信号分析

信号分析
信号分析

第一章 信号分析基础

● 主要内容:周期信号和非周期信号频谱分析方法。

● 本章要求:了解信号的分类,掌握将确定信号的时域描述变换为频域描述的数

学方法,熟练掌握对周期信号与非周期信号进行频谱分析的步骤与作图方法,熟知其频谱特点。

● 本章重点:确定性信号的频谱分析方法。

本章的难点:频域概念的建立与理解。

第一节 概述

一、信号的分类

信号按其随时间变化的特点可以分为确定性信号和非确定性信号两大类。以上两大类信号还可以根据各自的特点做进一步的划分,具体分类如下所示。

按取值情况的不同分为

● 连续信号,如图1-1(a )

所示。

● 离散信号如图1-1(b )

所示。

二、信号的描述方式

时域描述:以时间t 为自变量,用一个时间函数来表示信号称为信号的,如图1-2(a )所示。

频域描述:把信号从时间域变换到频率域,即以频率f 作为自变量建立信号与频率

之间的函数关系,如图1-2(b )所示。

(a ) (b )

图1-1 模拟信号与离散信号

(a ) (b ) 图1-2 信号的时域描述和频域的描述 ?????

????

?????????????????????????非平稳随机信号非各态历经信号各态历经信号平稳信号号)非确定性信号(随机信瞬变信号准周期信号非周期信号复杂周期信号

弦信号余正周期信号确定性信号信号)(

第二节 周期信号的频谱

一、概述

周期信号数学表达的通式为:

),21()

()(???±±=+=,n nT t x t x

正弦信号和余弦信号:

)sin()(0θω+=t A t x

周期方波:

??

??

?≥≤--≤≤=0

2

,2

0,

)(t T

A T t A t x

幅值A 、角频率ω0初相角θ可完全确定一个正弦信号,方波为多频率结构,要明确多频

结构,必须设法获得方波的频域描述。

问题提出:能否用正弦信号(简谐信号)描述方波(复杂周期信号)信号? 解决办法:实现的数学工具是傅里叶级数。

二、傅里叶级数与应用 1.傅里叶级数

一个周期为T 的周期函数x(t),如果满足狄里赫利条件在一个周期内,可以展开为傅里叶级数。

狄里赫利条件:

1)在一个周期内,处处连续或只存在有限个间断点; 2)在一个周期内,极值点的个数是有限的; 3)在一个周期内,函数是绝对可积。

三角傅里叶级数:∑∞

=++

=1000)sin cos ()(n n n

t b t n a

a t x ωω

()∑∞

=++=1

00cos )(n n n t n A a t x θω

式中 πω20= , n ——整数变量 , n ω0——离散频率变量。

各参数分别为:

?-=22

0)(1

T

T dt t x T a

?-=220cos )(2

T

T n tdt n t x T a ω

?-=22

0sin )(2

T

T n tdt n t x T b ω

2

2n n n b a A +=

, )(

n

n

n a b arctg -=θ 复数傅里叶级数:∑∞

==

n t

jn n

e

C t x 0)(ω

dt e t x T jb a C t jn T

T n n n 0)(1

)(2122

ω--?=-=

欧拉公式:

)(2

1cos t j t

j e e t ωωω+=- )(2

sin t j t

j e e j t ωωω-=-

ωωωsin cos j t e

t

j ±=±

说明:当n=1时,所对应的正、余弦项a 1cos ω0t 和b 1sin ω0t 或A 1sin(ω0t +φ)称为基波,频率ω0称为基频,其余依次称为二次谐波(n =2,角频率为2ω0)、三次谐波(n =2,角频率为3ω0),··· ···,n 次谐波(角频率为n ω0)。

2.傅里叶级数的应用

例1 周期方波的傅里叶级数

该方波信号的时域描述如图1-3所示。 解:此信号的特点:(1)在一个周期内,波形与横轴围成的面积上、下相等,所以它的平均值 0

)(1

22

0==?-dt t x T a T

T

(2)为奇函数,因此余弦项的系数

图1-3 周期方波信号

0cos )(2

22

0==?-T

T n tdt n t x T

a ω

其各次正弦波的幅值:

?-=22

0cos )(2

T

T n tdt n t x T b ω

??+-=-2

0020sin 2sin 2T T tdt n T tdt n T ωω

[]1cos 2

+-=

ππ

n n []

???

?????=???==+--=)

(,3,1,

4

420

1)1(2奇数(偶数),,,n n n n n π

π

方波展开的傅里叶级数: ??

?

?????+++=

t t t t f 0005sin 513sin 31sin 4)(ωωωπ 通过以上实例可见,傅里叶级数把一个复杂周期信号表示成为许多正(余)弦信号之和

的形式,由于级数中的每一项都对应一个频率分量,并且即是该分量的时域描述又是频域描述。因此,傅里叶级数本身就是复杂周期信号的频域描述。

三、周期信号的频谱分析 1.物理概念

周期信号的频谱: ∑∞

=++

=1

00)cos()(n n n

t n A

a t x θω

A n ——周期信号中各次谐波的幅值与频率的对应关系,称之为幅值频谱; θn ——周期信号中各次谐波的初相角与频率的对应关系,称之为相位频谱。 频谱图,如图1-5所示,(a )为幅值频谱图,(b )为相位频谱图。 (a ) (b ) 图1-5周期信号的幅值与相位频谱图

2.周期信号的频谱实例

例2 做出例1中周期方波的频谱图 解: 根据该方波的傅里叶级数式:

??

? ?????+++=

t t t t x 0005sin 513sin 31sin 4)(ωωωπ (n =奇数) 它不含静态分量且仅含奇次谐波。它

的两个序列为:

090,4-=-==

=n

n

n n n a b arctg

n b A ?π

该方波的幅值与相位频谱图如图1-6所示:

3.小结

复杂周期信号频谱的特点:

(1)周期信号所含各分量的频率是离散的。

(2)各次谐波的频率关系具有谐波性,各次谐波的频率都是基频ω0的整数倍,相邻频率的间隔为ω0或它的整数倍。

(3)周期信号的幅值频谱是收敛的。

第三节 非周期信号的频谱

一、概述

非周期信号其频域描述可以采用从周期信号援引过来的方法加以解决。 解决办法:

周期信号的周期T →∞,相邻频谱谱线的频率间隔Δω=ω0=2π/T →0, 离散的谱线→条连续的谱线

对离散频率分量求级数和→对连续频率分量求积分和 周期信号的傅里叶级数→非周期信号的傅里叶积分。

二、傅里叶积分与变换

周期信号傅里叶级数的复指数表达式为:

∑∞

-∞

==

n t

jn n

e

C t x 0)(ω

其中 ?--=22

0)(1T

T t

jn n dt e t x T C ω

图1-6 周期方波的频谱图

在离散频谱中ω0既表示周期信号的基频,又表示相邻两根谱线间的间隔Δω。 将C n 代入x (t )中得

∑?∞

-∞=-

-??

?

???=n t jn T T t jn e dt e t x T t x 0022)(1)(ωω

当T →∞,此式有两个变化:

(1)积分限从时间轴的局部(-T /2,T /2)扩展到时间轴的全部(-∞,∞)。

(2)由于1/T =Δω/2π,在T →∞时,Δω→d ω,离散变化的频率n ω0转化为连续变化的频率ω。无限多项的连加转换成连续积分,于是就得到:

??∞∞-∞

∞--??

??

?

?=t j t

j e dt e t x d t x ωωπω)(2)(

ωπ

ωωd e dt e t x t j t j ??∞

∞-∞∞--??

????=

)(21 等式右边中括号里的部分,相当于傅里叶级数复指数形式中的C n 项,它是ω的函数,记为:

?∞

--=dt e t x X t j ωω)()(

ω

ωπ

ωd e X t x t j ?

-=)(21)(

傅里叶变换对,记作:

)()(ωX t x ?

称X(ω)为傅里叶(正)变换,称x (t)为傅里叶逆变换也即傅里叶积分。

三、非周期信号的频谱分析

我们借助于周期信号中频谱的有关概念,去寻求作非周期信号频谱图的方法。

∑∞

-∞==

n t

f jn n

e

C t x 02)(π

df e

f X t x ftt

j ?∞

-=π2)()( dt

e t x T jb a C t jn T

T n n n 0)(1)(2122

ω--?=-=0

→∞

→n C T 当0

2

222→=+=n

n n n A b a C

无法用周期信号的频谱来描述非周期信号,但从物理概念上考虑,信号必然含有一定的能量,无论信号如何分解,其所含能量不变,所以不论周期增大到什么程度,频谱分布依然存在。

)()()(f X

e f X f X ∠=

也可以表达为:

)Im()Re()(f f f X += 则 ())(Im Re )(22f f f X +=

)

Re()

Im ()(f f arctg

f X =∠

│X (f ) │或│X (ω) │称非周期信号的幅值密度频谱或幅值谱密度,也可简称为幅值频谱,∠X(f )或∠X(ω)称为非周期信号的相位频谱,因此,X (f )或X (ω)是非周期信号的频谱函数。

注意:“幅值密度”与“幅值”的量纲是不同的,两者在概念上不能混同。

例3 求单边指数脉冲的频谱。

??

?<≥>=-0

,0

,)0()(t t a Ee t x at

其时域波形如图1-11(a )所示。

解:该非周期信号的频谱函数为: ?

--=

dt e t x X t j ωω)()(

图1-11单边指数信号及其频谱

?

--=0

dt e Ee t j at ω

)(2

2ωω

ωj a a E

j

a E -+=+= 其幅值频谱函数为:

2

2

)(ω

ω+=a E X

如图1-11(b )所示。 其相位频谱函数为:

??

?

??-

=a arctg ωω?)( 如图1-11(c )所示

例6 求单个矩形脉冲(矩形窗函数)的频谱。 矩形脉冲的时域表达式为:

???

?

??

?>

<=2

,

02

,)(τ

τ

t t h t x

其时域波形如图1-12(a )所示

解:该矩形脉冲的频谱函数为: ?

--=

dt e t x f X ft j π2)()(

图1-12 矩形脉冲及其频谱

?--=

22

τπdt he ft j ()

τπτππf j f j e e f

j h

--=

-2

πτ

πτ

f f h sin =τπτf c h sin

式中sinc x =sin x/x 是一个特定表达的函数,这种形式的函数在测试信号分析中具有广泛的应用。

因X (f )只有实部,没有虚部,故其幅值频谱函数为:

τπτf c h f X sin )(= 如图1-12(b )所示。

其相位频谱函数为: τ

π?f c hc arctg f sin 0

)(=

当;0sin >τπf c ;0)(=f ? 当;0sin <τπf c ;)(π?=f

其图形表示如图1-12(c )所示。

矩形脉冲的频谱函数X (f )的波形如图1-12(d )所示。 小结

非周期信号频谱的以下特点:

(1)非周期信号的频谱是连续的,这是与周期信号频谱的最大区别。 (2)非周期信号中含有从0~∞的所有频率成分(个别点除外)。

(3)非周期信号的幅值频谱从总体变化趋势上看具有收敛性,即谐波的频率越高,其幅值密度就越小。

由于非周期信号频谱的连续性,使其频谱分析中有关概念的理解带来了一定难度,需要以周期信号作为参照对象,对两者在频谱中相对应的概念进行认真的比较和思考,注意异同之处,才能获得较深刻的认识。

第四节 傅里叶变换的性质及应用

表1-1 傅里叶变换性质表

设:)()(f X t x ?,)()(f Y t y ? 1.线性叠加性

分量和的频谱等于分量频谱之和。

2.尺度展缩性质

若信号在时域中扩展(0

压缩(k >1)等效于在频域中扩展,如图1-13所示。

3.对称性

如图1-14所示。 4.时移性质

如果信号x (t )在时域有一时移±t 0

变为x (t ±t 0),则其频谱函数相应地改

变为0

2)(ft j e

f X πμ?,如图1-15所示。

5.频移性质

时域中信号乘以虚指数函数,等效于其频谱X (f )沿频率轴平移,或者说在频域中将频谱沿频率轴右移f 0等效于时域中信号乘以因子t

f j e

02πμ。

6.卷积定理

(1)卷积定义

?∞

--=*τττd t y x t y t x )()()()(

(3)卷积定理

若 )()(f X t x ? )()(f Y t y ?

则 )()()()(f Y f X t y t x ?* )()()()(f Y f X t y t x *? 二、几种重要信号的傅里叶变换 1.单位脉冲信号δ(t )

单位脉冲信号是一个广义函数,其定义为:

图1-14 时域与频域函数对称性质的实例

图1-15 时移性质实例

图1-17单位脉冲信号

)(1)(k

f X k kt x ?

)()(f X t x ?

??

?≠=∞=0

,0

0,)(t t t δ 且

1)(=?

-dt t δ

单位脉冲信号具有如下特性: (1)抽样特性 )0()()(x dt t t x =?

)()()(00t x dt t t t x μ=±?

借助于δ(t ),通过以上运算可以将任一信号在任一点处的函数值抽样出来。 (2)卷积特性

)()()(t x t t x =*δ )()()(00t t x t t t x ±=±*δ

几何解释:一个信号与位于时间轴上任一点的单位脉冲信号卷积,其结果是将该信号原样平移到脉冲所在的时轴点上,如图1-19所示。

(3)均匀频谱

δ(t )是一非周期函数,其频谱函数应按傅里叶变换求取

1)()(022===?-∞

--?f j ft j e dt e t f ππδ

1)(?t δ

其时域和频域图形的对应如图1-20所示。

根据傅里叶变换的时域对称性质,可以得到频域的单位脉冲函数所对应的时域函数是1

)(1t δ?

再根据傅里叶变换的时移和频移性质,可以得到如下两个表达式

201)(ft j e

t t πδ±??±

图1-19 任一信号与δ(t )的卷积

图1-20 单位脉冲信号与频谱

)(020f f e

t

f j μδπ?±

2.一般周期信号的傅氏变换 周期信号傅式变换的通式:

)()()(020f X nf f C e

C t x n n n t

f jn n

=-←→=

∑∑∞

=∞

-∞

=δπ

上式表明,周期信号也可以用其傅氏变换作频谱图,积用X (f )取代C n 作双边频谱图,所不同的是在各谐频nf 0处的谱线由带箭头的脉冲取代,可参见图(1-21)

3.正余弦信号的傅氏变换

余弦信号的傅里叶变换,由欧拉公式

[]

t f j t

f j

e e t

f 002202

12cos πππ-+=

对等号两侧求傅里叶变换,并根据式(1-32)可得:

[][][]

t f j t f j e F e F t f F 002202

1

212cos πππ-+=

)(2

1

)(2100f f f f -++=δδ

同理可得正弦信号的傅里叶变换: [])(2

)(22sin 000f f j

f f j t f F --+=

δδπ 两者的时域和频域图形如图1-21所示。

4.周期单位脉冲信号的频谱

周期单位脉冲信号p (t )如图1-22所示,其解析表达为

)2,1,0()

()(???±±=-=

∑∞

-∞

=n T t t p n s

δ

式中 T s ——周期脉冲的周期。

图1-21余弦和正弦信号的频谱

这一周期信号同样可借助于δ(t )函数来求取它的傅里叶变换

?--=22

20)(1

T

T t f jn n dt e t x T C π

?

--=

22

20)(1s s T T t

f jn s

dt e

t p T π

?

--??

? ??=22

22~2-)(10

s s T T s s t f jn s

t T T dt

e t T )(内只有一个在δδπ

s s

f T ==

1

p (t )的表达式为:

∑∞

-∞

==

n t

f jn s

s e

T t p π21

)(

∑∑∞

-∞

=∞

-∞

=???

? ?

?

-=-=

n n s

s s

s T n

f T nf f T f P 1

1

)(1

)(δδ ???±±=,21,0n 周期单位脉冲信号的频谱函数P (f ),如图1-23。可见,按P (f )作出的周期单位脉冲信号的频谱仍然是一个周期脉冲,其频域周期f s 为时域周期T s 的倒数,各脉冲的强度也为时域周期T s 的倒数。

图1-23 周期单位脉冲信号的P (f )频谱图

1-22 周期单位脉冲

用频谱分析仪测量通信信号

用频谱分析仪测量通信信号 一、GSM信号的测量 现代高度发达的通信技术可以让人们在地球的任意地点控制频谱分析仪,因此就更要懂得不同参数设置和不同信号条件对显示结果的影响。 典型的全球移动通信系统(GSM)的信号测量如图1所示,它清楚地标明了重要的控制参数设置和测量结果。IFR2399型频谱分析仪利用彩色游标来加亮测量区域,此例中,被加亮的测量区域是占用信道和上下两个相邻信道的中心50kHz频带。 显示的水平轴(频率轴)中心频率为900MHz,扫频频宽为1MHz,而每一小格代表l00kHz。顶部水平线表示0dBm,垂直方向每一格代表10dB。信号已经被衰减了10dB,测量显示的功率电平已考虑了此衰减。 图1 GSM信道带宽显示和功率测量 GSM是以两个25MHz带宽来传送的:从移动发射机到基站采用890MHz到915MHz,从基站到移动接收机采用935MHz到960MHz。这个频带被细分为多个200kHz信道,而第50个移动发送信道的中心频率为900MHz,如图1所示。该信号很明显是未调制载波,因为它的频谱很窄。实际运用中,一个GSM脉冲串只占用200kHz稍多一点的信道带宽。 按照GSM标准,在发送单个信道脉冲串时,时隙持续0.58ms,而信道频率以每秒217次的变化速率进行慢跳变,再加上扫频仪1.3s的扫描时间,根据这些条件可以判定这是一个没有时间和频率跳变的静态测试,没有迹象表明900阳z的信号是间断信号。 为了保证良好的清晰度,选用1kHz的分辨带宽(RBW)滤波器。较新的频谱分析仪中的模拟滤波器的形状系数(3dB:60dB)为11,意思是60dB时滤波器带宽(从峰值衰减60dB)是3dB时滤波器带宽(从峰值衰减3dB)的11倍,即11kHz比1kHz。 与此相比,数字滤波器的形状系数还不到5。例如一个3dB带宽为50kHz的带通滤波器,其60dB带宽只有60kHz,这几乎是矩形通带。它保证在计算平均功率时只含有50kHz以外区域很小一点的功率。作为对比,如果分辨带宽RBW50kHz,使用前面提及的模拟滤波器而不是数字滤波器,其60dB带宽将为550kHz。 标记1处的信号电平是4.97dBm。为了使噪声背景出现在屏幕上,显示轨迹线已向上偏移了10dB(在图中不易察觉),这是由于信号峰值被预先衰减10dB使其不超过顶部水平线,这也是信号峰值读数比参考电平高的原因。 图中,主信道功率(CHP)读数为7.55dBm,与峰值(标记1处)的读数4.978m不一致,其原因就是主信道功率是在50kHz测量带宽内计算的,而标记1的读数是峰值。公式1定义了在整个带宽内计算主信道功率的方法。 其中, CHPwr:信道功率,单位dBm CHBW:信道带宽 Kn:噪声带宽与分辨带宽之比 N:信道内象素的数目 Pi:以1mW为基准的电平分贝数(dBm)

网络分析仪工作原理及使用要点

网络分析仪工作原理及使用要点 本文简要介绍41所生产的AV362O矢量网络分析的测量基本工作原理以及正确使用矢量网络分析测量电缆传输及反射性能的注意事项。 1.DUT对射频信号的响应 矢量网络分析仪信号源产生一测试信号,当测试信号通过待测件时,一部分信号被反射,另一部分则被传输。图1说明了测试信号通过被测器件(DUT)后的响应。 图1DUT 对信号的响应 2.整机原理: 矢量网络分析仪用于测量器件和网络的反射特性和传输特性,主要包括合成信号源、S 参数测试装置、幅相接收机和显示部分。合成信号源产生30k~6GHz的信号,此信号与幅相接收机中心频率实现同步扫描;S参数测试装置用于分离被测件的入射信号R、反射信号A 和传输信号B;幅相接收机将射频信号转换成频率固定的中频信号,为了真实测量出被测网络的幅度特性、相位特性,要求在频率变换过程中,被测信号幅度信息和相位信息都不能丢失,因此必须采用系统锁相技术;显示部分将测量结果以各种形式显示出来。其原理框图如图2所示: 图2矢量网络分析仪整机原理框图 矢量网络分析内置合成信号源产生30k~6GHz的信号,经过S参数测试装置分成两路,一路作为参考信号R,另一路作为激励信号,激励信号经过被测件后产生反射信号A和传输信号B,由S参数测试装置进行分离,R、A、B三路射频信号在幅相接收机中进行下变频,产生4kHz的中频信号,由于采用系统锁相技术,合成扫频信号源和幅相接收机同在一个锁相环路中,共用同一时基,因此被测网络的幅度信息和相位信息包含在4kHz的中频信号中,此中频信号经过A/D模拟数字变换器转换为数字信号,嵌入式计算机和数字信号处理器

频谱分析仪和信号分析仪的区别

在实验室和车间最常用的信号测试仪器是电子示波器。人的思维对时间概念比较敏感,每时每刻都与时域事件发生联系,但是信号往往以频率形式出现,用示波器观察最简单的调幅载波信号也不方便,往往显示载波时看不清调制仪,屏幕上获得的是三条谱线,即载频和在载频左右的调制频。调制方式越复杂,电子示波器越难显示,频谱分析器的表达能力强,频谱分析仪是名副其实的频域仪器的代表。沟通时间一频率的数字表达方法就是傅里叶变换,它把时间信号分解成正弦和余弦曲线的叠加,完成信号由时间域转换到频率域的过程。 早期的频谱分析仪实质上是一台扫频接收机,输入信号与本地振荡信号在混频器变频后,经过一组并联的不同中心频率的带通滤波器,使输入信号显示在一组带通滤波器限定的频率轴上。显然,由于带通滤波器由无源元件构成,频谱分析器整体上显得很笨重,而且频率分辨率不高。既然傅里叶变换可把输入信号分解成分立的频率分量,同样可起着滤波器类似的作用,借助快速傅里叶变换电路代替低通滤波器,使频谱分析仪的构成简化,分辨率增高,测量时间缩短,扫频范围扩大,这就是现代频谱分析仪的优点了。 矢量信号分析仪是在预定,频率范围内自动测量电路增益与相应的仪器,它有内部的扫频频率源或可控制的外部信号源。其功能是测量对输入该扫频信号的被测电路的增益与相位,因而它的电路结构与频谱分析仪相似。频谱分析仪需要测量未知的和任意的输入频率,矢量信号分析仪则只测量自身的或受控的已知频率;频谱分析仪只测量输入信号的幅度(标量仪器),矢量信号分析仪则测量输入信号的幅度和相位(矢量仪器)。由此可见,矢量信号分析仪的电路结构比频谱分析仪复杂,价位也较高。现代的矢量信号分析仪也采用快速傅里叶变换,以下介绍它们的异同。 频谱分析议和FFT颁谱分析议 传统的频谱分析仪的电路是在一定带宽内可调谐的接收机,输入信号经下变频后由低通滤器输出,滤波输出作为垂直分量,频率作为水平分量,在示波器屏幕上绘出坐标图,就是输入信号的频谱图。由于变频器可以达到很宽的频率,例如30Hz-30GHz,与外部混频器配合,可扩展到100GHz以上,频谱分析仪是频率覆盖最宽的测量仪器之一。无论测量连续信号或调制信号,频谱分析仪都是很理想的测量工具。 但是,传统的频谱分析仪也有明显的缺点,首先,它只适于测量稳态信号,不适宜测量瞬态事件;第二,它只能测量频率的幅度,缺少相位信息,因此属于标量仪器而不是矢量仪器;第三,它需要多种低频带通滤波器,获得的测量结果要花费较长的时间,因此被视为非实时仪器。 既然通过傅里叶运算可以将被测信号分解成分立的频率分量,达到与传统频谱分析仪同样的结果,出现基于快速傅里叶变换(F盯)的频谱分析仪。这种新型的频谱分析仪采用数字方法直接由模拟/数字转换器(ADC)对输入信号取样,再经FFT处理后获得频谱分布图。据此可知,这种频谱分析仪亦称为实时频谱分析仪,它的频率范围受到ADC采集速率和FFT运算速度的限制。

网络分析仪的使用

一般而言,网络分析仪在射频及微波组件方面的量测上,是最基本、应用层次也最广的仪器,它可以提供线性及非线性特性组件的量测参数,因此,举凡所有射频主被动组件的仿真、制程及测试上,几乎都会使用到。在量测参数上,它不但可以提供反射系数,并从反射系数换算出阻抗的大小,且可以量测穿透系数,以及推演出重要的S参数及其它重要的参数,如相位、群速度延迟(Group Delay)、插入损失(Insertion Loss)、增益(Gain)甚至放大器的1dB压缩点(Compression point)等。 基本原理 电子电路组件在高频下工作时,许多特性与低频的行为有所不同,在高频时,其波长与实际电路组件的物理尺度相比会相对变小,举例来说,在真空下的电磁波其速度即为光速,则c=λ×f,其中c为光速3×108m/sec,若操作在2.4GHz的频率下,若不考虑空气的介电系数,则波长λ=12.5cm,亦即在短短的数公分内,电压大小就会因相位的偏移而有极大的变化。因此在高频下,我们会使用能量及阻抗的观念来取代低频的电压及电流的表示法,此时我们就会引入前述文章所提「波」的概念。 光波属于电磁波的一种,当我们用光分析一个组件时,会使用一个已知的入射光源测量未知的待测物,当光波由空气到达另一个介质时,会因折射率的不同产生部分反射及部分穿透的特性,例如化学成分分析上使用的穿透及反射光谱。对于同样是属电磁波的射频来说,道理是相通的,光之于折射率就好比微波之于阻抗的概念,当一个电磁波到达另一个不连续的阻抗接口时,同样也会有穿透及反射的行为,从这些反射及穿透行为的大小及相位变化中,就可以分析出该组件的特性。 用来描述组件的参数有许多种,其中某些只包含振幅的讯息,如回返损耗(R.L. Return Loss)、驻波比(SWR Standing Wave Ratio)或插入损失(I.L. Insertion Loss)等,我们称为纯量,而能得到如反射系数(Γ Reflection coefficient)及穿透系数(Τ Transmission coefficient)等,我们称之为向量,其中向量可以推导出纯量行为,但纯量却因无相位信息而无法推导出向量特性。 重要的向量系数 反射特性 在此,我们重点介绍几个重要的向量系数︰首先,我们从反射系数来定义,其中Vrefect为反射波、Vinc为入射波,两者皆为向量,亦即包含振幅及相位的信息,而反射系数代表入射与反射能量的比值,经过理论的演算,可以从传输线的特性阻抗ZO(Characteristic Impedance)得到待测组件的负载阻抗ZL,亦即,在网络分析中,一般使用史密斯图(Smith Chart)来标示不同频率下的阻抗值。另外,反射系数也可以使用极坐标表示:,其中为反射系数的大小,φ则表示入射与反射波的相位差值。

信号分析与处理习题

2.1 有一个理想采样系统,其采样角频率Ωs =6π,采样后经理想低通滤波器H a (j Ω)还原,其中 ?? ???≥Ω<Ω=Ωππ 3032 1 )(,,j H a 现有两个输入,x 1(t )=cos2πt ,x 2(t )=cos5πt 。试问输出信号y 1(t ),y 2(t )有无失真?为什么? 分析:要想时域采样后能不失真地还原出原信号,则采样角频率Ωs 必须大于等于信号谱最高角频率Ωh 的2倍,即满足Ωs ≥2Ωh 。 解:已知采样角频率Ωs =6π,则由香农采样定理,可得 因为x 1(t )=cos2πt ,而频谱中最高角频率ππ π32621=< =Ωh ,所以y 1(t )无失真; 因为x 2(t )=cos5πt ,而频谱中最高角频率ππ π32 652=>=Ωh ,所以y 2(t )失真。 3.2 设x (n )的傅里叶变换为X (e j ω),试利用X (e j ω )表示下列序列的傅里叶变换: (1) )1()1()(1n x n x n x --+-= (2) )]()([2 1 )(2n x n x n x -+= * 分析:利用序列翻褶后的时移性质和线性性质来求解,即 )()(ωj e X n x ?,)()(ωj e X n x -?- )()(ωωj m j e X e n m x --?- 解:(1)由于)()]([ω j e X n x DTFT =,)()]([ωj e X n x DTFT -=-,则 )()]1([ωωj j e X e n x DTFT --=- )()]1([ωωj j e X e n x DTFT -=-- 故ωωωωω cos )(2])[()]([1j j j j e X e e e X n x DTFT ---=+= (2)由于)()]([ω j e X n x DTFT * * =- 故)](Re[2 ) ()()]([2ωωωj j j e X e X e X n x DTFT =+= * 3.7 试求下列有限长序列的N 点离散傅里叶变换(闭合形式表达式):

信号处理与分析

第七章信号处理与分析 6.1概述 数字信号在我们周围无所不在。因为数字信号具有高保真、低噪声和便于信号处理的优点,所以得到了广泛的应用,例如电话公司使用数字信号传输语音,广播、电视和高保真音响系统也都在逐渐数字化。太空中的卫星将测得数据以数字信号的形式发送到地面接收站。对遥远星球和外部空间拍摄的照片也是采用数字方法处理,去除干扰,获得有用的信息。经济数据、人口普查结果、股票市场价格都可以采用数字信号的形式获得。因为数字信号处理具有这么多优点,在用计算机对模拟信号进行处理之前也常把它们先转换成数字信号。本章将介绍数字信号处理的基本知识,并介绍由上百个数字信号处理和分析的VI构成的LabVIEW分析软件库。 目前,对于实时分析系统,高速浮点运算和数字信号处理已经变得越来越重要。这些系统被广泛应用到生物医学数据处理、语音识别、数字音频和图像处理等各种领域。数据分析的重要性在于,无法从刚刚采集的数据立刻得到有用的信息,如下图所示。必须消除噪音干扰、纠正设备故障而破坏的数据,或者补偿环境影响,如温度和湿度等。 通过分析和处理数字信号,可以从噪声中分离出有用的信 息,并用比原始数据更全面的表格显示这些信息。下图显示的是 经过处理的数据曲线。

用于测量的虚拟仪器(VI) 用于测量的虚拟仪器(VI)执行的典型的测量任务有: ●计算信号中存在的总的谐波失真。 ●决定系统的脉冲响应或传递函数。 ●估计系统的动态响应参数,例如上升时间、超调量等等。 ●计算信号的幅频特性和相频特性。 ●估计信号中含有的交流成分和直流成分。 在过去,这些计算工作需要通过特定的实验工作台来进行,而用于测量的虚拟仪器可以使这些测量工作通过LabVIEW程序语言在台式机上进行。这些用于测量的虚拟仪器是建立在数据采集和数字信号处理的基础之上,有如下的特性: ●输入的时域信号被假定为实数值。 ●输出数据中包含大小、相位,并且用合适的单位进行了刻度,可用来直接进行 图形的绘制。 ●计算出来的频谱是单边的(single_sided),范围从直流分量到Nyquist频率(二 分之一取样频率)。(即没有负频率出现) ●需要时可以使用窗函数,窗是经过刻度地,因此每个窗提供相同的频谱幅度峰 值,可以精确地限制信号的幅值。 一般情况下,可以将数据采集VI的输出直接连接到测量VI的输入端。测量VI的输出又可以连接到绘图VI以得到可视的显示。 有些测量VI用来进行时域到频域的转换,例如计算幅频特性和相频特性、功率谱、网路的传递函数等等。另一些测量VI可以刻度时域窗和对功率和频率进行估算。 本章我们将介绍测量VI中常用的一些数字信号处理函数。 LabVIEW的流程图编程方法和分析VI库的扩展工具箱使得分析软件的开发变得更加简单。LabVIEW 分析VI通过一些可以互相连接的VI,提供了最先进的数据分析技术。你不必像在普通编程语言中那样关心分析步骤的具体细节,而可以集中注意力解决信号处理与分析方面的问题。LabVIEW 6i版本中,有两个子模板涉及信号处理和数学,分别是Analyze 子模板和Methematics子模板。这里主要涉及前者。 进入Functions模板Analyze》Signal Processing子模板。 其中共有6个分析VI库。其中包括: ①.Signal Generation(信号发生):用于产生数字特性曲线和波形。 ②.Time Domain(时域分析):用于进行频域转换、频域分析等。 ③.Frequency Domain(频域分析): ④.Measurement(测量函数):用于执行各种测量功能,例如单边FFT、频谱、比例加窗以及泄漏频谱、能量的估算。

频谱分析报告仪地使用方法

频谱分析仪的使用方法 13MHz信号。一般情况下,可以用示波器判断13MHz电路信号的存在与否,以及信号的幅度是否正常,然而,却无法利用示波器确定13MHz电路信号的频率是否正常,用频率计可以确定13MHz电路信号的有无,以及信号的频率是否准确,但却无法用频率计判断信号的幅度是否正常。然而,使用频谱分析仪可迎刃而解,因为频谱分析仪既可检查信号的有无,又可判断信号的频率是否准确,还可以判断信号的幅度是否正常。同时它还可以判断信号,特别是VCO信号是否纯净。可见频谱分析仪在手机维修过程中是十分重要的。 另外,数字手机的接收机、发射机电路在待机状态下是间隙工作的,所以在待机状态下,频率计很难测到射频电路中的信号,对于这一点,应用频谱分析仪不难做到。 一、使用前须知 在使用频谱分析仪之前,有必要了解一下分贝(dB)和分贝毫瓦(dBm)的基本概念,下面作一简要介绍。 1.分贝(dB) 分贝是增益的一种电量单位,常用来表示放大器的放大能力、衰减量等,表示的是一个相对量,分贝对功率、电压、电流的定义如下: 分贝数:101g(dB) 分贝数=201g(dB) 分贝数=201g(dB) 例如:A功率比B功率大一倍,那么,101gA/B=10182’3dB,也就是说,A功率比B功率大3dB, 2.分贝毫瓦(dBm) 分贝毫瓦(dBm)是一个表示功率绝对值的单位,计算公式为: 分贝毫瓦=101g(dBm) 例如,如果发射功率为lmw,则按dBm进行折算后应为:101glmw/1mw=0dBm。如果发射功率为40mw,则10g40w/1mw--46dBm。 二、频谱分析仪介绍 生产频谱分析仪的厂家不多。我们通常所知的频谱分析仪有惠普(现在惠普的测试设备分离出来,为安捷伦)、马可尼、惠美以及国产的安泰信。相比之下,惠普的频谱分析仪性能最好,但其价格也相当可观,早期惠美的5010频谱分析仪比较便宜,国产的安泰5010频谱分析仪的功能与惠美的5010差不多,其价格却便宜得多。 下面以国产安泰5010频谱分析仪为例进行介绍。 1.性能特点 AT5010最低能测到2.24uv,即是-100dBm。一般示波器在lmv,频率计要在20mv以上,跟频谱仪比相差10000倍。如用频率计测频率时,有的频率点测量很难,有的频率点测最不准,频率数字显示不稳定,甚至测不出来。这主要足频率计灵敏度问题,即信号低于20mv频率计就无能为力了,如用示波器测量时,信号5%失真示波器看不出来,在频谱仪上万分之一的失真都能看出来。

第七章信号分析与处理1

第六章信号处理与分析 6.1概述 数字信号在我们周围无所不在。因为数字信号具有高保真、低噪声和便于信号处理的优点,所以得到了广泛的应用,例如电话公司使用数字信号传输语音,广播、电视和高保真音响系统也都在逐渐数字化。太空中的卫星将测得数据以数字信号的形式发送到地面接收站。对遥远星球和外部空间拍摄的照片也是采用数字方法处理,去除干扰,获得有用的信息。经济数据、人口普查结果、股票市场价格都可以采用数字信号的形式获得。因为数字信号处理具有这么多优点,在用计算机对模拟信号进行处理之前也常把它们先转换成数字信号。本章将介绍数字信号处理的基本知识,并介绍由上百个数字信号处理和分析的VI构成的LabVIEW分析软件库。 目前,对于实时分析系统,高速浮点运算和数字信号处理已经变得越来越重要。这些系统被广泛应用到生物医学数据处理、语音识别、数字音频和图像处理等各种领域。数据分析的重要性在于,无法从刚刚采集的数据立刻得到有用的信息,如下图所示。必须消除噪音干扰、纠正设备故障而破坏的数据,或者补偿环境影响,如温度和湿度等。 通过分析和处理数字信号,可以从噪声中分离出有用的信息,并用比原始数据更全面的表格显示这些信息。下图显示的是经过处理的数据曲线。

用于测量的虚拟仪器(VI) 用于测量的虚拟仪器(VI)执行的典型的测量任务有: ●计算信号中存在的总的谐波失真。 ●决定系统的脉冲响应或传递函数。 ●估计系统的动态响应参数,例如上升时间、超调量等等。 ●计算信号的幅频特性和相频特性。 ●估计信号中含有的交流成分和直流成分。 在过去,这些计算工作需要通过特定的实验工作台来进行,而用于测量的虚拟仪器可以使这些测量工作通过LabVIEW程序语言在台式机上进行。这些用于测量的虚拟仪器是建立在数据采集和数字信号处理的基础之上,有如下的特性: ●输入的时域信号被假定为实数值。 ●输出数据中包含大小、相位,并且用合适的单位进行了刻度,可用来直接进行 图形的绘制。 ●计算出来的频谱是单边的(single_sided),范围从直流分量到Nyquist频率(二 分之一取样频率)。(即没有负频率出现) ●需要时可以使用窗函数,窗是经过刻度地,因此每个窗提供相同的频谱幅度峰 值,可以精确地限制信号的幅值。 一般情况下,可以将数据采集VI的输出直接连接到测量VI的输入端。测量VI的输出又可以连接到绘图VI以得到可视的显示。 有些测量VI用来进行时域到频域的转换,例如计算幅频特性和相频特性、功率谱、网路的传递函数等等。另一些测量VI可以刻度时域窗和对功率和频率进行估算。 本章我们将介绍测量VI中常用的一些数字信号处理函数。 LabVIEW的流程图编程方法和分析VI库的扩展工具箱使得分析软件的开发变得更加简单。LabVIEW 分析VI通过一些可以互相连接的VI,提供了最先进的数据分析技术。你不必像在普通编程语言中那样关心分析步骤的具体细节,而可以集中注意力解决信号处理与分析方面的问题。LabVIEW 6i版本中,有两个子模板涉及信号处理和数学,分别是Analyze 子模板和Methematics子模板。这里主要涉及前者。 进入Functions模板Analyze》Signal Processing子模板。 其中共有6个分析VI库。其中包括: ①.Signal Generation(信号发生):用于产生数字特性曲线和波形。 ②.Time Domain(时域分析):用于进行频域转换、频域分析等。 ③.Frequency Domain(频域分析): ④.Measurement(测量函数):用于执行各种测量功能,例如单边FFT、频谱、比例加窗以及泄漏频谱、能量的估算。 ⑤.Digital Filters(数字滤波器):用于执行IIR、FIR 和非线性滤波功能。

频谱分析仪和信号分析仪有什么区别呢

频谱分析仪:测量在仪器的整个频率范围内输入信号幅度随频率进行变化的情况。其最主要的用途是测量已知和未知信号的频谱功率。可用以测量放大器和滤波器等电路系统的某些参数,是一种多用途的电子测量仪器。 信号分析仪:它一方面集成了频谱分析仪的功能,另一方面测量在仪器的中频带宽内输入信号在单一频率上的幅度和相位。测量信号更加丰富如振动信号、声学信号等。 频谱分析仪和信号分析仪这两个术语多数情况下可以相互使用。但用信号分析仪描述更贴切,可进行更全面的频域、时域和调制域信号分析。 我们通过比较两款典型的频谱分析仪和信号分析仪来更深入对定义的理解。 安捷伦Agilent35670a是一种有二通道或四通道(选件AY6)的FFT类型频谱分析仪。这种标准仪器可在直流至100KHz左右的范围内进行频谱、网络、时域及幅度域测量。 晶钻仪器CoCo-80X是新一代手持一体化的动态信号分析仪与数据采集仪。四至八个通道数,最高150dB的动态范围,102.4kHz的采样率,进行各类频谱分析、结构分析、倍频程分析与声级计、旋转机械阶次跟踪等。另外,它支持多种语言动态切换,有英语、中文、日文、法语和西班牙语。

从上面两款仪器比较我们可以了解,外观上台式频谱分析仪有20Kg,而手持式动态信号分析仪只有2Kg。信号分析仪从可操作性、便携性、功能上都具有明细的优越性。功能上来说,频谱分析仪主要对FFT频谱信息分析,起到信号调节的功能。而动态信号分析仪除了继承频谱分析功能外,增加了振动结构分析、声学分析、转子动力学分析等功能,这些功能都是在频谱分析功能基础上增加的分析功能。 杭州锐达数字技术有限公司是美国晶钻仪器公司中国总代理,负责产品销售、技术支持与产品维护,是机械状态监测、振动噪声测试、动态信号分析、动态数据采集、应力应变测试等领域的供应商,提供手持一体化动态信号分析系统、多通道动态数据采集系统、振动控制系统、多轴振动控制系统、三综合试验系统和远程状态监测系统等。

基于Matlab的语音信号处理与分析

系(院)物理与电子工程学院专业电子信息工程题目语音信号的处理与分析 学生姓名 指导教师 班级 学号 完成日期:2013 年5 月 目录 1 绪论.............................................................................................................. 错误!未定义书签。 1.1课题背景及意义................................................................................. 错误!未定义书签。 1.2国内外研究现状................................................................................. 错误!未定义书签。 1.3本课题的研究内容和方法................................................................. 错误!未定义书签。 1.3.1 研究内容................................................................................ 错误!未定义书签。 1.3.2 开发环境................................................................................ 错误!未定义书签。 2 语音信号处理的总体方案............................................................................ 错误!未定义书签。 2.1 系统基本概述.................................................................................... 错误!未定义书签。 2.2 系统基本要求与目的........................................................................ 错误!未定义书签。 2.3 系统框架及实现................................................................................ 错误!未定义书签。 2.3.1 语音信号的采样.................................................................... 错误!未定义书签。 2.3.2 语音信号的频谱分析............................................................ 错误!未定义书签。 2.3.3 音乐信号的抽取.................................................................... 错误!未定义书签。 2.3.4 音乐信号的AM调制.............................................................. 错误!未定义书签。 2.3.5 AM调制音乐信号的同步解调............................................... 错误!未定义书签。 2.4系统设计流程图................................................................................. 错误!未定义书签。 3 语音信号处理基本知识................................................................................ 错误!未定义书签。 3.1语音的录入与打开............................................................................. 错误!未定义书签。 3.2采样位数和采样频率......................................................................... 错误!未定义书签。 3.3时域信号的FFT分析......................................................................... 错误!未定义书签。 3.4切比雪夫滤波器................................................................................. 错误!未定义书签。 3.5数字滤波器设计原理......................................................................... 错误!未定义书签。 4 语音信号实例处理设计................................................................................ 错误!未定义书签。 4.1语音信号的采集................................................................................. 错误!未定义书签。

(完整版)语音信号分析与处理系统设计

语音信号分析与处理系统设计

语音信号分析与处理系统设计 摘要 语音信号处理是研究用数字信号处理技术和语音学知识对语音信号进行处理的新兴的学科,是目前发展最为迅速的信息科学研究领域的核心技术之一。通过语音传递信息是人类最重要、最有效、最常用和最方便的交换信息形式。 Matlab语言是一种数据分析和处理功能十分强大的计算机应用软件,它可以将声音文件变换为离散的数据文件,然后利用其强大的矩阵运算能力处理数据,如数字滤波、傅里叶变换、时域和频域分析、声音回放以及各种图的呈现等,它的信号处理与分析工具箱为语音信号分析提供了十分丰富的功能函数,利用这些功能函数可以快捷而又方便地完成语音信号的处理和分析以及信号的可视化,使人机交互更加便捷。信号处理是Matlab重要应用的领域之一。 本设计针对现在大部分语音处理软件内容繁多、操作不便等问题,采用MATLAB7.0综合运用GUI界面设计、各种函数调用等来实现语音信号的变频、变幅、傅里叶变换及滤波,程序界面简练,操作简便,具有一定的实际应用意义。 最后,本文对语音信号处理的进一步发展方向提出了自己的看法。 关键字:Matlab;语音信号;傅里叶变换;信号处理;

目录 1 绪论 (1) 1.1课题背景及意义 (1) 1.2国内外研究现状 (1) 1. 3本课题的研究内容和方法 (2) 1.3.1 研究内容 (2) 1.3.2 运行环境 (2) 1.3.3 开发环境 (2) 2 语音信号处理的总体方案 (3) 2.1 系统基本概述 (3) 2.2 系统基本要求 (3) 2.3 系统框架及实现 (3) 2.4系统初步流程图 (4) 3 语音信号处理基本知识 (6) 3.1语音的录入与打开 (6) 3.2采样位数和采样频率 (6) 3.3时域信号的FFT分析 (6) 3.4数字滤波器设计原理 (7) 3.5倒谱的概念 (7) 4 语音信号处理实例分析 (8) 4.1图形用户界面设计 (8) 4.2信号的采集 (8) 4.3语音信号的处理设计 (8) 4.3.1 语音信号的提取 (8) 4.3.2 语音信号的调整 (10)

DH5922N动态信号测试分析系统技术参数

DH5922N动态信号测试分析系统 1、概述 DH5922N为通用型动态信号测试分析系统,应用范围广,可完成应力应变、振动(加速度、速度、位移)、冲击、声学、温度(各种类型热电偶、铂电阻)、压力、流量、力、扭矩、电压、电流等各种物理量的测试和分析。 2、应用范围 2.1 可完成全桥、半桥、1/4桥(120Ω三线制自补偿)状态的应力应变的测试和分析; 2.2 配合桥式传感器,实现各种物理量的测试和分析; 2.3 配合IEPE(ICP)压电式传感器,实现振动加速度、振动速度、振动位移(模拟二次积分可选)的测试和分析; 2.4 配合压电式传感器,实现振动加速度、振动速度、振动位移(模拟二次积分可选)及压力、自由场的测试和分析; 2.5 电压输入,与热电偶、电涡流传感器、磁电式速度传感器及各种变送器配合,对多种物理量进行测试和分析; 2.6 各种热电阻(如铂电阻、铜电阻等)温度传感器和热电阻适调器配合,对温度进行测试和分析。 3、特点 3.1 实现多通道并行同步高速长时间连续采样(多通道并行工作时,256kHz/通道); 3.2 高度集成:模块化设计的硬件,每个模块有16、32或64通道机箱形式;

3.3 每台计算机可控制多通道以上同步并行采样,满足多通道、高精度、高速动态信号的测量需求; 3.4 每通道独立电压放大器,24位A/D转换器,低通滤波器,抗混滤波器,消除通道间串扰影响,提高系统的抗干扰能力; 3.5 准确的采样速率:先进的DDS数字频率合成技术产生高精度、高稳定度的采样脉冲,保证了多通道采样速率的同步性、准确性和稳定性; 3.7 数字磁带机信号记录功能:实现长时间实时、无间断记录多通道信号; 3.8 进口雷莫接插件:输入接插件采用了进口高性能雷莫头,大大提高了小信号输入的可靠性,操作也十分方便; 3.9 信号适调器:配套各种可程控的信号适调器,通道自动识别,输入灵敏度实现归一化数据; 3.10 转速/计数器通道:可接各种脉冲/频率输出型传感器或计数器,用于转速、脉冲计数或频率的测量; 3.11 信号源输出通道:多通道输出互不相关,可输出多种信号,包括:正弦、正弦扫频、随机、伪随机、猝发随机、半正弦、方波、磁盘输出等,可与多种实验设备配合使用; 3.12 运行于Win2000/XP/7/8操作系统,用户界面友好、操作简便灵活; 3.13 计算机通过USB3.0接口与仪器通讯,对采集器进行参数设置(量程、传感器灵敏度、采样速率等)、清零、采样、停止等操作,并实时传送采样数据。 4、系统连接图 4.1 仪器与多种传感器的连接,如图1所示

Spider-20动态信号分析仪公司推荐

Spider-20是一款紧凑而强大的无线动态信号分析仪和数据采集仪。它提供4个24位高精确高保真输入通道,和一个独特的软件可选的转速计输入信号源输出通道(使用传统的BNC连接器)。每个输入可单独编程接受AC或DC电压或从一个内置电子IEPE(ICP)传感器输出。Spider20 的尺寸为13.5*10.9*3.25cm,可充电,内置闪卡,内置WIFI接口。 使用iPAD可以设置、查看或记录历史信号,以及执行频谱分析、测量频率响应函数FRF和相干函数。将它连接到笔记本或PC电脑还可享受我们EDM软件提供的全部软件功能,包括1/N倍频程声学功能、旋转机械阶次跟踪,冲击响应谱测试或专用的数字滤波器等。 Spider-20 完全脱离PC操作,只需用手进入黑盒操作模式,利用我们灵活的自动测试计划和阈值检测软件使Spider-20变成一个智能化无人监控能够响应数据条件或网络指令,通过邮件向您发送通知。是有线款动态信号分析仪和数据采集仪,用有线以太网连接取代了Wi-Fi,与Spider-20 技术指标和功能相同。 Spider-20特点 超便携易用性:重量只有560g 高精度性:24位分辨率,100dB动态输入

范围内置WIFI,4G闪存,电池保证6小时续航4个输入通道,1个转速输出通道,最高采样率102.4KHz 脱离PC,黑匣子工作模式支持iPAD、笔记本、PC电脑连接操作。 Spider-20功能 实时数据记录,瞬态捕捉转速、相位、轴心轨迹实时数据滤波阶次跟踪倍频程分析与声级计实时算数运算报警监测正弦扫频FRF分析时域统计分析冲击响应谱自动阈值检测任意波形输出传感器校准系统前端校准自功率谱、互功率谱、相干与传递函数。 Spider-20应用 动态信号分析振动测试汽车动力学机械故障诊断模态分析过程监控自动阈值检测声学研究NVH应用机械现场监测全身振动远程监测路谱试验数据采集。

基于matlab的信号分析与处理

基于m a t l a b的信号分 析与处理 IMB standardization office【IMB 5AB- IMBK 08- IMB 2C】

山东建筑大学 课程设计说明书题目:基于MATLAB的信号分析与处理课程:数字信号处理课程设计 院(部):信息与电气工程学院 专业:通信工程 班级:通信111班 学生姓名: 学号: 指导教师: 完成日期: 2014年1月

目录4

摘要 这次是基于MATLAB的信号分析与处理。所谓数字滤波器,就是输入、输出都是数字信号的,通过数值计算处理改变输入信号所含频率成分的相对比例,或者滤除某些频率成分的数字器件或程序。常用的经典滤波器有低通、高通、带通、带阻。 首先产生一个连续信号,包含低频、中频、高频分量;对其进行采样,得到数字信号;对数字信号进行FFT频谱分析,绘制其频谱图;根据信号频谱分析的结果,分别设计高通、低通、带通滤波器,绘制滤波器的幅频及相频特性;用所设计的滤波器对信号滤波,并绘制出滤波后的频谱图。 关键词:MATLAB; FFT;滤波器;信号产生;频谱分析

1设计目的和要求 产生一个连续信号,包含低频,中频,高频分量,对其进行采样,进行频谱分析,分别设计三种高通,低通,带通滤波器对信号进行滤波处理,观察滤波后信号的频谱。 2设计原理 信号的采样要符合奈奎斯特采样定律,一般为被采信号最高频率的2倍,只有这样,才能保证频域不混叠,也就是采样出来数字信号中包含了被采信号的所有信息,而且没有引入干扰。这就是信号的时域采样。 频谱分析是指对信号进行频域谱的分析,观察其频域的各个分量的功率大小,其理论基础是傅立叶变换,现在一般采用数字的方法,也就是将时域信号数字化后做FFT,可以得到频域的波形。 数字滤波器是一种用来过滤时间离散信号的数字系统,通过对抽样数据进行数学处理来达到频域滤波的目的。可以设计系统的频率响应,让它满足一定的要求,从而对通过该系统的信号的某些特定的频率成分进行过滤,这就是滤波器的基本原理。 IIR滤波器的设计原理: IIR数字滤波器的设计一般是利用目前已经很成熟的模拟滤波器的设计方法来进行设计,通常采用模拟滤波器原型有butterworth函数、chebyshev函数、bessel函数、椭圆滤波器函数等。 IIR数字滤波器的设计步骤: (1)按照一定规则把给定的滤波器技术指标转换为模拟低通滤波器的技术指标; (2)根据模拟滤波器技术指标设计为响应的模拟低通滤波器; (3)很据脉冲响应不变法和双线性不变法把模拟滤波器转换为数字滤波器; (4)如果要设计的滤波器是高通、带通或带阻滤波器,则首先把它们的技术指标转化为模拟低通滤波器的技术指标,设计为数字低通滤波器,最后通过频率转换的方法来得到所要的滤波器。 本课程设计设计思想:首先利用MATLAB分别产生低频、中频、高频信号,然后进行叠加得到连续时间信号;对所产生的连续时间信号进行采样,得到数字信号;对信

频谱分析仪介绍

频谱分析仪介绍 生产频谱分析仪的厂家不多。我们通常所知的频谱分析仪有惠普(现在惠普的测试设备分离出来,为安捷伦)、马可尼、惠美以及国产的安泰信。相比之下,惠普的频谱分析仪性能最好,但其价格也相当可观,早期惠美的5010频谱分析仪比较便宜,国产的安泰5010频谱分析仪的功能与惠美的5010差不多,其价格却便宜得多。 下面以国产安泰5010频谱分析仪为例进行介绍。 1.性能特点 AT5010最低能测到2.24uv,即是-100dBm。一般示波器在lmv,频率计要在20mv以上,跟频谱仪比相差10000倍。如用频率计测频率时,有的频率点测量很难,有的频率点测最不准,频率数字显示不稳定,甚至测不出来。这主要足频率计灵敏度问题,即信号低于20mv频率计就无能为力了,如用示波器测量时,信号5%失真示波器看不出来,在频谱仪上万分之一的失真都能看出来。 但需注意的是,频谱仪测量的是高频信号,其高灵敏度也就决定了,要注意被测信号的幅度范围,以免损坏高频头,在2.24uv-1V之间,超过其范围应另加相应的衰减器。 AT5010频谱分析仪频率范围在0.15~1000MHz(1G),其系列还有3G、8G、12G等产品。 AT5010频谱分析仪可同时测量多种(理论上是无数个)频率

及幅度,Y轴表示幅度,X轴表示频率,因此能直观的对信号的组成进行频率幅度和信号比较,这种多对比件的测量,示波器和频率计是无法完成的。 2.性能指标 (1)频率 频率范围:0.15—1050MHz 中心频率显示精度:士lOOkHz 频率显示分辨率:lOOkHz 扫频宽度:100kHz/格—100MHz/格 中频带宽(一3dB):400kHz和20kHz 扫描速度:43Hz (2)幅度 幅度范围:一100~+13dBm 屏幕显示范围:80dBm(10dB/格) 参考电平:一27-13dBm(每级10dB) 参考电平精度:±2dD 平均噪声电平:一99dBm (3)输入。 输入阻抗:50n 插座:BNC 衰减器:0~40dB 输入衰减精度:±1dDm

频谱分析仪的使用方法

电磁干扰测量与诊断 当你的产品由于电磁干扰发射强度超过电磁兼容标准规定而不能出厂时,或当由于电路模块之间的电磁干扰,系统不能正常工作时,我们就要解决电磁干扰的问题。要解决电磁干扰问题,首先要能够“看”到电磁干扰,了解电磁干扰的幅度和发生源。本文要介绍有关电磁干扰测量和判断干扰发生源的方法。 1.测量仪器 谈到测量电信号,电气工程师首先想到的可能就是示波器。示波器是一种将电压幅度随时间变化的规律显示出来的仪器,它相当于电气工程师的眼睛,使你能够看到线路中电流和电压的变化规律,从而掌握电路的工作状态。但是示波器并不是电磁干扰测量与诊断的理想工具。这是因为: A. 所有电磁兼容标准中的电磁干扰极限值都是在频域中定义的,而示波器显示出的时域波形。因此测试得到的结果无法直接与标准比较。为了将测试结果与标准相比较,必须将时域波形变换为频域频谱。 B. 电磁干扰相对于电路的工作信号往往都是较小的,并且电磁干扰的频率往往比信号高,而当一些幅度较低的高频信号叠加在一个幅度较大的低频信号时,用示波器是无法进行测量。 C. 示波器的灵敏度在mV级,而由天线接收到的电磁干扰的幅度通常为V级,因此示波器不能满足灵敏度的要求。 测量电磁干扰更合适的仪器是频谱分析仪。频谱分析仪是一种将电压幅度随频率变化的规律显示出来的仪器,它显示的波形称为频谱。频谱分析仪克服了示波器在测量电磁干扰中的缺点,它能够精确测量各个频率上的干扰强度。 对于电磁干扰问题的分析而言,频谱分析仪是比示波器更有用的仪器。而用频谱分析仪可以直接显示出信号的各个频谱分量。 1.1 频谱分析仪的原理 频谱分析仪是一台在一定频率范围内扫描接收的接收机,它的原理图如图1所示。 图1 频谱分析仪的原理框图

相关文档
最新文档