高中数学椭圆的第二定义应用

高中数学椭圆的第二定义应用
高中数学椭圆的第二定义应用

椭圆的第二定义应用

班级 姓名 基础梳理

1.椭圆第二定义:___________________________距离之比是常数

e c a

e M =

<<()01的动点的轨迹叫做椭圆,定点为椭圆的一个焦点,定直线为 椭圆的准线,常数e 是椭圆的离心率。

注意:①对对应于右焦点,的准线称为右准线,x a y b

a b F c 22222100+=>>()() 方程是,对应于左焦点,的准线为左准线x a c F c x a c

=-=-212

0()

②e 的几何意义:椭圆上一点到焦点的距离与到相应准线的距离的比。 自测自评

1、椭圆125

92

2=+y x 的准线方程是( ) A 、425±

=x B 、516±=y C 、516±=x D 、4

25±=y 2、椭圆的一个焦点到相应的准线的距离为45,离心率为32,则短轴长为( ) A 、2

5 B 、5 C 、52 D 、1 3、设P 为椭圆136

1002

2=+y x 上一点,P 到左准线的距离为10,则P 到右准线的距离为( )

A 、6

B 、 8

C 、 10

D 、15

4、已知P 是椭圆2100x + 2

36

y =1上的点,P 到右准线的距离是8.5,则p 到左焦点的距离是______

5、已知动点M 到定点(3,0)的距离与到定直线x=

253,的距离之比是35,则动点M 的轨迹方程是_________________。 6、.已知P 点在椭圆225x +2

16

y =1上,且P 到椭圆左、右焦点距离的比是1:4,则P 到两准线的距离分别为_________________。

7、求中点在原点、焦点在x 轴上、其长轴端点与最近的焦点相距为1,与相近的一条准线距离是53

的椭圆标准方程。

8、 一个椭圆的焦点将其准线间的距离三等分,求椭圆的离心率.

9、已知,,是椭圆的右焦点,点在椭圆上移动,当A F x y M ()-+=231612

122

|MA|+2|MF|取最小值时,求点M 的坐标。

10、已知A,B 是椭圆19252222=+a y a x 上的两点,2F 是右焦点,若a BF AF 5

822=+,AB 的中点P 到左准线的距离为2

3,求椭圆的方程。

高中数学解析几何专题之椭圆汇总解析版

圆锥曲线第1讲 椭圆 【知识要点】 一、椭圆的定义 1. 椭圆的第一定义: 平面内到两个定点1F 、2F 的距离之和等于定长a 2( 2 12F F a >)的点的轨迹 叫椭圆,这两个定点叫做椭圆的焦点,两个焦点之间的距离叫做焦距。 注1:在椭圆的定义中,必须强调:到两个定点的距离之和(记作a 2)大于这两个定点之间的距离2 1F F (记作c 2),否则点的轨迹就不是一个椭圆。 具体情形如下: (ⅰ)当c a 22>时,点的轨迹是椭圆; (ⅱ)当c a 22=时,点的轨迹是线段21F F ; (ⅲ)当c a 22<时,点的轨迹不存在。 注2:若用M 表示动点,则椭圆轨迹的几何描述法为a MF MF 221=+(c a 22>, c F F 221=),即 2 121F F MF MF >+. 注3:凡是有关椭圆上的点与焦点的距离问题,通常可利用椭圆的第一定义求解,即隐含条件: a MF MF 221=+千万不可忘记。 2. 椭圆的第二定义: 平面内到某一定点的距离与它到定直线的距离之比等于常数e (10<

(1)焦点在x 轴、中心在坐标原点的椭圆的标准方程是122 2 2=+b y a x (0>>b a ); (2)焦点在y 轴、中心在坐标原点的椭圆的标准方程是122 22=+b x a y (0>>b a ). 注1:若题目已给出椭圆的标准方程,那其焦点究竟是在x 轴还是在y 轴,主要看长半轴跟谁走。长半轴跟x 走,椭圆的焦点在x 轴;长半轴跟y 走,椭圆的焦点在y 轴。 (1)注 2:求椭圆的方程通常采用待定系数法。若题目已指明椭圆的焦点 的位置,则可设其方程为12222=+b y a x (0>>b a )或122 2 2=+b x a y (0>>b a ); 若题目未指明椭圆的焦点究竟是在x 轴上还是y 轴上,则中心在坐标原点 的椭圆的方程可设为 12 2=+ny mx (0>m ,0>n ,且n m ≠). 三、椭圆的性质 以标准方程122 22=+b y a x (0>>b a )为例,其他形式的方程可用同样的方法 得到相关结论。 (1)范围:a x a ≤≤-,b y b ≤≤-; (2)对称性:关于x 轴、y 轴轴对称,关于坐标原点中心对称; (3)顶点:左右顶点分别为)0,(1a A -,)0,(2a A ;上下顶点分别为),0(1b B , ),0(2b B -; (4)长轴长为a 2,短轴长为b 2,焦距为c 2;

椭圆第二定义教学活动设计

椭圆第二定义教学设计 一、背景分析: 本节课是在学生学习完了椭圆定义及其标准方程、椭圆简单几何性质的基础上进行的;是对椭圆性质(离心率)在应用上的进一步认识;着重引出椭圆的第二定义、准线方程,掌握椭圆定义的应用。教学中力求以教师为主导,以学生为主体,充分结合多媒体技术,以“形”为诱导,以椭圆的二个定义为载体,以培养学生的思维能力、探究能力、归纳总结的能力以及等价转化思想为重点的教学思想. 二、教材的地位和作用: 圆锥曲线是解析几何的重要内容,而椭圆又是高考的热点问题之一;能否学好椭圆的定义、标准方程及其简单的几何性质,是学生能否比较系统地学好另外两种圆锥曲线的基础,甚至是学生能否学好解析几何的关键。而椭圆在教材中具有“承上启下”的作用,从图形和第一定义来看椭圆与圆比较接近,从而对于学生来说学习完圆后再学习椭圆比较容易接受;而椭圆的第二定义即“到定点的距离与到定直线的距离的比是常数的点的轨迹”,正好可以把椭圆、双曲线、抛物线这三种圆锥曲线有机地统一起来,使学生对圆锥曲线有个整体知识体系,所以说这个定义在整章起到了一种“纽带”的作用. 三、学法指导: 以问题为诱导,结合图形,引导学生进行必要的联想、类比、化归、转化. 四、教学目标

知识目标:椭圆第二定义、准线方程; 能力目标: 1、使学生了解椭圆第二定义给出的背景; 2、了解离心率的几何意义; 3、使学生理解椭圆第二定义、椭圆的准线定义; 4、使学生掌握椭圆的准线方程以及准线方程的应用; 5、使学生掌握椭圆第二定义的简单应用; 情感与态度目标:通过问题的引入和变式,激发学生学习的兴趣,应用运动变化的观点看待问题,体现数学的美学价值. 五、教学重点:椭圆第二定义、准线方程; 六、教学难点:椭圆的第二定义的简单运用; 七、教学方法:创设问题、启发引导、探究活动、归纳总结. 八、教学过程 (一)、引入课题(上一节的例题得出的结果) 例、椭圆的方程为 116 252 2=+y x ,M 1为椭圆上的点,若点M 1为(4,y 0)不求出点M 2的纵坐标,你能求出这点到焦点F (3,0)的距离吗? 解:2 2 )34(||y MF +-=且 116 2542 02=+y 代入消去2 0y 得51325169||==MF 【推广】根据上面这个问题的解题思路你能否将椭圆122 22=+b y a x 上任一点),(y x M 到焦点 )0)(0,(>c c F 的距离表示成点M 横坐标x 的函数吗?

习题课:椭圆第二定义的应用(精)

人教版高二数学上册§8.2 椭圆第二定义的应用(习题课 班级姓名自我学习评价 :优良还需努力 【学习目标】1. 进一步加深对椭圆第二定义及其性质的认识,会熟练运用椭圆的几何性质和第二定义解决有关问题; 2. 通过对椭圆的第二定义的应用,体会和感悟“方程思想”和“数形结合”,“分类讨论”的数学思想方法。 【学习重点】灵活运用椭圆的第二定义及性质解决有关问题。 【学习过程】 一、学习准备(知识准备) 请独立完成下列填空: 1.椭圆的第一定义为:;其中的两点为椭圆的 ;常数等于椭圆的; 2.椭圆第二定义:若平面内的动点M(x,y)到定点F(c,0)的距离和它到定直线 的距离的比是常数,则点M 的轨迹为;定直线叫做,准线与长轴所在直线____,椭圆的准线有条. 常数,()是的离心率。e1时,椭圆趋于;e0时,椭圆趋向于。 3.由椭圆第二定义我们得到了焦半径公式。设为椭圆上任意一点,对于标准方程 的焦半径;;对于标准方程的焦半径; .

椭圆第二定义及其性质在解题中有何价值和作用?你知道吗?通过本节课的学习你就会知道了! ●基础练习:试一试,你能根据已知很快独立完成下列问题吗?有困难的题可与小组同学讨论。 1、椭圆的准线方程是()A.; B.; C.; D. 2 椭圆的一个焦点到相应准线的距离为,离心率为,则短轴长为()A B C. D. 3 设点P为椭圆上一点,P到左准线的距离为10,则P到右准线的距离为() A . 6 ; B .8 ; C.10 ; D.15 4 已知点A(2,y)是椭圆上的点,F是其右焦点,则∣AF∣=; 5.椭圆与椭圆〉0)的形状怎样?它们的离心率有何关系?你 能否快速求出与椭圆有相同的离心率且经过点(,)的椭圆的方程?其方程为 你是用什么方法求解的?。 二、典型例析 【探究一】利用椭圆第二定义解题

高中数学椭圆的经典知识总结

高中数学椭圆的经典知识总结 椭圆知识点总结 1. 椭圆的定义:1,2 (1)椭圆:焦点在x 轴上时12222=+b y a x (222a b c =+)?{ cos sin x a y b ??==(参数方程,其中?为参数),焦点在y 轴上时22 22b x a y +=1(0a b >>)。方程22Ax By C +=表示椭圆的充要条件是什么? (ABC ≠0,且A ,B ,C 同号,A ≠B )。 2. 椭圆的几何性质: (1)椭圆(以122 22=+b y a x (0a b >>)为例):①范围:,a x a b y b -≤≤-≤≤;②焦点:两个 焦点(,0)c ±;③对称性:两条对称轴0,0x y ==,一个对称中心(0,0),四个顶点(,0),(0,)a b ±±,其中长轴长为2a ,短轴长为2b ;④准线:两条准线2a x c =±; ⑤离心率:c e a =,椭圆?01e <<, e 越小,椭圆越圆;e 越大,椭圆越扁。⑥通径2 2b a 2.点与椭圆的位置关系:(1)点00(,)P x y 在椭圆外?2200 221x y a b +>; (2)点00(,)P x y 在椭圆上?220 220b y a x +=1; (3)点00(,)P x y 在椭圆内?2200 221x y a b +< 3.直线与圆锥曲线的位置关系: (1)相交:0?>?直线与椭圆相交;(2)相切:0?=?直线与椭圆相切; (3)相离: 0?

椭圆的第二定义应用

椭圆的第二定义应用 班级 姓名 基础梳理 1.椭圆第二定义:___________________________距离之比是常数 e c a e M =<<()01的动点的轨迹叫做椭圆,定点为椭圆的一个焦点,定直线为 椭圆的准线,常数e 是椭圆的离心率。 注意: ①对对应于右焦点,的准线称为右准线,x a y b a b F c 22222100+=>>()() 方程是,对应于左焦点,的准线为左准线x a c F c x a c =-=-212 0() ②e 的几何意义:椭圆上一点到焦点的距离与到相应准线的距离的比。 自测自评 1、椭圆125 92 2=+y x 的准线方程是( ) A 、425± =x B 、516±=y C 、516±=x D 、4 25±=y 2、椭圆的一个焦点到相应的准线的距离为45,离心率为32,则短轴长为( ) A 、2 5 B 、5 C 、52 D 、1 3、设P 为椭圆136 1002 2=+y x 上一点,P 到左准线的距离为10,则P 到右准线的距

离为()

A 、6 B 、 8 C 、 10 D 、15 4、已知P 是椭圆2 100 x + 236y =1上的点,P 到右准线的距离是8.5,则p 到左焦点的距离是______ 5、已知动点M 到定点(3,0)的距离与到定直线x= 253,的距离之比是35,则动点M 的轨迹方程是_________________。 6、.已知P 点在椭圆225x +216y =1上,且P 到椭圆左、右焦点距离的比是1:4,则P 到两准线的距离分别为_________________。 7、求中点在原点、焦点在x 轴上、其长轴端点与最近的焦点相距为1,与相近的一条准线距离是53 的椭圆标准方程。 8、 一个椭圆的焦点将其准线间的距离三等分,求椭圆的离心率. 9、已知,,是椭圆的右焦点,点在椭圆上移动,当A F x y M ()-+=231612 122 |MA|+2|MF|取最小值时,求点M 的坐标。

椭圆定义及应用

一、椭圆第一个定义的应用 1.1 椭圆的第一个定义平面内有两个定点F1、F2,和一个定长2a。若动点P到两个定点距离之和等于定长2a,且两个定点距离|F1F2|<2a.则动点轨迹是椭圆。两个定点F1、F2称为椭圆的焦点。 由此定义得出非常重要的等式,其中P为椭圆上一个点。此等式既表明作为椭圆这个点的轨迹的来源,也说明椭圆上每一个具有的共同性质。即椭圆上每一个点到两个焦点距离之和等于定长2a .在有关椭圆的问题中,若题设中含有有关椭圆上一点到两个焦点距离的信息,首先考虑的就是能否用上这个关系式。 1.2 应用举例 例1.已知点 1(3,0) F-,2(3,0) F,有 126 PF PF +=,则P点的轨迹是 . 例2.求证以椭圆 (a>b>0) 上任意一点P的 焦半径为直径画圆,这个圆必与圆相切. 解评:此题若用一般方法解或用椭圆参数方程解答,计算量都很大,解题过程冗长,属于中档题。我们若抓住PF2为一个圆直径,PF1为另一个圆半径的2倍,用公式,很容易得出正确解答。

例3. F 1、F 2是椭圆的两个焦点,P 是椭圆上一点, 求的面积.24 解评:题设中有椭圆上一点到两个焦点间距离的信息,即可试探是否能用 解决 例4.P 是椭圆2 2 145 20 x y + =上位于第一象限内的点, F 1、F 2是椭圆的左、右焦点, 若 则12PF PF -的值为( ) A. D. 3 例5. 在圆C:22(1)25x y ++=内有一点A (1,0),Q 为圆C 上一点,AQ 的垂直平分线线段CQ 的交点为M,求M 点的轨迹方程. 练:一动圆与圆⊙o 1:x 2+y 2+6x+5=0外切,同时与⊙o 2 : x 2+y 2_ 6x _ 91=0 内切, 求动圆圆心M 的轨迹方程,并说明它是什么样的曲线。

椭圆的第二定义及简单几何性质

二、椭圆的简单几何性质 一、知识要点 椭圆的第二定义:当点M 与一个定点的距离和它到一条定直线的距离的比是常数 )10(<<= e a c e 时,这个点的轨迹是椭圆.定点是椭圆的焦点,定直线叫做椭圆的准线,常数e 是椭圆的离心率. 可见椭圆的离心率就是椭圆上一点到焦点的距离与到相应准线距离的比,这就是离心率的几何意义. e d MF =| |∴ 准线方程:对于椭圆12222=+b y a x ,相应于焦点)0,(c F 的准线方程是c a x 2 =.根据对 称性,相应于焦点)0,(c F ′的准线方程是c a x 2-=.对于椭圆122 22=+b x a y 的准线方程是c a y 2 ±=. 焦半径公式: 由椭圆的第二定义可得: 右焦半径公式为ex a c a x e ed MF -|-|||2 ===右; 左焦半径公式为ex a c a x e ed MF +===|)-(-|||2 左 二、典型例题 例1、求椭圆 116 252 2=+y x 的右焦点和右准线;左焦点和左准线; 练习:椭圆8192 2 =+y x 的长轴长为_________,短轴长为_________,半焦距为_________,

离心率为_________,焦点坐标为_________,顶点坐标为__________________,准线方程为____________. 例2、已知椭圆方程136 1002 2=+y x ,P 是其上一点,21,F F 分别为左、右焦点,若81=PF , 求P 到右准线的距离. 例3、已知点M 为椭圆116 252 2=+y x 的上任意一点,1F 、2F 分别为左右焦点;且)2,1(A 求 ||3 5 ||1MF MA +的最小值. 变式、若椭圆:3 \* MERGEFORMAT 13 42 2=+y x 内有一点3 \* MERGEFORMAT )1-,1(P ,3 \* MERGEFORMAT F 为右焦点,椭圆上有一点3 \* MERGEFORMAT M ,使3 \* MERGEFORMAT MF MP 2+值最小,求:点3 \* MERGEFORMAT M 的坐标。

高中数学椭圆的知识总结(含答案)

高中数学椭圆知识总结 一、选择题 1.(09·浙江)已知椭圆x 2a 2+y 2 b 2=1(a >b >0)的左焦点为F ,右顶点为A ,点B 在椭圆上, 且BF ⊥x 轴,直线AB 交y 轴于点P ,若AP →=2PB → ,则椭圆的离心率是 ( ) A.32 B.22 C.13 D.12 [答案] D [解析] 由题意知:F (-c,0),A (a,0). ∵BF ⊥x 轴,∴AP PB =a c .又∵AP →=2PB → , ∴a c =2,∴e =c a =1 2 .故选D. 2.已知P 是以F 1、F 2为焦点的椭圆x 2a 2+y 2b 2=1(a >b >0)上一点,若PF 1→·PF 2→=0,tan∠PF 1F 2 =1 2 ,则椭圆的离心率为 ( ) A.12 B.23 C.13 D.53 [答案] D [解析] 由PF 1→·PF 2→ =0知∠F 1PF 2为直角, 设|PF 1|=x ,由tan∠PF 1F 2=1 2 知,|PF 2|=2x , ∴a =32x , 由|PF 1|2 +|PF 2|2 =|F 1F 2|2 得c =52 x , ∴e =c a = 53 . 3.(文)(北京西城区)已知圆(x +2)2+y 2 =36的圆心为M ,设A 为圆上任一点,N (2,0),线段AN 的垂直平分线交MA 于点P ,则动点P 的轨迹是 ( ) A .圆 B .椭圆 C .双曲线 D .抛物线 [答案] B [解析] 点P 在线段AN 的垂直平分线上,故|PA |=|PN |,又AM 是圆的半径, ∴|PM |+|PN |=|PM |+|PA |=|AM |=6>|MN |,由椭圆定义知,P 的轨迹是椭圆. (理)(浙江台州)已知点M (3,0),椭圆x 2 4 +y 2 =1与直线y =k (x +3)交于点A 、B , 则△ABM 的周长为 ( ) A .4 B .8 C .12 D .16 [答案] B [解析] 直线y =k (x +3)过定点N (-3,0),而M 、N 恰为椭圆x 2 4 +y 2 =1的两个焦 点,由椭圆定义知△ABM 的周长为4a =4×2=8. 4.已知椭圆x 2a 2+y 2b 2=1(a >b >0)与双曲线x 2m 2-y 2 n 2=1(m >0,n >0)有相同的焦点(-c ,0)和 (c,0)(c >0).若c 是a 、m 的等比中项,n 2是2m 2与c 2 的等差中项,则椭圆的离心率是( )

巧用椭圆的第二定义解题

巧用椭圆的第二定义解题 《普通数学课程标准》在圆锥曲线这一章较过去增加一种要求:即学生要根据方程的形式和图形特征等进行类比猜想,培养直觉思维与合情推理能力。增加这一要求是很科学的,因为很多圆锥曲线问题用代数法运算非常繁杂,而一旦抓住图形特征后,运用数形结合,则可以简化运算,大幅度提高解题效率,下面以椭圆为例说明。 例:已知椭圆的中心在原点,其左焦点为F (-2,0),左准线l 的方程为x=-22 3 ,PQ 是过F 且与x 轴不垂直的弦,PQ 的中点M 到左准线l 1:求椭圆的方程2:求证: d PQ 为定值 3:在l 上是否存在点R ,使?PQR 为正三角形 若存在,求出点R 的坐标,若不存在,说明理由 1:解析:易得椭圆的方程11 32 2=+y x 2:证明:如图,作PP / ⊥l 与P ,QQ / ⊥l 与Q ,则由椭圆的第二定义,易得 e PP PF =/ ,e QQ QF =/;于是PQ=PF+QF=ePP /+eQQ / =2ed=362=定值 3:解析:此题若从代数角度入手,设直线的方程,联立的方程再用韦达定理,则运算繁杂,很多同学会丧失信心;若能抓住图形特征,运用椭圆的第二定义和正三角形的性质,则可化难为易。假设存在点R ,使?PQR 分线RM 也确定,所以RM 的斜率确定,可以考虑先求RM 即求倾斜角π-/ /MM Q ∠的大小, 而COS / / MM Q ∠=M Q MM //,由第2问的结论可得: COS / / MM Q ∠=M Q MM // = PQ PQ e 2 321= 2 231= e ,//MM Q ∠ 为45○ ,根据对称性,RM 的斜率应为1±,进而可得PQ 的方程及中点M 的坐标,再由点斜式求得RM 的方程,再联立左准线l 的方程x=- 223

高中数学 椭圆 知识点与例题

椭圆 知识点一:椭圆的定义 第一定义:平面内一个动点P 到两个定点1F 、2F 的距离之和为定值 )2(2121F F a PF PF >=+ ,这个动点P 的轨迹叫椭圆.这两个定点叫椭圆的焦点,两焦点的距离叫作椭圆的焦距. 注意:若)(2121F F PF PF =+,则动点P 的轨迹为线段21F F ; 若)(2121F F PF PF <+,则动点P 的轨迹不存在. 知识点二:椭圆的标准方程 1.当焦点在x 轴上时,椭圆的标准方程:122 22=+b y a x )0(>>b a ,其中222b a c -= 2.当焦点在y 轴上时,椭圆的标准方程:122 22=+b x a y )0(>>b a ,其中222b a c -=. 注意:①只有当椭圆的中心为坐标原点,对称轴为坐标轴建立直角坐标系时,才能得到椭圆的标准方程; ②在椭圆的两种标准方程中,都有)0(>>b a 和222b a c -=; ③椭圆的焦点总在长轴上. 当焦点在x 轴上时,椭圆的焦点坐标为)0,(c ,)0,(c -; 当焦点在y 轴上时,椭圆的焦点坐标为),0(c ,),0(c - 题型一、椭圆的定义 1、方程()()10222222=++++-y x y x 化简的结果是 2、若ABC ?的两个顶点()()4,0,4,0A B -,ABC ?的周长为18,则顶点C 的轨迹方程是 3、椭圆19 252 2=+y x 上的点M 到焦点1F 的距离为2,N 为1MF 的中点,则ON (O 为坐标原点)的值为( ) A .4 B .2 C .8 D .2 3

4、椭圆22 12516 x y +=两焦点为12F F 、,()3,1A ,点P 在椭圆上,则1PF PA +的最大值为_____,最小值为 ___ 题型二、椭圆的标准方程 5、方程Ax 2+By 2=C 表示椭圆的条件是 (A )A , B 同号且A ≠B (B )A , B 同号且C 与异号 (C )A , B , C 同号且A ≠B (D )不可能表示椭圆 6、若方程22 153 x y k k +=--, (1)表示圆,则实数k 的取值是 . (2)表示焦点在x 轴上的椭圆,则实数k 的取值范围是 . (3)表示焦点在y 型上的椭圆,则实数k 的取值范围是 . (4)表示椭圆,则实数k 的取值范围是 . 7、椭圆22 14x y m +=的焦距为2,则m = 8、已知椭圆06322=-+m y mx 的一个焦点为(0,2)求m 的值. 9、已知椭圆的中心在原点,且经过点()03,P ,b a 3=,求椭圆的标准方程. 10、求与椭圆224936x y +=共焦点,且过点(3,2)-的椭圆方程。 11、已知P 点在以坐标轴为对称轴的椭圆上,点P 到两焦点的距离分别为 354和3 52,过P 点作焦点所在轴的垂线,它恰好过椭圆的一个焦点,求椭圆方程.

椭圆的极坐标方程及其应用

椭圆的极坐标方程及其应用 如图,倾斜角为θ且过椭圆22 22:1(0)x y C a b a b +=>>的右焦点2F 的直线l 交椭圆C 于,P Q 两点,椭圆 C 的离心率为e ,焦准距为p ,请利用椭圆的第二定义推导22,,PF QF PQ ,并证明: 22 11 PF QF +为定值 改为:抛物线 2 2(0)y px p => 呢? 例1.(10年全国Ⅱ)已知椭圆2222:1(0)x y C a b a b +=>>F 且斜率为(0)k k >的 直线与C 相交于,A B 两点.若3AF FB =,求k 。 练习1. (10年辽宁理科)设椭圆C :22 221(0)x y a b a b +=>>的右焦点为F ,过点F 的直线l 与椭圆C 相交于 A , B 两点,直线l 的倾斜角为60o ,2AF FB =,求椭圆C 的离心率; 例2. (07年全国Ⅰ)已知椭圆22 132 x y +=的左、右焦点分别为1F ,2F .过1F 的直线交椭圆于B D ,两点,过2F 的直线交椭圆于A C ,两点,且AC BD ⊥,垂足为P ,求四边形ABCD 的面积的最值. 练习2. (05年全国Ⅱ)P 、Q 、M 、N 四点都在椭圆12 2 2 =+y x 上,F 为椭圆在y 轴正半轴上的焦点.已知.0,,=?且线与共线与求四边形PMQN 的面积的最小值和最大值. 例3. (07年重庆理)如图,中心在原点O 的椭圆的右焦点为)0,3(F ,右准线l 的方程为12=x . (Ⅰ)求椭圆的方程; (Ⅱ)在椭圆上任取三个不同点123,,P P P ,使133221FP P FP P FP P ∠=∠=∠,证明: | |1 ||1||1321FP FP FP ++为定值,并求此定值.

高中高二数学椭圆知识点整理

课题:椭圆 教学目标: (1)了解圆锥曲线的来历; (2)理解椭圆的定义; (3)理解椭圆的两种标准方程; (4)掌握椭圆离心率的计算方法; (5)掌握有关椭圆的参数取值范围的问题; 教学重点:椭圆方程、离心率; 教学难点:与椭圆有关的参数取值问题; 知识清单 一、椭圆的定义: (1) 椭圆的第一定义:平面内与两定点21F F 、的距离和等于常数 ()a 2(大于21F F )的点的轨迹叫做椭圆. 说明:两个定点叫做椭圆的焦点; 两焦点间的距离叫做椭圆的焦距()c 2. (2) 椭圆的第二定义:平面上到定点的距离与到定直线的距离之 比为常数e ,当10<>=+F F a a PF PF ; (){} .02,22121>>=+=F F a a PF PF P M 三、椭圆的标准方程: 焦点在x 轴: ()0122 22>>=+b a b y a x ; 焦点在y 轴: ()0122 22>>=+b a b x a y . 说明:a 是长半轴长,b 是短半轴长,焦点始终在长轴所在的数轴上,

且满足.222c b a += 四、二元二次方程表示椭圆的充要条件 方程()B A C B A C By Ax ≠=+均不为零,且、、22表示椭圆的条件: 上式化为 122=+C By C Ax ,12 2=+B C y A C x .所以,只有C B A 、、同号,且B A ≠时,方程表示椭圆;当B C A C >时,椭圆的焦点在x 轴上;当B C A C <时,椭圆的焦点在y 轴上. 五、椭圆的几何性质(以()0122 22>>=+b a b y a x 为例) 1. 范围: 由标准方程可知,椭圆上点的坐标()y x ,都适合不等式 1,122 22≤≤b y a x ,即b y a x ≤≤,说明椭圆位于直线a x ±=和b y ±=所围成的矩形里(封闭曲线).该性质主要用于求最值、轨迹检验等问题. 2.对称性:关于原点、x 轴、y 轴对称,坐标轴是椭圆的对称轴,原点是椭圆的对称中心。 3.顶点(椭圆和它的对称轴的交点) 有四个: ()()()().,0B ,0B 0,0,2121b b a A a A 、、、-- 4. 长轴、短轴:21A A 叫椭圆的长轴,a a A A ,221=是长半轴长; 21B B 叫椭圆的短轴,b b B B ,221=是短半轴长. 5.离心率 (1)椭圆焦距与长轴的比a c e =,()10,0<<∴>>e c a Θ(2) 22F OB Rt ?,2 22 22 22OF OB F B +=,即222c b a +=.这是椭圆

椭圆的第二定义含解析

课题:椭圆的第二定义 【学习目标】 1、掌握椭圆的第二定义; 2、能应用椭圆的第二定义解决相关问题; 一、椭圆中的基本元素 (1).基本量: a 、b 、c 、e 几何意义: a-半长轴、b-半短轴、c-半焦距,e-离心率; 相互关系: a c e b a c =-=,222 (2).基本点:顶点、焦点、中心 (3).基本线: 对称轴 二.椭圆的第二定义的推导 问题:点()M x y ,与定点(0)F c ,的距离和它到定直线2:a l x c =的距离的比是常数(0)c a c a >>,求点M 的轨迹. 解:设d 是点M 到直线l 的距离,根据题意,所求轨迹就是集合MF c P M d a ????==?????? | ,由此得c a =. 将上式两边平方,并化简得22222222()()a c x a y a a c -+=-. 设222 a c b -=,就可化成22221(0)x y a b a b +=>>. 这是椭圆的标准方程,所以点M 的轨迹是长轴长为2a ,短轴长为2b 的椭圆. 由此可知,当点M 与一个定点的距离和它到一条定直线的距离的比是常数(01)c e e a =<<时,这个点的轨迹是椭圆,一般称为椭圆的第二定义,定点是椭圆的焦点,定直线叫做椭圆的准线,常数e 是椭圆的离心率. 对于椭圆22221(0)x y a b a b +=>>,相应于焦点(0)F c ,的准线方程是2a x c =.根据椭圆的对称性,相 应于焦点(0)F c '-,的准线方程是2a x c =-,所以椭圆有两条准线.

可见椭圆的离心率就是椭圆上一点到焦点的距离与到相应准线的距离的比,这就是离心率的几何意义. 【注意】:椭圆的几何性质中,有些是依赖坐标系的性质(如:点的坐标\线的方程),有些是不依赖坐标系、图形本身固有的性质(如:距离\角),要注意区别。 中心到准线的距离:d=c a 2 焦点到准线的距离:d=c a 2-c 两准线间的距离:d=2c a 2 三.第二定义的应用 1、求下列椭圆的焦点坐标和准线 (1)136 1002 2=+y x (2)8222=+y x 2、椭圆 136 1002 2=+y x 上一点P 到右准线的距离为10,则:点P 到左焦点的距离为( ) .12 C 3、若椭圆的两个焦点把两准线间的距离三等分,则:离心率e=______; 4、离心率e= 2 2,且两准线间的距离为4的椭圆的标准方程为________________________; 5、若椭圆的短轴长为2,长轴是短轴的2倍,则:中心到准线的距离为____________; 6、求中心在原点,一条准线方程是x=3,离心率为 3 5 的椭圆标准方程.

高中数学椭圆题型完美归纳(经典)

椭圆题型归纳 一、知识总结 1.椭圆的定义:把平面内与两个定点21,F F 的距离之和等于常数(大于21F F )的点的轨迹叫做椭圆.这两个定点叫做焦点,两焦点的距离叫做焦距(设为2c ) . 2.椭圆的标准方程: 12222=+b y a x (a >b >0) 122 22=+b x a y (a >b >0) 焦点在坐标轴上的椭圆标准方程有两种情形, 可设方程为221(0,0)mx ny m n +=>>不必考虑焦点位置,求出方程。 3.范围. 椭圆位于直线x =±a 和y =±b 围成的矩形里.|x|≤a ,|y|≤b . 4.椭圆的对称性 椭圆是关于y 轴、x 轴、原点都是对称的.坐标轴是椭圆的对称轴. 原点是椭圆的对称中心.椭圆的对称中心叫做椭圆的中心. 5.顶点 椭圆有四个顶点:A 1(-a , 0)、A 2(a , 0)、B 1(0, -b )、B 2(0, b ). 线段A 1A 2、B 1B 2分别叫做椭圆的长轴和短轴.。 长轴的长等于2a . 短轴的长等于2b .

|B 1F 1|=|B 1F 2|=|B 2F 1|=|B 2F 2|=a . 在Rt △OB 2F 2中,|OF 2|2=|B 2F 2|2-|OB 2|2,即c 2=a 2-b 2. 6.离心率 7.椭圆22 221x y a b += (a >b >0)的左右焦点分别为F 1,F 2,点P 为椭圆上任意一点 12F PF γ∠=,则椭圆的焦点角形的面积为122tan 2 F PF S b γ ?=. 8.椭圆22 221x y a b +=(a >b >0)的焦半径公式10||MF a ex =+,20 ||MF a ex =-(1(,0)F c - ,2(,0)F c 00(,)M x y ). 9.AB 是椭圆22 221x y a b +=的不平行于对称轴的弦,M ),(00y x 为AB 的中点,则 2 2 OM AB b k k a ?=-,即0 2 02y a x b K AB -=。 )10(<<= e a c e

高中高二数学椭圆的第二定义

高二数学椭圆的第二定义、参数方程、直线与椭圆的位置关系知识精 讲 一. 本周教学内容: 椭圆的第二定义、参数方程、直线与椭圆的位置关系 [知识点] 1. 第二定义:平面内与一个定点的距离和它到一条定直线的距离之比是常数 e c a e M =<< () 01的动点的轨迹叫做椭圆,定点为椭圆的一个焦点,定直线为 椭圆的准线,常数e是椭圆的离心率。 注意:①对对应于右焦点,的准线称为右准线,x a y b a b F c 2 2 2 22 100 +=>> ()() 方程是,对应于左焦点,的准线为左准线 x a c F c x a c =-=- 2 1 2 () ②e的几何意义:椭圆上一点到焦点的距离与到相应准线的距离的比。 2. 焦半径及焦半径公式: 椭圆上一个点到焦点的距离叫做椭圆上这个点的焦半径。 对于椭圆,设,为椭圆上一点,由第二定义:x a y b a b P x y 22 2 10 2 +=>> ()() 左焦半径∴· 左 左 r x a c c a r ex c a a c a ex 20 2 + ==+=+ 右焦半径右 右 r a c x c a r a ex 2 - =?=- 3. 椭圆参数方程 问题:如图以原点为圆心,分别以a、b(a>b>0)为半径作两个圆,点B是大圆半径OA 与小圆的交点,过点A作AN⊥Ox,垂足为N,过点B作BN⊥AN,垂足为M,求当半径OA绕

O 旋转时点M 的轨迹的参数方程。 解:设点的坐标是,,是以为始边,为终边的正角,取为M x y ()??Ox OA 参数。 那么∴x ON OA y NM OB x a y b ======?? ?||cos ||sin cos sin ()?? ?? 1 这就是椭圆参数方程:为参数时,称为“离心角”?? 说明:<1> 对上述方程(1)消参即 x a y b x a y b ==?? ??????+=cos sin ??22221普通方程 <2>由以上消参过程可知将椭圆的普通方程进行三角变形即得参数方程。 4. 补充 名称 方程 参数几何意义 直线 x x t y y t t =+=+?? ?00cos sin ()αα为参数 P x y 000(),定点,α倾斜角,t P P =0, P (x ,y )动点 圆 x a r y b r =+=+?? ?cos sin ()θ θθ为参数 A (a ,b )圆心,r 半径, P (x ,y )动点,θ旋转角 椭圆 x a y b ==?? ? cos sin ()? ??为参数 a 长半轴长,b 短半轴长 ?离心角不是与的夹角()OM Ox 一般地,θ?π、取,[]02 5. 直线与椭圆位置关系: (1)相离

高中数学椭圆性质总结

椭 圆 一.考试必“背” 1 椭圆的两种定义: ①平面内与两定点F 1,F 2的距离的和等于定长() 212F F a >的点的轨迹,即点集M={P| |PF 1|+|PF 2|=2a ,2a >|F 1F 2|};(212F F a =时为线段21F F ,212F F a <无轨迹)。其中两定点F 1,F 2叫焦点,定点间的距离叫焦距。 ②平面内一动点到一个定点和一定直线的距离的比是小于1的正常数的点的轨迹,即点集 M={P| e d PF =,0<e <1的常数 }。(1=e 为抛物线;1>e 为双曲线) 2 标准方程: (1)焦点在x 轴上,中心在原点:122 22=+b y a x (a >b >0); 焦点F 1(-c ,0), F 2(c ,0)。其中22b a c -= (一个?Rt ) (2)焦点在y 轴上,中心在原点:122 22=+b x a y (a >b >0); 焦点F 1(0,-c ),F 2(0,c )。其中22b a c -= 注意:①在两种标准方程中,总有a >b >0,22b a c -= 并且椭圆的焦点总在长轴上; ②两种标准方程可用一般形式表示:Ax 2+By 2=1 (A >0,B >0,A ≠B ),当A < B 时,椭圆的焦点在x 轴上,A >B 时焦点在y 轴上。 3.参数方程 :椭圆122 22=+b y a x )0(>>b a 的参数方程 ?? ?==θ θ sin cos b y a x )(为参数θ 4.性质:对于焦点在x 轴上,中心在原点:12 2 22=+b y a x (a >b >0)有以下性质: 坐标系下的性质: ① 范围:|x|≤a ,|y|≤b ; ② 对称性:对称轴方程为x=0,y=0,对称中心为O (0,0); ③ 顶点:A 1(-a ,0),A 2(a ,0),B 1(0,-b ),B 2(0,b ),长轴|A 1A 2|=2a ,短轴|B 1B 2|=2b ; (a 半长轴长,b 半短轴长); ④ 准线方程:c a x 2± =;或c a y 2 ±= ⑤ 焦半径公式:P (x 0,y 0)为椭圆上任一点。|PF 1|=左r =a+ex 0,|PF 2|=右r =a-ex 0;

椭圆第二定义应用及经典例题解析

高考数学-椭圆第二定义应用 一、随圆的第二定义(比值定义): 若),e e d MF 为常数10(,<<=则M 的轨迹是以F 为焦点,L 为准线的椭圆。 注:①其中F 为定点,F (C ,0),d 为M 到定直线L :c a x 2=的距离 ②F 与L 是对应的,即:左焦点对应左准线,右焦点对应右准线。 二、第二定义的应用 [例1]已知112 16,)3,2(2 2=+-y x F A 是的右焦点,点M 为椭圆的动点,求MF MA 2+的最小值,并求出此时点M 的坐标。 分析:此题主要在于MF 2的转化,由第二定义:2 1==e d MF ,可得出d MF =2,即为M 到L (右准线)的距离。再求最小值可较快的求出。 解:作图,过M 作l MN ⊥于N , L 为右准线:8=x , 由第二定义,知: 2 1==e d MF , MN d MF ==∴2 ,2MN MA MF MA +=+Θ 要使MF MA 2+为最小值, 即:MF MA +为“最小”, 由图知:当A 、M 、N 共线,

即:l AM ⊥时,MF MA 2+为最小; 且最小值为A 到L 的距离=10, 此时,可设)3,(0x M ,代入椭圆方程中, 解得:320=x 故当)3,32(M 时, MF MA 2+为的最小值为10 [评注]: (1)以上解法是椭圆第二定义的巧用,将问题转化为点到直线的距离去求,可使题目变得简单。 (2)一般地,遇到一个定点到定直线问题应想到椭圆的第二定义。 [例2]:设),(00y x P 为椭圆)0(,12222>>=+b a b y a x 的一点,离心率为e ,P 到左焦点F 1和右焦点F 2的距离分别为r 1,r 2 求证:0201,ex a r ex a r -=+= 证明:作图, 由第二定义:e c a x PF =+ 201 即:a ex c a x e c a x e PF r +=+=+?==02 02011)( 又a PF PF 221=+ 0012)(22ex a ex a a r a r -=+-=-=∴ 注:①上述结论01ex a r +=,02ex a r -=称为椭圆中的焦半径公式 ②a x a ex a r PF ≤≤-+==0011由 得出 c a a e a r c a ea a r -=-?+≥+=+≤)(11且 即c a PF c a +≤≤-1 当)a , (,P c a PF 01--=为时

高中数学椭圆超经典知识点+典型例题讲解

知识点三:椭圆的简单几何性质椭圆的的简单几何性质 (1)对称性 对于椭圆标准方程,把x 换成― x,或把y 换成― y,或把x、y 同时换成― x、― y,方程都不变,所以椭圆是以x轴、y 轴为对称轴的轴对称图形,且是以原点为对称中心的中心对称图形,这个对称中心称为椭圆的中心。 (2)范围椭圆上所有的点都位于直线x=±a和y=±b所围成的矩形内,所以椭圆上点的坐标满足|x| ≤a,|y| ≤b。 (3)顶点 ①椭圆的对称轴与椭圆的交点称为椭圆的顶点。 ②椭圆(a>b>0)与坐标轴的四个交点即为椭圆的四个顶点,坐标分别为A1(― a,0),A2(a,0),B1(0,―b),B2(0,b)。 ③线段A1A2,B1B2分别叫做椭圆的长轴和短轴,|A1A2|=2a,|B1B2|=2b。a和b分别叫做椭圆的长半轴长

和短半轴长。 (4)离心率 ①椭圆的焦距与长轴长度的比叫做椭圆的离心率,用e 表示,记作。 ②因为a>c>0,所以e的取值范围是0

椭圆第二定义

椭圆第二定义 学法指导:以问题为诱导,结合图形,引导学生进行必要的联想、类比、化归、转化. 教学目标 知识目标:椭圆第二定义、准线方程; 能力目标:1使学生了解椭圆第二定义给出的背景; 2了解离心率的几何意义; 3使学生理解椭圆第二定义、椭圆的准线定义; 4使学生掌握椭圆的准线方程以及准线方程的应用; 5使学生掌握椭圆第二定义的简单应用; 情感与态度目标:通过问题的引入和变式,激发学生学习的兴趣,应用运动变化的观点看待问题,体现数学的美学价值. 教学重点:椭圆第二定义、焦半径公式、准线方程; 教学难点:椭圆的第二定义的运用; 教具准备:与教材内容相关的资料。 教学设想:激发学生的学习热情,激发学生的求知欲,培养严谨的学习态度,培养积极进取 的精神. 教学过程: 学生探究过程:复习回顾 1.椭圆81922=+y x 的长轴长为 18 ,短轴长为 6 ,半焦距为26,离心率为 3 2 2,焦点坐标为)26,0(±,顶点坐标为)9,0(±)0,3(±,(准线方程为4 2 27± =y ). 2.短轴长为8,离心率为 5 3 的椭圆两焦点分别为1F 、2F ,过点1F 作直线l 交椭圆于A 、B 两点,则2ABF ?的周长为 20 . 引入课题 【习题4(教材P50例6)】椭圆的方程为 116 252 2=+y x ,M 1,M 2为椭圆上的点 ① 求点M 1(4,2.4)到焦点F (3,0)的距离 2.6 . ② 若点M 2为(4,y 0)不求出点M 2的纵坐标,你能求出这点到焦点F (3,0)的距离吗? 解:2 2 )34(||y MF +-=且1162542 02=+y 代入消去2 0y 得5 1325169||==MF

相关文档
最新文档