第1讲 合情推理与演绎推理(教师版)

第1讲  合情推理与演绎推理(教师版)
第1讲  合情推理与演绎推理(教师版)

第1讲 合情推理与演绎推理 自主梳理

1.归纳推理定义:根据一类事物中部分事物具有某种属性,推断该类事物中每一个事物都有这种属性,我们将这种推理方式称为归纳推理.

2.归纳推理的思维过程大致是实验、观察→概括、推广→猜测一般性结论.

3.归纳推理具有如下的特点:(1)归纳推理是由部分到整体,由个别到一般 的推理;(2)由归纳推理得到的结论不一定 正确;(3)归纳推理是一种具有创造性的推理.

4.类比推理:由于两类不同对象具有某些类似的特征,在此基础上,根据一类对象的其他

特征,推断另一类对象也具有类似的其他特征 ,我们把这种推理过程称为类比推理. 类比推理是两类事物特征之间的推理.

5.合情推理:合情推理是根据实验 和实践的结果、个人的经验和直觉、已有的事实 和正

确的结论(定义、公理、定理等),推测出某些结果的推理方式.合情推理的结果不一定正确.

6.在数学中,证明一个命题,就是根据命题的条件和已知的定义、公理、定理,利用演绎推理的法则将命题推导出来.

7.演绎推理三段论:

探究点一:归纳推理在数列中的应用

例1 在数列{a n }中,a 1=1,a n +1=2a n 2+a n ,n ∈N *,猜想这个数列的通项公式,这个猜想正确吗?请说明理由.

解 在{a n }中,a 1=1,a 2=2a 12+a 1=23,a 3=2a 22+a 2=12=24,a 4=2a 32+a 3=25,…,所以猜想{a n }的通项公式为a n =2n +1.这个猜想是正确的,证明如下:因为a 1=1,a n +1=2a n 2+a n ,所以1a n +1

=2+a n 2a n =1a n +12,即1a n +1-1a n =12

,所以数列??????1a n 是以1a 1=1为首项,12为公差的等差数列,所以1a n =1+(n -1)×12=12n +12,所以通项公式a n =2n +1

变式迁移1 已知数列{a n }满足a 1=1,a n +1=2a n +1(n =1,2,3,…)

(1)求a 2,a 3,a 4,a 5;

(2)归纳猜想通项公式a n .

解 (1)当n =1时,知a 1=1,由a n +1=2a n +1得a 2=3,

a 3=7,a 4=15,a 5=31. (2)由a 1=1=21-1,a 2=3=22-1,

a 3=7=23-1,a 4=15=24-1,a 5=31=25-1,

可归纳猜想出a n =2n -1(n ∈N *).

探究点二:归纳推理在图形变化中的应用

例2 在法国巴黎举行的第52届世乒赛期间,某商场橱窗里用同样的乒乓球堆成若干堆“正三棱锥”形的展品,其中第1堆只有一层,就一个球;第2,3,4,…堆最底层(第一层)分

别按图所示方式固定摆放,从第二层开始,每层的小球自然垒放在下一层之上,第n 堆第n 层就放一个乒乓球,以f (n )表示第n 堆的乒乓球总数,则f (3)=10_;f (n )=n n +1n +2

6

(答案用含n 的代数式表示).

解析 观察图形可知:f (1)=1,f (2)=4,f (3)

=10,f (4)=20,…,故下一堆的个数是上一堆

个数加上下一堆第一层的个数,即f (2)=f (1)+3;f (3)=f (2)+6;f (4)=f (3)+10;…;

f (n )=f (n -1)+n n +12

.将以上(n -1)个式子相加可得 f (n )=f (1)+3+6+10+…+n n +12=12

[(12+22+…+n 2)+(1+2+3+…+n )] =12[16n (n +1)(2n +1)+n n +12]=n n +1n +26

. 变式迁移2:在平面内观察:

凸四边形有2条对角线,

凸五边形有5条对角线,

凸六边形有9条对角线,

由此猜想凸n (n ≥4且n ∈N *)边形有几条对角线?

解 凸四边形有2条对角线,凸五边形有5条对角线,比凸四边形多3条,

凸六边形有9条对角线,比凸五边形多4条,

于是猜想凸n 边形比凸(n -1)边形多(n -2)条对角线.

于是猜想凸n 边形比凸(n -1)边形多(n -2)条对角线.

探究点三:归纳推理在算式问题中的应用

例3 观察下列等式,并从中归纳出一般法则.

(1)1=12,

1+3=22,

1+3+5=32,

1+3+5+7=42,

1+3+5+7+9=52,

……

(2)1=12,

2+3+4=32,

3+4+5+6+7=52

4+5+6+7+8+9+10=72,

5+6+7+8+9+10+11+12+13=92,

……

解 (1)对于(1),等号左端是整数,且是从1开始的n 项的和,等号的右端是项数的平方; 对于(2),等号的左端是连续自然数的和,且项数为2n -1,等号的右端是项数的平方.

∴(1)猜想结论:1+3+5+…+(2n -1)=n 2(n ∈N *).

(2)猜想结论:n +(n +1)+…+[n +(3n -2)]=(2n -1)2(n ∈N *).

变式迁移3:在△ABC 中,不等式1A +1B +1C ≥9π成立;在四边形ABCD 中,不等式1A +1B +1C +1D ≥162π

成立;在五边形ABCDE 中,不等式1A +1B +1C +1D +1E ≥253π

成立.猜想在n 边形A 1A 2…A n 中成立的不等式为1A 1+1A 2+…+1A n ≥n 2

n -2π

(n ≥3且n ∈N *).. 探究点四:类比推理在几何中的应用

例4:在平面内,可以用面积法证明下面的结论:

从三角形内部任意一点,向各边引垂线,其长度分别为p a ,p b ,p c ,且相应各边上的高

分别为h a ,h b ,h c ,则有p a h a +p b h b +p c h c

=1. 请你运用类比的方法将此结论推广到四面体中并证明你的结论.

解 类比:从四面体内部任意一点向各面引垂线,其长度分别为p a ,p b ,p c ,p d ,且相

应各面上的高分别为h a ,h b ,h c ,h d .则有p a h a +p b h b +p c h c +p d h d =1.证明如下: p a h a =13S △BCD ·p a 13S △BCD ·h a

=V P —BCD V A —BCD ,同理有p b h b =V P —CDA V B —CDA ,p c h c =V P —BDA V C —BDA ,p d h d =V P —ABC V D —ABC ,V P —BCD

+V P —CDA +V P —BDA +V P —ABC =V A —BCD ,∴p a h a +p b h b +p c h c +p d h d =V P —BCD +V P —CDA +V P —BDA +V P —ABC V A —BCD

=1. 变式迁移:4:在Rt △ABC 中,若∠C =90°,AC =b ,BC =a ,则△ABC 的外接圆半径r =a 2+b 2

2

,将此结论类比到空间有在三棱锥A —BCD 中,若AB 、AC 、AD 两两互相垂直,且AB =a ,AC =b ,AD =c ,则此三棱锥的外接球半径R =a 2+b 2+c 2

2

探究点五:定义、定理或性质中的类比

例5:在等差数列{a n }中,若a 10=0,证明:等式a 1+a 2+…+a n =a 1+a 2+…+a 19-n (n <19,n ∈N *)成立,并类比上述性质相应的在等比数列{b n }中,若b 9=1,则有等式______成立. 解析 在等差数列{a n }中,由a 10=0,得a 1+a 19=a 2+a 18=…=a n +a 20-n =a n +1+a 19-n =2a 10=0,∴a 1+a 2+…+a n +…+a 19=0,即a 1+a 2+…+a n =-a 19-a 18-…-a n +1,

又∵a 1=-a 19,a 2=-a 18,…,a 19-n =-a n +1,

∴a 1+a 2+…+a n =-a 19-a 18-…-a n +1=a 1+a 2+…+a 19-n .相应地,类比此性质在等比数列

{b n }中,可得b 1b 2…b n =b 1b 2…b 17-n ,(n <17,n ∈N *).

变式迁移5:设等差数列{a n }的前n 项和为S n ,则S 4,S 8-S 4,S 12-S 8,S 16-S 12成等差数列.类

比以上结论有:设等比数列{b n }的前n 项积为T n ,则T 4,T 8T 4:,T 12T 8_,T 16T 12

成等比数列. 探究点六:演绎推理

例6:在锐角三角形ABC 中,AD ⊥BC ,BE ⊥AC ,D 、E 是垂足.求证:AB 的中点M 到D 、E 的距离相等.

证明 (1)因为有一个内角是直角的三角形是直角三角形,——大前

提在△ABD 中,AD ⊥BC ,即∠ADB =90°,——小前提所以△ADB 是

直角三角形.——结论(2)因为直角三角形斜边上的中线等于斜边的一

半,——大前提而M 是Rt △ADB 斜边AB 的中点,DM 是斜边上的中线,

——小前提所以DM =12AB .——结论同理EM =12

AB ,所以DM =EM . 变式迁移6:已知:在空间四边形ABCD 中,点E ,F 分别是AB ,AD 的中点,如图所示,求证:EF∥平面BCD.

证明 三角形的中位线平行于底边, 大前提

点E 、F 分别是AB 、AD 的中点, 小前提

所以EF ∥BD . 结论

若平面外一条直线平行于平面内一条直线则直线与此平面平行, 大前提

EF ?平面BCD ,BD ?平面BCD ,

EF ∥BD , 小前提

EF ∥平面BCD . 结论

课后小试身手

一、选择题

1.数列5,9,17,33,x,…中的x等于(B) A.47 B.65 C.63 D.128

2.观察(x2)′=2x,(x4)′=4x3,(cos x)′=-sin x,由归纳推理可得:若定义在R上的函数f(x)满足f(-x)=f(x),记g(x)为f(x)的导函数,则g(-x)等于(D) A.f(x) B.-f(x) C.g(x) D.-g(x)

3.下列推理正确的是(D) A.把a(b+c)与log a(x+y)类比,则有log a(x+y)=log a x+log a y

B.把a(b+c)与sin (x+y)类比,则有sin (x+y)=sin x+sin y

C.把a(b+c)与a x+y类比,则有a x+y=a x+a y

D.把a(b+c)与a·(b+c)类比,则有a·(b+c)=a·b+a·c

4.下面几种推理是合情推理的是(C)

①由圆的性质类比出球的有关性质;②由直角三角形、等腰三角形、等边三角形的内角和是180°,归纳出所有三角形的内角和都是180°;③张军某次考试成绩是100分,由此推出全班同学的成绩都是100分;④三角形内角和是180°,四边形内角和是360°,五边形内角和是540°,由此得凸多边形内角和是(n-2)·180°.

A.①②B.①③C.①②④D.②④

5.①归纳推理是由部分到整体的推理;②归纳推理是由一般到一般的推理;③演绎推理是由一般到特殊的推理;④类比推理是由特殊到一般的推理;⑤类比推理是由特殊到特殊的推理.上表述正确的是(D)

A.①②③ B.②③④C.②④⑤D.①③⑤

6.下列说法不正确的是(D) A.演绎推理是由一般到特殊的推理B.赋值法是演绎推理

C.三段论推理的一个前提是肯定判断,结论为否定判断,则另一前提是否定判断D.归纳推理的结论都不可靠

7.正弦函数是奇函数,f(x)=sin(x2+1)是正弦函数,因此f(x)=sin (x2+1)是奇函数.以上推理(C)

A.结论正确B.大前提不正确C.小前提不正确D.全不正确

8.“∵四边形ABCD是矩形,∴四边形ABCD的对角线相等.”以上推理的大前提是(B) A.正方形都是对角线相等的四边形B.矩形都是对角线相等的四边形

C.等腰梯形都是对角线相等的四边形D.矩形都是对边平行且相等的四边形9.下列几种推理过程是演绎推理的是(A) A.5和22可以比较大小B.由平面三角形的性质,推测空间四面体的性质

C.东升高中高二年级有15个班,1班有51人,2班有53人,3班有52人,由此推测

各班都超过50人 D .预测股票走势图

10. 把下面在平面内成立的结论类比地推广到空间,结论仍然正确的是

(B)

A .如果一条直线与两条平行线中的一条相交,则也与另一条相交

B .如果一条直线与两条平行线中的一条垂直,则也与另一条垂直

C .如果两条直线同时与第三条直线相交,则这两条直线相交或平行

D .如果两条直线同时与第三条直线垂直,则这两条直线平行

二、选择题

11. f (n )=1+12+13+…+1n (n ∈N *),计算得f (2)=32,f (4)>2,f (8)>52,f (16)>3,f (32)>72

,推测当n ≥2时,有f (2n )>n +22

解析[f (4)=f (22)>2+22,f (8)=f (23)>3+22,f (16)=f (24)>4+22,f (32)=f (25)=5+22

.] 12. 已知sin 230°+sin 290°+sin 2150°=32,sin 25°+sin 265°+sin 2125°=32

. 通过观察上述两等式的规律,请你写出一个一般性的命题:sin 2(α-60°)+sin 2α+sin 2(α+60°)=32

13. 如图,观察图形规律,在其右下的的空格处画上合适的图形,应为 ①.

14. 在等差数列{a n }中,若a n >0,公差d >0,则有a 4·a 6>a 3·a 7,

类比上述性质,在等比数列{b n }中,若b n >0,q >1,则下列

有关b 4,b 5,b 7,b 8的不等关系正确的是 ①.

①b 4+b 8>b 5+b 7;②b 5+b 7>b 4+b 8;③b 4+b 7>b 5+b 8;④b 4

+b 5>b 7+b 8.

15. 类比平面直角坐标系中△ABC 的重点G (x ,y )的坐标公式???

x =x 1+x 2+x 33y =y 1+y 2+y 33(其中A (x 1,y 1)、B (x 2,y 2)、C (x 3,y 3),猜想以A (x 1,y 1,z 1)、B (x 2,

y 2,z 2)、C (x 3,y 3,z 3)、D (x 4,y 4,z 4)为顶点的四面体A —BCD 的重点G (x ,y ,z )

的公式为????? x =x 1+x 2+x 3+x 44y =y 1+y 2+y 3+y 44z =z 1+z 2+z 3+z 44.

16.对于平面上的点集Ω,如果连接Ω中任意两点的线段必定包含于Ω,则称Ω为平面上

的凸集,给出平面上4个点集的图形如上图(阴影区域及其边界):

其中为凸集的是②③(写出所有凸集相应图形的序号).

三,解答题

17.已知数列{a n }的前n 项和为S n ,a 1=1且S n -1+1S n

+2=0(n ≥2),计算S 1,S 2,S 3,S 4,并猜想S n 的表达式.

解 当n =1时,S 1=a 1=1;当n =2时,1S 2=-2-S 1=-3,∴S 2=-13;当n =3时,1S 3

=-2-S 2=-53,∴S 3=-35;当n =4时,1S 4=-2-S 3=-75,∴S 4=-57.猜想:S n =-2n -32n -1

(n ∈N *).

18.一条直线将平面分成2个部分,两条直线最多将平面分成4个部分.

(1)3条直线最多将平面分成多少部分?

(2)设n 条直线最多将平面分成f (n )部分,归纳出f (n +1)与f (n )的关系;

(3)求出f (n ).

解 (1)3条直线最多将平面分成7个部分.(2)f (n +1)=f (n )+n +1.

(3)f (n )=[f (n )-f (n -1)]+[f (n -1)-f (n -2)]+…+[f (2)-f (1)]+f (1)=n +(n -1)+(n -2) +…+2+2=n 2+n +22.

19.如图所示,在△ABC 中,射影定理可表示为a =b ·cos C +c ·cos B ,其

中a ,b ,c 分别为角A ,B ,C 的对边,类比上述定理,写出对空间

四面体性质的猜想.

解 如图所示,在四面体P -ABC 中,设S 1,S 2,S 3,S 分别表示△P AB ,

△PBC ,△PCA ,△ABC 的面积,α,β,γ依次表示面P AB ,面PBC ,

面PCA 与底面ABC 所成二面角的大小.

我们猜想射影定理类比推理到三维空间,其表现形式应为:S =S 1·cos α+S 2·cos β+S 3·cos γ

20.设a >0,f (x )=e x a +a e x 是R 上的偶函数,求a 的值. 解 ∵f (x )是R 上的偶函数,∴f (-x )=f (x ),∴(a -1a )(e x -1e )=0对于一切x ∈R 恒成立,由此得a -1a

=0,即a 2=1.又a >0,∴a =1.

合情推理演绎推理(带答案)

合情推理 1:与代数式有关的推理问题 例1、观察()()()() ()() 223 3 2 2 44 3 223, a b a b a b a b a b a ab b a b a b a a b ab b -=-+-=-++-=-+++进而猜想n n a b -= 练习:观察下列等式:3 321 23+=,33321236++=,33332123410+++=,…,根据上述规律,第五个... 等式.. 为 。 解析:第i 个等式左边为1到i+1的立方和,右边为1+2+...+(i+1)的平方所以第五个... 等.式. 为3333332 12345621+++++=。 2:与三角函数有关的推理问题 例1、观察下列等式,猜想一个一般性的结论。 2020202020202020202020203 sin 30sin 90sin 150,23 sin 60sin 120sin 18023 sin 45sin 105sin 165, 23 sin 15sin 75sin 1352++= ++=++=++= 练习:观察下列等式: ① cos2α=2 cos 2 α-1; ② cos 4α=8 cos 4 α-8 cos 2 α+1; ③ cos 6α=32 cos 6 α-48 cos 4 α+18 cos 2 α-1; ④ cos 8α= 128 cos 8α-256cos 6 α+160 cos 4 α-32 cos 2 α+1; ⑤ cos 10α=mcos 10α-1280 cos 8α+1120cos 6 α+ncos 4 α+p cos 2 α-1; 可以推测,m -n+p= . 答案:962 3:与不等式有关的推理 例1、观察下列式子: 213122+<,221151,233 ++<22211171, 2344............. +++< 由上可得出一般的结论为: 。 答案: 22211121 1......,23(1)1n n n ++ ++<++ 练习、由 331441551 ,,221331441 +++>>> +++。。。。。。可猜想到一个一般性的结论是: 。

2.1.1合情推理(第一课时)导学案

§2.1.1合情推理(第一课时)导学案 学习目标:1.结合已学过的数学实例和生活中的实例,了解合情推理的含义。 2.能利用归纳和类比等实行简单的推理,体会并理解合情推理在数学发现中的作 用。 学习重点:对归纳推理和类比推理含义的理解。 学习难点: 学习过程 一、预习提问 问题二:归纳推理和类比推理的特征是什么?由它们推理出的结论是否一定准确? 二、合作探究 探究1.哥德巴赫无意中观察到:6=3+3,8=3+5,10=5+5,12=5+7,14=7+7,16=5+11.。。。其中反应出一些规律:偶数=奇质数+奇质数,由此猜想:任何一个不小于6的偶数都等于两个奇质数之和。这是准确的吗?多少年来,这个猜想吸引了无数的科学家去证明。观察下列等式:9=3+3+3;11=3+3+5;13=3+3+7;15=3+5+7;17=3+7+7.。。。你能够猜想到什么? 探究2.在平面几何里有勾股定理:“设ABC的两边AB,AC互相垂直,则222 +=”,拓展到空间,类比研究三棱锥A BCD AB AC BC -的侧面面积与底面面积间的关系可得出的结论是:“设三棱锥的三个侧面ABC、ACD、ADB、两两垂直,则______________________________________。” 随堂锦句:在数学里,发现真理的主要工具是归纳和类比。-----拉普拉斯(法)三、自主学习

四、知识应用 例1观察右边图1,能够发现: 1 2 3 4 5 6 7 2 2 2 22 11134213593 135716413579255=+==++==+++==++++== ………………………… 由以上具体事实能得出什么结论? 例2.已知数列{}n a 的第一项11a =且1(123 (1) n n a a n a += =+、、,试归纳出这个数列的通项公式。 每日格言:人生在勤,不索何获?----张衡(东汉) 例3.写出科学家类比地球做出火星上可能有生命这个猜想的推理过程

《合情推理―归纳推理》(教学设计)

《合情推理—归纳推理》 一、教学内容分析 本节课是普通高中新课程标准实验教科书(人教A版)《选修1—2》第二章《合情推理与演绎推理》。根据我所任教的学生的实际情况,我将《合情推理与演绎推理》划分为五节课(归纳推理,类比推理,演绎推理,合情推理与演绎推理的应用),这是第一节课“合情推理—归纳推理”。本节课内容对学生来说并不乏感性认知基础,学生从小学甚至幼儿园起,就已接触过很多运用归纳推理进行探索的实例。学生缺乏的是如何从理性上认识归纳推理,因此,将本节课的核心定为引导学生“从理性上认识归纳推理”。具体地说,就是使学生初了解归纳推理的含义,初步了解怎样进行归纳推理以及归纳推理的特点。 二、学生学习情况分析 通过以往的学习,学生已具备一定的推理能力,但学生对于什么是归纳推理概念以及如何进行归纳推理并不清楚,同时对于归纳推理的形式与本质没有一个统一深刻的认识,从而导致学生对于所举实例的共同特点进行抽象、概括的能力较弱,或者所举实例不是归纳推理而是其它推理。 三、设计思想 学生是教学的主体,本节课要给学生提供各种参与机会。为了调动学生学习的积极性,使学生化被动为主动。本节课我利用多媒体辅助教学,教学中我引导学生从实例出发,从中了解归纳推理的含义,体会并认识归纳推理在数学发现中的作用。在教学重难点上,我步步设问、启发学生的思维,通过课堂练习、探究活动,学生讨论的方式来加深理解,很好地突破难点和提高教学效率。让学生在教师的引导下,充分地动手、动口、动脑,掌握学习的主动权。 四、教学目标 1、通过生活与数学实例使学生初步理解什么是归纳推理 2、通过例题的讲解与练习的训练,使学生初步掌握归纳推理的方法与技巧,加强学生对归纳推理的理性认识

苏教版数学高二-2.1素材 《合情推理与演绎证明》文字素材1

高考中的类比推理 大数学家波利亚说过:“类比是某种类型的相似性,是一种更确定的和更概念性的相似。”应用类比的关键就在于如何把关于对象在某些方面一致性说清楚。类比是提出新问题和作出新发现的一个重要源泉,是一种较高层次的信息迁移。 例1 半径为r 的圆的面积2 )(r r S ?=π,周长r r C ?=π2)(,若将r 看作),0(+∞上的变量,则r r ?=?ππ2)'(2, ①,①式可用语言叙述为:圆的面积函数的导数等于圆的周长函数。对于半径为R 的球,若将R 看作),0(+∞上的变量,请你写出类似于①的式子:_________________,②,②式可用语言叙述为___________. 解:由提供的形式找出球的两个常用量体积、表面积公式,类似写出恰好成立, ,3 4)(3R R V π=24)(R r S π=. 答案:①)'3 4(3R π.42R π= ②球的体积函数的导数等于球的表面积函数。 点评:主要考查类比意识考查学生分散思维,注意将圆的面积与周长与球的体积与表面积进行类比 例2 在等差数列{a n }中,若a 10=0,则有等式a 1+a 2+……+a n =a 1+a 2+……+a 19-n (n <19,n ∈N *)成立。类比上述性质,相应地:在等比数列{b n }中,若b 9=1,则有等式 成立。 分析:这是由一类事物(等差数列)到与其相似的一类事物(等比数列)间的类比。在等差数列{a n }前19项中,其中间一项a 10=0,则a 1+a 19= a 2+a 18=……= a n +a 20-n = a n +1+a 19-n =2a 10=0,所以a 1+a 2+……+a n +……+a 19=0,即a 1+a 2+……+a n =-a 19-a 18-…-a n +1,又∵a 1=-a 19, a 2=-a 18,…,a 19-n =-a n +1,∴ a 1+a 2+……+a n =-a 19-a 18-…-a n +1= a 1+a 2+…+a 19-n 。相似地,在等比数列{b n }的前17项中,b 9=1为其中间项,则可得b 1b 2…b n = b 1b 2…b 17-n (n <17,n ∈N * )。 例3 在平面几何里,有勾股定理:“设△ABC 的两边AB 、AC 互相垂直,则AB 2+AC 2= BC 2。”拓展到空间,类比平面几何的勾股定理,研究三棱锥的侧面面积与底面面积间的关系,可以得到的正确结论是:“设三棱锥A —BCD 的三个侧面ABC 、ACD 、ADB 两两相互垂直,则 ________________”。 分析:这是由低维(平面)到高维(空间)之间的类比。三角形中的许多结论都可以类比到三棱锥中(当然必须经过论证其正确性),像直角三角形中的勾股定理类比到三侧面两两垂直的三棱锥中,则有S △ABC 2+S △ACD 2+S △ADB 2= S △BCD 2。需要指出的是,勾股定理的证明也可进行类比。如在Rt △ABC 中,过A 作AH ⊥BC 于H ,则由AB 2=BH ·BC ,AC 2=CH ·BC 相加即得AB 2+AC 2=BC 2;在三侧面两两垂直的三棱锥A —BCD 中,过A 作AH ⊥平面BCD 于H ,类似地由S △ABC 2=S △HBC ·S △BCD ,S △ACD 2=S △HCD ·S △BCD ,S △ADB 2=S △HDB ·S △BCD 相加即得S △ABC 2+S △ACD 2+S △ADB 2= S △BCD 2。

《合情推理》第一课时教案

合情推理》第一课时教学设计 陕西省彬县中学杨西龙 一.教材分析 1.教材的地位和作用推理与证明思想贯穿于高中数学的整个知识体系,但是作为一章内容出现在高中数学教材中尚属首次。《推理与证明》是新课标教材的亮点之一,本章内容将归纳与推理的一般方法进行了必要的总结和归纳,同时也对后继知识的学习起到引领的作用. 教材的设计还原了数学的本源、本质,是对“观察发现、归纳类比、抽象概括、演绎证明” 等数学思维方法的总结与归纳,使已学过得的数学知识和思想方法系统化、明晰化,操作化. 紧密地结合了已学过的数学实例和生活实例,避免空泛地讲数学思想方法,以变分散为集中,变隐性为显性的方式学习了推理和证明,是知识、方法、思维和情感的融合与促进,能让学生充分体会数学的发生、发展. 2.课时划分 《合情推理》的教学分两个课时完成:第一课时内容为归纳推理; 第二课时内 容为类比推理. 二、教学目标: 1.知识技能目标:理解归纳推理的概念,了解归纳推理的作用,掌握归纳推理的一般步骤,会利用归纳进行一些简单的归纳推理. 2.过程方法目标:学生通过积极主动地参与课堂活动,经历归纳推理概念的获得过程,了解归纳推理的含义; 通过欣赏一些伟大猜想的产生过程,体会并认识利用归纳推理能猜测和发现一些新事实、得出新结论的作用并明确归纳推理的一般步骤;通过具体解题,感受归纳推理探索和提供解决问题的思路和方向的作用;通过自主学习归纳推理的一般方法,建构归纳推理的思维方式. 3.情感态度,价值观目标:学生通过主动探究、合作学习、相互交流,培养不怕困难、勇于探索的优良作风,增强了数学应用意识;通过体会成功,形成学习数学知识、了解数学文化的积

(整理)合情推理和演绎推理》.

第十七章推理与证明 ★知识网络★ 第1讲合情推理和演绎推理 ★知识梳理★ 1.推理 根据一个或几个事实(或假设)得出一个判断,这种思维方式叫推理. 从结构上说,推理一般由两部分组成,一部分是已知的事实(或假设)叫做前提,一部分是由已知推出的判断,叫结论. 2、合情推理: 根据已有的事实,经过观察、分析、比较、联想,再进行归纳、类比,然后提出的推理叫合情推理。 合情推理可分为归纳推理和类比推理两类: (1)归纳推理:由某类事物的部分对象具有某些特征,推出该类事物的全部对象具有这些特征的推理,或者由个别事实概括出一般结论的推理。简言之,归纳推理是由部分到整体、由个别到一般的推理 (2)类比推理:由两类对象具有某些类似特征和其中一类对象具有的某些已知特征,推出另一类对象也具有这些特征的推理,简言之,类比推理是由特殊到特殊的推理。 3.演绎推理: 从一般性的原理出发,推出某个特殊情况下的结论的推理叫演绎推理,简言之,演绎推理是由一般到特殊的推理。三段论是演绎推理的一般模式,它包括:(1)大前提---已知的一般原理;(2)小前提---所研究的特殊情况;(3)结论——根据一般原理,对特殊情况作出的判断。 ★重难点突破★ 重点:会用合情推理提出猜想,会用演绎推理进行推理论证,明确合情推理与演绎推理的区别与联系

难点:发现两类对象的类似特征、在部分对象中寻找共同特征或规律 重难点:利用合情推理的原理提出猜想,利用演绎推理的形式进行证明 1、归纳推理关键是要在部分对象中寻找共同特征或某种规律性 问题1<;…. 对于任意正实数,a b ≤成立的一个条件可以是 ____. 点拨:前面所列式子的共同特征特征是被开方数之和为22,故22=+b a 2、类比推理关键是要寻找两类对象的类似特征 问题2:已知抛物线有性质:过抛物线的焦点作一直线与抛物线交于A 、B 两点,则当AB 与抛物线的对称轴垂直时,AB 的长度最短;试将上述命题类比到其他曲线,写出相应的一个真命题为 . 点拨:圆锥曲线有很多类似性质,“通径”最短是其中之一,答案可以填:过椭圆的焦点作一 直线与椭圆交于A 、B 两点,则当AB 与椭圆的长轴垂直时,AB 的长度最短(22 2||a b AB ≥) 3、运用演绎推理的推理形式(三段论)进行推理 问题3:定义[x]为不超过x 的最大整数,则[-2.1]= 点拨:“大前提”是在],(x -∞找最大整数,所以[-2.1]=-3 ★热点考点题型探析★ 考点1 合情推理 题型1 用归纳推理发现规律 [例1 ] 通过观察下列等式,猜想出一个一般性的结论,并证明结论的真假。 2 3135sin 75sin 15sin 020202= ++;23150sin 90sin 30sin 0 20202=++; 23165sin 105sin 45sin 020202=++;23 180sin 120sin 60sin 020202=++ 【解题思路】注意观察四个式子的共同特征或规律(1)结构的一致性,(2)观察角的“共性” [解析]猜想:2 3 )60(sin sin )60(sin 0 2202= +++-ααα 证明:左边=2 00 2 2 00 )60sin cos 60cos (sin sin )60sin cos 60cos (sin ααααα+++- = 2 3 )cos (sin 2322=+αα=右边 【名师指引】(1)先猜后证是一种常见题型 (2)归纳推理的一些常见形式:一是“具有共同特征型”,二是“递推型”,三是“循环型”(周期性) [例2 ] (09深圳九校联考) 蜜蜂被认为是自然界中最杰出的建筑师,单个蜂 巢可以近似地看作是一个正六边形,如图为一组蜂 巢的截面图. 其中第一个图有1个蜂巢,第二个图

高考数学 合情推理与演绎推理

第36讲 合情推理与演绎推理 1.合情推理 (1)归纳推理 ①定义:由某类事物的部分对象具有某些特征,推出该类事物的__全部对象__都具有这些特征的推理,或者由个别的事实概括出一般结论的推理. ②特点:是由__部分__到__整体__、由__个别 __ 到__ 一般__的推理. (2)类比推理 ①定义:由两类对象具有某些类似特征和其中一类对象的某些已知特征,推出另一类对象也具有__这些特征__的推理. ②特点:是由__特殊__到__特殊__的推理. 2.演绎推理 (1)演绎推理 从一般性的原理出发,推出某个特殊情况下的结论,我们把这种推理称为演绎推理.简言之,演绎推理是由__一般__到__特殊__的推理. (2)“三段论”是演绎推理的一般模式 ①大前提——已知的__一般原理__. ②小前提——所研究的__特殊情况__. ③结论——根据一般原理,对__特殊情况__做出的判断. 1.思维辨析(在括号内打“√”或“×”).

(1)归纳推理与类比推理都是由特殊到一般的推理.(×) (2)在类比时,平面中的三角形与空间中的平行六面体作为类比对象较为合适.(×) (3)“所有3的倍数都是9的倍数,若数m是3的倍数,则m一定是9的倍数”,这是三段论推理,但其结论是错误的.(√) (4)在演绎推理中,只要符合演绎推理的形式,结论就一定正确.(×) 解析(1)错误.归纳推理是由部分到整体、由个别到一般的推理;类比推理是由特殊到特殊的推理. (2)错误.平面中的三角形与空间中的四面体作为类比对象较为合适. (3)正确.因为大前提错误,所以结论错误. (4)错误.演绎推理在大前提、小前提和推理形式都正确时,得到的结论一定正确. 2.命题“有些有理数是无限循环小数,整数是有理数,所以整数是无限循环小数”是假命题,推理错误的原因是(C) A.使用了归纳推理 B.使用了类比推理 C.使用了“三段论”,但推理形式错误 D.使用了“三段论”,但小前提错误 解析由条件知使用了三段论,但推理形式是错误的. 3.数列2,5,11,20,x,47,…中的x=(B) A.28B.32 C.33D.27 解析由5-2=3,11-5=6,20-11=9. 则x-20=12,因此x=32. 4.给出下列三个类比结论: ①(ab)n=a n b n与(a+b)n类比,则有(a+b)n=a n+b n; ②log a(xy)=log a x+log a y与sin(α+β)类比,则有sin(α+β)=sin αsin β; ③(a+b)2=a2+2ab+b2与(a+b)2类比,则有(a+b)2=a2+2a·b+b2. 其中结论正确的个数是(B) A.0B.1 C.2D.3 解析只有③正确. 5.观察下列不等式: 1+1 22<3 2, 1+1 22+1 32< 5 3,

2.1.1合情推理—归纳推理教案1

教学目标: 1、通过对已学知识的回顾,进一步体会合情推理这种基本的分析问题法,认识归纳推理的基本方法与步骤,并把它们用于对问题的发现与解决中去。 2.归纳推理是从特殊到一般的推理方法,通常归纳的个体数目越多,越具有代表性,那么推广的一般性命题也会越可靠,它是一种发现一般性规律的重要方法。 教学重点、难点: 教学重点:了解合情推理的含义,能利用归纳进行简单的推理。 教学难点:用归纳进行推理,做出猜想。 教学过程: 一、课堂引入: 从一个或几个已知命题得出另一个新命题的思维过程称为推理。 见书上的三个推理案例,回答几个推理各有什么特点?都是由“前提”和“结论”两部分组成,但是推理的结构形式上表现出不同的特点,据此可分为合情推理与演绎推理 二、问题情境 案例1、蛇是用肺呼吸的,鳄鱼是用肺呼吸的,海龟是用肺呼吸的,蜥蜴是用肺呼吸的。蛇,鳄鱼,海龟,蜥蜴都是爬行动物,所有的爬行动物都是用肺呼吸的。 案例2、三角形的内角和是180?,凸四边形的内角和是360?,凸五边形的内角和是540?由此我们猜想:凸边形的内角和是(2)180 n-?? 案例3、221222221 ,,, 331332333 +++ <<< +++ L,由此我们猜想: a a m b b m + < + (,, a b m均为正 实数) 二、学生活动 案例1、蛇是用肺呼吸的,鳄鱼是用肺呼吸的,海龟是用肺呼吸的,蜥蜴是用肺呼吸的。蛇,鳄鱼,海龟,蜥蜴都是爬行动物,所有的爬行动物都是用肺呼吸的。 由此猜想:所有的爬行动物都是用肺呼吸的。 案例2、三角形的内角和是180?,凸四边形的内角和是360?,凸五边形的内角和是540?由此我们猜想:凸边形的内角和是(2)180 n-?? 由此猜想:凸n边形的内角和是 (n-2) ×1800。

合情推理和演绎推理训练

合情推理和演绎推理训练

————————————————————————————————作者:————————————————————————————————日期:

推理与证明 ★知识网络★ 第1讲 合情推理和演绎推理 ★知识梳理★ 1.推理 根据一个或几个事实(或假设)得出一个判断,这种思维方式叫推理. 从结构上说,推理一般由两部分组成,一部分是已知的事实(或假设)叫做前提,一部分是由 已知推出的判断,叫结论. 2、合情推理: 根据已有的事实,经过观察、分析、比较、联想,再进行归纳、类比,然后提出的推理叫合情 推理。 合情推理可分为归纳推理和类比推理两类: (1)归纳推理:由某类事物的部分对象具有某些特征,推出该类事物的全部对象具有这些特 征的推理,或者由个别事实概括出一般结论的推理。简言之,归纳推理是由部分到整体、由 个别到一般的推理 (2)类比推理:由两类对象具有某些类似特征和其中一类对象具有的某些已知特征,推出另一 类对象也具有这些特征的推理,简言之,类比推理是由特殊到特殊的推理。 3.演绎推理: 从一般性的原理出发,推出某个特殊情况下的结论的推理叫演绎推理,简言之,演绎推理是 由一般到特殊的推理。三段论是演绎推理的一般模式,它包括:(1)大前提---已知的一般 原理;(2)小前提---所研究的特殊情况;(3)结论——根据一般原理,对特殊情况作出的判 断。 ★重难点突破★ 重点:会用合情推理提出猜想,会用演绎推理进行推理论证,明确合情推理与演绎推理的区别推 理 推 证合情演绎归类直接间接 数学综 分 反

与联系 难点:发现两类对象的类似特征、在部分对象中寻找共同特征或规律 重难点:利用合情推理的原理提出猜想,利用演绎推理的形式进行证明 1、归纳推理关键是要在部分对象中寻找共同特征或某种规律性 问题1:观察:715211+<; 5.516.5211+<; 33193211-++<;…. 对于任意正实数,a b ,试写出使211a b +≤成立的一个条件可以是 ____. 点拨:前面所列式子的共同特征特征是被开方数之和为22,故22=+b a 2、类比推理关键是要寻找两类对象的类似特征 问题2:已知抛物线有性质:过抛物线的焦点作一直线与抛物线交于A 、B 两点,则当AB 与 抛物线的对称轴垂直时,AB 的长度最短;试将上述命题类比到其他曲线,写出相应的一个真 命题为 . 点拨:圆锥曲线有很多类似性质,“通径”最短是其中之一,答案可以填:过椭圆的焦点作一 直线与椭圆交于A 、B 两点,则当AB 与椭圆的长轴垂直时,AB 的长度最短(22 2||a b AB ≥) 3、运用演绎推理的推理形式(三段论)进行推理 问题3:定义[x]为不超过x的最大整数,则[-2.1]= 点拨:“大前提”是在],(x -∞找最大整数,所以[-2.1]=-3 ★热点考点题型探析★ 考点1 合情推理 题型1 用归纳推理发现规律 [例1 ] 通过观察下列等式,猜想出一个一般性的结论,并证明结论的真假。 2 3135sin 75sin 15sin 020202= ++;23150sin 90sin 30sin 020202=++;23165sin 105sin 45sin 020202=++;23180sin 120sin 60sin 020202=++ 【解题思路】注意观察四个式子的共同特征或规律(1)结构的一致性,(2)观察角的“共性” [解析]猜想:23)60(sin sin )60(sin 02202= +++-ααα 证明:左边=2002200)60sin cos 60cos (sin sin )60sin cos 60cos (sin ααααα+++- =2 3)cos (sin 2322=+αα=右边 【名师指引】(1)先猜后证是一种常见题型 (2)归纳推理的一些常见形式:一是“具有共同特征型”,二是“递推型”,三是“循环型”(周 期性) [例2 ] (09深圳九校联考) 蜜蜂被认为是自然界中最杰出的建筑师,单个蜂 巢可以近似地看作是一个正六边形,如图为一组 蜂

3 第3讲 合情推理与演绎推理

第3讲 合情推理与演绎推理 1.推理 (1)定义:根据一个或几个已知的判断来确定一个新的判断的思维过程. (2)分类:推理? ? ???合情推理 演绎推理 2.合情推理 归纳推理 类比推理 定义 由某类事物的部分对象具有某些 特征,推出该类事物的全部对象都具有这些特征的推理,或者由 个别事实概括出一般结论的推理 由两类对象具有某些类似特征和其中一类对象的某些已知特征,推出另一类对象也具有这些特征 的推理 特点 由部分到整体、由个别到一般的推理 由特殊到特殊的推理 (1)定义:从一般性的原理出发,推出某个特殊情况下的结论,我们把这种推理称为演绎推理. (2)特点:演绎推理是由一般到特殊的推理. (3)模式: 三段论???? ?①大前提:已知的一般原理;②小前提:所研究的特殊情况;③结论:根据一般原理,对特殊情况做出的判断. 判断正误(正确的打“√”,错误的打“×”) (1)归纳推理得到的结论不一定正确,类比推理得到的结论一定正确.( ) (2)由平面三角形的性质推测空间四面体的性质,这是一种合情推理.( ) (3)在类比时,平面中的三角形与空间中的平行六面体作为类比对象较为合适.( ) (4)在演绎推理中,只要符合演绎推理的形式,结论就一定正确.( ) 答案:(1)× (2)√ (3)× (4)× (教材习题改编)已知数列{a n }中,a 1=1,n ≥2时,a n =a n -1+2n -1,依次计算a 2,a 3,a 4后,猜想a n 的表达式是( ) A .a n =3n -1 B .a n =4n -3 C .a n =n 2 D .a n =3n - 1

第二章 §2.1 2.1 .1 合情推理(优秀经典公开课比赛教案)

[A 组 学业达标] 1.“鲁班发明锯子”的思维过程为:带齿的草叶能割破行人的腿,“锯子”能“锯”开木材,它们在功能上是类似的.因此,它们在形状上也应该类似,“锯子”应该是齿形的.该过程体现了( ) A .归纳推理 B .类比推理 C .没有推理 D .以上说法都不对 解析:推理是根据一个或几个已知的判断来确定一个新的判断的思维过程,上述过程是推理,由性质类比可知是类比推理. 答案:B 2.已知扇形的弧长为l ,半径为r ,类比三角形的面积公式S =底×高 2,可知扇 形面积公式为( ) A.r 22 B.l 22 C.lr 2 D .无法确定 解析:扇形的弧长对应三角形的底,扇形的半径对应三角形的高,因此可得扇形面积公式S =lr 2. 答案:C 3.“干支纪年法”是中国历法上自古以来就一直使用的纪年方法.干支是天干和地支的总称.甲、乙、丙、丁、戊、己、庚、辛、壬、癸十个符号叫天干,子、丑、寅、卯、辰、巳、午、未、申、酉、戌、亥十二个符号叫地支.把干支顺序相配正好六十为一周,周而复始,循环记录,这就是俗称的“干支表”.2019年是干支纪年法中的己亥年,那么2050年是干支纪年法中的( )

A.丁酉年B.庚午年 C.乙未年D.丁未年 解析:天干是以10为构成的等差数列,地支是以12为公差的等差数列,2019年是干支纪年法中的己亥年,则2050的天干为庚,地支为午,故选B. 答案:B 4.n个连续自然数按规律排列下表: 根据规律,从2 019到2 021箭头的方向依次为() A.↓→B.→↑ C.↑→D.→↓ 解析:观察特例的规律知:位置相同的数字都是以4为公差的等差数列,由 可知从2019到2021为→↓,故应选D. 答案:D 5.如图所示,着色的三角形的个数依次构成数列{a n}的前4项,则这个数列的一个通项公式为() A.a n=3n-1B.a n=3n C.a n=3n-2n D.a n=3n-1+2n-3 解析:∵a1=1,a2=3,a3=9,a4=27, ∴猜想a n=3n-1.

高考数学试题汇编合情推理与演绎推理

第二节 合情推理与演绎推理 高考试题 考点一 合情推理 1.(2011年江西卷,理7)观察下列各式:55 =3125,56 =15625,57 =78125,…,则52011 的末四位数字为( ) (A)3125 (B)5625 (C)0625 (D)8125 解析:∵55 =3125,56 =15625,57 =78125,58 =390625, 59 =1953125,510 =9765625,…, ∴5n (n ∈Z 且n ≥5)的末四位数字呈周期性变化, 记5n (n ∈Z 且n ≥5)的末四位数为f(n), 则f(2011)=f(501×4+7)=f(7), ∴5 2011 与57 的末四位数字相同,均为8125. 答案:D 2.(2012年湖北卷,理13)回文数是指从左到右读与从右到左读都一样的正整数,如22,121,3443,94249等,显然2位回文数有9个:11,22,33,…,99,3位回文数有90个:101,111,121,…,191,202,…,999,则 (1)4位回文数有 个; (2)2n+1(n ∈N +)位回文数有 个. 解析:1位回文数有9个,2位回文数有9个,3位回文数有90=9×10个,4位回文数有 1001,1111,1221,…,1991,2002,…,9999,共90个,5位回文数中,首末位数字不能为0,有9种选法,第2、4位数字有10种选法,第3位数字有10种选法,故5位回文数共有9×102 =900个,故猜想2n+1(n ∈N +)位回文数有9×10n 个. 答案:(1)90 (2)9×10n 3.(2013年陕西卷,理14)观察下列等式: 12=1, 12-22=-3, 12-22+32=6, 12 -22 +32 -42 =-10, … 照此规律,第n 个等式可为 . 解析:观察规律可知,第n 个式子为12 -22 +32 -42 +…+(-1)n+1n 2 =(-1)n+1 ()12 n n +. 答案:12 -22 +32 -42 +…+(-1)n+1n 2 =(-1) n+1()12 n n + 4.(2012年陕西卷,理11)观察下列不等式 1+212<32, 1+212+213<53, 1+ 212+213+214<74 , …

合情推理与演绎推理的意义

合情推理与演绎推理的意义 (1)合情推理是根据已有的事实和正确的结论(包括定义、公理、定理等)、实验和实践的结果,以及个人的经验和直觉等推测某些结果的推导过程。演绎推理是根据已有的事实和正确的结论(包括定义、公理、定理等),按照严格的逻辑法则得到新结论的推理过程。 (2)在解决问题的过程中,合情推理具有猜测和发现结论,探索和提供思路的作用,有利于创新意识的培养。例如,在研究球体时,我们会自然地联想到圆。由于球与圆在形状上有类似的地方,即都具有完美的对称性,都是到定点的距离等于定长的点的集合,因此我们推测圆的一些特征,球也可能有。 圆的切线,切线与圆只交于一点,切点到圆心的距离等于圆的半径,类似地,我们推测可能存在这样的平面,与球只交于一点,该点到球心的距离等于球的半径。平面内不共线的3个点确定一个圆,类似地,我们猜想空间中不共面的4个点确定一个球等。 演绎推理是数学中严格证明的工具,在解决数学问题时起着重要的作用。“三段论”是演绎推理的一般模式,前提和结论之间存在必然的联系,只要前提是真实的,推理的形式是正确的,那么结论也必定是正确的。 例如,三角函数都是周期函数,sinx是三角函数,因此推导证明出该函数是周期函数。又如,这样一道问题“证明函数f(x)=-x+2x在(-0,1)上是增函数”。大前提是增函数的定义,小前提是推导函数f(x)在(-c,1)上满足增函数的定义,进而得出结论。 合情推理从推理形式上看,是由部分到整体、个别到一般、由特殊到特殊的推理;而演绎推理是由一般到特殊的推理。从推理所得的结论来看,合情推理的结论不一定正确,有待进一步证明;演绎推理在大前提、小前提和推理形式都正确的前提下,得到的结论一定正确。 就数学而言,演绎推理是证明数学结论、建立数学体系的重要思维过程。但数学结论、证明思路等的发现,主要靠合情推理。因此,合情推理与演绎推理是相辅相成的。

合情推理──归纳推理

《合情推理─归纳推理》的评课 朱辉华 师:我们知道,“推理”活动对于人们认知客观世界和改造客观世界而言,具有非常重要的意义。所以我们有必要对“推理”的数学意义进行较深入的学习和加强。虽然,以古希腊为代表的西方数学在“推理”方面具有明显的特点与优势,但中国古代也产生了大量的、擅长“推理”的“专家”。现在请大家观看一段视频,并且在观看的同时思考一个问题:即里面所涉及的主要人物是怎样对面临的问题进行推理的? 下面的视频是三国演义中有关“草船借箭”的视频,主要演示当晚江中两军对峙的若干场景以及曹操面对“敌军忽至”的应对策略,时间为1分20秒。 师:视频中显示的主人公是谁呀? 生:曹操! 师:那“草船借箭”真正的主人公是谁? 生:诸葛亮! 师:俗话说的好:三个臭皮匠,顶个诸葛亮,下面我们来分析一下他怎么敢在周瑜面前夸下海口,保证能借到“箭”呢?有什么理由? 生:因为曹操性格是多疑的,他怀疑有埋伏,…… 老师和学生一起进一步分析,得到: ?????? ?? (1)今夜恰有大雾(2)曹操生性多疑草船借箭必将成功(3)弓弩利于远战(4)北军不擅水战 师:由上可见,诸葛亮显然是一个善于利用推理的“专家”。象这种利用几个已知的判断来确定一个新的判断,这就是我们前面所讲的“推理”。 教师下面介绍了“推理”的概念。并利用如下的“思考1”让学生学习了“推理”与“合情推理”的分类,引出了本节课的主题───归纳推理。 思考1:试根据以下前提进行猜想。 ①由铜、铁、铝、金、银等金属都能导电 ②由三角形内角和为180°,凸四边形内角和为360°,凸五边形内角和为540°。 ③地球上有生命,火星具有一些与地球类似的特征。 ④因为所有人都会死,而苏格拉底是人。 师:我们通过“思考1”的前面两个小题与屏幕上的两种推理(注:这里略去)能不能总结出“归纳推理”的某些特征。 生:很好!我们可以借此得到归纳推理的概念。即由某类事物的部分对象具有某些特征,推出该类事物的全部对象都具有这些特征的推理,或由个别事实概括出一般结论的推理,称为归纳推理(简称归纳)。这里面哪些是关键词? 生:部分对象,全部对象,个别事实,一般结论。 师:很不错!事实上归纳推理即为由部分到整体,由个别到一般的推理。这种推理在生活及学习中极为常见。大家能不能分组讨论一下,得到一些例子? 学生积极参与了讨论,也得到了一些生活以及学科上的例子,如市场的菜涨价问题、用样本去估计总体以及化学中酸与碱反应问题等等。

合情推理演绎推理(带标准答案)

合情推理演绎推理(带答

案)

作者: 日期:

1:与代数式有关的推理问题 2 a b a b a b , 例1、观察a 3 b 3 a b 2 a ab b 2 进而猜想a n b n 4 a b 4 a b 3 a a 2 b ab 2 b 3 练习:观察下列等式: 13 23 以 3 3 , 1 23 33 6, 13 2" 33 43 10,…,根据上述规律,第五个 等式为 o 解析:第 i 个等式左边为 1 到 i+1 的立方和,右边为 1+2+.. .+ (i+1 )的平方所以第五个 等式为13空 33 43 5" 21 o 2:与三角函数有关的推理问题 例1、观察下列等式,猜想一个一般性的结论。 练习:观察下列等式: ① COS2 a =2 cos 2 a — 1 ; 4 2 ② cos 4 a =8 cos a — 8 COs a +1 ; ③ cos 6 a =32 cos 6 a — 48 cos 4 a+ 18 cos 2 a — 1; ④ cos 8 a = 128 cos a — 256cos a+ 160 cos a — 32 cos a + 1 ; 10 8 6 4 2 ⑤ cos 10 a =mcos a — 1280 cos a+ 1120cos a+ nC0S a+ p cos a — 1 ; 可以推测,m — n+p= . 答案:962 3:与不等式有关的推理 例1、观察下列式子: 1 3 1 1 5 4 1 1 1 7 1尹2「豕孑护豕孕了?由上可得出一般的结论为: ____________________________________________________ 。 .1 1 1 2n 1 答案:1 22 32 ……(n 1)2 n 1, 练习、由 3 5 口 oooooo 可猜想到一个一般性的结论是: _________________________ 。 2 2 1 3 3 1 4 4 1 合情推理 sin 2 30 0 sin 2 60 0 ? 2 Ar 0 sin 45 sin 15 ? 2 “ 0 sin 90 sin 2120 sin 2105 sin 2 75 0 . 2 * LC 0 sin 150 sin 2180 sin 2165 2 X CL 0 sin 135

高中数学《合情推理—归纳推理》公开课优秀教学设计

《合情推理—归纳推理》教学设计 (人教A版高中课标教材数学选修1—2第二章2.1第一课时) 2016年10月

《归纳推理》教学设计 一、教学内容分析 本节课内容是《普通高中课程标准实验教科书数学》人教A版选修1—2第二章《推理与证明》2.1《合情推理与演绎推理》的第一课时《归纳推理》,归纳推理为合情推理的一个类型.本课作为本章节的起始课要了解推理的含义,通过实例进一步了解归纳推理的含义,通过对归纳推理过程的感知,了解推理过程,进而能利用归纳进行简单的推理. 归纳推理是合情推理的一个重要类型,数学发现的过程往往包含有归纳推理的成分,在人类文明、创造活动中,归纳推理也扮演了重要的角色.归纳推理是作为一种思维活动存在的,教学的内容不是学习某一具体知识,而是感悟一系列的思维过程,逐步形成一种“思维习惯”,作为起始课形成习惯是困难的,但体验“过程”是相对容易的,“体验之旅”将成为本节课的主线.归纳推理的过程我们概括为“观察—分析—归纳—猜想”,对于“证明”我们暂不做要求,因此重点感悟归纳推理的过程,证明做适当引导. 归纳推理是由部分到整体、由特殊到一般的推理,这本身就体现了特殊与一般的数学思想,由于猜想结果超出了前提界定的范围,前提与结论之间的联系不是必然的,这又体现了必然与或然的数学思想.本课中的实例在数学史中都是赫赫有名的,“四色猜想”、费马数、哥德巴赫猜想、问题4中的毕达哥拉斯平方数等,这些实例展现了一代代数学家对于数学的好奇心和想象力体现了他们不畏困难,坚持不懈的探索精神,抓住这些内容可以培养学生“勇于探究”的精神,这一精神正是新一轮课程改革强调的学生核心素养中“科学精神”的重要体现。新一轮的课程改革即将到来,作为普通教师也有必要在教学中未雨绸缪,避免大寒索裘.数学思想和数学文化将作为本课的一条暗线穿插于教学内容之中. 本节课的教学重点:了解归纳推理的含义,通过实例,掌握“观察—分析—归纳—猜想”的推理过程. 二、教学目标设置

合情推理演绎推理专题练习及答案

合情推理、演绎推理 一、考点梳理:(略) 二、命题预测: 归纳、类比和演绎推理是高考的热点,归纳与类比推理大多数出现在填空题中,为中、抵挡题,主要考察类比、归纳推理的能力;演绎推理大多出现在解答题中,为中、高档题,在知识的交汇点出命题,考察学生的分析问题,解决问题以及逻辑推理能力。预测2012年仍然如此,重点考察逻辑推理能力。 三、题型讲解: 1:与代数式有关的推理问题 例1、观察()()()() ()() 223 3 2 2 44 3 223, a b a b a b a b a b a ab b a b a b a a b ab b -=-+-=-++-=-+++进而猜想n n a b -= 例2、观察1=1,1-4=-(1+2),1-4+9=(1+2+3),1-4+9-16= -(1+2+3+4)…猜想第n 个等式是: 。 练习:观察下列等式:3 321 23+=,33321236++=,33332123410+++=,…,根据上述规律,第五个... 等式.. 为 。 。 练习:在计算“”时,某同学学到了如下一种方法:先改写第k 项: 由此得 … 相加,得 类比上述方法,请你计算“”,其结果为 . 2:与三角函数有关的推理问题 例1、观察下列等式,猜想一个一般性的结论,并证明结论的真假。 2020202020202020202020203 sin 30sin 90sin 150,23 sin 60sin 120sin 18023 sin 45sin 105sin 165, 23 sin 15sin 75sin 1352++= ++=++=++= 练习:观察下列等式: ① cos2α=2 cos 2 α-1; ② cos 4α=8 cos 4 α-8 cos 2 α+1; ③ cos 6α=32 cos 6 α-48 cos 4 α+18 cos 2 α-1; ④ cos 8α= 128 cos 8α-256cos 6 α+160 cos 4 α-32 cos 2 α+1; ⑤ cos 10α=mcos 10α-1280 cos 8α+1120cos 6 α+ncos 4 α+p cos 2 α-1; 可以推测,m -n+p= .

合情推理典型例题(一)

合情推理典型例题(一) 知识点提示: 1. 归纳推理:由某类事物的部分对象具有某种特征,推出该类事物的全部对象都具有这些特征的推理,或者由个别事实概括出一般结论的推理,称为归纳推理。 2. 类比推理:由两类对象具有某些类似特征和其中一类对象的某些已知特征,推出另一类对象也具有这些特征的推理称为类比推理。 3. 合情推理:经过观察、分析、比较、联想,再进行归纳,类比,然后提出猜想的推理,我们把它们统称为合情推理。 4. 演绎推理:从一般性的原理出发,推出某个特殊情况下的结论,我们把这种推理称为演绎推理。 5. 总结: (1)归纳推理:由个别到一般 (2)类比推理:由特殊到特殊 (3)合情推理:猜想(不一定正确) (4)演绎推理:由一般到特殊 [例1] 在数列中,,试猜想这个数列的通项公式。 分析:根据已知条件和递推关系,先求出数列的前几项,然后总结归纳其中的规律,写出其通项。 解:中,,…… ∴的通项公式 [例2] 顺次计算数列:1,1+2+1,1+2+3+2+1,1+2+3+4+3+2+1,……的前4项的值,由此猜测:结果。 解:1=121+2+1=4=221+2+3+2+1=9=321+2+3+4+3+2+1=16=42 从而猜想: [例3] 已知(n=1、2、……),,试归纳这个数列的通项公式。 解: [例4] 在中,若∠C=90°,则,则在立体几何中,给出四面体性质的猜想。 分析:考虑到平面中的图形是直角三角形,所以我们在空间选取有3个面两两垂直的四面体P—ABC,且三个面与面ABC所成的二面角分别是。 解:如图,在中,

于是把结论类比到四面体P—ABC中,我们猜想,三棱锥P—ABC中,若三个侧面PAB、PBC、PCA两两互相垂直且分别与底面所成的角为。 由此可猜想出四面体性质为: [例5] 已知:;。 通过观察上述两等式的规律,请你写出一般性的命题:=(*)并给出(*)式的证明。 一般形式: 证明:左边 右边∴原式得证(将一般形式写成 等均正确)

相关文档
最新文档