基于罗氏线圈对高压输电线路雷电绕击_反击的识别

基于罗氏线圈对高压输电线路雷电绕击_反击的识别
基于罗氏线圈对高压输电线路雷电绕击_反击的识别

文章编号:1004-289X(2010)01-0034-03

基于罗氏线圈对高压输电线路雷电绕击、反击的识别

封建宝

(广西大学电气工程学院,广西 南宁 530004)

摘 要:基于罗氏线圈测量雷电流方向的理论及雷电绕击、反击原理,进行研究。提出在杆塔不同部位安装罗氏线圈,将得到杆塔不同部位雷电流的方向。提出雷电绕击、反击实时判别系统的相应基本理论。

关键词:高压输电线路;绕击;反击;罗氏线圈

中图分类号:T M72 文献标识码:B

The Identificati on to Thunderstri ke and Counterattack of

HV Trans m ission L i ne B ased on Rogo w sk i Coil

FENG Jian bao

(E lectrical Eng ineering Co llege of G uangx iU niversity,N anning530004,Ch i n a)

Abstract:According to Rogo w sk i co il thunder current directi o n theo r y,thunderstri k e and counterattack pri n ciples,the thunderstri k e and counterattack are stud i e d.Roqo w sk i co il is i n sta lled in d ifferent positions o f the pole,the thunder bolt current w ill be got fro m t h e d ifferent position of the po le.The paper propose relevent basi c theo r y o f t h understr i k e and counterattack real ti m e discri m inati n g syste m.

K ey words:HV transfers c ircu i;t thunderstrike;counterattack;Rogo w ski co il

1 引言

雷击跳闸分为由于雷电绕击输电线路、雷击杆塔引起反击而引起的跳闸。对于不同的事故原因其原理是不一样的,解决方法也不同[1-3]。

由于我国幅员辽阔,山地、平原、盆地、丘陵,地形差别很大,再加上各地气候不同,所以雷击情况差异很大,因此各地在发生雷击事故时,对线路绕击、反击的判断尤为重要。现在电力系统由雷电引起的跳闸中,绕击、反击的判别极其困难,如普遍使用的雷电定位仪,虽然可以测量雷电流的参数(幅值、陡度),但无法鉴别出绕击与反击。因此,找到一个方便、易行的输电线路雷电绕击与反击判别方法,是电力系统防雷研究的焦点问题。

本文研究了一种基于输电线路杆塔的雷电流实测系统,在绝缘子串杆塔侧金具上钳套罗果夫斯基型电流传感器,测量雷击闪络时的闪络电流的方向。该电流与雷电活动的强度成正比,需要考虑避雷线的耦合作用、分流作用和杆塔的电感、接地电阻等。在杆塔入地杆安装另外一个罗果夫斯基型电流传感器,测量该处的电流方向,通过对比这两处的电流方向就可以得到雷击方式。此外该系统也具有确定雷击点的功能。

2 雷电流测量原理

本文设计的罗果夫斯基线圈型冲击电流传感器,采取无源传感方式,以适于长期运行,避免维护。传感器输出信号经处理后由无线通讯设备传回变电站。为降低成本,同一杆塔只用一套处理装置和无线通讯设备,因此为防止雷击时各传感器间的电位差对装置造成干扰和破坏,传感器与处理装置间需通过同轴电缆传输信号。

传感器安装在输电线路三相绝缘子串的地电位悬挂金具上。当绝缘子发生雷击闪络时,闪络电流穿过电流传感器,从而被线圈检测到;传感器不需电源,直接通过同轴电缆传到数据预处理装置接收,经处理后获得雷电流方向;数据通过无线电传送到位于变电站的接收装置,经信息整合处理后提供给用户。整个测量系统如图1所示。

图1 测量系统示意图

3 绕击、反击故障时电流分布特点

(1)绕击时,雷电流的注入点为导线,闪络电流流过绝缘子串悬挂金具并通过杆塔入地,此时流过金具的电流方向与流过杆塔竖杆的电流方向相反;

(2)反击时,雷电流的注入点为杆塔顶,绝缘闪络时流过绝缘子串悬挂金具的电流与流过杆塔竖杆的电流方向相同;

(3)在绝缘子串悬挂金具处和杆塔横担下方竖杆处各安装罗氏线圈传感器,根据2个传感器输出电压的极性关系就可以鉴别出绝缘闪络的类型(绕击或反击),如表1所示。

表1

雷击类型绝缘子串杆塔侧

金具电流传感器

杆塔竖杆(主材)

电流传感器

负电荷雷引发反击负电流信号负电流信号

正电荷雷引发反击正电流信号正电流信号

负电荷雷引发绕击正电流信号负电流信号

正电荷雷引发绕击负电流信号正电流信号

4 传感器的准确性与稳定性分析

利用冲击电流发生器产生冲击大电流,重复测量传感器的输出信号。图2、3分别给出了冲击电流在分流器上的输出电压和传感器经光电隔离的输出电压(改变了极性)。传感器基本保持了原冲击电流的波形特征,但波尾变短。这与传感器衰减了0~3k H z内的分量有关。

5 屏蔽问题

当考虑到实时传输问题后,必然涉及到一些屏蔽问题。

(1)静电场屏蔽

如果带有电荷量+Q的孤立导体A,它在空间要产生电场。为消除导体A在空间产生的电场,可用密封的金属球壳把带电体包围起来。若金属壳体不接地,该电荷在球壳外部空间产生电场,就起不到屏蔽作用;如果将金属球壳接地,则球壳外壁的正电荷被引入大地,球壳外壁电位为零,不存在静电场,电场被局限在金属球壳内的空间,起到了屏蔽作用。这是对静电场干扰源的屏蔽,也叫静电场的主动屏蔽。

如果空间存在静电场干扰测量电路可将测量电路用金属球壳罩住,与静电场隔开。不论球壳接地与否,其内部都不存在由外界感应的静电场,阻止干扰静电场进入球壳内部,起到屏蔽外界静电场的作用。

(2)磁场屏蔽

磁场屏蔽是为了消除或抑制磁场干扰源与敏感设备间由磁场耦合引起的干扰。对不同频率应当采用不同的磁场屏蔽措施。

!低频磁场屏蔽

若磁场频率较低(100kH z以下)时,通常采用铁、硅钢片、坡莫合金材料进行屏蔽。将线圈绕在由铁磁材料制成的闭合环中,则磁力线要在该闭合环的磁路中通过,向空气中发散的漏磁通很少,抑制了磁场源对附近敏感设备的干扰,起主动屏蔽作用。同样,铁磁材料制成的屏蔽箱置于干扰磁场中,磁力线被集中在屏蔽体外,不会泄漏到屏蔽体包围的内部空间中去,保证屏蔽箱内的电路、设备不受外部磁场的干扰,起被动屏蔽作用。同时也把内部磁场封闭在屏蔽体内,阻止向外发散。所以屏蔽箱同时起主动屏蔽和被动屏蔽的双重作用。

铁磁材料的磁导率越大,屏蔽效能越高;屏蔽层加

厚,屏蔽效能也会增大。因此,在铁磁材料一定的条件下,实际应用中采用多层屏蔽提高磁屏蔽的效能。

?高频磁场屏蔽

由于铁磁材料的磁导率随频率的升高而下降,从而使屏蔽效能下降,所以低频磁场屏蔽的方法不能用于高频磁场的屏蔽。

高频磁场屏蔽的原理是:屏蔽材料使用铜、铝等金属良导体。如果用金属壳将磁场源(如线圈)包围,则线圈电流产生的高频磁场在金属壳内壁产生涡流,把磁场限制在金属壳内,不向外泄漏,起主动屏蔽作用;金属壳体外的高频磁场同样由于涡流的作用只能绕过金属壳体不能进入金属壳体内,又起到被动屏蔽的作用。但金属的厚度不起决定作用。

磁场的屏蔽与电场的屏蔽不同,屏蔽体接地与否不影响磁屏蔽的效果;但磁屏蔽体对电场也起一定的屏蔽作用,因此一般也接地。

(3)电磁场屏蔽

远离干扰源,单纯的电场或磁场是很少见的。通常所说的电磁干扰均是电场和磁场同时存在的高频辐射电磁场。电磁场屏蔽用于抑制干扰源和敏感设备距离较远时通过电磁场耦合产生的干扰,它必须同时屏蔽电场和磁场,通常采用电阻率小的良导体材料。空间干扰电磁波在入射到金属体表面时会产生反射和吸收,电磁能量被衰减,从而起到屏蔽作用。

由于测量设备所处的电磁环境十分恶劣,同时要考虑静电屏蔽、电磁屏蔽问题,且在雷电落雷后,由于雷电的高频分量可能会引起弱电电路的浪涌现象,因此屏蔽重点要放在磁带进入测量设备的入口处,建议安装3~4对掺有金属粉的特殊压轮,一能够使走带机构稳定运转;二可以通过金属粉的屏蔽作用,逐渐抵消雷电流的高频干扰。其余部分可采用2层以上的多层屏蔽。

6 结语

目前对于电力输电线路雷电的有效防护是一个难点,尤其是雷电绕击、反击的鉴别更是困难,这也是电力系统绝缘设计、雷击事故技术分析、责任分析等实际工作急需解决的问题。罗氏线圈测量法相对于其它雷电流测量方法具有材料便宜、精度高、便于野外安装等特点。本文从工程实际出发通过试验对罗氏线圈直接测量雷电流方向进行深入、系统的研究并详细的讨论了雷电流绕击、反击的特点,并基于固定在杆塔不同部位的罗氏线圈测量装置的记录数值,大胆的提出判别线路绕击、反击的判别方法,填补了电力系统在该项领域的空白,取得了开创性的成果,且极具工程实用价值。

参考文献

[1] 张志劲,司马文霞,蒋兴良,等.超特高压输电线路雷电绕击防护性能研究[J].中国电机工程学报,2005,25(10).

[2] 程养春,李成榕,陈家宏,等.特高压输电线路雷电闪络电流的测量[J].高电压技术,2007,23(6).

[3] 孙万忠.输电线路雷电屏蔽理论及实践现状[J].四川电力技术, 2000,2:5-7.

收稿日期:2009-04-17

作者简介:封建宝(1981-),男,硕士研究生,研究方向:电力系统及其自动化专业。

(上接第33页)

同时由空载和额定负载时一、二次侧的电压波形对比可以看出,若二次负载为纯阻性,则负载的大小对二次的过电压影响不大,只对电流大小有些影响,这是因为二次侧感应出的过电压主要与一次侧电流的陡度有关,而纯阻性负载对一次侧的电流陡度影响不大,因此对二次侧的电压影响较小;

(2)从电抗器的电感值分别为10mH、100mH和500mH时的电压电流波形可以看出,随着电抗器电感值的增加,一次侧的电流,二次侧的电压、电流,随之降低,特别是当电抗器的电感值取为500mH时,二次侧上的电压幅值降为没有加电抗器时的一半(如图11和图14所示)。虽然一次侧的电压没有给出,但由于电抗器的分压作用,也会使一次绕组上的电压降低50%左右。

参考文献

[1] 卢凤英.10千伏配电变压器的防雷保护措施[J].工程论坛,中国科技信息,2005(17):151-157.

[2] 余光华.10千伏配电变压器的防雷问题[J].水利科技,2004

(2):54-55.

[3] 吴天明,谢小竹,彭彬.M ATLAB电力系统设计与分析[M].国防工业出版社,2004:1.

[4] 禹静.防止配电变压器烧坏的措施[J].农村电工,2005(8):27.

[5] 田维富.配电变压器的防雷保护措施[J].农村电工,2005(5):26.

[6] 周小沪,李晓庆,纪志成.基于MATLAB三相变压器的仿真建模及特性分析[J].变压器,2004,41(7):19-23.

[7] J.G il m ore.变压器的仿真[J].电力牵引快报,1999(4):39-40.

[8] 王雪,王增平.变压器内部故障仿真模型的设计[J].电网技术, 2004,28(12):50-52.

收稿日期:2009-05-06

作者简介:叶海波(1982-),男,工学硕士。

浅论架空输电线路雷电绕击与反击的识别

浅论架空输电线路雷电绕击与反击的识别 摘要:由于防雷与接地措施不到位而引发的跳闸等事故的频繁发生,给经济社 会的发展带来了很多的不便,因此,加强架空输电线路的防雷接地的相关研究是 非常必要的。反击主要靠提高线路绝缘水平、降低杆塔接地电阻来提高耐雷水平,而绕击主要靠改进线路保护角等方式来降低绕击率。对雷击故障类型进行辨识可 以为防雷设计提供依据,有针对性地采取防雷措施,可提高线路防雷水平。 关键词:架空输电线路雷电绕击反击识别 1 架空输电线路的雷电危害 雷电危害大多发生在春夏两季,但是,它也会受不同地区地理环境差异的影响。雷电对输电线路的危害主要表现在以下几方面:一是,雷电自身的高热效应 危害。当遇到输电线路时,雷电的高热效应会转变为电流,使被击中部位瞬间产 生极高的热能,导致此段输电线路被融化,进而燃烧起来。二是,雷电所产生的 电磁场危害。在雷电形成的过程中伴有电磁效应,当输电线路被雷击中时,这部 分电磁效应会在雷击部位形成交变电磁场,使得电路中的电流量瞬间增大,导致 线路高温燃烧。三是,雷电附带的高压效应危害。雷电形成的瞬间电压通常为高压,能够达到十几万伏以上。这种高压在雷击点会对输电线路上的电气设备造成 极大的攻击,导致输电线路被烧坏、出现短路的情况,甚至还会引发更严重的事故。四是,雷电所发出的电波危害。电波也是雷电附带的一种现象,它经常会干 扰防雷装置的正常工作,使其无法有效发挥防雷功能,变为放电器反击输电线路。 2 架空线路雷击跳闸分析 雷电直击、绕击、反击、直击(雷直击铁塔顶部、雷直击避雷线中央)和反 击(过高的接地电阻,造成塔顶电位大幅度上升)现象大体相同,其耐雷水平在 规程中也是做统一规定,由于篇幅有限,在这我们把它们列入一起进行阐述,而 绕击现象与直击和反击不同,它也是引起高压送电线路跳闸的主要原因,也是我 们今后防雷工作的重点。 雷电直击、反击跳闸一般雷电流较大,如500kV典型铁塔反击耐雷水平可达125kA~175kA,雷电反击一般有下列特征:a.多相故障一般是由直击引起; b.水 平排列的中相或上三角排列的上相故障一般是由雷电反击引起;c.档中导地线之 间雷击放电(极为罕见的小概率事件)的,一般是雷电直击、反击引起;d.一次 跳闸造成连续多级铁塔闪络的,有可能是雷电直击、反击引起。 雷电绕击导线引起绝缘闪络对应的雷电流幅值较小,如 500kV线路绕击耐雷 水平为22kA~24kA。理论分析和国内外实践经验表明超高压线路尤其是山区线路存在明显的绕击现象。雷电绕击故障一般有下列特征: a.雷电绕击一般只引起单 相故障; b.导线上非线夹部位有烧融痕迹(有斑点或结瘤现象或导线雷击断股)的,一般是雷电绕击引起;c.水平排列的中相或上三角排列的上相导线一般不可 能雷电绕击跳闸 d.水平或上三角排列的边相或鼓形排列的中相有可能雷电绕击;e.雷电绕击电流与导线保护角和塔高度有关,当雷电流幅值较大时,绕击的可能 性较小。 对于雷电反击故障,降低接地电阻、加强线路绝缘、加装耦合地线、安装线 路避雷器比较有效,对于雷电绕击故障,减小避雷线保护角、安装线路避雷器、 加装耦合地线比较有效。对于双回路或多回线路,差绝缘配置有一定效果。 3 输电线路雷电过电压识别判据 3种雷电过电压的电流行波区别主要体现在三相电流行波相似程度以及电磁

基于罗氏线圈的电流变送器设计与应用

基于罗氏线圈的电流变送器设计与应用 周菁 (江苏安科瑞电器制造有限公司,江苏江阴) 摘要:论文介绍了基于罗氏线圈(Rogowski)的电流变送器的原理和硬件设计,以及该产品的主要应用。 1.引言 近年来,随着现代高压、超高压输电网络的建设,电力系统正朝着大容量、高压大电流方向发展,而用于电流测量的传统的电磁式电流互感器已无法满足其要求,在大电流下铁心磁路下易饱和,对测量结果产生较大的误差。而罗氏线圈互感器,具有测量范围宽、精度高、无磁饱和、体积小等优点,正逐步取代传统的电磁式电流互感器,在电力系统中具有广阔的应用前景。 本文介绍一种基于罗氏线圈的电流变送器的设计,对电网中的大交流电流进行实时测量,该变送器采用XTR115芯片将罗氏线圈产生的电压信号转换电流信号,输出DC 4~20mA 电流信号。 2.工作原理及设计 罗氏线圈是将导线均匀的密绕在环形截面非磁性骨架上而形成的空心电感线圈,采用罗氏线圈作为电网中电流测量的传感头,让通有大电流的导线垂直穿过线圈的中心,产生电磁感应,从而感应出被测电流大小的电压信号。将罗氏线圈产生的电压信号接入到信号调理模块上,进行信号处理,最后输出工业标准信号DC4-20mA。电路设计框架图如图1 所示。 2.1信号调理电路 信号调理电路实现对输入信号的隔离输入,包括信号滤波、整流电路以及信号积分电路。该电路主要是对罗氏线圈感应输出的电压信号通过RC 滤波,再经过电阻分压后接入到采用双电源运放芯片的输入脚上,采用运算放大器构成近似积分器,合理选择选择器件参数,能够保证传感器的测量灵敏度、精度和信号响应带宽。 2.2真有效值转换电路 真有效值转换电路实现电路中AC/DC 真有效值转换,将输入的交流信号通过真有效值芯片转化为真有效值的直流电压,能够精确测量各种电压波形的有效值,而不必考虑被测波形的参数以及失真。如图2所示:电路中,Ui 信号经过电容C5隔直后输入到真有效值芯片中,其中电容C8,C9的作用是滤掉该电路中的高频干扰,采用双电源工作方式,满足真有效值的工作要求。 图1

浅谈雷电对配电设备的危害(新版)

浅谈雷电对配电设备的危害 (新版) Safety management is an important part of enterprise production management. The object is the state management and control of all people, objects and environments in production. ( 安全管理 ) 单位:______________________ 姓名:______________________ 日期:______________________ 编号:AQ-SN-0105

浅谈雷电对配电设备的危害(新版) 雷电电力设施具有极大的破坏性,我局地处黄土高原地形复杂,加之,配电线路大多数架设于70-80年代,线路长、设备老化、防雷设备不健全,遭受雷击造成的重大事故也有所增加,大大影响了线路的跳闸次数和工作人员的安全,经过城农网对线路设备的改造,线路运行有了很大的改善,减少了线路的跳闸次数,保证人民群众的可靠用电,但随着现代化电子技术的不断发展,防雷系统显得愈来愈重要,现就防雷措施谈几点: 1、架设地线使雷直击在避雷线上,避免导线直接受到雷击,同时,对雷电流起到分流作用,减少流入杆塔的雷电流,使杆顶电位下降,也可以减少导线和架空避雷线的电位差,对感应过电压有抑制作用。

2、加强线路绝缘输电线路个别地段采用大跨越高杆塔,增加了杆塔落雷的机会,高杆塔落雷时塔顶电位高,感应过电压大,受到绕击的概率也较大,为了加大跨越档导线与地线之间的距离,以加强线路绝缘。 3、架设藕合地线在导线的下方架设地线,弥补已有避雷线的不足,增加避雷线与导线间的藕合作用,降低绝缘子串上的过电压,并能对雷电流起到分流作用。 4、安装避雷器时当雷电击中输电线路或雷闪放电,在输电线路附近时,会在电线上形成过电压,沿输电流引入到用电设备,造成设备的危害,安装避雷器能承受反复冲击的电流,起到保护设备的作用。 5、安装过电压保护器具有复合功能的过电压保护器件,吸能本领强,限制过电压低,无续流等特点,还具有模块化组合免停电更换,超负荷或失效后自动脱离,劣化指示功能,广泛用于仪器设备及电源的过电压保护。 总之,防雷电措施工作非常重要是保护线路、设备及人身安全

雷电的种类及危害

编号:SM-ZD-93504 雷电的种类及危害 Organize enterprise safety management planning, guidance, inspection and decision-making, ensure the safety status, and unify the overall plan objectives 编制:____________________ 审核:____________________ 时间:____________________ 本文档下载后可任意修改

雷电的种类及危害 简介:该安全管理资料适用于安全管理工作中组织实施企业安全管理规划、指导、检查 和决策等事项,保证生产中的人、物、环境因素处于最佳安全状态,从而使整体计划目 标统一,行动协调,过程有条不紊。文档可直接下载或修改,使用时请详细阅读内容。 l.雷电种类 雷电分为直击雷、感应雷和球雷。 直击雷是带电积云接近地面至一定程度时,与地面目标之间的强烈放电。直击雷的每次放电含有先导放电、主放电、余光三个阶段。大约50%的直击雷有重复放电特征。每次雷击有三、四个冲击至数十个冲击。 感应雷也称作雷电感应,分为静电感应雷和电磁感应雷。静电感应雷是由于带电积云在架空线路导线或其他导电凸出物顶部感应出大量电荷,在带电积云与其他客体放电后,感应电荷失去束缚,以大电流、高电压冲击波的形式,沿线路导线或导电凸出物的传播。电磁感应雷是由于雷电放电时,巨大的冲击雷电流在周围空间产生迅速变化的强磁场在邻近的导体上产生的很高的感应电动势。 球雷是雷电放电时形成的发红光,橙光、白光或其他颜色光的火球。从电学角度考虑,球雷应当是一团处在特殊状

雷电灾害的预防与自救(标准版)

雷电灾害的预防与自救(标准 版) Safety management is an important part of enterprise production management. The object is the state management and control of all people, objects and environments in production. ( 安全管理 ) 单位:______________________ 姓名:______________________ 日期:______________________ 编号:AQ-SN-0882

雷电灾害的预防与自救(标准版) 雷电是不可避免的自然灾害。地球上任何时候都有雷电在活动。据统计,每秒钟造就1800阵雷雨,伴随600次闪电,其中就有100个炸雷击落地面,造成建筑物。发电、通讯和影视设备的破坏,引起火灾,毙伤人、畜、每年经济损失约10亿美元,死亡3000人以上。其中美国每年有将近400人被雷击死,财产损失达2.6亿美元。1996年7月20日,印度东北地区雷雨不断,雷电击中了比哈尔邦的一座校舍,造成15名小学生死亡,多人受伤。雷电还将树下5个人全部烧死。将另外4名在田间劳作的农民击死。 我国也是一个雷电灾害频发的国家。例如。山东临沂地区平均每年约有39人因雷击伤亡。又如,湖南省溆浦县戈竹坪乡山背村是个罕见的雷区,近10多年来曾先后被雷电击死8人,击伤115人(其

中重伤24人),还击伤耕牛5头,击死击伤猪50余头,击死鸡、鸭、鹅等家禽450多只。村里变压器也先后5次被雷电击毁,房屋、树木。庄稼和田地被毁数十次,真是令人震惊的数字。又如1996年7月10日,湖北省随州市黄坑体育场内正在踢足球的12名青年集体遭到雷电袭击,当场死亡2人,6名重伤者全身乌紫,昏迷不醒,被送往医院抢救,意识障碍达10多个小时。因此,了解雷电的规律,掌握正确的预防措施和自救方法是十分必要的。 雷电是怎样形成的 雷电是大气中的放电现象,多形成在积雨云中,积雨云随着温度和气流的变化会下停地运动,运动中摩擦生电,就形成了带电荷的云层,某些云层带有正电荷,另一些云层带有负电荷。另外,由于静电感应常使云层下面的建筑物。树木等带有异性电荷。随着电荷的积累,雷云的电压逐渐升高,当带有不同电荷的雷云与大地凸出物相互接近到一定温度时,其间的电场超过25~30kv/cm,将发生激烈的放电,同时出现强烈的闪光。由于放电时温度高达2000℃,空气受热急剧膨胀,随之发生爆炸的轰鸣声,这就是闪电与雷鸣。

雷电的危害性分析及其预防措施

雷电的危害性分析及其预防措施 雷电是自然界中雷云之间或是雷云与大地之间的一种放电现象。其特点是电压很高、电流很大、能量释放时间短,具有很大的危害性。雷电会造成电力系统大面积停电、森林大面积烧毁、建筑物毁坏、油库爆炸起火、通讯系统瘫痪以及家电设备损坏等等。 1雷电理论 1.1雷云结构和雷电的放电机理 雷云的典型结构是中部有强烈的上升气流,在这种气流的作用下,带正电的冰晶与带负电的水滴开始分离,形成一部分带正电荷,一部分带负电荷的雷云。由于异性电荷的不断积累,不同极性的云块之间电场强度不断增大,当某处的电场强度超过空气可能承受的击穿强度时,就形成了云间放电。不同级性的电荷通过一定的电离通道互相中和,产生强烈的光和热,并发出一种强光,称之为“闪”,所发出的热,使附近的空气突然膨胀,发出霹雳的轰鸣,称之为“雷”。 由于雷云负电的感应、使附近地面积聚正电荷,从而使地面与雷云之间形成强大的电场。当某处积聚的电荷密度很大,造成电场强度达到雷云与地面之间空气游离的临界值时,就为雷云对地放电打到地面上的闪电即为“落雷”。如果落雷击中人员、建筑物、机电设备和森林树木而造成的危害,这种现象为“雷击事故”。 1.2雷电活动强度 雷电活动的强度是因地区而异的,有的地区强,有的地区弱,某

一地区的雷电活动强度通常用“年平均雷电日”这一数字表示。我国年平均雷电日分布大致可划分4个区域,其中长江以北大部分地区年平均雷电日在15~40d。年平均雷电日这一数字只能给人们提供某一地区雷电活动的概括情况,雷电活动的强弱程度与落雷概率是两个不同的概念。事实上,即使是在同一地区,雷电活动也是有所不同的,有些地方受局部气象条件的影响,雷电活动可能比邻近地区强得多。 1.3雷击的选择性 雷害事故的统计资料说明,雷击的地点和建筑物遭受雷击的部位是有一定规律的,这个规律称为雷击的选择性。 地面上建筑物的性质和形状对雷电的发展是有影响的,当地面上电场不断增强时,在高大建筑物的尖顶和边缘上电场强度最大,构成雷电发展的良好条件。在旷野中,即使建筑物并不很高,但是由于它比较孤立、突出,因而较容易遭受雷击。金属结构的建筑物或内部有大型或大量金属物体的厂房,由于具有良好的导电性能,也较易遭受雷击。

雷电的产生与危害方式

雷电产生与危害方式 1 背景 雷电是自然界中极为普遍而又蔚为壮观的声、光、电现象,这不仅是由于它那特有的划破长空的耀眼闪电和震耳欲聋的霹雳声,更重要的还在于它给人类生存和生产活动带来巨大影响。雷电促成的有机物合成可能对地球的生命形成起到过一定的作用,雷电引起的森林火灾可能启发了远古人类对火的发现和利用。在现代生活中,雷电仍然对人畜的生命安全有所威胁,对航空,通讯,电力,建筑等国防和国民经济的许多部门造成重大的危险影响。 上世纪80年代以来,雷电灾害出现新特点。随着通讯信息技术和微电子技术高度发展和广泛应用于各个领域,使雷害对象发生了转移,从对建筑物本身的损害转移到对室内网络设备、电子设备等信息设备的损害,随之防雷对象和防雷重点也由强电向弱电转移。 2 雷电现象 能够产生雷电的云,称之为雷雨云,通常又称雷暴。1752年,美国科学家富兰克林首先揭开了“雷暴”的本质,认为它实际上是一种大气电现象,此后人们对雷电活动进行了大量的观察研究。为了说明雷电的形成和发展的规律和机理,提出过许多的起电机制,从微观的物理过程到宏观的大气物理对雷云的形成和发展过程中的电荷产生、电荷分离、电荷聚焦、雷云电场生成等现象进行分析和推测,力图对雷电的形成和发展机理进行解释。其中最具代表性的起电机制有Elster和Geitel的感应起电机制、Brook的温差起电机制、Lenard的破碎起电机制、Workman和Reynolds的融化、冻结起电机制。 图1 感应起电机理

与起电一样,雷暴云的放电也是一十分复杂的物理过程。当雷云中的电荷负值增加到一定数量时,使空气中的电场强度增加,达到使空气足以电离,产生游离态离子时,就产生了雷云的放电。按照闪电的外观形状,可将其分为:线状闪电、带状闪电、片状闪电、连珠闪电和球状闪电等,其中以线状闪电最为常见。按闪电发生的空间位置可将其分为:云内闪电、云际闪电、云地闪电等。云地闪电简称地闪,俗称落地雷,其走向多垂直于地面,危害大,是防雷设计应该注意的重点。云闪定义为所有没有到达地面的闪电放电,它的危害主要体现在雷击电磁脉冲。 通常,地闪放电可以划分为以下几个过程:预击穿过程(Preliminary breakdown process)、梯级先导(stepped leader)、回击(return stroke)等。预击穿过程是在地闪通道伸延出云底之前发生于云内的弱电离过程和放电过程。其持续时间从几毫秒到几百毫秒不等,典型值为几十毫秒。梯级先导是地闪放电的初始阶段,它为回击过程开辟通道,是地闪中的主要物理过程之一,闪电放电电流的路径是电阻最小的路径。在地闪的对地放电过程中,先导与回击之间的过程被称为连接过程(attachment process)。回击过程是地闪中对地面输送大量电荷因而产生大电流和强电磁辐射的阶段。回击常常形成很大的电流,发出很强的光,并形成光柱。所以回击常被称为主放电或主闪击。回击的推进速度比先导要快得多,平均约为,变化范围为s cm /1059×()s cm /102~102109××。回击通道的直径为,平均为几厘米,峰值电流可达以上。电流很大,通道的温度迅速升高,可达数量级,空气骤然膨胀因而产生了雷声。 ()cm 23~1.0A 410K 410 云电荷分布 t = 0 预击穿过程 t = 1.00ms 梯级先 导t = 1.10ms t = 1.15ms t = 1.20ms t = 19.00ms t = 20.00ms t = 20.10ms t = 20.15ms t = 20.20ms 图2 一次负地闪所包含的各种物理过程随时间的发展示意图

雷电的形成与危害

雷电是由雷云(带电的云层)对地面建筑物及大地的自然放电引起的。在天气闷热潮湿的时候,地面上的水受热变为蒸汽,并且随地面的受热空气而上升,在空中与冷空气相遇,使上升的水蒸汽凝结成小水滴,形成积云。云中水滴受强烈气流吹袭,分裂为一些小水滴和大水滴,较大的水滴带正电荷,小水滴带负电荷。细微的水滴随风聚集形成了带负电的雷云;带正电的较大水滴常常向地面降落而形成雨,或悬浮在空中。由于静电感应,带负电的雷云,在大地表面感应有正电荷。这样雷云与大地间形成了一个大的电容器。当电场强度很大,超过大气的击穿强度时,即发生了雷云与大地间的放电,就是一般所说的雷击 雷电的形成 雷电是云内、云与云之间或云与大地之间的放电现象。夏季的午后,由于太阳辐射的作用,近地层空气温度升高,密度降低,产生上升运动,在上升过程中水汽不断冷却凝结成小水滴或冰晶粒子,形成云团,而上层空气密度相对较大,产生下沉运动,这样的上下运动形成对流。在对流过程中,云中的小水滴和冰晶粒子发生碰撞,吸附空气中游离的正离子或负离子,这样水滴和冰晶就分别带有正电荷和负电荷,一般情况下,正电荷在云的上层,负电荷在云的底层,这些正负电荷聚集到一定的量,就会产生电位差,当电位差达到一定程度,就会发生猛烈的放电现象,这就是雷电的形成过程。雷电电荷在放电过程中,产生很强的雷电电流,雷电电流将空气击穿,形成一个放电通道,出现的火光就是闪电。在放电通道中空气突然加热,体积膨胀形成爆炸的冲击波产生的声音就是雷声 雷电的危害雷电的危害雷电的危害雷电就是巨大的电火花。雷电流总是选择距离最近、最易导电的路径向大地泄放,凡是空气中导电微粒较多、地面上高耸物体、地面与地下的电阻率较小的地段容易落雷。一般说来,地面导电性能好,有突出的高大物体等,都易遭受雷击。例如导电性能好的金属矿物质条件就比一般地质条件更易遭雷击;湿土的雷击机会就比干土、沙地和岩石地面要多;水面比旱地易遭雷击;高楼、烟囱这些突出建筑物就比平地易遭雷击;山地也比谷地易遭雷击。直接被雷电击中会受伤害,但有时,即使未被雷电直接击中,由于离雷击点很近也会造成事故。这是因为强大的雷电电流向地里泄放时,由于地电阻的存在,使近雷击点处的电压值要比远离雷击点处的电压值大得多。因此,人若两脚分开站立,一脚离雷击点近,另一脚离雷击点远,就产生一定的电位差,这就是常说的“跨步电压”。一部分雷电电流由于“跨步电压”而流过人体,同样会造成伤害。雷电灾害的严重性表现在它具有巨大的破坏性上。它给人类社会带来极大的危害,如造成人员伤亡、财产损失等。雷电灾害波及面广,人类社会活动、农业、林业、牧业、建筑、电力、通信、航空航天、交通运输、石油化工、金融证券等各行各业,几乎无所不及。 雷电的危害一般分为两类雷电的危害一般分为两类雷电的危害一般分为两类雷电的危害一般分为两类:::: 雷直接击在建筑物上发生热效应和电动力作用; 雷电二次作用,即雷电流产生静电和电磁感应。 雷电的具体危害表现如下::::1、雷电流高压效应会产生高达数万伏甚至数十万伏的冲击电压,如此巨大的电压瞬间冲击电气设备,足以击穿绝缘使设备发生短路,导致燃烧、爆炸等直接灾害。2、雷电流高热效应会放出几十至上千安的强大电流,并产生大量热能,在雷击点的热量会很高,可导致金属熔化,引发火灾和爆炸。3、雷电流机械效应主要表现为被雷击物体发生爆炸、扭曲、崩溃、撕裂等现象导致财产损失和人员伤亡。4、雷电流静电感应可使被击物导体感生出与雷电性质相反的大量电荷,当雷电消失来不及流散时,即会产生很高电压发生放电现象从而导致火灾。5、雷电流电磁感应在雷击点周围产生强大交变电磁场,感生出的电流可引起变电器局部过热而导致火灾。6、雷电波的侵入和防雷装

风力发电机的雷电绕击分析与防护

风力发电机的雷电绕击分析与防护 发表时间:2018-12-07T10:00:32.543Z 来源:《防护工程》2018年第25期作者:郑卓骅林娜 [导读] 风能资源丰富,发展风力发电优势得天独厚。为了能保障风机发电系统在一个可靠的环境下安全运行,对风机采取相应的雷击保护措施是不可避免的。对此,本文针对风力发电机雷击及其防护进行了研究,以雷击风机桨叶暂态特性仿真分析为案例,提出了防雷整改措施,希望为雷击事故应对和处理提供参考。 郑卓骅林娜 广东省揭阳市气象局 摘要:风力发电因其清洁无污染、可永续利用等特点,对于调整我国能源结构、加强资源节约利用、促进生态环境保护、推进经济可持续发展意义重大。我国幅员辽阔,风能资源丰富,发展风力发电优势得天独厚。为了能保障风机发电系统在一个可靠的环境下安全运行,对风机采取相应的雷击保护措施是不可避免的。对此,本文针对风力发电机雷击及其防护进行了研究,以雷击风机桨叶暂态特性仿真分析为案例,提出了防雷整改措施,希望为雷击事故应对和处理提供参考。 关键词:风力发电机;雷电绕击;防护 风力发电是将风能进行较为直接地开发利用,风电场一般建立在山顶、荒漠、滩涂等自然地理环境复杂且容易受到雷电灾害影响的地方,雷击事故时有发生,风力发电的蓬勃发展正在受到日益严重的雷电灾害的威胁。国内外相关案例都表明雷击是严重威胁风力发电场安全的主要问题之一。雷电击中风机后,雷电流将会对风机叶片等结构造成严重破坏,导致高昂的经济损失,如维修费用、人工成本和停运损失等。为避免雷击事故中雷电流对风机的损害,风电场的雷击防护至关重要。 一、雷电放电概述 雷电具有非常强大的爆发力,也具有很大的随机性,雷电的放电主要是雷云和雷云之间或者雷云内部进行的,其中雷云放电是在某些适当的地理和气象条件下,由于比较强烈的潮湿热气流不断上升进入稀薄大气层后冷凝的结果。雷云对地放电是从下行先导放电阶段开始的。如今的风电机组容量已经从几百千瓦扩大到兆瓦级的,高度也已经达到了一百多米,属于高体结构,其雷云在下行先导通道中负电荷的感应作用下,风电机组会出现感应正电荷。当下行先导头部接近机组时,风机的叶片尖端部分会发生畸变作用,伴随着电场强度快速扩大,附近的大部分空气产生游离,就会发生上行先导。其中上升放电先导是分布正电荷,向上的速度是(0.05~1.2)×106m/s。接着上升先导和下升先导在空气中会合之处就产生了回击放电,于是风机就遭受了雷击,会合之处就是雷击点。 二、绕击模型 目前较为常用的绕击分析模型包括经典电气几何模型和Eriksson提出的改进电气几何模型。电气几何模型在分析输电线路屏蔽失效的方面获取了较好的效果。电气几何模型是基于击距概念,击距是将线路引雷能力与雷电流幅值联系在一起。在电气几何模型的基础上,相关的学者又通过完善提出了引雷空间法开展线路防雷保护的分析。引雷空间法中的非常重要的一个概念是吸引半径,具体说的是引雷的结构物包含一定的雷电吸引范围,一旦雷电下行先导进入吸引半径区域内,结构物会产生迎面先导从而拦截下行先导,否则雷电先导击中地面。吸引半径较击距更能看出建筑产生的上行先导所产生的雷击影响。 三、雷击风机桨叶暂态特性仿真分析 由于风机高耸的结构和桨叶顶端突出的特点,风机桨叶是比较容易遭到雷击的部位之一,而又因桨叶通常处于旋转状态,受雷击后,其雷电流泄放通道更难形成,所以桨叶也很容易击坏。可以把整张叶片看成一条传输线,并且等值成一个RLC电路,选取的叶片仿真模型在工程中实际长度为60m。在ATPdraw仿真电路中,把叶片依次从上往下等分成A、B、C三段,雷电流从桨叶的顶部注入,在每相隔的RLC 电路中添加节点电压测量仪,设置每段20m的单相分布传输线。 为更接近实际风机情况,对风机进行模拟计算时,选取风机的部分参数为:整机总体直径是130m,塔体高80米,叶片长度为60m,叶根弦长4m。设雷电流波形为我国电力行业规定采用的2.6/50μs,且在仿真软件中参数设置幅值为100kA,波头时间为4E-6,半波时间为5E-5。在ATPdraw仿真软件中,设定仿真参数后,进行仿真。 另外,雷电流沿壳体内部路径传导时常会出现电弧,弧道附近的壳体材料,同时高温可能高达几千度,这样高的温度会严重烧损弧道附近的壳体材料,同时高温也会在壳体内部产生高压力的冲击波,对桨叶壳体产生机械损伤,这种损伤连同电弧通道高温的烧灼作用,常使受雷击后的桨叶出现裂痕。 四、风电场防雷整改措施 (一)风机基座基础与箱变设备防雷接地系统设计 风机基座基础与箱变设备防雷接地要依据风机的所在的地理环境、土壤电阻率、雷电灾害发生的频率等条件,并根据IEC61400-24-2010等的相关规范和要求来设计。 风力发电机组的接地系统不仅是风机与箱变的防雷接地,同时也是系统接地(防静电接地)、保护接地和工作接地。首先,要利用风力发电机基座基础接地装置当作自然接地体,其次,依据现场的实际情况和土壤电阻率在风机基础接地体外进行敷设,接地铜引线穿过基座时与基座里的钢筋有效的连接,并与箱变设备的接地连接在一起,将风机基础内的接地和基础外接地网联系构成完整的接地体。最后,埋设垂直接地体以及外延接地体当作扩散雷电流的人工接地网,通过利用厚度不小于4mm的热镀锌扁铁,且埋地的深度不小于80cm,以符合接地电阻阻值小于4Ω的要求。 结合风电场的实际现场环境,通过利用半球接地原理,在风机基础外延一定数量的水平接地体,并在外延水平接地体上均匀地布设相应数量的接地高效降阻产品DK-AG/Fb防腐电解地极,利用电解质向地表深层和四周的泄放,可使导电率极差的地质结构,形成一个很好的导电通道,大大降低接地电阻。 五、结束语 综上所述,在风电机组设备损坏当中,叶片的损坏对发电量的影响最大,所需要的维修费用最多,维修工艺也最复杂。严重的雷击叶片事故甚至可能导致整台风电机组报废。而风机的雷击特性又和叶片密切相关,因此叶片的防雷是风电机组防护的重点和难点。针对雷电

罗氏线圈应用实例

创建时间:2012-12-7 16:31:00作者:陈泽榕自动化三班37号 题目:选择罗氏线圈测量三相交流电流1KA,频率为0至1KHZ。 分析: (1)因为罗氏线圈测量电流的理论依据是“法拉第电磁感应定律”和“安培环路定律”。 当被测电流沿轴线通过罗氏线圈中心时,在环形绕组所包围的体积内产生相应变化的磁场,强度为H,由安培环路定律得:∮H·dl=I(t) 线圈的感应电压与H的变化率成正比,因此,所有线圈的感应电势之和与电流的变化率成正比。也就是:e(t)=di/dt 也就是说罗氏线圈的输出信号是一个电压值,由电压值积分后,须将电压值转化为电流值最后送到电流仪表中。 故一个完整的罗氏线圈电流测量系统包括一个线圈和一个积分器和电压电流转换器。 (2)三相电,有三条电线,而罗氏线圈用于测量单相交流电,故应选择三个罗氏线圈分别测量每相上的电流。 (3)保证测量精准。由于罗氏线圈具有测量无相角差,线性度好,可以测量频率几赫兹到1M,从几安培到几百千安培的电流,具有极佳的瞬态跟踪能力。但是由于罗氏线圈的原理,线圈应固定(线圈运动会切割磁场产生感应电动势,这是我们不想)避免受外界的扰动使线圈移动。且尽量保证电线位于线圈的中心。 (4) 我在网上找到了陕西铱星科技有限公司的罗氏线圈的规格见下表: 显然根据表格可以知道型号YXLS-5 /120满足要求(如果像课堂中讲的动车供电电压27.5KV,则需特别订制)。故选择铱星科技有限公司的罗氏线圈YXLS-5 /120和积分器还有电压电流转换器。 (5)下面是我的设计框图: 罗氏线圈为柔性开合式结构,外套硅橡胶管,用时无需改变电路,只需将线圈两端插扣。而输出信号端接入积分器及电压电流转换器(该公司的产品这两部分整合为一)最后接仪表。 1

雷电的形成与危害

雷电的形成 雷电是云内、云与云之间或云与大地之间的放电现象。夏季的午后,由于太阳辐射的作用,近地层空气温度升高,密度降低,产生上升运动,在上升过程中水汽不断冷却凝结成小水滴或冰晶粒子,形成云团,而上层空气密度相对较大,产生下沉运动,这样的上下运动形成对流。在对流过程中,云中的小水滴和冰晶粒子发生碰撞,吸附空气中游离的正离子或负离子,这样水滴和冰晶就分别带有正电荷和负电荷,一般情况下,正电荷在云的上层,负电荷在云的底层,这些正负电荷聚集到一定的量,就会产生电位差,当电位差达到一定程度,就会发生猛烈的放电现象,这就是雷电的形成过程。雷电电荷在放电过程中,产生很强的雷电电流,雷电电流将空气击穿,形成一个放电通道,出现的火光就是闪电。在放电通道中空气突然加热,体积膨胀形成爆炸的冲击波产生的声音就是雷声 根据雷电产生和危害特点的不同,雷电可分为以下四种: 1.直击雷 直击雷是云层与地面凸出物之间的放电形成的。直击雷可在瞬间击伤击毙人畜。巨大的雷电流流入地下,令雷击点及其连接的金属部分产生极高的对地电压,能直接导致接触电压或跨步电压的触电事故。直击雷产生的数十万至数百万伏的冲击电压会毁坏发电机、电力变压器等电气设备绝缘,烧断电线或劈裂电杆造成大规模停电,绝缘损坏可能引起短路导致火灾或爆炸事故。另外,直击雷的巨大雷电流通过被雷击物,在极短时间内转换成大量的热能,造成易燃物品的燃烧或造成金属熔化、飞溅而引起火灾。 2.球形雷 球形雷是一种球形。发红光或极亮白光的火球,运动速度大约为2m/s。球形雷能从门、窗、烟囱等通道侵入室内,极其危险。 3.雷电感应,也称感应雷 雷电感应分为静电感应和电磁感应两种。静电感应是由于雷云接近地面,在地面凸出物顶部感应出大量异性电荷所致。在雷云与其他部位放电后,凸出物顶部的电荷失去束缚,以雷电波的形式,沿突出物极快地传播。电磁感应是由于雷击后,巨大雷电流在周围空间产生迅速变化的强大磁场所致。这种磁场能在附近的金属导体上感应出很高的电压,造成对人体的二次放电,并损坏电气设备。 4.雷电侵入波 雷电冲击波是由于雷击而在架空线路上或空中金属管道上产生的冲击电压沿线或管道而迅速传播的雷电波。雷电侵入波可毁坏电气设备的绝缘,使高压窜入低压,造成严重的触电事故。属于雷电侵入波造成的雷电事故很多,在低压系统中这类事故约占总雷害事故的70%。 雷电的危害一般分为两类:::: 1、雷直接击在建筑物上发生热效应和电动力作用; 2、雷电二次作用,即雷电流产生静电和电磁感应。 3、 雷电的具体危害表现如下::::1、雷电流高压效应会产生高达数万伏甚至数十万伏的冲击电压,如此巨大的电压瞬间冲击电气设备,足以击穿绝缘使设备发生短路,导致燃烧、爆炸等直接灾害。2、雷电流高热效应会放出几十至上千安

雷电灾害防护常识(2020年)

( 安全常识 ) 单位:_________________________ 姓名:_________________________ 日期:_________________________ 精品文档 / Word文档 / 文字可改 雷电灾害防护常识(2020年) Safety accidents can cause us great harm. Learn safety knowledge and stay away from safety accidents.

雷电灾害防护常识(2020年) (1)雷电是怎么回事 雷电是大气中的一种放电现象。雷雨云在形成过程中,部分积聚起正电荷,另一部分积聚起负电荷,当这些电荷积聚到一定程度时,就产生放电现象。这种现象有的是在云层与云层之间进行,有的是在云层与大地之间进行。这两种放电现象俗称打雷,它会破坏建筑物、电气设备,伤害人畜。这种放电时间短促,一般约50—100微秒,但电流异常强大,能达到数万安培到数十万安培。放电时产生强烈的光,这就是闪电。闪电时,将释放出大量热能,瞬间能使局部空气温度升高1万—2万℃,空气的压强可达70个大气压,这样大的能量,具有极大的破坏力,往往会造成火灾和人畜的伤亡。 (2)雷电能造成哪些危害 1.雷电产生强大电流,瞬间通过物体时产生高温,引起燃烧、

熔化;触及人畜时,会造成人畜伤亡。 2.雷击爆炸作用和静电作用能引起树林、电杆、房屋等物体被劈裂倒塌 3.打雷放电时能产生数万度高温空气急剧膨胀扩散,产生冲击波,具有一定的破坏力。 4.雷电流在周围空间形成强大的电磁场。电磁感应能使导体的开口处产生火花放电,如有易燃、易爆物品就会引起爆炸或燃烧。 5.各种电力线、电话线、广播线由于雷击产生高压,致使电器设备损坏。 (3)怎样预防雷击 1.在空旷田野上,不要使自己成为尖端,也就是说,要尽量降低自身高度,不应该把铁锹、锄头、高尔夫球棍等带有金属的物体扛在肩上高过头顶。 2.在市郊地区,最好躲入一栋装有金属门窗或设有避雷针的建筑物内,也可躲进有金属车身的汽车内。 3.在稠密树林中,最好找一块林中空地,双脚并拢蹲下;在大

输电线路雷电绕击评估方法分析及展望 谢永彬

输电线路雷电绕击评估方法分析及展望谢永彬 发表时间:2019-04-01T15:14:30.483Z 来源:《电力设备》2018年第29期作者:谢永彬许文广[导读] 摘要:随着我国超/特高压输电线路建设工程的发展,由雷电绕击引起的跳闸事故愈发频繁,严重影响到超/特高压输变电系统的安全可靠运行。 (河北省石家庄国网河北省电力有限公司检修分公司 050000)摘要:随着我国超/特高压输电线路建设工程的发展,由雷电绕击引起的跳闸事故愈发频繁,严重影响到超/特高压输变电系统的安全可靠运行。现有的众多雷电绕击评估方法受计算模型和雷电观测手段的限制、以及各种关键性参数与判据的不确定性等因素的影响,无法满足对输电线路雷电屏蔽性能分析准确性的需求。因此,详细阐述了当前各种雷电绕击评估方法的研究现状与进展,归纳了各方法存在的问 题,并基于此分析了输电线路雷电绕击评估方法的机遇与发展趋势,指出随着长空气间隙放电理论和雷电观测手段的研究发展,未来关于输电线路雷电绕击评估方法的重点在于根据雷电绕击微观物理过程和相应关键参数的测量,建立更为完善和准确的绕击评估方法,为输电线路差异化防雷工作的开展提供重要的理论支撑。 关键词:雷电绕击;输电线路;评估方法;长空气间隙放电;上行先导;雷电参数引言 我国能源中心和电力负荷中心在地域上存在巨大差异,导致在电网中需使用大容量、远距离、高稳定性的电能传输方式。随着我国“西电东送”发展战略的实施与深化,采用超/特高压输电方式是保障这种远距离输电的必然途径。长期以来,我国输电线路的稳定运行都遭受着各种因素以及各种方式的威胁,运行经验表明,雷击是造成我国输电线路跳闸故障的主要原因。我国输电线路大多处于旷野高山且相互间纵横交错,绵延数百至数千 km,极易遭受雷击而导致跳闸事故的发生,给国民经济带来了巨大的损失。本文针对输电线路雷电绕击问题,详细阐述了当前各种雷电绕击评估方法的研究现状与进展,结合超/特高压输电线路的特点分析了各方法中存在的问题,并对绕击评估方法的发展进行了预测与展望。 1 输电线路雷电绕击评估方法现状与问题分析 1.1 雷电参数 地闪密度和雷电流幅值概率分布是影响输电线路绕击评估结果准确性的重要参数。早年,由于雷电监测技术的限制,这 2 个参数在一个较大区域内往往只能取同一平均值,并不能体现出不同地区雷电活动的差异性。近年来,由于雷电定位系统等雷电监测技术的出现,使得雷电参数的监测能够更加精细化和精确化,在绕击评估中可以将输电线路走廊不同区段雷电参数差异化,进而更为准确地反映出输电线路各区段的绕击耐雷性能。 近年来,随着雷电定位系统定位技术的成熟、定位基站的建设完善,地闪密度可以以更为精细、更为准确的方式进行统计。雷电定位系统依靠测量雷电发生时产生的电磁波,获得雷电位置、时间、幅值等信息。目前,中国电网雷电定位系统部分区域探测效率已>90%,定位精度达到 200 m。使用这些雷电定位数据可以获得更为准确的输电线路走廊地闪密度分布情况。 1.2试验验证法 该验证方式是指通过一些雷电监测手段获得绕击模型中部分参数或过程的观测值,通过这些实测值来验证绕击模型中的一些关键参数或过程。例如,Becerra 和 Cooray 在建立上行先导模型时,为验证其模型的有效性,利用 Willett 等人在佛罗里达进行的人工引雷试验获得的平均电场对比分析了其模型的计算结果,结果表明其模型在考虑了空间电荷影响后,稳定电场与试验结果保持了很好的一致性。 2 输电线路雷电绕击评估方法的展望 前文对当前广泛应用的输电线路雷电绕击评估方法的研究现状以及存在的问题进行了详细描述与分析,尽管多年来国内外学者在该领域开展了大量的研究工作,但依然无法得到精细化的模型使其能够准确反映雷电绕击输电线路的物理过程。然而鉴于超/特高压输电线路因遭受雷击导致的跳闸事故日益增多,超/特高压输电线路的雷电屏蔽问题严重制约了我国电网的安全稳定运行,继续深入开展雷电绕击输电线路评估方法的研究工作具有重要意义。本章根据当前该领域的研究热点以及相关工作的最新进展,对输电线路雷电绕击评估方法的机遇进行了总结,并对未来发展趋势做出展望。 3 输电线路雷电绕击评估方法的发展趋势 如前文所述,随着长空气间隙放电试验与仿真研究的不断发展,能够对长空气间隙放电过程中的各物理参量实现准确观察与测量,并利用仿真模拟加深对长空气间隙放电微观过程的理解,结合自然雷电和人工引雷试验研究,通过试验与仿真方法的相互配合,将相关研究成果应用于输电线路绕击评估方法中,可以得到更为精确的评估模型。 此外,先导发展模型作为更适合超/特高压输电线路的绕击评估方法,许多学者曾提出由于该方法的工作量与时间消耗巨大,不利于实际工程应用,因此如何缩小计算量与工作耗时也是其未来发展的一大趋势。Dellera 和 Garbagnati 在提出先导发展模型的同时,通过一组应用图对输电线路耐雷水平进行简化估算从而缩短计算时间。此后,通过对2维空间的离散化处理,简化了先导的运动过程,提高了计算效率。Tavakoli 等人通过 3层感知器构成的人工智能模型缩短输电线路跳闸率的计算时间。司马文霞等人通过微分方程的形式将复杂耗时的先导发展模型简化为解析模拟方法,将先导发展模型的计算效率提升了 40 余倍,极大地推进了其工程应用发展。 4 结论 长久以来,输电线路雷电绕击评估方法的发展主要是受到我国输电线路长期遭受雷击跳闸事故以及相应的治理、设计和防护需求所推动的,尤其是近年来随着我国大力开展特高压输电线路的建设,为使其免于遭受雷击从而减少跳闸事故带来的经济损失,输电线路雷电绕击评估方法仍需要进一步的发展。本文通过对当前各种雷电绕击评估方法的研究现状进行详细分析,得到了如下结论及对未来研究的展望: 1)随着输电线路结构尺寸的增大,电气几何模型由于无法考虑雷云放电以及产生下行先导行进过程的分散性,其在超/特高压输电线路的雷电绕击评估中的计算结果误差较大,相比之下,先导发展模型更适用于超/特高压输电线路的绕击评估工作。 2)受限于当前长空气间隙放电研究的研究进展,先导发展模型中的众多参数与判据存在多样性以及争议性,且各参数与判据的准确性仍有较大欠缺,极大地限制了先导发展模型评估结果的精确度。同时,先导发展模型工作量大、耗时长的特点也制约了其在实际工程中的应用。

罗氏线圈应用实例

自动检测技术张大伟 创建时间:2012-12-7 16:31:00作者:陈泽榕自动化三班37号 题目:选择罗氏线圈测量三相交流电流1KA,频率为0至1KHZ。 分析: (1)因为罗氏线圈测量电流的理论依据是“法拉第电磁感应定律”和“安培环路定律”。 当被测电流沿轴线通过罗氏线圈中心时,在环形绕组所包围的体积内产生相应变化的磁场,强度为H,由安培环路定律得:∮H·dl=I(t) 线圈的感应电压与H的变化率成正比,因此,所有线圈的感应电势之和与电流的变化率成正比。也就是:e(t)=di/dt 也就是说罗氏线圈的输出信号是一个电压值,由电压值积分后,须将电压值转化为电流值最后送到电流仪表中。 故一个完整的罗氏线圈电流测量系统包括一个线圈和一个积分器和电压电流转换器。 (2)三相电,有三条电线,而罗氏线圈用于测量单相交流电,故应选择三个罗氏线圈分别测量每相上的电流。 (3)保证测量精准。由于罗氏线圈具有测量无相角差,线性度好,可以测量频率几赫兹到1M,从几安培到几百千安培的电流,具有极佳的瞬态跟踪能力。但是由于罗氏线圈的原理,线圈应固定(线圈运动会切割磁场产生感应电动势,这是我们不想)避免受外界的扰动使线圈移动。且尽量保证电线位于线圈的中心。 (4) 我在网上找到了陕西铱星科技有限公司的罗氏线圈的规格见下表: 显然根据表格可以知道型号YXLS-5 /120满足要求(如果像课堂中讲的动车供电电压27.5KV,则需特别订制)。故选择铱星科技有限公司的罗氏线圈YXLS-5 /120和积分器还有电压电流转换器。 (5)下面是我的设计框图: 罗氏线圈为柔性开合式结构,外套硅橡胶管,用时无需改变电路,只需将线圈两端插扣。而输出信号端接入积分器及电压电流转换器(该公司的产品这两部分整合为一)最后接仪表。 陈泽榕 自动化三班

雷电的种类及其危害(宣传版报)

防雷知识 一、遇雷雨时,注意避雷的情形: (1)应该留在室内,并关好门窗;在室外工作的人应躲入建筑物内。 (2)不宜使用无防雷措施或防雷措施不足的电视、音响等电器,不宜使用水龙头。 (3)切勿接触天线、水管、铁丝网、金属门窗、建筑物外墙,远离电线等带电设备或其它类似金属装置。 (4)减少使用电话和手提电话。 (5)切勿游泳或从事其它水上运动,不宜进行室外球类运动,离开水面以及其它空旷场地,寻找地方躲避。 (6)切勿站立于山顶、楼顶上或其它接近导电性高的物体。 (7)切勿处理开口容器盛载的易燃物品。 (8)在旷野无法躲入有防雷设施的建筑物内时,应远离树木和桅杆。 (9)在空旷场地不宜打伞,不宜把羽毛球、高尔夫球棍等扛在肩上。 (10)不宜开摩托车、骑自行车。 二、雷电的危害形式: 闪电可分为云内闪、云际闪和云地闪。前者对飞行器危害大,后者对建(构)筑物、电子电气设备和人、畜危害甚大。地球上每天约发生800万次云地闪电,平均每秒100次。 雷电流总是选择距离最近,最易导电的路径向大地泄放,凡是空气中导电微粒较多、地面上高耸物体、地面与地下的电阻率较小的地

段容易落雷。 雷电侵入地面的建(构)筑物、设备、人、畜等会造成灾害,其形式主要有: 直接雷击(包括直击雷、侧击雷)——在雷电活动区内,雷电直接通过人体、建(构)筑物、设备等对地放电产生的电击现象为直接雷击。 间接雷击——雷电流通过静电感应、电磁感应、电磁脉冲辐射、雷电过电压入侵、雷电反击等(统称感应雷)形式侵入建(构)筑物内,使建(构)筑物、设备部件损坏或人身伤亡。 雷电灾害的严重性表现在它具有巨大的破坏性上,其特点是雷电放电电压高,闪电电流幅值大,变化快,放电时间短,闪电电流波形陡度大。雷电的破坏作用在于强大的电流、炽热的高温、猛烈的冲击波、剧变的电磁场以及强烈的电磁辐射等物理效应,给人类社会带来极大的危害,造成人员伤亡、巨大破坏、起火爆炸、严重损失。雷电灾害波及面广,人类社会活动、农业、林业、牧业、建筑、电力、通信、航空航天、交通运输、石油化工、金融证券等各行各业,几乎无所不及。随着高科技的发展,雷电灾害显得越来越严重。 三、雷电的形成: 雷电是一种极为宏伟壮观的自然现象,是一门古老而富有神秘色彩的科学。雷电孕育了地球的生命,又促成了地球上的文明,功莫大焉!但是,雷电的巨大破坏力,又给人类社会带来惨重的灾难。而人类与自然的斗争从未停息过,与雷电的斗争是卓有成效的。随着社会

相关文档
最新文档