选取氮化硅和二氧化硅作为薄膜材料

选取氮化硅和二氧化硅作为薄膜材料
选取氮化硅和二氧化硅作为薄膜材料

选取氮化硅和二氧化硅作为薄膜材料,借助膜系设计软件对膜系结构进行优化,采用中频脉冲磁控溅射技术进行薄膜制备。利用高反膜透射曲线拟合方法调整薄膜的实际沉积速率,减少膜厚控制误差,在树脂镜片CR39基底的凸面和凹面上分别镀制了符合设计要求的红外防护膜和可见光减反膜。镀膜后树脂镜片在420~680 nm的平均透过率大于95%,在近红外800~1400 nm波段的平均透过率小于60%,薄膜性能稳定,能够满足红外防护树脂镜片的日常使用需要

1)热固性材料

1)普通树脂材料:(CR-39)

学名碳本酸丙烯乙酸,或称烯丙基二甘醇酸脂(Dially Glycol Carbonates),是应用最广泛的生产普通树脂镜片的材料。它于四十年代被美国哥伦比亚公司的化学家发现,是美国空军所研制的一系列聚合物中的第39号材料,因此,被称为CR-39(哥伦比亚树脂第39号)。CR-39被用于生产眼用矫正镜片是在1955~1960年,是第一代的超轻、抗冲击的树脂镜片。CR-39作为一种热固性材料,单体呈液态,在加热和加入催化剂的条件下聚合固化。聚合是一个化学反应,即由几个相同分子结构的单体组成的一个新的聚合体分子,具有不同的长度和性质。作为光学镜片,CR-39材料性质的参数十分适宜:折射率为1.5(接近普通玻璃镜片)、密度1.32(几乎是玻璃的一半)、

阿贝数为58~59(只有很少的色射)、抗冲高透光率,可以进行

染色和镀膜处理。

它主要的缺点是耐磨性不及玻璃,需要镀抗磨损膜处理。树脂镜片可采用模式压法加工镜片表面的曲率,因此很适用于非球面镜片的生产。

2)中高折射率树脂材料:今天大部分的中折射率和高折射率材料都是热固性树脂,其发展非常迅速。它们的折射率可以使用以下任意一种技术来增加:改变原分子中电子的结构,例如:引入苯环结构;在原分子中加入重原子,诸如卤素(氯、溴等)或硫。与传统CR-39相比,用中高折射率树脂材料制造的镜片更轻、更薄。它们的比重与CR-39大体一致(在1.20到1.40之间),但色散较大(阿贝数45),抗热性能较差,然而抗紫外线较佳,同时也可以染色和进行各种系统的表面镀膜处理。使用这些材料的镜片制造工艺与CR-39的制造原理大体一致。现在1.67的树脂材料已广泛流行,而且象1.7的树脂材料也已在市场上有销售。视光业的专业人员正不断研制开发新材料,改良原有材料,以期树脂材料在将来获得更好的性能。

3)染色树脂材料:用于制造太阳眼镜镜片的基本上都是聚合前加入染料而制成的,特别适合大批量制造各色平光太阳镜片,同时在材料中加入可吸收紫外线的物质。

现在的一项技术即是使用浸泡在溶有有机色素的热水中,常用的染料有红色、绿色、黄色、蓝色、灰色、和棕色,根据需求可任意调染,颜色的深浅也可以控制,可以将整片镜片染色成一种颜色,也可以染成逐渐变化的颜色,例如镜片上部深色,往下逐渐减浅,即俗称的双色或渐进色。有机材料的出现,解决了屈

光不正者配戴太阳眼镜的问题。

4)光致变色树脂材料:第一代光致变色树脂镜片大约出现在1986年,但是直到1990年第一代Transi-tion镜片面市后,它才真正开始普及。光致变色效果是在材料中加入了感光的混合物而获得的,在特殊波段的紫外线辐射作用下,这些感光物质的结构发生变化,改变了材料的吸收能力。这些混合物与的结合主要有两种方法:在聚合前与液态单体混合,或在聚合后渗入材料中(Transition镜片就采用后一种方法)。光致变色树脂镜片采用几种光致变色物质,在最后的制造中使这些不同的

变色效果结合起来,这使得镜片变色不但迅速,而且不完全

受温度的控制。

一种新型的光致变色树脂镜片已于1993年投放市场,这种镜片采用树脂材料作片基,用渗透法在镜片的凸面渗透了一层光致变色材料,然后再镀上一层抗磨损膜,起保护和而磨作用。这项工艺技术可以使镜片的变色不会随屈光度数的加深而出现镜片中央与周围深浅不一的情况,弥补了玻璃变色的不足。再

加上片基是树脂材料,轻且抗冲击,所以这种镜片特别适合用于

各种屈光不正者使用。

(2)热塑性材料(聚碳酸酯,POLYCARBONATE,简称

PC)

热塑性材料如PMMA早在五十年代就被首次用于制造镜片,但是由于受热易变形及耐磨性较差的缺点,很快就被CR -39所替代。然而今天,聚碳酸酯的发展将热塑性材料带回了镜片领域,并被视光业专业人士认可为21世纪的主导镜片材料。实际上,聚碳酸酯也不是一种新材料,它大约在1995年就被发现了,但真正在视光领域的使用仅仅是近几年,它在历经了数年的研制和多次的改进之后尤其是应用于CD产业,其光学质

量已其它镜片材料相媲美。

聚碳酸酯是直线形无定型结构的热塑聚合体,具有许多光学方面的优点:出色的抗冲击性(是CR-39的10倍以上),高折射率(ne=1.591,nd=1.586),非常轻(比重=1.20g/立方厘米),100%抗紫外线(385nm),耐高温(软化点为140 °C/280 °F)。聚碳酸酯材料也可进行系统的镀膜处理。它的阿贝数较低(Ve=31,Vd=30),但在实际中对配戴者并没有显著的影响。在染色方面,由于聚碳酸酯材料本身不易着色,所以大多通过可染

色的抗磨损膜吸收颜色

树脂镜片镀膜三

[post] 三.镜片镀膜

一、耐磨损膜(硬膜)

无论是无机材料还是有机材料制成的眼镜片,在日常的使用中,由于与灰尘或砂砾(氧化硅)的摩擦都会造成镜片磨损,在镜片表面产生划痕。与玻璃片相比,有机材料制成的硬性度比较低,更易产生划痕。通过显微镜,我们可以观察到镜片表面的划痕主要分为二种,一是由于砂砾产生的划痕,浅而细小,戴镜者不容易察觉;另一种是由较大砂砾产生的划痕,深且周边粗糙,处于中心区域则会影响视力。

(1)技术特征

1)第一代抗磨损膜技术

抗磨损膜始于20世纪70年代初,当时认为玻璃镜片不易磨制是因为其硬度高,而有机镜片则太软所以容易磨损。因此将石英材料于真空条件下镀在有机镜片表面,形成一层非常硬的抗磨损膜,但由于其热胀系数与片基材料的不匹配,很容易脱膜和膜层脆裂,因此抗磨损效果不理想。

2)第二代抗磨损膜技术

20世纪80年代以后,研究人员从理论上发现磨损产生的机理不仅仅与硬度相关,膜层材料具有“硬度/形变”的双重特

性,即有些材料的硬度较高,但变形较小,而有些材料硬度较低,但变形较大。第二代的抗磨损膜技术就是通过浸泡工艺法在有机镜片的表面镀上一种硬度高且不易脆裂的材料。

3)第三代抗磨损膜技术

第三代的抗磨损膜技术是20世纪90年代以后发展起来的,主要是为了解决有机镜片镀上减反射膜层后的耐磨性问题。由于有机镜片片基的硬度和减反射膜层的硬度有很大的差别,新的理论认为在两者之间需要有一层抗磨损膜层,使镜片在受到砂砾磨擦时能起缓冲作用,并而不容易产生划痕。第三代抗磨损膜层材料的硬度介于减反射膜和镜片片基的硬度之间,其磨擦系数

低且不易脆裂。

4)第四代抗磨损膜技术

第四代的抗膜技术是采用了硅原子,例如法国依视路公司的帝镀斯(TITUS)加硬液中既含有有机基质,又含有包括硅元素的无机超微粒物,使抗磨损膜具备韧性的同时又提高了硬度。现代的镀抗磨损膜技术最主要的是采用浸泡法,即镜片经过多道清洗后,浸入加硬液中,一定时间后,以一定的速度提起。这一速度与加硬液的黏度有关,并对抗磨损膜层的厚度起决定作用。提起后在100 °C左右的烘箱中聚合4-5小时,镀层厚约3

-5微米。

(2)测试方法

判断和测试抗磨损膜耐磨性的最根本的方法是临床使用,让戴镜者配戴一段时间,然后用显微镜观察并比镜片的磨损情况。当然,这通常是在这一新技术正式推广前所采用的方法,目前我们常用的较迅速、直观的测试方法是:

1)磨砂试验

将镜片置于盛有砂砾的宣传品内(规定了砂砾的粒度和硬度),在一定的控制下作来回磨擦。结束后用雾度计测试镜片磨擦前后的光线漫反射量,并且与标准镜片作比较。

2)钢丝绒试验

用一种规定的钢丝绒,在一定的压力和速度下,在镜片表面上磨擦一珲的次数,然后用雾度计测试镜片磨擦前后的光线漫反射量,并且与标准镜片作比较。当然,我们也可以手工操作,对二片镜片用同样的压力磨擦同样的次数,然后用肉眼观察和比

较。

上述两种测试方法的结果与戴镜者长期配戴的临床结

果比较接近。

3)减反射膜和抗磨损膜的关系

镜片表面的减反射膜层是一种非常薄的无机金属氧化物材料(厚度低于1微米),硬且脆。当镀于玻璃镜片上时,由于片基比较硬,砂砾在其上面划过,膜层相对不容易产生划痕;

但是减反射膜镀于有机镜片上时,由于片基较软,砂砾在膜层上

划过,膜层很容易产生划痕。

因此有机镜片在镀减反射膜前必须要镀抗磨损膜,而且

两种膜层的硬度必须相匹配。

二、减反射膜

(1)为什么需要镀减反射膜?

1)镜面反射

光线通过镜片的前后表面时,不但会产生折射,还会产生反射。这种在镜片前表面产生的反射光会使别人看戴镜者眼睛时,看到的却是镜片表面一片白光。拍照时,这种反光还会严重

影响戴镜者的美观。

2)"鬼影"

眼镜光学理论认为眼镜片屈光力会使所视物体在戴镜者的远点形成一个清晰的像,也可以解释为所视物的光线通过镜片发生偏折并聚集于视网膜上,形成像点。但是由于屈光镜片的前后表面的曲率不同,并且存在一定量的反射光,它们之间会产生内反射光。内反射光会在远点球面附近产生虚像,也就是在视网膜的像点附近产生虚像点。这些虚像点会影响视物的清晰度和

舒适性。

3)眩光

象所有光学系统一样,眼睛并不完美,在视网膜上所成的像不是一个点,而是一个模糊圈。因此,二个相邻点的感觉是由二个并列的或多或少重叠的模糊圈产生的。只要二点之间的距离足够大,在视网膜上的成像就会产生二点的感觉,但是如果二点太接近,那么二个模糊圈会趋向与重合,被误认为是一个点。

对比度可以用来反映这种现象,表达视力的清晰度。对比值必须大于某一确定值(察觉阈,相当于1-2)才能够确保

眼睛辨别二个邻近点。

对比度的计算公式为:D=(a-b)/(a+b) 其中C为对比度,二个相邻物点在视网膜上所成像的感觉最高值为a,相邻部份的最低值为b。如果对比度C值越高,说明视觉系统对该二点的分辨率越高,感觉越清晰;如果二个物点非常接近,它们的相邻部分的最低值比较接近于最高值,则C值低,说明视觉系统对该二点感到不清晰,或不能清晰分辨。

让我们来模拟这样一个场景产:夜晚,一位戴眼镜的驾车者清晰地看见对面远处有二辆自行车正冲着他的车骑过来。此时,尾随其后的汽车的前灯在驾车者镜片后表面上产生反射:该反射光在视网膜上形成的像增加了二个被观察点的强度(自行车车灯)。所以,a段和b段的长度增加,即然分母(a+b)增加,而分子(a-b)保持不变,于是就引起了C值的减少。对比减小的

结果会令驾驶员最初产生的存在二个骑车人的感觉重合成为单一的像,就好比区分它们的角度被突然减小!

4)透过量

反射光占入射光的百分比取决于镜片材料的折射率,可

通过反射量的公式进行计算。

反射量公式:R=(n-1)平方/(n+1)平方

R:镜片的单面反射量n:镜片材料的折射率例如普通树脂材料的折射率为1.50,反射光R=(1.50

-1)平方/(1.50+1)平方=0.04=4%。

镜片有两个表面,如果R1为镜片前表面的量,R2为镜片后表面的反射量,则镜片的总反射量R=R1+R2。(计算R2的反射量时,入射光为100%-R1)。镜片的透光量T=

100%-R1-R2。

由此可见,高折射率的镜片如果没有减反射膜,反射光会对戴镜者带来的不适感比较强烈。

(2)原理

减反射膜是以光的波动性和干涉现象为基础的。二个振幅相同,波长相同的光波叠加,那么光波的振幅增强;如果二个光波原由相同,波程相差,如果这二个光波叠加,那么互相抵消了。减反射膜就是利用了这个原理,在镜片的表面镀上减反射

膜,使得膜层前后表面产生的反射光互相干扰,从而抵消了反射

光,达到减反射的效果。

1)振幅条件

膜层材料的折射率必须等于镜片片基材料折射率的平

方根。

2)位相条件

膜层厚度应为基准光的1/4波长。d=λ/4λ=555nm

时,d=555/4=139nm

对于减反射膜层,许多眼镜片生产商采用人眼敏感度较高的光波(波长为555nm)。当镀膜的厚度过薄(〈139nm),反射光会显出浅棕黄色,如果呈蓝色则表示镀膜的厚度过厚(〉

139nm)。

镀膜反射膜层的目的是要减少光线的反射,但并不可能做到没有反射光线。镜片的表面也总会有残留的颜色,但残留颜色哪种是最好的,其实并没有标准,目前主要是以个人对颜色的

喜好为主,较多为绿色色系。

我们也会发现残留颜色在镜片凸面与凹面的曲率不同也使镀膜的速度不同,因此在镜片中央部分呈绿色,而在边缘部

分则为淡紫红色或其它颜色。

3)镀减反射膜技术

有机镜片镀膜的难度要比玻璃镜片高。玻璃材料能够承受300 °C以上的高温,而有机镜片在超过100 °C时便会发黄,

随后很快分解。

可以用于玻璃镜片的减反射膜材料通常采用氟化镁(MgF2),但由于氟化镁的镀膜工艺必须在高于200°C的环境下进行,否则不能附着于镜片的表面,所以有机镜片并不采用它。

20世纪90年代以后,随着真空镀膜技术的发展,利用离子束轰击技术,使得膜层与镜片的结合,膜层间的结合得到了改良。而且提炼出的象氧化钛,氧化锆等高纯度金属氧化物材料可以通过蒸发工艺镀于树脂镜片的表面,达到良好的减反射效

果。

以下对有机镜片的减反射膜镀膜技术作一介绍。

1)镀膜前的准备

镜片在接受镀膜前必须进行预清洗,这种清洗要求很高,达到分子级。在清洗槽中分别放置各种清洗液,并采用超声波加强清洗效果,当镜片清洗完后,放进真空舱内,在此过程中要特别注意避免空气中的灰尘和垃圾再黏附在镜片表面。最后的清洗是在真空舱内,在此过程中要特别注意避免空气中的灰尘和垃圾再黏附在镜片表面。最后的清洗是在真空舱内镀前进行的,放置在真空舱内的离子枪将轰击镜片的表面(例如用氩离子),完成此道清洗工序后即进行减反射膜的镀膜。

2)真空镀膜

真空蒸发工艺能够保证将纯质的镀膜材料镀于镜片的表面,同时在蒸发过程中,对镀膜材料的化学成分能严密控制。

真空蒸发工艺能够对于膜层的厚度精确控制,精度达到。

氮化硅薄膜的沉积速率和表面形貌

收稿日期:2008-09-12.  基金项目:教育部留学回国人员科研启动基金资助项目(200611AA03).材料、结构及工艺 氮化硅薄膜的沉积速率和表面形貌 张广英1,吴爱民1,秦福文1,公发全2,姜 辛1,3 (1.大连理工大学三束材料改性国家重点实验室,辽宁大连116024; 2.大连化学物理研究所,辽宁大连116023; 3.德国锡根大学材料工程学院,德国锡根57056) 摘 要: 采用电子回旋共振2等离子体增强化学气相沉积(ECR 2PECVD )技术,以氮气为等离子体气源,5%硅烷(Ar 稀释)为前驱气体,在玻璃衬底上低温制备了氮化硅薄膜。利用偏振光椭圆率测量仪、原子力显微镜(A FM )等测试技术分析探讨了硅烷流量(5~50cm 3)、沉积温度(150~ 350℃ )以及微波功率(500~650W )等对SiN 薄膜沉积速率及表面形貌的影响。结果表明:沉积速率随着硅烷流量和微波功率的增加而增加(最高达到11.07nm/min ),随着衬底温度的增加而降低,在温度为350℃时降低到2.44nm/min 。薄膜的粗糙度随着衬底温度和微波功率的增加而降低,粗糙度最低为0.89nm ,说明薄膜的表面质量较高。 关键词: ECR 2PECVD ;氮化硅薄膜;沉积速率;表面形貌中图分类号:TN304.054 文献标识码:A 文章编号:1001-5868(2009)04-0558-04 Deposition R ate and Surface Topography of SiN Films ZHAN G Guang 2ying 1,WU Ai 2min 1,Q IN Fu 2wen 1,GON G Fa 2quan 2,J IAN G Xin 1,3 (1.State K ey Lab.of Materials Modif ication by Laser ,Ion and E lectron B eams ,Dalian U niversity of T echnology ,Dalian 116024,CHN;2.Dalian I nstitute of Chemical Physics ,Chinese Academy of Sciences ,Dalian 116023,CHN; 3.Institute of Materials E ngineering ,Siegen U niversity ,Siegen 57076,GER ) Abstract : The silicon nit ride films were deposited at low deposition temperat ure by electron cyclotron reso nance 2plasma enhanced chemical vapor deposition (ECR 2PECVD )technique on glass subst rate by applying p ure nit rogen as t he plasma gas source and 5%silane (Ar dilute )as t he precursor gas.The deposition rate ,refractive index and surface topograp hy of SiN films were st udied by ellip somet ry and A FM.Result s show t hat t he depo sition rate increases wit h t he silicon gas flow and microwave power increasing ,and decreases wit h t he subst rate temperat ure increasing.The maximal depo sitio n rate is 11.07nm/min.The minimal depo sition rate of 2.44nm/min is achieved at t he subst rate temperate of 350℃.Wit h t he deposition temperat ure and microwave power increasing ,t he roughness of silicon nit ride films decreases wit h t he minimal value is 0.89nm. K ey w ords : ECR 2PECVD ;SiN films ;depo sition rate ;surface topograp hy 0 引言 近年来,用PECVD 技术制备氮化硅薄膜并应用于太阳电池的课题越来越引起人们的关注[122]。 作为一种重要的新型功能材料,氮化硅薄膜具有优良的光学性能、电学性能和化学稳定性能[3]。在太阳电池中,氮化硅薄膜由于它的优良的光学性能,可以作为一种很好的减反射材料,以减少入射太阳光的损失,提高电池的效率。同时,氮化硅薄膜也可以对太阳电池起到表面和体内的钝化作用,提高电池 ? 855?

边继明-氮化铝性质及其应用

氮化铝性质及其应用的最新进展 边继明 ( 大连理工大学物理与光电工程学院, 辽宁大连 116024)摘要:从氮化铝的结构出发,分析了氮化铝的结构及性质,详细介绍了氮化铝在各个方面的应用,阐述了氮化铝薄膜及氮化铝陶瓷的制备过程及其在光电方面的应用。 关键词:氮化铝(ALN)结构;ALN薄膜;ALN陶瓷;ALN制备;光电器件 0 引言 现代电子信息技术飞速发展,极大地推动着电子产品向多功能高性能、可靠性、小型化、便携化以及大众化普及所要求的低成本等方向发展。这些电子产品要经过合适的封装,才能达到所要求的电、热、光、机械等性能,满足使用要求[1] 薄膜作为特殊形态的材料,它的发展涉及几乎所有的前沿科学,又涉及到许多跨学科的理论基础。薄膜技术又是综合性的应用科学,已成为当代真空技术和材料科学中最活跃的研究领域,并渗透到微电子、信息、计算机、磁记录、能源、传感器、机械、航天航空、核工业、光学、太阳能利用等当代科技的各个方面。近几十年由于真空技术、薄膜材料与技术同表面物理相结合,促进了薄膜科学与技术的迅速发展。近年来世界薄膜产业飞速崛起推动了薄膜产品的开发与应用,可以说它正日益加深地影响着我们的生活。因而薄膜材料的研究既具有很强的理论意义又有广泛的应用价值。 精密陶瓷由于具有高机械強度、高温稳定性、耐磨耗及化学侵蚀,有些甚至具有良好的热传导性、电气绝缘性、压电性质、光学性质或生物亲和性等他种材料无法达到的性质,故为近年来最具发展性的材料之一,同時为许多专家学者称未来世纪最重要的材料。 正是由于ALN材料具有一系列特殊性质使其在薄膜,陶瓷等方面具有很大的应用前景。 1 ALN 结构 氮化铝(AlN)是Ⅲ-Ⅴ族共价化合物[1]。是Ⅲ-Ⅴ族中能隙值约 6.2eV)最大的半导体[2]。是一个以铝原子为中心,外部围绕四个氮原子,叠合而成的变形四面体[3]。如图

层状氮化硅陶瓷的性能与结构

第25卷第5期硅 酸 盐 学 报V ol.25,N o.5 1997年10月JO U RN A L O F T HE CHIN ESE CERA M IC SO CIET Y O ct ober,1997  层状氮化硅陶瓷的性能与结构 郭 海 黄 勇 李建保 (清华大学材料科学与工程系) 摘 要 从结构设计的角度出发研究了层状复合Si3N4陶瓷材料。利用轧膜工艺使层内的晶粒、晶须产生定向增韧,通过调整外部层状复合结构得到材料的两级增韧效果,并实验制备了高韧性层状复合Si3N4基陶瓷材料。主层内加入一定量的SiC晶须,层状氮化硅陶瓷的断裂韧性可达到20.11M Pa?m1/2。 关键词 氮化硅,层状复合,晶须,定向 1 前 言 制备高韧性的陶瓷材料,克服陶瓷灾难性的破坏,常用增韧方法的增韧效果非常有限。为了提高增韧效果,降低增韧成本,新的增韧方法的探索是十分必要的。 近年来,国内外学者从生物界得到了启示。贝壳具有的层状结构可以产生较大的韧性这一特点给了我们一些启发,除了从组分设计上选择不同的材料体系以外,更重要的一点就是可以从材料的宏观结构角度来设计新型材料。目前国内外已有人从结构设计的角度出发,开始了层状复合陶瓷材料的探索性研究[1,2]。对于层状复合陶瓷材料来讲,如果把每层看成块体材料的结构单元,则关键的技术问题在于:(1)材料各结构单元的强度、韧性优化;(2)界面结合层的选择及与结构单元的匹配。层状结构单元基本上都是高强硬质的陶瓷材料如氮化硅、氧化铝等,通常是通过流延、干压等工艺方法制备的陶瓷薄片[3,4]。而界面结合层的选择则种类繁多,如石墨、延性金属等,它们对陶瓷薄片起到一定的分隔作用[5]。但总的来说,目前的研究结果并不令人满意,尚未达到单纯块体材料的性能水平。 针对层状复合陶瓷材料的两个关键问题,可以分别进行研究。首先是改善材料结构单元的性能,由于层状复合材料具有明显的各向异性,因此可以设计结构单元具有同样的各向异性性能,如引入可能导致各向性能差异的晶须、纤维、晶种等,并使之按指定方向分布,就有可能在特定方向上得到较高的性能[6],对晶须定向陶瓷材料的各方向的性能差异的研究证实了这一假设。其次是结构单元之间界面的选择,对层状复合陶瓷材料,界面的选择要同时考虑界面的高温性能、与陶瓷薄片的结合性能以及热匹配等多种因素,对不同的基片进行综合考虑,选择合适的界面组分及所占的比例。 1996年7月15日收到。 通讯联系人:郭 海,清华大学材料科学与工程系,北京 100084。 532

氮化硅薄膜光学性质的研究

氮化硅薄膜光学性质的研究摘要:氮化硅薄膜具有优良的光学性能,常用作太阳能电池表面的减反射材料。采用传统的退火炉和快速热退火炉进行了不同时间和温度下的退火比较,并研究了退火对薄膜光学性能的影响。研究发现:氮化硅薄膜经热处理后厚度降低,折射率先升高后降低。 关键词:太阳能电池;氮化硅薄膜;热处理 引言 由于有着良好的绝缘性,致密性,稳定性和对杂质离子的掩蔽能力,氮化硅薄膜作为一种高效器件表面的钝化层已被广泛应用在半导体工艺中。人们同时发现,在多晶硅太阳电池表面生长高质量氮化硅薄膜不仅可以十分显著地提高多晶硅太阳电池的转换效率,而且还可以降低生产成本。作为一种减反射膜,氮化硅不仅有着极好的光学性能(λ =6 3 2 . 8 n m时折射率在 1 . 8 ~2. 5之间,而最理想的封装太阳电池减反射膜折射率在 2 . 1 ~2. 2 5 之间) 和化学性能,还能对质量较差的硅片起到表面和体内钝化作用,提高电池的短路电流。因此,采用氮化硅薄膜作为晶体硅太阳电池的减反射膜已经成为光伏界的研究热点。 1 . 氮化硅薄膜的光学性质 1 .1实验 本实验采用2cm×2cm×400um的单面抛光的P型<100>Cz硅片,在沈阳科仪中心PECVD400型真空薄膜生长系统中生长氮化硅薄膜。氮化硅薄膜制备过程如下:实验前使用乙醇和丙酮超声清洗样品15min以去除油污,然后用1号液(H20: H202:NH3·H20=5:1:1)和2号液(H 20:H 2 O 2 :HCl=5:1:1)清洗,最后再使用 5%稀氢氟酸(HF)漂洗5min以去除氧化层,去离子水洗净烘干后放人反应室。采用硅烷(10%氮气稀释)和高纯氨气作为反应气体沉积氮化硅薄膜,其中沉积薄膜的生长参数如下:气体流量为硅烷30sccm、氨气60sccm、工作气压30Pa、射频频率 13.5MHz、沉积时间10min。沉积薄膜后,采用传统的退火炉和新兴的快速热退火炉进行了氩气保护下不同时间和温度下的退火比较,并测试了薄膜退火前后的厚度、折射率。 1.2结果和讨论

氮化铝薄膜的椭偏法研究

第37卷 第6期 激光与红外V o.l37,N o.6 2007年6月 LA SER & I NFRA RED J une,2007 文章编号:1001-5078(2007)06-0548-04 氮化铝薄膜的椭偏法研究 周 杨,梁海锋,严一心,蔡长龙 (西安工业大学光电工程学院,陕西西安710032) 摘 要:文章采用真空磁过滤电弧离子镀法在单晶Si(100)基片上成功制备了氮化铝(A l N)薄 膜,并利用椭偏法对A l N膜进行了研究。根据沉积方法的特点,建立合适的膜系进行拟合,得 到薄膜的折射率、消光系数和几何厚度;分析薄膜与基片之间的附着方式为简单附着,以及引 起薄膜材料比块体材料折射率偏小的原因为:薄膜中含有空隙,A l/N不符合化学剂量比,薄膜 表面形成了A l2O3钝化层。 关键词:椭偏仪;A l N薄膜;光学常数 中图分类号:O484.4+1 文献标识码:A St udy on A l N Thi n F im l s w it h E lli p so m etry Z HOU Yang,LI ANG H ai-feng,YAN Y i-x in,CA I Chang-l o ng (Schoo l o f Op t oe lectron ica l Eng inee ri ng,X i′an T echno log ica lU niversity,X i′an710032,China) Ab stract:A l u m i num nitride(A l N)t hin fil m s have been grow n on silicon(100)substrate using a filt e red DC arc dep- ositi on process.E llips om etry are used t o st udy t he fil m s.A cco rding t o the deposition characteristics,a fitable model we re proposed to fit t he re frac tive i ndex,ex tinction index and t hickness of the A l N thi n fil m s.The adhesi on o f fil m s and substrate wa s ana l yzed and different re fractive index be t w een fil m s and block w as i nte rpre ted.The re s u lts sho w t hat t he fil m s′re frac tive i ndex and exti nx tion i ndex wa s abou t2.015and ze ro.The w ay of t hin fil m s adhe red to sub- strate w as si m ple adhesion and t he reason tha t t he refracti ve i ndex o f thin fil m sw as l e ss than b l ock ma teria lwa s a ttri b- u ted t o vo ids m i xed,t he ra tio of A1/N unequaled1and surface oxygen(A l 2O 3 adhe red to t he surface). K ey w ord s:ellipso m ete r;A l N t hin fil m s;optica l constan t 1 引 言 氮化铝是A l-N二元系中唯一稳定的相,它具有共价键,六方纤维矿结构,在常压下不能融化,而在2500K分解,它的能带间隙高达6.2e V,也可以通过掺杂成为宽带隙半导体材料。氮化铝具有电阻率高、热膨胀系数低、硬度高、化学稳定性好等特点,而与一般绝缘体不同的是,它的热导率也很高(3.2W/c m K),氮化铝在整个可见光和红外频段都有很高的光学透射比,这些特性使氮化铝膜在微电子和光电器件等许多方面都有着十分广阔的应用前景。此外,氮化铝还具有良好的耐磨损和耐腐蚀性能,可用作防护膜[1]。制备A l N薄膜的方法有化学气相沉积(CVD)、分子束外延(M BE)、反应蒸发、反应磁控溅射、脉冲激光沉积、离子注入、离子束增强沉积及真空磁过滤电弧离子镀等[2]。 本文采用真空磁过滤电弧离子镀法制备A l N 薄膜,使用椭偏法合理地建立膜系,测试A l N薄膜的光学常数,讨论了薄膜与基片之间的附着情况以及引起薄膜材料比块体材料折射率偏小的原因。 2 实验方法 试验用薄膜在УВНИЛА-1-001型等离子体镀膜设备上制备。靶材选用纯铝靶,用双面抛光S i 作者简介:周 杨(1982-),女,在读硕士,主要从事红外薄膜技术及工艺方面的研究。E-m ail:chayee_0@163.co m 收稿日期:2006-11-07

氮化硅薄膜材料的PECVD制备及其光学性质研究

目录 1引言-------------------------------------------------------------------------------------------------------------------错 误!未定义书签。 1.1氮化硅的特性-----------------------------------------------------------1 1.2氮化硅的制备方法----------------------------------------------------------------------------------------2 1.2.1常压化学气相沉积(APCVD)--------------------------------------------------------------------2 1.2.2低压化学气相沉积(LPCVD)--------------------------------------------------------------------2 1.2.3等离子体增强化学气相沉积(PECVD)------------------------------------------------------3 1.3氮化硅薄膜PECVD制备的特点-----------------------------------------------------------------------4 2实验-------------------------------------------------------------------------------------------------------------------4 2.1实验仪器的介绍-------------------------------------------------------------------------------------------4 2.2PECVD法制备氮化硅薄膜的原理----------------------------------------5 2.3实验方法------------------------------------------------------------5 3 实验结果与讨论-------------------------------------------------------------------------------------------------5 参考文献--------------------------------------------------------------------------------------------------------------10

浅谈氮化铝的性质、制备及应用

浅谈氮化铝的性质、制备及应用 1氮化铝的性质 氮化铝(AlN)是一种综合性能优异的先进陶瓷材料,是一种被国内外专家一致看好的新型封装材料,也是目前公认的最有发展前途的高热导陶瓷材料。对其的研究开始于一个多世纪以前,但当时仅将其用作固氮剂化肥使用。作为共价化合物的氮化铝,由于其具有较高的熔点和较低的自扩散系数,导致其难以烧结。直到上世纪50年代,氮化铝陶瓷才被人们首次制得,并作为一种耐火材料使用,而后广泛应用于纯铁、铝以及铝合金的熔炼。从上世纪70年代以来,随着研究的进一步深入,氮化铝的制备工艺逐渐走向成熟,其应用的领域和规模也不断扩大。 氮化铝是一种共价键化合物,具有六方纤锌矿型结构形态,晶格常数为a=3.11、c=4.98,如图1-1所示。其理论密度为3.26g/cm3,莫氏硬度为7~8,分解温度为2200~2250℃。[1] 图1-1氮化铝的晶体结构 氮化铝陶瓷具有较高的热导率,适应于高功率、高引线和大尺寸芯片;它的热膨胀系数与硅匹配,介电常数较低;其材质机械强度高,在严酷的条件下仍能照常工作。因此,氮化铝可以制成很薄的衬底,以满足不同封装基片的应用要求。氮化铝陶瓷作为高热导、高密封材料有很大的发展潜力,是陶瓷封装材料研究的重要发展领域。人们预计,在基片和封装两大领域,氮化铝陶瓷最终将取代目前的氧化铝陶瓷和氧化铍陶瓷。[2] 氮化铝陶瓷的主要特点如下:1)热导率高,是氧化铝陶瓷的5~10倍,与剧毒氧化铍相当;2)热膨胀系数(4.3×10-6/℃)与半导体硅材料(3.5-4.0×10-6/℃)匹配;3)机械性能好,高于氧化铍陶瓷,接近氧化铝;4)电性能优良,具有极高的绝缘电阻和低的介质损耗;5)可以进行多层布线,实现封装的高密度和小型化;6)无毒,有利于环保。[3]

氮化铝常识

用心专注服务专业 氮化铝常识 中文名称:氮化铝。英文名称:aluminum nitride 定义:由ⅢA族元素Al和ⅤA族元素N 化合而成的半导体材料。分子式为AlN。室温下禁带宽度为6.42eV,属直接跃迁型能带结构。应用学科:材料科学技术(一级学科);半导体材料(二级学科);化合物半导体材料(二级学科) 以上内容由全国科学技术名词审定委员会审定公布目录 说明:AlN是原子晶体,属类金刚石氮化物,最高可稳定到2200℃。室温强度高,且强度随温度的升高下降较慢。导热性好,热膨胀系数小,是良好的耐热冲击材料。抗熔融金属侵蚀的能力强,是熔铸纯铁、铝或铝合金理想的坩埚材料。氮化铝还是电绝缘体,介电性能良好,用作电器元件也很有希望。砷化镓表面的氮化铝涂层,能保护它在退火时免受离子的注入。 氮化铝还是由六方氮化硼转变为立方氮化硼的催化剂。室温下与水缓慢反应.可由铝粉在氨或氮气氛中800~1000℃合成,产物为白色到灰蓝色粉末。或由Al2O3-C-N2体系在1600~1750℃反应合成,产物为灰白色粉末。或氯化铝与氨经气相反应制得.涂层可由AlCl3-NH3体系通过气相沉积法合成。AlN+3H2O==催化剂===Al(OH)3↓+NH3↑ 氮化铝是一种陶瓷绝缘体(聚晶体物料为 70-210 W?m?1?K?1,而单晶体更可高达 275 W?m?1?K?1 ),使氮化铝有较高的传热能力,至使氮化铝被大量应用于微电子学。与氧化铍不同的是氮化铝无毒。氮化铝用金属处理,能取代矾土及氧化铍用于大量电子仪器。氮化铝可通过氧化铝和碳的还原作用或直接氮化金属铝来制备。氮化铝是一种以共价键相连的物质,它有六角晶体结构,与硫化锌、纤维锌矿同形。此结构的空间组为P63mc。要以热压及焊接式才可制造出工业级的物料。物质在惰性的高温环境中非常稳定。在空气中,温度高于700℃时,物质表面会发生氧化作用。在室温下,物质表面仍能探测到5-10纳米厚的氧化物薄膜。直至1370℃,氧化物薄膜仍可保护物质。但当温度高于1370℃时,便会发生大量氧化作用。直至980℃,氮化铝在氢气及二氧化碳中仍相当稳定。矿物酸通过侵袭粒状物质的界限使它慢慢溶解,而强碱则通过侵袭粒状氮化铝使它溶解。物质在水中会慢慢水解。氮化铝可以抵抗大部分融解的盐的侵袭,包括氯化物及冰晶石〔即六氟铝酸钠〕。

氮化硅材料的性能、合成方法及进展

氮化硅材料的性能、合成方法及进展 摘要:氮化硅作为一种新型无机材料,以其有良好的润滑性,耐磨性,抗氧化等特性受到广泛的关注和深入的研究。以下对氮化硅的材料的性能、合成方法、意义和进展作简单介绍。 关键词:无机材料;氮化硅;合成方法;性能;进展 1前言 由于科学技术的不断发展需要,科学家们一直在不停顿地寻找适用于苛刻条件下使用的理想的新材料。在层出不穷的大量新材料队伍中,氮化硅陶瓷可算是脱颖而出,十分引人注目,日益受到世界各国科学家们的重视。 2氮化硅的材料的性能\合成方法、意义和进展 2.1氮化硅的性能和应用 氮化硅(Si3N4)是氮和硅的化合物。在自然界里,氮、硅都是极其普通的元素。氮是生命的基础,硅是无机世界的主角,这两种元素在我们生活的世界上无所不在,然而,至今人们还未发现自然界里存在这两种元素的化合物。 氮化硅是在人工条件下合成的化合物。虽早在140多年前就直接合成了氮化硅,但当时仅仅作为一种稳定的“难熔”的氮化物留在人们的记忆中。二次大战后,科技的迅速发展,迫切需要耐高温、高硬度、高强度、抗腐蚀的材料。经过长期的努力,直至1955年氮化硅才被重视,七十年代中期才真正制得了高质量、低成本,有广泛重要用途的氮化硅陶瓷制品。开发过程为何如此艰难,这是因为氮化硅粉体和氮化硅陶瓷制品之间的性能和功能相差甚远,没有一个严格而精细的对氮化硅粉体再加工过程,是得不到具有优异性能的氮化硅陶瓷制品的。没有氮化硅陶瓷就没有氮化硅如今的重要地位。 2.1.1优异的性能 氮化硅陶瓷的优异的性能对于现代技术经常遇到的高温、高速、强腐蚀介质的工作环境,具有特殊的使用价值。比较突出的性能有: (1)机械强度高,硬度接近于刚玉,有自润滑性,耐磨。室温抗弯强度可以高达980MPa以上,能与合金钢相比,而且强度可以一直维持到1200℃不下降。 (2)热稳定性好,热膨胀系数小,有良好的导热性能,所以抗热震性很好,从室温到1000℃的热冲击不会开裂。 (3)化学性能稳定,几乎可耐一切无机酸(HF除外)和浓度在30%以下烧碱(NaOH)溶液的腐蚀,也能耐很多有机物质的侵蚀,对多种有色金属熔融体(特别是铝液)不润湿,能经受强烈的放射辐照。 (4)密度低,比重小,仅是钢的2/5,电绝缘性好。

氮化硅陶瓷讲解

氮化硅陶瓷讲解

氮化硅陶瓷及其制备成型工艺 氮化硅(Si 3N4)是氮和硅的化合物。在自然界里,氮、硅都是极其普通的元素。氮是生命的基础,硅是无机世界的主角,这两种元素在我们生活的世界上无所不在,然而,至今人们还未发现自然界里存在这两种元素的化合物。 氮化硅是在人工条件下合成的化合物。虽早在140多年前就直接合成了氮化硅,但当时仅仅作为一种稳定的“难熔”的氮化物留在人们的记忆中。二次大战后,科技的迅速发展,迫切需要耐高温、高硬度、高强度、抗腐蚀的材料。经过长期的努力,直至1955年氮化硅才被重视,七十年代中期才真正制得了高质量、低成本,有广泛重要用途的氮化硅陶瓷制品。开发过程为何如此艰难,这是因为氮化硅粉体和氮化硅陶瓷制品之间的性能和功能相差甚远,没有一个严格而精细的对氮化硅粉体再加工过程,是得不到具有优异性能的氮化硅陶瓷制品的。没有氮化硅陶瓷就没有氮化硅如今的重要地位。 Si3N4是以共价键为主的化合物,键强大,键的方向性强,结构中缺陷的形成和迁移需要的能量大,即缺陷扩散系数低(缺点),难以烧结,其中共价键Si-N 成分为70 %,离子键为30 %,同时由于Si3N4本身结构不够致密,从而为提高性能需要添加少量氧化物烧结助剂,通过液相烧结使其致密化。 Si3N4含有两种晶型,一种为α-Si3N4,针状结晶体,呈白色或灰白色,另一种为β-Si3N4,颜色较深,呈致密的颗粒状多面体或短棱柱体。两者均为六方晶系,都是以[SiN4]4-四面体共用顶角构成的三维空间网络。 在高温状态下,β相在热力学上更稳定,因此α相会发生相变,转为β相。从而高α相含量Si3N4粉烧结时可得到细晶、长柱状β-Si3N4晶粒,提高材料的断裂韧性。但陶瓷烧结时必须控制颗粒的异常生长,使得气孔、裂纹、位错缺陷出现,成为材料的断裂源。 在工业性能上,Si3N4陶瓷材料表现出了较好的工艺性能。(1)机械强度高,硬度接近于刚玉,有自润滑性耐磨;(2)热稳定性高,热膨胀系数小,有良好的导热性能;(3)化学性能稳定,能经受强烈的辐射照射等等。 晶体的常见参数如下图所示:

氮化硅性能原理

氮化硅性能原理 (1)、作为人工合成材料之一的氮化硅陶瓷材料,具有高比强、高比模、耐高温、抗氧化和耐磨损以及抗热震等优良的综合性能,广泛应用于机械、化工、海洋工程、航空航天等重要领域。对多晶材料而言,晶界状态是决定其电性能、热性能和力学等性能的一个极其重要的因素。对于氮化硅陶瓷来说,晶界强度是决定其能否作为高温工程材料应用的关键(2)、由于氮化硅分子的si—N键中共价键成分为70%,离子键成分为30%t引,因而是高共价性化合物,而且氮原子和硅原子的自扩散系数很小,致密化所必需的体积扩散及晶界扩散速度、烧结驱动力很小,只有当烧结温度接近氮化硅分散温度(大于1850℃)时,原子迁移才有足够的速度。这决定了纯氮化硅不能靠常规固相烧结达到致密化,所以除用硅粉直接氮化的反应烧结外,其它方法都需采用烧结助剂,利用液相烧结原理进行致密化烧结(3)、因此,研究烧结助剂对氮化硅陶瓷致密化烧结的影响显得尤为重要。氮化硅陶瓷作为新型的结构材料,受到越来越广泛的重视。 氮化硅工程陶瓷-家电领域 一、材料特性 抗弯强度kg/cm2 1700-2000 1600-1900 2100-2700 2200-2880 抗压kg/cm2 6500-9500 6000-8700 11000-14000 11000-15000 硬度HRA 78-82 76-80 83-85 85-87 热膨胀系数 (1/℃) (20~800℃) 2.3-2.9 x 10-6 2.3-2.9 x 10-6 2.3-2.9 x 10-6 2.3-2.9 x 10-6 摩擦系数 0.1 0.1 0.1 0.1 抗金属熔体浸蚀铝、锌、锡、铅等 适用范围: 适用于机械、化学与耐火材料、军事工业。 已适用情况: 可作为机械密封用的密封件、耐腐蚀泵体、熔融铝液中的热电偶保护管,适用效果良好。 二、企业接产条件 所有的原材料和设备全部国产化,生产线、建筑面积、劳动定员、水、电等随生产规模而定。 三、经济效益分析 该产品是一种新型的高温结构陶瓷材料,特别是注浆成型工艺的关键技术,填补了国内空白,另外,该材料为陶瓷发动机的首选材料,具有一定的社会效益。 前言

氮化硅陶瓷材料最终版

摘要氮化硅瓷是一种具有广阔发展前景的高温、高强度结构瓷,它具有强度高、抗 热震稳定性好、疲劳韧性高、室温抗弯强度高、耐磨、抗氧化、耐腐蚀性能好等高性能,已被广泛应用于各行各业。本文介绍了氮化硅瓷的基本性质,综述了氮化硅瓷的制备工艺和国外现代制造业中的应用,并展望了氮化硅瓷的发展前景。

Abtract:Silicon nitride ceramic is a broad development prospects of high temperature, high strength structural ceramics, it has high strength, thermal shock stability, high temperature fatigue toughness, high bending strength, wear resistance, oxidation resistance, corrosion resistance and good performance of high performance, has been widely used in all walks of life. This paper introduces the basic properties of silicon nitride ceramics, reviews the fabricating technique of silicon nitride ceramics at home and abroad and modern manufacturing industry in the application, and looks forward to the development prospect of silicon nitride ceramics.

AlN基片的薄膜金属化

AlN基片的薄膜金属化 高能武陆吟泉秦跃利吴云海 摘要:讨论了AlN基片的薄膜金属化。通过试验,确定了有效的清洗方法及优化溅射参数。实验证明,TiW-Au 是AlN的优良金属化体系。AlN材料经激光划片后出现导电物质,经稀盐酸处理可去掉导电物质。 关键词:AlN基片;薄膜;金属化 中图分类号:TN451文献标识码:B文章编号:1001-2028(1999)05-0022-02 目前国内的AlN基材制备还处于研究阶段〔1,2〕。电子工业部第43研究所已对AlN基片薄膜混合集成电路进行了初步研制,且能小批量生产AlN基片,但性能和国外产品尚有差距〔3〕。笔者采用的AlN金属化体系已成功地用于大功率开关及功分器等微波器件中。 1试验 采用NiCr-Au、TiW-Au金属化结构对日本京瓷公司的AlN基片进行了金属化,并采用钨碳钢针对金属层进行破坏性定性划痕试验。分别用NaOH、CE-9清洗剂、纯水(16 MΩ*cm,25℃)、铬酸洗液等几种不同清洗剂对AlN基片进行了清洁处理;射频溅射后作附着力试验;激光切割后用稀盐酸处理。 2结果与讨论 2.1金属化体系的选择 AlN是六方晶纤锌矿结构,密堆间隙中的Al离子半径小,价态高,具有较强的极化作用,使AlN清洁表面的不饱和氮具有较高的化学活性。通常氮因电负性大,电离势高而有很强的共价倾向,即使与低电负性金属反应,也会因负离子负电荷高,离子半径较大而水解。故在一般状态下,氮不易与金属反应。Ti、Ta、W等金属因能与氮形成高晶格能化合物,使其在AlN表面的附着性能很好,退火处理后效果更佳。这是选择TiW-Au 作金属化导带的原因。TiW是一种亚稳态结构低生成自由能合金,作为阻挡层、附着层是有利的。Ti-Au、Ti-Al 及Ti-N的良好结合保证了体系的稳定及各界面间的附着。TiW与AlN的热特性参数(热膨胀系数、热导率)吻合得非常好,对消除热应力有利。TiW只能作附着层和扩散阻挡层。若需集成电阻,可以采用TaN-TiW-Au 结构。文献〔3〕中提到采用NiCr-Au制作AlN基薄膜集成电路,笔者进行了对比试验。 (1)NiCr-Au导带直流磁控溅射NiCr,射频溅射Au。由于AlN表面粗糙,钨碳钢针不能将膜从基片剥落。光刻、电镀、裂片后,用钨碳钢针可从导带断面将NiCr-Au卷起。采用AuSn或AuGe共晶焊后,施加剪切力可将AlN推动,显微观察发现NiCr-Au与基片分离。超声带焊(westbond 7400c焊机)时,可将NiCr-Au从底层拔起。显微观察卷起后的NiCr-Au,有一定的侧腐蚀,这与后工序中稀盐酸处理激光划片后出现的导电相有关。 (2)TiW-Au导带射频磁控溅射TiW,射频溅射Au。溅射后,钨碳钢针附着力试验合格,划片后,也不能从断面剥离。用稀盐酸处理激光切割后的导电相,对常温惰性TiW膜层无影响。电路制作后,若采用适当腐蚀液将Au和TiW腐蚀,基片上留下明显的电路图形印迹,该印迹不与一般的化学溶液反应,可能和Ti与AlN 反应生成TiN有关。而在Al2O3基板上,未留下导带图形印迹。经共晶焊、带焊等,未发现TiW与AlN间有附着不良的情况。 2.2清洗方法的选择 用1 000倍显微镜观察,发现清洗剂、时间、温度等对AlN表面的影响很大。几种常用清洗剂对AlN表面的影响如表1所示。 表1几种常用清洗剂对AlN表面的影响 清洗剂操作条件观察结果 纯水100℃下煮10 min AlN水解,表面变粗糙 常温冲洗无明显变化

氮化硅

氮化硅 氮化硅,分子式为Si3N4,是一种重要的结构陶瓷材料。它是一种超硬物质,本身具有润滑性,并且耐磨损;除氢氟酸外,它不与其他无机酸反应(反应方程式:Si3N4+4HF+9H2O=====3H2SiO3(沉淀)+4NH4F),抗腐蚀能力强,高温时抗氧化。而且它还能抵抗冷热冲击,在空气中加热到1 000 ℃以上,急剧冷却再急剧加热,也不会碎裂。正是由于氮化硅陶瓷具有如此优异的特性,人们常常利用它来制造轴承、气轮机叶片、机械密封环、永久性模具等机械构件。如果用耐高温而且不易传热的氮化硅陶瓷来制造发动机部件的受热面,不仅可以提高柴油机质量,节省燃料,而且能够提高热效率。我国及美国、日本等国家都已研制出了这种柴油机。 【氮化硅的应用】 氮化硅用做高级耐火材料,如与sic结合作SI3N4-SIC耐火材料用于高炉炉身等部位; 如与BN结合作SI3N4-BN材料,用于水平连铸分离环。SI3N4-BN系水平连铸分离环是一种细结构陶瓷材料,结构均匀,具有高的机械强度。耐热冲击性好,又不会被钢液湿润,符合连珠的工艺要求。见下表 性能AL2O 3 ZrO 2 熔融石英 (SiO2) ZrO2 -MO金 属陶瓷 反应结合 Si3N4 热压 Si3N4 热压 BN 反应结合 SiN4-BN 抗热震性差差好好中好好好 抗热应力差差好好中好好好 尺寸加工精度与易 加工性能 差差好差好差好好 耐磨性好好中好好好好好 耐侵蚀性好好差好好好好 相对分子质量140.28。灰色、白色或灰白色。六方晶系。晶体呈六面体。密度3.44。 硬度9~9.5,努氏硬度约为2200,显微硬度为32630MPa。熔点1900℃(加压下)。通常在常压下1900℃分解。比热容为0.71J/(g·K)。生成热为-751.57kJ/mol。热导率为 16.7W/(m·K)。线膨胀系数为2.75×10-6/℃(20~1000℃)。不溶于水。溶于氢氟酸。在空 气中开始氧化的温度1300~1400℃。比体积电阻,20℃时为1.4×105 ·m,500℃时为4×108 ·m。弹性模量为28420~46060MPa。耐压强度为490MPa(反应烧结的)。1285摄式度时与二氮化二钙反应生成二氮硅化钙,600度时使过渡金属还原,放出氮氧化物。 抗弯强度为147MPa。可由硅粉在氮气中加热或卤化硅与氨反应而制得。可用作高温陶瓷原料。 氮化硅陶瓷材料具有热稳定性高、抗氧化能力强以及产品尺寸精确度高等优良性

氮化硅结构与性能

氮化硅结构与性能的相关性 随着工业与科技的发展,对优良的工艺性能材料有着越来越高的要求。Si3N4是一种新型的高温结构陶瓷材料,具有优良的化学性能,兼有抗热震性好,高温蠕变小,对多种有色金属融体不润湿,硬度高,具有自润滑性,已广泛应用到切削刀具、冶金、航空、化工等行业之中。 Si3N4是以共价键为主的化合物,键强大,键的方向性强,结构中缺陷的形成和迁移需要的能量大,即缺陷扩散系数低(缺点),难以烧结,其中共价键Si-N成分为70 %,离子键为30 %,同时由于Si3N4本身结构不够致密,从而为提高性能需要添加少量氧化物烧结助剂,通过液相烧结使其致密化。 Si3N4含有两种晶型,一种为α-Si3N4,针状结晶体,呈白色或灰白色,另一种为β-Si3N4,颜色较深,呈致密的颗粒状多面体或短棱柱体。两者均为六方晶系,都是以[SiN4]4-四面体共用顶角构成的三维空间网络。 在高温状态下,β相在热力学上更稳定,因此α相会发生相变,转为β相。从而高α相含量Si3N4粉烧结时可得到细晶、长柱状β-Si3N4晶粒,提高材料的断裂韧性。但陶瓷烧结时必须控制颗粒的异常生长,使得气孔、裂纹、位错缺陷出现,成为材料的断裂源。 在工业性能上,Si3N4陶瓷材料表现出了较好的工艺性能。(1)机械强度高,硬度接近于刚玉,有自润滑性耐磨;(2)热稳定性高,热膨胀系数小,有良好的导热性能;(3)化学性能稳定,能经受强烈

的辐射照射等等。 晶体的常见参数如下图所示: Si3N4分子中Si原子和周围4个N 原子以共价键结合,形成[Si-N4]四面体结构单元,所有四面体共享顶角构成三维空间网,形成Si3N4,有两种相结构,α相和β相如下图所示: α相结构

选取氮化硅和二氧化硅作为薄膜材料

选取氮化硅和二氧化硅作为薄膜材料,借助膜系设计软件对膜系结构进行优化,采用中频脉冲磁控溅射技术进行薄膜制备。利用高反膜透射曲线拟合方法调整薄膜的实际沉积速率,减少膜厚控制误差,在树脂镜片CR39基底的凸面和凹面上分别镀制了符合设计要求的红外防护膜和可见光减反膜。镀膜后树脂镜片在420~680 nm的平均透过率大于95%,在近红外800~1400 nm波段的平均透过率小于60%,薄膜性能稳定,能够满足红外防护树脂镜片的日常使用需要 1)热固性材料 1)普通树脂材料:(CR-39) 学名碳本酸丙烯乙酸,或称烯丙基二甘醇酸脂(Dially Glycol Carbonates),是应用最广泛的生产普通树脂镜片的材料。它于四十年代被美国哥伦比亚公司的化学家发现,是美国空军所研制的一系列聚合物中的第39号材料,因此,被称为CR-39(哥伦比亚树脂第39号)。CR-39被用于生产眼用矫正镜片是在1955~1960年,是第一代的超轻、抗冲击的树脂镜片。CR-39作为一种热固性材料,单体呈液态,在加热和加入催化剂的条件下聚合固化。聚合是一个化学反应,即由几个相同分子结构的单体组成的一个新的聚合体分子,具有不同的长度和性质。作为光学镜片,CR-39材料性质的参数十分适宜:折射率为1.5(接近普通玻璃镜片)、密度1.32(几乎是玻璃的一半)、

阿贝数为58~59(只有很少的色射)、抗冲高透光率,可以进行 染色和镀膜处理。 它主要的缺点是耐磨性不及玻璃,需要镀抗磨损膜处理。树脂镜片可采用模式压法加工镜片表面的曲率,因此很适用于非球面镜片的生产。 2)中高折射率树脂材料:今天大部分的中折射率和高折射率材料都是热固性树脂,其发展非常迅速。它们的折射率可以使用以下任意一种技术来增加:改变原分子中电子的结构,例如:引入苯环结构;在原分子中加入重原子,诸如卤素(氯、溴等)或硫。与传统CR-39相比,用中高折射率树脂材料制造的镜片更轻、更薄。它们的比重与CR-39大体一致(在1.20到1.40之间),但色散较大(阿贝数45),抗热性能较差,然而抗紫外线较佳,同时也可以染色和进行各种系统的表面镀膜处理。使用这些材料的镜片制造工艺与CR-39的制造原理大体一致。现在1.67的树脂材料已广泛流行,而且象1.7的树脂材料也已在市场上有销售。视光业的专业人员正不断研制开发新材料,改良原有材料,以期树脂材料在将来获得更好的性能。 3)染色树脂材料:用于制造太阳眼镜镜片的基本上都是聚合前加入染料而制成的,特别适合大批量制造各色平光太阳镜片,同时在材料中加入可吸收紫外线的物质。

氮化硅陶瓷讲解

氮化硅陶瓷及其制备成型工艺 氮化硅(Si3N4)是氮和硅的化合物。在自然界里,氮、硅都是极其普通的元素。氮是生命的基础,硅是无机世界的主角,这两种元素在我们生活的世界上无所不在,然而,至今人们还未发现自然界里存在这两种元素的化合物。 氮化硅是在人工条件下合成的化合物。虽早在140多年前就直接合成了氮化硅,但当时仅仅作为一种稳定的“难熔”的氮化物留在人们的记忆中。二次大战后,科技的迅速发展,迫切需要耐高温、高硬度、高强度、抗腐蚀的材料。经过长期的努力,直至1955年氮化硅才被重视,七十年代中期才真正制得了高质量、低成本,有广泛重要用途的氮化硅陶瓷制品。开发过程为何如此艰难,这是因为氮化硅粉体和氮化硅陶瓷制品之间的性能和功能相差甚远,没有一个严格而精细的对氮化硅粉体再加工过程,是得不到具有优异性能的氮化硅陶瓷制品的。没有氮化硅陶瓷就没有氮化硅如今的重要地位。 Si3N4是以共价键为主的化合物,键强大,键的方向性强,结构中缺陷的形成和迁移需要的能量大,即缺陷扩散系数低(缺点),难以烧结,其中共价键Si-N成分为70 %,离子键为30 %,同时由于Si3N4本身结构不够致密,从而为提高性能需要添加少量氧化物烧结助剂,通过液相烧结使其致密化。 Si3N4含有两种晶型,一种为α-Si3N4,针状结晶体,呈白色或灰白色,另一种为β-Si3N4,颜色较深,呈致密的颗粒状多面体或短棱柱体。两者均为六方晶系,都是以[SiN4]4-四面体共用顶角构成的三维空间网络。 在高温状态下,β相在热力学上更稳定,因此α相会发生相变,转为β相。从而高α相含量Si3N4粉烧结时可得到细晶、长柱状β-Si3N4晶粒,提高材料的断裂韧性。但陶瓷烧结时必须控制颗粒的异常生长,使得气孔、裂纹、位错缺陷出现,成为材料的断裂源。 在工业性能上,Si3N4陶瓷材料表现出了较好的工艺性能。(1)机械强度高,硬度接近于刚玉,有自润滑性耐磨;(2)热稳定性高,热膨胀系数小,有良好的导热性能;(3)化学性能稳定,能经受强烈的辐射照射等等。 晶体的常见参数如下图所示:

相关文档
最新文档