工程院院士.进入21世纪的桥梁风工程研究 项海帆 (同济大学土木工程防灾国家重点实验室,上海 200092) 摘要:对21世纪初桥梁风工程的重点方向进行展望,从桥梁风振理论的精细化、桥梁风振机理研究、计算流体 动力学(CFD)的应用、气动参数识别的改进和超大跨度桥梁的抗风对策等几个方面说明其重要性以及研究的主 攻方向,以期在新世纪初利用我国大规模桥梁建设的有利形势,使我国的桥梁风工程研究通过创新,实现跨越式 前进,达到世界先进水平. 关键词:大跨度桥梁;风工程;展望 中图分类号:U 441.3 文献标识码:A 文章编号:0253-374X(2002)05-0529-04 Study on Bridge Wind Engineering into 21st Century X IANG H ai -f an (State Key Lab oratory for Disaster Red uction in Civil Engineering,Tongji University,Shanghai 200092,China) Abstract :The paper presents a prospect on the bridge w ind engineering in the beginning of the 21st century,which in -cludes several researc h aspects such as the refinement to the theory of wind-induc ed vibration,the mechanism of wind -induced vibration,the c omputational fluid dynamic s applications,the modification in identifying aerodynamic parame -ters and the wind-resistant c ountermeasures for super long-span https://www.360docs.net/doc/de14441785.html,ing the favorable situation of large scale bridge c onstruction into new century,the study on bridge w ind engineering in China may be expected to have a big step progress through innovative efforts and to reach the world .s advanced level. Key words :longspan bridges;w ind engineering;prospect 在20世纪桥梁工程取得巨大成就的基础上,21世纪的世界桥梁工程将进入建设跨海联岛工程的新时期.日本和丹麦两个岛国是先驱者,日本本州)四国联络线工程和丹麦大小海带桥的建成是20世纪的里程碑,日本和丹麦也由此成为后起之秀的世界桥梁强国. 在21世纪上半叶,已经规划多年的洲际跨海工程,如欧非直布罗陀海峡通道,欧亚博斯普鲁斯海峡第三通道以及欧美白令海峡工程将有可能付诸实现.在欧洲,英伦三岛、挪威沿海诸岛、德国和丹麦之间的费曼海峡以及意大利的墨西拿海峡也都将实施跨海工程建设.在亚洲,东北亚的日本和朝鲜有可能通过朝鲜海峡的跨海工程建设陆路通道.日本继本四联络线后还将实施/第二国土轴0计划,通过多座跨海(海峡和海湾)工程建设沿太平洋海岸的高速公路干线. 中国的崛起令世界瞩目.在完成五纵七横主干公路网建设的同时,也已开始跨海工程的前期工作.如上海的崇明越江通道和杭州湾通道,珠江口的伶仃洋通道都在进行工程可行性的研究,舟山联岛工程也已开始实施.可以预计21世纪的中国将在桥梁建设中做出辉煌的成就,屹立于世界桥梁强国之列. 21世纪的跨海大桥工程中将会出现许多超大跨度的斜拉桥和悬索桥,以避开超深水基础的困难和满足超大型船舶的通航要求,这就给桥梁风工程研究带来新的挑战.在台风多发的海域建造柔性的超大跨度桥梁,抗风安全将是最重要的控制因素.目前普遍采用的由Scanlan 和Davenport 于20世纪60年代建立 第30卷第5期 2002年5月同 济 大 学 学 报JOURNAL OF T ONGJI UN IVERSIT Y Vol.30No.5 M ay 2002

桥梁结构设计问题

桥梁结构设计问题探讨 摘要:近年来,随着科学技术的发展,桥梁结构设计也得到了相应的发展,但是我国的桥梁设计理论和结构构造体系仍不够完善。本文通过桥梁结构设计中应注意事项,对桥梁结构设计的理论及设计问题进行探讨。 关键词:桥梁结构;设计问题;分析 abstract: in recent years, with the development of science and technology, the bridge structure design also got the corresponding development, but china’’s bridge design theory and structure system is still not perfect. this article through the bridge structure design should note, bridge structure design theory and design issues were discussed. keywords: bridge structure; design problems; analysis 中图分类号:u443文献标识码:a 文章编号: 一、桥梁结构设计现状 目前的桥梁设计中,对于耐久性更多的只是作为一种概念受到关注,既没有明确提出使用年限的要求,也没有进行专门的耐久性设计。这些倾向在一定程度上导致了当前工程事故频发、结构使用性能差、使用寿命短的不良后果,也与国际结构工程界日益重视耐久性、安全性、适用性的趋势相违背,也不符合结构动态和综合经济性的要求。

生物机械工程研究进展

2005年11月第7卷第11期 中国工程科学Engineering Science Nov.2005Vol 17No 111 专题报告 [收稿日期] 2005-05-19;修回日期 2005-07-02 [作者简介] 王裕清(1952-),男,湖北松磁县人,河南理工大学教授 生物机械工程研究进展 王裕清 (河南理工大学,河南焦作 454000) [摘要] 论述了生物机械工程的重要意义、研究现状、发展趋势、存在问题及对策,旨在推动我国生物机械 工程的研究和学术地位的确立,推动生物医学工程学的进步,提高人民的健康水平。 [关键词] 生物机械;生物机械工程学;研究进展 [中图分类号]R318;Q81 [文献标识码]A [文章编号]1009-1742(2005)11-0012-05 生物机械工程(biomechamical engineering )是 生物医学工程学的重要组成部分,它利用现代生物学、医学、工程学、信息科学与技术的理论和方法,研究、创造新材料、新技术、新仪器设备,用来治疗、康复、保健,保障人民健康,提高医疗水平,是推动现代医学进步的一门新兴交叉学科,同时也是一门边缘学科。该学科的研究内容涉及生物学、医学、生物力学和生物流变学、材料学、机械学、仿生学、电子学、计算机与信息科学、控制理论等,其中人体适用材料、人工器官、医疗器械、远程诊疗系统、运动与康复机械、医用与仿生机器人等内容的研究、设计、制造都与机械工程密切相关。笔者就生物机械工程的研究现状、意义、发展趋势、存在问题及对策等做了论述,旨在推动生物机械工程学科的研究及其重要地位的确立,推动生物医学工程学的进步并取得更多的推广应用成果,实现经济和社会效益最大化。 1 生物机械工程的研究现状及其意义 国外在生物机械工程方面的研究起步较早,许 多研究成果已进入实用化阶段。目前,美国、日本及欧洲一些国家在该领域的研究处于领先地位,许多发达国家在高等院校、科研机构建立了有关生物医学工程学的教学系、科和研究机构。日本政府从 2002年度实施“纳米医疗器械开发计划”;同年 秋,日本冈山大学医学系的科研人员宣布,他们已 经研制出一种可以置入人体内部的小型人工肺,开发毫米级的内窥镜等各种微型医疗器械,力争5~10年后达到实用化水平。在美国有近百所高校设立了生物医学工程专业。近年来,美国一改传统冠心病手术方案,在植入心脏的金属动脉包裹一层特殊的药膜,以预防心脏冠状动脉阻塞的复发。许多国家成立了各种有关的学术团体,组织学术交流、创办科技刊物。国际上组建了多国联合的学术组织,如国际生物医学工程联合会(IFMB E ),有100多个成员国。世界生物机械委员会(WCB )从1990年开始每4年举办一次国际学术会议,迄今已举办3届[1]。1980年以来,日本出版了《° ∏ 概说》(生物机械概论)、《生 机械工学》等著作[2],并有大量的研究成果发表。 由于这些国家重视生物机械工程方面的研究,给他们的国家带来了巨大的经济效益。比如20世纪90年代,全球经济衰退,但医疗器械产品却被广泛看好。该时期美国整个经济增长率基本上是零,而医疗器械工业却增长6%~7%,销售增长率为5%;西欧经济增长也举步维艰,而医疗器械工业增长率却在3%以上,销售增长率为611%;日本医疗器械工业增长率达8%,销售增长率为

土木结构抗风研究进展及基础科学问题

土木结构抗风研究进展及基础科学问题 顾明(同济大学) 摘要:风灾是自然灾害的主要灾种之1.近年来,由于全球气候变暖,风灾更加严重,每年造成全球经济损失达数百亿甚至千亿美元.土木工程结构抗风研究是防灾减灾领域中非常重要的学科方向.本文首先简要回顾了结构风工程学科的历史;然后从近地风特性和结构响应实测,风洞试验理论和方法,大型复杂结构风荷载和响应机理及结构抗风性能和设计方法研究,低矮房屋的风荷载及破坏特性和设计,土木结构风荷载和效应的数值模拟及数值风洞,强风暴作用下结构荷载和响应控制,风灾评估方法及评估系统等方面评述了结构风工程学科在近20年中的进展;最后,提出了土木结构风工程学科的关键科学问题与建议的重点研究方向. 关键词:土木结构,风工程,历史回顾,学科进展,科学问题 1 研究意义 风灾是自然灾害的主要灾种之1.据媒体报道,2004年北美的"珍妮","查理"和"伊万"等飓风造成2000多人死亡,直接经济损失约500亿USD;2005年美国"卡特里娜","丽塔"飓风造成逾千人死亡,经济损失高达千亿美元以上.2004年"云娜"台风也造成我国浙江省约180人死亡,直接经济损失200多亿人民币;2005年,至少有8个强台风灾我国东南,华南沿海地区登陆,造成数百人死亡,数十万间房屋倒塌和损坏,直接经济损失数百亿人民币. 随着经济的发展和科学技术的进步,近2十年来,国内外建造了大量的重大工程建筑结构.仅在上海陆家嘴地区,已建和拟建的400米以上的结构有4栋,200米以上的超高层建筑有十多栋.计划中的意大利Messina大桥的主跨达3000多米,我国在建的苏通长江大桥是世界第1的斜拉桥,主跨达1088米.我国奥运会及世博会的申办成功,将建造大量的大跨空间结构.此外,发达国家甚至提出了千米高度量级的"空中城市"的概念.强风作用下结构的风荷载和响应是结构安全性和适用性的控制荷载之1. 为了降低强风暴灾害所造成的损失,发达国家进1步加大了研究和开发的投入.据

相关文档
最新文档