坐标系统与时间系统

坐标系统与时间系统

坐标系统与时间系统

北斗卫星时间同步系统的重要性

北斗卫星时间同步系统的重要性 概述 电脑时间走时不准时常有的事,不准确的电脑时钟对时网络结构以及其中的应用程序的安全性会产生较大的影响,尤其是那些对没有实现网络同步而导致的问题比较敏感的网络质量或应用程序。 要得到最佳的网络表现,就得向系统提供标准的时间信息,这时可以选用北斗卫星时间同步系统来实现时间统一,千万不要等到出了问题才认识到时间同步的重要性。如果没有时间同步,网络指令是没法正常运行的,时间同步直接影响网络指令的领域有:记录文件安全、审核和监控、网络错误检查和复原、文件时间戳目录服务、文件及指令存取安全与确认、分散式计算、预设操作、真实世界世界值等等。 北斗授时 北斗授时是通信网络安全组网的根本保证就同步网而言,我国的频率同步网采用的是多基准混合同步方式,即全网部署多个1级基准时钟设备,并且需配置高性能的卫星授时接收机,以保证全网的定时性能。我国的时间同步网则采用分布式组网方式,即在每个时间同步设备上均需配置高性能的卫星授时接收机,以保证全网的时间精度。 就移动通信网络而言,CDMA基站、CDMA2000基站、TD-SCDMA基站等均需要高精度的时间同步,目前是在每个基站上配置GPS授时模块。如果基站与基站之间的时间同步不能达到一定要求,将可能导致在选择器中发生指令不匹配,从而导致通话连接不能正常建立,影响无线业务的接续质量。 北斗授时性能可以满足通信网络的需求,基于北斗/GPS双模的授时设备最早在2003年进入通信领域,在2008年之前主要提供频率同步服务,此后可同时提供时间同步和频率同步服务。根据近十年的多次测试情况,可以看出北斗设备在正常情况下可以满足通信网中对频率同步和时间同步的要求,尤其是2008年以后生产的北斗设备其性能普遍达到了GPS卫星接收机设备的水平,完全可以满足通信网中各种通信设备对频率同步和时间同步的需求。 北斗卫星同步时间的意义 利用北斗卫星,才可在全球范围内用超短波传播时号;用超短波传播时号不

时间同步系统在线监测可行性研究报告

附件4 甘肃电网智能调度技术支持系统 时间同步系统在线监测 技术改造(设备大修)项目 可行性研究报告模板项目名称: 项目单位: 编制: 审核: 批准: 编制单位: 设计、勘测证书号:

年月日

1.总论 时间同步系统在线监测功能,将时钟、被授时设备构成闭环,使对时状态可监测,且监测结果可上送,从而将时间同步系统纳入自动化监控系统管理。时间同步系统在线监测的数据来源分为两大类:设备状态自检数据和对时状态测量数据。设备状态自检主要是被监测设备自身基于可预见故障设置的策略,快速侦测自身的故障点。对时状态测量则是从被监测设备外部对其自身不可预见的故障产生的结果进行侦测,这两种方法较为完整的保证了时间同步系统监测的性能和可靠性。 1.1设计依据 2013年4月,国调中心专门下发了〔2013〕82号文《国调中心关于加强电力系统时间同步运行管理工作的通知》 1.2主要设计原则 通过在原系统上建立一套通讯技术及软件来实现系统级的时间同步状态在线监测功能。采用低建设成本、低管理成本、低技术风险的手段,解决当前自动化系统时间同步体系处于开环状态,缺乏反馈,无法获知工作状态紧迫现状,使时钟和被对时设备形成闭环监测,减少因对时错误引起的事件顺序记录无效,甚至导致设备死机等运行事故,并在此前提下尽可能的提高监测性能,减少复杂度。

1.3设计水平年 系统模块使用年限10年。 1.4设计范围及建设规模 智能调度技术支持系统(主站)针对时钟同步检测功能修改主要涉及前置应用,前置应用以104 或476 规约与变电站自动化系进行过乒乓原理对时,根据对时结果来检测各变电站时钟对时的准确性,从而保证全网时钟同步的准确性。同时,以告警直传方式接收变电站时间同步监测结果,包含设备状态自检数据和对时状态测量数据。 1.5主要技术经济指标 1.6经济分析 2.项目必要性 2.1工程概况 智能电网调度技术支持系统及各变电站都以天文时钟作为自己的时间源,正常情况下实现了全网时间的一致。 2.2存在主要问题 近期,电力系统时间同步装置在运行中发现的时钟异常跳变、时钟源切换策略不合理及电磁干扰环境下性能下降等问题,反映出电力系统时间同步在运行管理、技术性能、检验检测管理、在线监测手段及相关标准等方面仍需进一步完善和加强。

XP系统时间同步解决方案

XP系统时间同步不成功_Windows time服务无法启动解决 同步时间的服务器是:210.72.145.44 xp自带的时间同步服务器老是会连不上,而且时间还会差一秒。 这里就教大家换成中科院国家授时中心的服务器,同步就方便多了。 1.双击右下角的时间。 2.把服务器改成210.72.145.44 3.按同步就可以了,一般不会出错。即使是高峰时期,三次之内闭成功,比美国的服务器好多了。 另外系统默认的时间同步间隔只是7天,我们无法自由选择,使得这个功能在灵活性方面大打折扣。其实,我们也可以通过修改注册表来手动修改它的自动同步间隔。 1. 在“开始”菜单→“运行”项下输入“Regedit”进入注册表编辑器 2. 展开[HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\W32Time\TimeProviders\Nt pClient ] 分支,并双击SpecialPollInterval 键值,将对话框中的“基数栏”选择到“十进制”上 3. 而这时在对话框中显示的数字正是自动对时的间隔(以秒为单位),比如默认的604800就是由7(天)×24(时)×60(分)×60(秒)计算来的,看明白了吧,如果您想让XP以多长时间自动对时,只要按这个公式算出具体的秒数,再填进去就好了。比如我填了3天,就是259200。 Windows time服务用于和Internet同步系统时间,如果时间无法同步有可能是服务没有随系统启动,可以在运行处输入"services.msc"打开服务控制台,找到"windows time"服务设置为自动并启动即可。 如果启动该服务时提示: 错误1058:无法启动服务,原因可能是已被禁用与其相关联的设备没有启动。 原因是windows time服务失效。 修复: 1.运行cmd 进入命令行,然后键入 w32tm /register 正确的响应为:W32Time 成功注册。 如果提示w32tm命令不内部或外部命令……,是因为系统盘下的system32目录不存在w32tm.exe和w32time.dll这两个文件,到网上下载一个或者到其他电脑复制过来放下这个目录下再运行 2.如果上一步正确,在cmd命令行或运行里用net start "windows time" 或net start w32time 启动服务。 如果无法启动Windows Time服务,同时提示:系统提示“错误1083:配置成在该可执行

基于java Web 的在线拍卖系统

华北科技学院 课程设计说明书 技能训练类(三) 学号:201207034102 班级: 信管B121 姓名:何欢 设计题目:_____在线拍卖系统________________ 设计地点:____基础五_______________________ 设计时间: 2015.3.10 至2015.4.17 成绩评定: 1、工作量: A(),B(),C(),D(),F( ) 2、难易度:A(),B(),C(),D(),F( ) 3、答辩情况: 基本操作:A(),B(),C(),D(),F( ) 代码理解:A(),B(),C(),D(),F( ) 4、报告规范度:A(),B(),C(),D(),F( ) 5、学习态度:A(),B(),C(),D(),F( ) 总评成绩:_________________________________ 指导教师:_________________________________

1、课程设计的目的 技能训练的内容围绕一个信息管理系统的实际开发过程进行组织,重点在于程序设计开发部分。信息管理系统的题目由教师指定或学生自行拟定,学生根据教师提出的系统在应用环境、系统规模、数据量、业务流程等方面的要求,进行需求分析、数据库设计、数据库实施、程序开发和测试,最终完成系统。 技能训练的目的和要求: (1)使学生巩固和加强《java基础》与《》课程的理论知识。 (2)使学生掌握程序设计开发的步骤。 (3)使学生掌握model2以上的开发系统的方法。 (4)使学生掌握使用数据库管理信息数据的方法。 (5)使学生掌握使用JA V A等程序设计语言连接和操作数据库的方法。 (6)使学生掌握调试程序的基本方法及上机操作方法。 (7)使学生初步掌握开发一个小型信息管理系统的基本步骤,引导学生根据实际业务流程和需求进行系统分析与设计,并建立需要的数据库,最后通过编写代码和调试完成系统。 2、软件需求分析和总体设计 2.1软件功能 拍卖系统是一个在线系统,系统设计为B/S模式,用户在浏览器请求服务端的资源。包含的功能有: ①查看竟得物品 ②浏览流拍物品 ③管理种类 ④管理物品 ⑤浏览拍卖物品 ⑥查看自己的竞标 功能模块框图下图所示(图2-1-1):

时间同步系统的要求

4.3.12时间同步系统的要求 4.3.12.1总的要求 4.3.12.1.1 时间同步系统的构成 1)时间同步系统由一级主时钟和时钟扩展装置组成。 2)一级主时钟用于接收卫星或上游时间基准信号,并为各时间扩展装置提供时间信号。3)一级主时钟与时钟扩展装置均配置时间保持单元,保证在输入信号中断的情况下,依然不间断地提供高精度的输出信号。 4.3.12.1.2时间同步系统的布置 根据本期工程情况,将配置1面主时钟装置屏和2面时钟扩展装置屏。主时钟本体装置屏安装在集控楼内,主时钟屏配置的2台主时钟为整个时间同步系统提供2路冗余的时间基准信号输出。机组保护室和网络继电器室各设1面时钟扩展装置屏,主时钟装置与时钟扩展装置之间采用光纤连接。时间同步系统天线安装在集控楼楼顶上。 4.3.12.1.3时间同步系统的运行条件 1)电源要求 同步时钟装置(一级主时钟和二级扩展)采用两路AC220V电源供电,投标方应配置双电源自动切换装置(美国ASCO 7000系列产品)实现双电源自动切换。 2)工作环境 工作温度: -10~+55℃ 贮存温度: -40~+55℃ 湿度: 5%~95%(不结露)。 所有设备均可放置在无屏蔽、无防静电措施的机房内。 4.3.12.1.4 时间同步系统的电磁兼容性 时间同步系统在集控楼的电磁场环境下能正常工作,符合“GB/T13926-1992 工业过程测量和控制装置的电磁兼容性”中有关规定的要求,并达到Ш级及以上标准。 4.3.12.2功能要求 4.3.12.2.1 时间同步系统配置的主时钟及时间同步信号扩展装置对厂内DCS、SIS、电气控制装置及其他需要时钟同步的设备进行时间同步,并应能提供满足这些设备需要的各种时间同步信号及接口(含接口装置、通讯电缆等设备)。 4.3.12.2.2时间同步系统两台主时钟的时间信号接收单元应能独立接收GPS卫星和我国北斗卫星发送的无线时间信号作为主外部时间基准信号。当某一主时钟的时间接收单元发生故

计算机系统时间同步方案

关于同步210厂各计算机系统时间的方案目前我厂现场计算机包括生产管理计算机(含MES系统终端及ERP系统终端)、过程控制计算机(各二级服务器及终端)和基础自动化计算机(操作用HMI、FDA等),各系统的计算机均是使用自身BIOS时间作为系统时间,造成各电脑时间互异、各信息系统之间时间无法同步的情况;公司规定各系统时间同步原则为三级系统与ERP 系统时间同步、二级系统时间与三级系统时间同步、一级系统与二级系统时间同步;但是公司没有建设专门的时间服务器,且我厂一二级各系统之间互相独立,各系统之间时间同步存在很大的困难,为达到各系统之间时间同步的目的,特制定如下方案: 一、选择调度室计划用三级电脑作为我厂所有计算机系统的时间 服务器,设置该电脑时间与信息中心MES系统服务器时间自动同步,且设置系统以每小时一次的频率与信息中心MES系统服务器进行时间同步; 二、各三级计算机、ERP终端、二级服务器与我厂时间服务器进行 同步,频率为24小时; 三、各区域二级HMI电脑、一级电脑以相应区域的二级服务器为 依据进行时间同步,频率为24小时; 四、ERP系统、三级系统、二级系统的时间同步工作由设备管理室 负责,一级各电脑的时间同步工作由电气作业区负责,具体操作方式见附录《计算机系统时间同步设置操作说明》;

五、计算机系统时间的管理部门为设备管理室; 六、未经允许,禁止任务个人及部门对系统时间进行修改,违者进 行严肃考核,一经发现,考核100元/次; 设备管理室 2010-6-26

附录一: 计算机系统时间同步设置操作说明 若要使当前电脑与网络上IP为xxx.xxx.xxx.xxx的电脑时间同步,需要对当前电脑操作系统进行如下设置: 一、启动相关服务项 依次点击开始→控制面板→管理工具→服务,将Remote Procedure Call (RPC)服务、Remote Procedure Call (RPC) Locator服务、Windows Time服务启动,且将其启动类型设为自动;具体操作为:点击服务名称,右键选择属性,在启动类型下拉框中选择“自动”,确定。如图:

Java课程设计飞机航班管理系统

一.引言 1.1项目的名称 飞机航班信息管理系统 1.2项目背景和目标 飞机航班信息管理系统主要能够查询飞机的航班情况,飞行线路,票价,折扣 等等情况,并能够在数据库中更新维护飞机航班的信息,对飞机航班数据库进 行管理,如航班的增加,删除和修改等。我们的目标就是为该系统提供后台连 接数据库程序设计以及前台用户界面设计。 1.3项目的可行性研究 设计此系统需要java面向对象编程基础,数据库应用知识以及功能分析。根据目前所开设的课程,学生已经具备这样的知识,有能力综合java编程知识和数据库应用知识做出一个这样的飞机航班信息管理系统。 二、需求分析 2.1系统概述 此系统提供给系统管理员和用户。系统管理员登陆后可以对飞机航班信息进行管理,如:添加飞机航班信息,删除飞机航班信息,修改飞机航班属性。用户登陆后能进行飞机航班信息查询,订票以及退订。 2.2系统运行环境 Java运行在eclipse软件上,数据库用mysql数据库 2.3功能需求描述 用户选择相关的服务项目可以查看相关航班基本信息,并且可以根据自己需求选择相应服务,系统的信息更新时,相关的信息经过相应处理后,会存入到飞机航班数据库中的航班信息记录表中;系统管理员根据航空公司实际情况可以更新航班信息,并通过修改信息处理后被保存到飞机航班表中。 三、系统设计 开发与设计的总体思想 飞机航班信息管理系统主要分为用户和系统管理员2类,因此也将该系统分为2个相应的大的功能模块。 用户可以通过服务项目选择查询相关航班情况,进行订票,退订等服务项目。系统会将数据库中相应信息反馈给顾客。 系统管理员负责管系统信息的及时更新,可以根据航空公司航班的具体的情况更新数据库。 系统模块结构图

卫星共视高精度时间比对与传递

卫星共视法高精度时间频率比对与传递系统

目录 1.概述 (3) 2.卫星共视时间比对与传递系统组成及工作原理 (4) 2.1 卫星共视时间比对与传递工作原理 (4) 2.2 时间比对和传递系统设备配置及连接 (7) 3.经费预算................................................. 错误!未定义书签。

1.概述 时间是物理学的基本参量之一。随着科学技术的发展,高精度的时间和频率在国民经济发展中的地位日趋重要,诸如通信、电力、交通、高速数字网同步等高新技术领域有着广泛的应用,特别是我国国防建设和空间技术领域,如空间目标探测与拦截(类似于美国爱国者导弹防御系统)、我国第二代战略武器试验、载人航天工程和拟建中的二代卫星导航系统对时间和频率的精度提出了更高的要求。 二十世纪末,随着空间技术的发展,GPS和北斗卫星导航系统相继问世,授时具有了全方位性(陆地、海洋、航空和航天)、全球性、全天候、连续性和实时性,并提供了高精度的授时覆盖和服务。“时间统一系统”为精密时间产生、传递、恢复和保持、科学研究、科学实验和工程技术及一切动力学系统和时序过程的测量和定量研究提供了必不可少的时间基准和依据。 就高精度时间传递与比对系统而言,可以应用于工程项目的主要包括以下几种: 1.RNSS卫星共视时间比对与传递; 2.RNSS卫星载波相位时间同步; 3.卫星双向时间比对与传递; 4.搬运钟时间比对与传递。 在以上几种方法中,卫星共视时间比对与传递是一种较为优秀的高精度时间比对与传递系统。

2.卫星共视时间比对与传递系统组成及工作原理 2.1 卫星共视时间比对与传递工作原理 所谓“共视”(Common View)就是位于两个不同位置的观测者,在同一时刻对同一颗卫星进行观测,其原理如下图所示。 图1 GPS 共视法高精度时间同步原理图 图1给出了一个单收系统示意图,在每个比对点,本地钟均按自己的速率运行。根据比对需求,利用卫星所发射的1PPS 秒信号、或其它固定速率发射的时钟脉冲信号。 在每个测站,利用本地钟的1PPS 信号打开时间间隔计数器闸门,再用从共视接收机所输出的1PPS 秒信号关闭时间间隔计数器的闸门。这样,我们可以得到以下的时间关系(图2): 在钟1处: 接收时间 1τ+=卫接收T t 计数器读数 1d T =)(11τ+-卫T T (1) GPS 卫星

java获得当前服务器的操作系统

import java.util.Properties; public class Test{ public static void main (String args[]){ Properties props=System.getProperties(); //系统属性 System.out.println("Java的运行环境版本:"+props.getProperty("java.version")); System.out.println("Java的运行环境供应商:"+props.getProperty("java.vendor")); System.out.println("Java供应商的URL:"+props.getProperty("java.vendor.url")); System.out.println("Java的安装路径:"+props.getProperty("java.home")); System.out.println("Java的虚拟机规范版本:"+props.getProperty("java.vm.specification.version")); System.out.println("Java的虚拟机规范供应商:"+props.getProperty("java.vm.specification.vendor")); System.out.println("Java的虚拟机规范名称:"+props.getProperty("java.vm.specification.name")); System.out.println("Java的虚拟机实现版本:"+props.getProperty("java.vm.version")); System.out.println("Java的虚拟机实现供应商:"+props.getProperty("java.vm.vendor")); System.out.println("Java的虚拟机实现名称:"+props.getProperty("java.vm.name")); System.out.println("Java运行时环境规范版本:"+props.getProperty("java.specification.version")); System.out.println("Java运行时环境规范供应商:"+props.getProperty("java.specification.vender")); System.out.println("Java运行时环境规范名称:"+props.getProperty("java.specification.name"));

卫星导航定位系统星地时间同步方法_图文(精)

万方数据

万方数据 万方数据

万方数据 卫星导航定位系统星地时间同步方法 作者:李树洲 作者单位:北京5136信箱 刊名: 无线电工程 英文刊名:RADIO ENGINEERING OF CHINA 年,卷(期:2002,32(10

被引用次数:5次 参考文献(2条 1.言中;丁子明卫星无线电导航 1989 2.李铁新卫星导航系统时间基准和星地时间同步 2002 本文读者也读过(10条 1.曾国良PTN时间同步方案在移动网络中的应用[期刊论文]-通信世界 B2009(40 2.沙燕萍.曾烈光.SHA Yan-ping.ZENG Lie-guang高速SDH帧同步系统性能与同步码组选择[期刊论文]-光通信研究2000(2 3.谭述森.Tan Shusen导航卫星双向伪距时间同步[期刊论文]-中国工程科学2006,8(12 4.帅平.曲广吉导航星座的自主导航技术——卫星自主时间同步[会议论文]-2004 5.石季英.李芳.刘建华.曹明增.SHI Ji-ying.LI Fang.LIU Jian-hua.CAO Ming-zen 无线传感器网络中时间同步方法的研究[期刊论文]-计算机仿真2007,24(6 6.李交通.LI Jiao-tong基于最小代价的预防性维修数学分析方法[期刊论文]-电 子产品可靠性与环境试验2007,25(4 7.吴乐群.姜东升.王颖.高振良星载铷钟频率特性测量技术研究[会议论文]-2006 8.张亚平.ZHANG Ya-ping影响卫星导航定位系统精度的关键技术[期刊论文]-无线电工程2008,38(1 9.王淑芳.王礼亮.WANG Shu-fang.WANG li-liang卫星导航定位系统时间同步技术[期刊论文]-全球定位系统2005,30(2

操作系统时间片轮转RR进程调度算法java版

实验二间片轮转RR 进程调度算法 1、实验目的通过这次实验,加深对进程概念的理解,进一步掌握进程状态 的转变、进程调度的策略及对系统性能的评价方法。 2、试验内容 问题描述:设计程序模拟进程的时间片轮转RR调度过程。假设有n 个进程分别在T1, ?,T n 时刻到达系统,它们需要的服务时间分别为 S1, ?,n S。分别利用不同的时间片大小q,采用时间片轮转RR进程调度算法进行调度,计算每个进程的完成时间、周转时间和带权周转时间,并且统计n个进程的平均周转时间和平均带权周转时间。 3、程序要求: 1)进程个数n;每个进程的到达时间T1, ?,T n 和服务时间S1, ?,n S;输入时间片大小q。 2)要求时间片轮转法RR调度进程运行,计算每个进程的周转时间和带权周转时间,并且计算所有进程的平均周转时间和带权平均周转时间; 3)输出:要求模拟整个调度过程,输出每个时刻的进程运行状态,如“时刻3:进程 B 开始运行”等等; 4)输出:要求输出计算出来的每个进程的周转时间、带权周转时间、所有进程的平均周转时间以及带权平均周转时间。 4、需求分析 (1)输入的形式和输入值的范围 时间片真实进程数各进程的到达时间各进程的服务时间

(2)输出的形式模拟整个调度过程、周转时间、带权周转时间、所有进程的平均周转时间以及带权平均周转时间。 (3)测试用例 由于自己自编写代码方面与他人有一定的差距,因此在做实验的过程中我在网上搜了很多相关的资料,了解实现该算法的原理及各部分实现的代码,同时参考了几个别人写好的源代码,然后自己在理解的基础上不断的根据要求修改写程序,不过其中碰见的很多的问题。我已经自己调了好多错误,在一遍遍的调试和修改中,发现自己的经验在快速增长,这个感觉真的很不错。然而,实验的运行结果还不是 很完美,每个进程在最后一个时间片的运行过程中,进程列表的更新总是修改错误。不过在在本次试验中学到了不少东西,一点点的在进 6、测试结果 输入时间片,进程数,进程到达时间,服务时间

Java实验三常用系统类的使用

实验三常用系统类的使用 一、实验目的 了解Java 常用的系统类,包括字符串类、输入输出流类、数学函数类、日期类、随机数类以及向量类(学习继承内容后做)等的基本使用方法。理解Java 系统类的构成。二、实验要求 1.掌握不同类型的输入输出流类,标准数据流、文件流、数据输入输出流、对象流等。 2.掌握数学函数类的使用方法。 3.掌握日期类的使用方法。 4.掌握向量类的使用方法。 使用数学函数类 Math 是一个最终类,含有基本数学运算函数,如指数运算、对数运算、求平方根、三角函数、随机数等,可以直接在程序中加Math.前缀调用。 1.创建使用Math 类的应用程序KY5_8.java,源程序如下。 import java.util.*; class KY5_8 { public static void main(String args[]) { Random r1=new Random(1234567890L); Random r2=new Random(1234567890L); boolean b=r1.nextBoolean(); // 随机数不为0 时取真值 int i1=r1.nextInt(100); // 产生大于等于0 小于100 的随机数 int i2=r2.nextInt(100); // 同上 double i3=r1.nextDouble(); // 产生大于等于0.0 小于1.0 的随机数 double i4=r2.nextDouble(); // 同上 double d1=Math.sin(Math.toRadians(30.0)); double d2=Math.log(Math.E); double d3=Math.pow(2.0, 3.0); int r=Math.round(33.6F); System.out.println("b 的随机数不为0 时"+b); System.out.println("i1 的随机数为"+i1); System.out.println("i2 的随机数为"+i2); System.out.println("d1 的随机数为"+i3); System.out.println("d2 的随机数为"+i4); System.out.println("30 弧度的正弦值:Math.sin(Math.toRadians(30.0))="+d1); System.out.println("E 的对数值:Math.log(Math.E)="+d2); System.out.println("2 的3 次方:Math.pow(2.0, 3.0)="+d3); System.out.println("33.6F 四舍五入:Math.round(33.6F)="+r); } }

智能变电站时间同步系统方案

智能变电站时间同步系统方案 1智能变电站定义 采用先进、可靠、集成、低碳、环保的智能设备,以全站信息数字化、通信平台网络化、信息共享标准化为基本要求,自动完成信息采集、测量、控制、保护、计量和监测等基本功能,并可根据需要支持电网实时自动控制、智能调节、在线分析决策、协同互动等高级功能的变电站。 2时间同步在智能变电中的地位 近年来国家电网公司正在全面建设坚强的智能电网,即建设以特高压电网为骨干网架、各级电网协调发展的坚强电网,并实现电网的信息化、数字化、自动化、互动化。网络智能节点的正常工作和作用的发挥,离不开统一的全网时间基准

3智能变电站的结构 智能变电站分为三个层:站控层、间隔层、过程层 站控层包括自动化站级监视控制系统、站域控制、通信系统、对时系统等,实现面向全站设备的监视、控制、告警及信息交互功能,完成数据采集和监视控制(SCADA)、操作闭锁以及同步相量采集、电能量采集、保护信息管理等相关功能。 间隔层设备一般指继电保护装置、系统测控装置、监测功能组主IED等二次设备,实现使用一个间隔的数据并且作用于该间隔一次设备的功能,即与各种远方输入/输出、传感器和控制器通信。遵守安全防护总体方案。 过程层包括变压器、断路器、隔离开关、电流/电压互感器等一次设备及其所属的智能组件以及独立的智能电子装置。 4智能变电站时间同步系统 时间同步系统主时钟源设置在站控层。全站建立统一的时间同步系统。全站采用基于卫星时钟与地面时钟互备方式获取精确时间;地面时钟系统支持通信光传输设备提供的时钟信号;数据采样设备通过不同接口方式获取时间同步系统的统一时钟,使得数据采样的同步脉冲源全站唯一。 智能变电站站控层设备选择SNTP方式对时; 间隔层和过程层网络采用IEEE1588(PTP)对时方式; 同时可扩展IRIG-B码(光B码、DC码、AC码)、串行口、秒脉冲、网络PTP/NTP/SNTP等授时方式输出,对需要授时的传统设备进行授时。

操作系统课程设计时间片轮转算法java实现

操作系统课程设计时间 片轮转算法j a v a实现 Document serial number【UU89WT-UU98YT-UU8CB-UUUT-UUT108】

学校代码: 10128 课程设计 题目:处理机管理模拟系统的设计与 实现 学生姓名: 学院:信息工程学院 系别:软件工程系 专业:软件工程 班级: 指导教师:副教授 讲师 2013年1月8日

内蒙古工业大学课程设计任务书(四) 学院(系):信息学院软件工程系课程名称:操作系统课程设计指导教师(签名): 专业班级:学生姓名:学号:

摘要 操作系统是计算机系统的关键组成部分,负责管理与配置内存、决定系统资源供需的优先次序、控制输入与输出设备、操作网络与管理文件系统等基本任务。对于不同的系统和系统目标,通常采用不同的调度算法,如在批处理系统中,为照顾为数众多的短作业,采用短作业优先调度算法;在分时系统中,为保证系统具有合理的响应时间,采用时间片轮转法进行调度。采用算法时,则要考虑多方面因素,以便达到最佳效果。本次课程设计采用时间片轮转调度算法来实现模拟进程调度任务的执行过程。 用Java模拟进程调度过程,可以方便地将运行结果直观地表示出来。Java语言独有的多线程操作,可以实现许多其他语言不能实现的功能,极大地方便了程序开发人员对程序的开发。此外,利用JavaGUI编程,可以使系统提供的界面更加友好。实验中,应用文件I/O操作、线程、AWT、Swing、内部类、接口、异常处理等技术,开发此系统。 关键字:时间片轮转; Java编程; GUI图形用户界面;文件操作;

Abstract The operating system is a key component of the computer system, responsible for the management and configuration memory, decided to system resources supply and demand priority, control input and output equipment, operation and management of network file system, and other basic different systems and system target, computers usually use different scheduling algorithm, such as in a Batch Processing System, in order to take care of a lot of short operation, using Short Job First algorithm;In systems with time sharing, to ensure the system has reasonable response time, need time slice Round Robin algorithm for scheduling. The algorithm, we should consider various factors, in order to achieve the best Course Design uses time slice Round Robin algorithm to simulate the process scheduling task execution process. With Java simulation process scheduling process, which can be conveniently will run results intuitively said addition, the use of JavaGUI programming, can make the system to provide the interface more , application file I/O operation, threads, AWT, Swing, internal class, interface, abnormal processing technology, the development of this system. Keywords: time slice Round Robin; Java Programming; ; File Operation;

恒宇GPS--HY-8000GPS时间同步系统说明书(NEW)

HY-8000 卫星时间同步系统 使用手册 烟台远大恒宇科技有限公司

目录 1.装置的用途及特点 (1) 1.1 用途 (1) 1.2 特点 (1) 2.技术指标 (3) 2.1 物理参数 (3) 2.2 环境条件 (4) 2.3 电磁兼容性 (4) 2.4 供电电源 (5) 2.5 平均无故障间隔时间MTBF (5) 2.6 时间信号输入输出接口 (6) 2.7 标准时钟装置核心GPS接收器的指标 (7) 2.8 输出信号定时精度指标 (8) 2.9 接口规范 (9) 2.10 告警信号 (13) 2.11 卫星失步时内部守时钟精度的稳定度 (13) 2.12 引用标准 (14) 3.HY-8000 GPS时间同步系统组成和模块介绍 (15) 3.1 HY-8000 GPS时间同步系统组成 (15) 3.2 装置的结构和模块介绍 (16) 3.3 工作状态指示 (38) 3.3.1 标准时间同步钟本体指示灯 (38) 3.3.2 GPS卫星同步时钟指示灯 (39) 4.装置的安装及操作说明 (40) 4.1 GPS天线的安装说明 (40) 4.2北斗天线安装说明 (42) 4.3 装置的安装位置 (42) 4.4 投入及运行 (42) 4.5 安装避雷器 (44) 5.装置的故障与维修 (44) 5.1 告警 (44) 5.2 时间信号的保持和切换 (45) 5.3 可维修性 (45) 5.4 安全性 (45) 5.5 装置的维修 (46) 6.附录一、HY-8000系列 GPS时间同步系统选型表 (47)

HY-8000 GPS时间同步系统 1.装置的用途及特点 HY-8000 GPS时间同步系统是根据《华东电网统一时钟系统技术规范》、《广东电网变电站GPS时间同步系统技术规范》和《上海电网GPS时间同步系统技术原则和运行管理规定》设计的时间同步系统,它由标准时间同步钟本体和时标信号扩展装置组成,可集中或单独组屏。时标信号扩展装置包括脉冲、时间报文、DCF77、B码和NTP扩展模块,扩展装置可根据实际需要组合。该系统利用GPS(全球卫星定位系统)、北斗或IRIG-B(DC)码发送的秒同步信号和时间信息,向电力系统各种系统和自动化装置(如调度自动化系统、微机继电保护装置、故障录波器、事件顺序记录装置、远动装置、计算机数据交换网、雷电定位系统等)提供精确的时间信息和时间同步信号。 1.1 用途 HY-8000 GPS时间同步系统主要用途如下: 1、为电力系统提供标准时间和时间同步信号 2、用作各级电力公司(电力局)机关和所属调度所、发电厂、变电站等单位的 挂钟。 1.2 特点 1、与外同步时钟信号同步精度高,同步精度优于±0.2μs。 采用多同步源自适应同步技术,同步精度优于±0.2μs。 2、采用冗余结构 支持双GPS热备和双IRIG-B热备且装备有高精度守时时钟。标准时间同步钟本体可同时接入GPS和1路IRIG-B码外同步信号,互为备用。时标信号扩展装置可同时接入2路IRIG-B码外同步信号,互为备用。主时钟和信号扩展装置都可采用了冗余化装置,保证了GPS时间同步系统的可靠性和稳定性。 3、模块化设计,多种输出接口,使用灵活方便。

Java日志系统框架的设计与实现

Java日志系统框架的设计与实现 在Java领域,存在大量的日志组件,open-open收录了21个日志组件。日志系统作为一种应用程序服务,对于跟踪调试、程序状态记录、崩溃数据恢复都有着重要的作用,我们可以把Java日志系统看作是必不可少的跟踪调试工具。 1.简介 日志系统是一种不可或缺的跟踪调试工具,特别是在任何无人职守的后台程序以及那些没有跟踪调试环境的系统中有着广泛的应用。长期以来,日志系统作为一种应用程序服务,对于跟踪调试、程序状态记录、崩溃数据恢复都有非常现实的意义。这种服务通常以两种方式存在: 1.日志系统作为服务进程存在。Windows中的的事件日志服务就属于这种类型,该类型的日志系统通常通过消息队列机制将所需要记录的日志由日志发送端发送给日志服务。日志发送端和日志保存端通常不在同一进程当中,日志的发送是异步过程。这种日志服务通常用于管理员监控各种系统服务的状态。 2.日志系统作为系统调用存在。Java世界中的日志系统和Unix环境下诸多守护进程所使用的日志系统都属于这种类型。日志系统的代码作为系统调用被编译进日志发送端,日志系统的运行和业务代码的运行在同一进程空间。日志的发送多数属于同步过程。这种日志服务由于能够同步反映处系统运行状态,通常用于调试跟踪和崩溃恢复。 本文建立的日志系统基本属于第二种类型,但又有所不同。该日志系统将利用Java线程技术实现一个既能够反映统一线程空间中程序运行状态的同步日志发送过程,又能够提供快速的日志记录服务,还能够提供灵活的日志格式配置和过滤机制。 1.1系统调试的误区 在控制台环境上调试Java程序时,此时往控制台或者文本文件输出一段文字是查看程序运行状态最简单的做法,但这种方式并不能解决全部的问题。有时候,对于一个我们无法实时查看系统输出的系统或者一个确实需要保留我们输出信息的系统,良好的日志系统显得相当必要。因此,不能随意的输出各种不规范的调试信息,这些随意输出的信息是不可控的,难以清除,可能为后台监控、错误排除和错误恢复带来相当大的阻力。 1.2日志系统框架的基本功能 一个完备的日志系统框架通常应当包括如下基本特性: 所输出的日志拥有自己的分类:这样在调试时便于针对不同系统的不同模块进行查询,从而快速定位到发生日志事件的代码。

时间同步系统介绍

公司简介 可为科技发展成立于2000年7月,位于市高新技术产业开发区高新孵化园(国家软件基地),是专业从事美国GPS全球定位系统,中国北斗星定位系统、原子钟等相关时间类产品研发、生产、销售的国家级高新技术企业。 由可为公司自行研发生产并提供的授时产品主要有:CT-TSS2000时间同步系统,CT-GPS25、CT-GPS301、CT-GPS2003、CT-GPS2002系列全球卫星同步时钟,CT-CBD001系列北斗星同步时钟等,这些产品的特点是输出格式多,时间精度和可靠性高,使用方便,不受地域等条件的限制,抗干扰能力强,广泛应用于同步时钟系统的建立以及各种需要高精度授时的自动化装置和自动化系统。其中的CT-GPS2003具有网络接口(TCP/IP或NTP协议),适用于计算机网络或自动化系统的高精度授时; CT-GPS2002具有IRIG-B码输出格式,适用于需要B码授时的自动化设备和自动化系统。目前可为公司的授时产品已经在我国军队、电力、电信和民航等行业有近五千台套在运行使用,用户反应十分良好! 鉴于我国电力行业迅速发展,与其相关的自动化产品迅速增长,电力系统的安全稳定运行对时间的基准同一和同步性及精度要求进一步提高,在电网的电厂变电站及调度中心建立专用的时间同步系统已经显得十分迫切和必要。可为公司为此组织专业的技术队伍,成功研发了CT-TSS2000(COVE TECHNOLOGY - TIME SYNCHRONOUS

SYSTEM 2000)时间同步系统。CT-TSS2000时间同步系统是可为公司在六年来的专业积累基础上,充分发挥自身在授时产品领域的技术优势和应用经验,依托相关的科研院所和军工企业,结合美国GPS全球定位系统,中国北斗星定位系统、原子钟及IRIG-B码靶场时间标准等技术特点并考虑了各种涉及国家安全等的关联因素,在满足电力系统现在的需要及将来的发展要求基础上自主开发的具有国先进水平的授时产品,该产品是专业用于电厂变电站及调度中心同一时间基准和时间同步系统的建立的授时系统.该系统实现了时间多源头(GPS、北斗星、原子钟、高精度晶振、IRIG-B时间码基准)、输出多制式(串口、脉冲、网络、B码等)、满足多设备(系统输出可以任意扩展,可以满足任何规模任何方式的时间信号需求)的要求,保证了时间需求的高精确度、高稳定性、高安全性,高可靠性,将电力系统的时间同步精确度、稳定性、安全性和可靠性提高到一个更新更高的台阶。 可为公司具有现代企业的管理机制,注重人才培养及新产品开发,有严格的产品质量控制和售后服务体系,可为公司作为专业的授时产品的提供商和服务商,将不断拓展授时产品的应用空间和领域,积极致力于授时产品的行业应用、专业化和产业化。 可为公司将秉承“可为、有为、大有可为”的经营理念,以“立足科技、矢志创新、有所作为”为宗旨和“成为一流的时间类产品提供商和服务商”为目标,大力开发生产授时类产品,竭诚为我国的国防军事、电力电信和民航等行业和领域提供专业的授时产品全面解决方案。 可为公司愿与广大用户真诚合作,不断创新,共同发展。 携手合作,大有可为!

智能变电站时间同步系统

智能变电站时间同步系统 摘要随着智能电网的全面发展,并实现电网的信息化、数字化、自动化、互动化,网络智能接点的正常工作和作用的发挥,离不开统一的时间基准。 【关键词】时间同步智能变电站 时间同步系统为我国电网各级调度机构、发电厂、变电站、集控中心等提供统一的时间基准,以满足各种系统和设备对时间同步的要求,?_保实时数据采集时间一致性,提高线路故障测距、相量和功角动态监测、机组和电网参数校验的准确性,从而提高电网事故分析和稳定控制水平,提高电网运行效率和可靠性。 1 时间的基本概念 时间是物理学的一个基本参量,也是物资存在的基本形式之一,是所谓空间坐标的第四维。时间表示物资运行的连续性和事件发生的次序和久暂。与长度、质量、温度等其他物理量相比,时间最大的特点是不可能保存恒定不变。“时间”包含了间隔和时刻两个概念。前者描述物资运动的久暂;后者描述物资运动在某一瞬间对应于绝对时间坐标的读数,也就是描述物资运动在某一瞬间到时间坐标原点之间的距离。

2 时钟配置方案及特点 智能变电站宜采用主备式时间同步系统,由两台主时钟、多台从时钟、信号传输介质组成,为被授时设备、系统对时。主时钟采用双重花配置,支持北斗二代系统和GPS标准授时信号,优先采用北斗二代系统,主时钟对从时钟授时,从时钟为被授时设备、系统授时。时间同步景点和授时精度满足站内所以设备的对时精度要求。站控层设备宜采用SNIP对时方式,间隔层和过程层设备采用直流IRIG-B码对时方式,条件具备时也可以采用IEEE1588网络对时。 在智能变电站中,时间装置的技术特点及主要指标如下:(1)多时钟信号源输入无缝切换功能。具备信号输入 仲裁机制,在信号切换时IPPS输出稳定在0.2 us以内。 (2)异常输入信息防误功能。在外界输入信号收到干 扰时,仍然能准确输出时间信息。 (3)高精度授时、授时性能。时间同步准确度优于1us,秒脉冲抖动小于0.1us,授时性能优于1us/h。 (4)从时钟延时补偿功能。弥补传输介质对秒脉冲的 延迟影响。 (5)提供高精度可靠的IEEE1588时钟源。 (6)支持DL/T860建模及MMS组网。 (7)丰富的对时方式,配置灵活。支持RS232、RS485、空触点、光纤、网络等多种对时方式。

相关文档
最新文档