支架立杆稳定和地基承载力计算-2014.5

支架立杆稳定和地基承载力计算-2014.5
支架立杆稳定和地基承载力计算-2014.5

辽宁聚成工程项目管理联盟Liaoning JUCHENG engineering project management institute

支架立杆稳定和地基承载力计算

脚手架立杆底座和地基承载力计算是脚手架(支架)计算中的重要内容。

1 立杆底座计算

1.1支撑立杆的稳定应按下列公式计算

(1)不考虑风荷载时

N/Φ A≤f(式1)

(2)考虑风荷载时

N/φA+M w/W≤f(式2)

式中N——计算立杆段的轴向力计算值;

Φ——轴心受压构件的稳定系数,应按长细比λ按下表选择;

λ——长细比,λ=l0/i;

l0——计算长度,按规定计算;

i——立杆截面回转半径;

A ——立杆的截面面积;

Mw——计算立杆段由风荷载设计值产生的弯矩,Mw=0.9×1.4Mwk;

Mwk——计算立杆段由风荷载标准值产生的弯矩,按规定计算。

f——钢材的抗压强度设计值,应取f=205N/mm2;

W——立杆截面抗弯模量(cm2)。

表1 轴心受压构件的稳定系数Φ

1.2 立杆的计算长度l0计算

l0=k1 k2 (h+2a)

式中k1——计算长度附加系数,按表2采用;

k2——考虑支架整体稳定因素的单根立杆计算长度附加系数,按表3采用。

表2 单根立杆计算长度附加系数k1

表3 立杆计算长度附加系数k2

1.3 风荷载标准值计算

式中Wk———风荷载的标准值(kN/m2);

μz———风压高度变化系数,按现行标准《建筑结构荷载规范》(GB50009)规定采用;

μs———支架及模板系数风荷载体型系数,应按表5规定采用;

W0———基本风压值(kN/m2),按现行国家标准《建筑结构荷载规范》(GB50009)的规定采用,取重现期n=10对应的风压值。

表4 风压高度变化系数

表5 支架的风荷载体系系数

表6 辽宁地区城市风压值

2 立杆地基承载力计算

N/A d≤K c f ak

式中N——立杆传至基础顶面的平均轴向力设计值;

Ad——立杆基础的计算底面积,可按以下情况确定:

fak——地基承载力特征值,按地勘报告选用,当地基为回填时乘以地基承载系数,以保证脚手架安全。

Kc——脚手架地基承载力调整系数。

(1)当地基为回填土时,必须分层夯实,并应考虑雨水渗透的影响。地基承载系数:对碎石土、砂土、回填土应取0.4,对粘土取应取0.5。当回填土能严格按照操作规程施工,分层夯实并用干密度控制时,可以将该系数提高到1.0。

(2)当地基为岩石或混凝土时,可不进行计算,但应保证立杆底座与基底均匀传递承载。

2014.5.20

辽宁聚成工程项目管理联盟提供工程企业的全面解决方案,您身边的工程管理专家邮箱sunhyx@https://www.360docs.net/doc/e115918598.html,

地基承载力计算计算书

地基承载力计算计算书 项目名称_____________构件编号_____________日期_____________ 设计者_____________ 校对者_____________ 一、设计资料 1.基础信息 基础长:l=4000mm 基础宽:b=4000mm 修正用基础埋深:d=1.50m 基础底标高:dbg=-2.00m 2.荷载信息 竖向荷载:F k=1000.00kN 绕X轴弯矩:M x=0.00kN·m 绕Y轴弯矩:M y=0.00kN·m b = 4 0 l=4000 x Y 3.计算参数 天然地面标高:bg=0.00m 地下水位标高:wbg=-4.00m 宽度修正系数:wxz=1 是否进行地震修正:是 单位面积基础覆土重:rh=2.00kPa 计算方法:GB50007-2002--综合法 地下水标高-4.00 基底标高-2.00地面标高0.00 5 5 5 5 5 4.土层信息: 土层参数表格

二、计算结果 1.基础底板反力计算 基础自重和基础上的土重为: G k = A×p =16.0×2.0= 32.0kN 基础底面平均压力为: 1.1当轴心荷载作用时,根据5. 2.2-1 : P k = F k+G k A= 1000.00+32.00 16.00= 64.50 kPa 1.2当竖向力N和Mx同时作用时:x方向的偏心距为: e = M k F k+ G k= 0.00 1000.00 +32.00= 0.00m x方向的基础底面抵抗矩为: W = lb2 6= 4.00×4.00 2 6= 10.67m 3 x方向的基底压力,根据5.2.2-2、5.2.2-3为: P kmax = F k+G k A+ M k W= 64.50 + 0.00 10.67= 64.50 kPa P kmin = F k+G k A- M k W= 64.50 - 0.00 10.67= 64.50 kPa 1.3当竖向力N和My同时作用时:y方向的偏心距为: e = M k F k+ G k= 0.00 1000.00 +32.00= 0.00m y方向的基础底面抵抗矩为: W = bl2 6= 4.00×4.00 2 6= 10.67m 3 y方向的基底压力,根据5.2.2-2、5.2.2-3为: P kmax = F k+G k A+ M k W= 64.50 + 0.00 10.67= 64.50 kPa P kmin = F k+G k A- M k W= 64.50 - 0.00 10.67= 64.50 kPa 2.修正后的地基承载力特征值计算 基底标高以上天然土层的加权平均重度,地下水位下取浮重度 γm = ∑γi h i ∑h i = 2.0×18.0 2.0= 18.00 基底以下土层的重度为 γ = 18.00 b = 4.00 f a = f ak + ηbγ (b-3) + ηdγm (d-0.5) = 150.00+1.00×18.00×(4.00-3)+1.00×18.00×(1.50-0.5)

满堂脚手架设计计算法(最新)

满堂脚手架设计计算方法 钢管脚手架的计算参照《建筑施工扣件式钢管脚手架安全技术规范》(JGJ130-2011)、 《钢结构设计规范》(GB50017-2003)、《冷弯薄壁型钢结构技术规范》(GB50018-2002)、 《建筑地基基础设计规范》(GB 50007-2002)、《建筑结构荷载规范》(2006年版)(GB 50009-2001)等编制。 一、参数信息: 1.脚手架参数 计算的脚手架为满堂脚手架, 横杆与立杆采用双扣件方式连接,搭设高度为4米,立杆采用单立管。 搭设尺寸为:立杆的纵距l a= 1.20米,立杆的横距l b= 1.20米,立杆的步距h= 1.50米。 采用的钢管类型为Φ48×3.5。 横向杆在上,搭接在纵向杆上的横向杆根数为每跨2根 2.荷载参数砼板厚按均布250mm计算 2400X0.25X1=6.0KN/mm2 施工均布荷载为6.0kN/m2,脚手板自重标准值0.30kN/m2, 脚手架用途:支撑混凝土自重及上部荷载。 满堂脚手架平面示意图

二、横向杆的计算: 横向杆钢管截面力学参数为 截面抵抗矩 W = 5.08cm3; 截面惯性矩 I = 12.19cm4; 横向杆按三跨连续梁进行强度和挠度计算,横向杆在纵向杆的上面。 按照横向杆上面的脚手板和活荷载作为均布荷载计算横向长杆的最大弯矩和变形。 考虑活荷载在横向杆上的最不利布置(验算弯曲正应力和挠度)。 1.作用横向水平杆线荷载 (1)作用横向杆线荷载标准值 q k=(3.00+0.30)×1.20/3=1.32kN/m (2)作用横向杆线荷载设计值 q=(1.4×3.00+1.2×0.30)×1.20/3=1.82kN/m 横向杆计算荷载简图 2.抗弯强度计算 最大弯矩为 M max= 0.117ql b2= 0.117×1.82×1.202=0.307kN.m σ = M max/W = 0.307×106/5080.00=60.49N/mm2 横向杆的计算强度小于205.0N/mm2,满足要求! 3.挠度计算 最大挠度为 V=0.990q k l b4/100EI = 0.990×1.32×12004/(100×2.06×105×121900.0) = 1.079mm 横向杆的最大挠度小于1200.0/150与10mm,满足要求! 三、纵向杆的计算:

立杆稳定性及模板支架整体侧向力计算

立杆稳定性及模板支架整体侧向力计算 所处城市为湛江市,基本风压为W0=0.45kN/m2;风荷载高度变化系数为μz =1.0,风荷载体型系数为μs=0.355。 一、不组合风荷载时,立杆的稳定性计算 1、立杆荷载 根据《规程》,支架立杆的轴向力设计值N ut指每根立杆受到荷载单元传递来的最不利的荷载值。其中包括上部模板传递下来的荷载及支架自重,显然,最底部立杆所受的轴压力最大。上部模板所传竖向荷载包括以下部分:通过支撑梁的顶部扣件的滑移力(或可调托座传力)。根据前面的计算,此值为F1 =11.13 kN ; 除此之外,根据《规程》条文说明4.2.1条,支架自重可以按模板支架高度乘以0.15kN/m取值。故支架自重部分荷载可取为 F2=1.35×0.15×15.90=3.22kN; 通过相邻的承受板的荷载的扣件传递的荷载,此值包括模板自重和钢筋混凝土自重: F3=1.35×(0.60/2+(1.00-0.80)/2)×0.50×(0.30+24.00×0.25)=1.701 kN; 立杆受压荷载总设计值为:N =11.13+3.22+1.701=16.05 kN; 2、立杆稳定性验算 φ-- 轴心受压立杆的稳定系数; A -- 立杆的截面面积,按《规程》附录B采用;立杆净截面面积(cm2):A = 4.24; K H--高度调整系数,建筑物层高超过4m时,按《规程》5.3.4采用; 计算长度l0按下式计算的结果取大值: l0 = h+2a=1.20+2×0.30=1.800m; l0 = kμh=1.185×1.272×1.200=1.809m;

式中:h-支架立杆的步距,取1.2m; a --模板支架立杆伸出顶层横向水平杆中心线至模板支撑点的长度,取 0.3m; μ -- 模板支架等效计算长度系数,参照《扣件式规程》附表D-1,μ =1.272; k -- 计算长度附加系数,取值为:1.185 ; 故l0取1.809m; λ = l0/i = 1808.784 / 15.9 = 114 ; 查《规程》附录C得φ= 0.489; K H=1/[1+0.005×(15.90-4)] = 0.944; σ =1.05×N/(φAK H)=1.05×16.050×103/( 0.489×424.000×0.944)= 86.120 N/mm2; 立杆的受压强度计算值σ = 86.120 N/mm2小于立杆的抗压强度设计值 f=205.000 N/mm2,满足要求。 二、组合风荷载时,立杆稳定性计算 1、立杆荷载 根据《规程》,支架立杆的轴向力设计值N ut取不组合风荷载时立杆受压荷载总设计值计算。由前面的计算可知: N ut=16.050kN; 风荷载标准值按照以下公式计算 经计算得到,风荷载标准值 w k =0.7μzμs Wo= 0.7 *0.45*1*0.067 =0.0211 kN/m2; 其中w0 -- 基本风压(kN/m2),按照《建筑结构荷载规范》(GB50009-2001)的规定采用:w0 = 0.45 kN/m2; μz -- 风荷载高度变化系数,按照《建筑结构荷载规范》 (GB50009-2001)的规定采用:μz= 1 ; μs -- 风荷载体型系数:按圆形衍架取值为0.6*0.112=0.067; 风荷载设计值产生的立杆段弯矩M W为 M w = 0.85 ×1.4w k l a h2/10 =0.850 ×1.4×0.021×0.6×1.52/10 = 0.007 kN·m;

地基承载力计算

1、地基承载力特征值可由载荷试验或其它原位测试、公式计算、并结合工程实践经验等方法综合确定. 2、当基础宽度大于3m或埋置深度大于0.5m时,从载荷试验或其它原位测试、经验值等方法确定的地基承载力特征值,尚应按下式修正:fa=fak+ηbγ(b-3)+ηdγm(d-0.5) 式中 fa--修正后的地基承载力特征值; fak--地基承载力特征值 ηb、ηd--基础宽度和埋深的地基承载力修正系数 γ--基础底面以下土的重度,地下水位以下取浮重度; b--基础底面宽度(m),当基宽小于3m按3m取值,大于6m按6m取值; γm--基础底面以上土的加权平均重度,地下水位以下取浮重度; d--基础埋置深度(m),一般自室外地面标高算起.在填方整平地区,可自填土地面标高算起,但填土在上部结构施工后完成时,应从天然地面标高算起.对于地下室,如采用箱形基础或筏基时,基础埋置深度自室外地面标高算起;当采用独立基础或条形基础时,应从室内地面标高算起. 地基承载力是通过地基原位测试后再修正得到的,如果没有原位测试,可参照有关规范使用。如《公路桥涵地基与基础设计规范》的第3章,就有各种岩石、土的基本承载力数据可查(岩石地基承载力、碎石地基承载力、砂土地基承载力、粉土地基承载力、老黏土地基承载力、新近沉积黏土承载力)。通过承载力查表后,再通过测量地下水位情

况,地基的透水情况以及结构物的基底尺寸,进行承载力修正,得到最终的地基承载力。 地基承载力=8*N-20(N为锤击数) 地基承载力特征值fak是由荷载试验直接测定或由其与原位试验相关关系间接确定和由此而累积的经验值。它相于载荷试验时地基土压力-变形曲线上线性变形段内某一规定变形所对应的压力值,其最大值不应超过该压力-变形曲线上的比例界限值。 扩展资料 地基承载力(subgrade bearing capacity)是地基土单位面积上随荷载增加所发挥的承载潜力,常用单位KPa,是评价地基稳定性的综合性用词。 应该指出,地基承载力是针对地基基础设计提出的为方便评价地基强度和稳定的实用性专业术语,不是土的基本性质指标。土的抗剪强度理论是研究和确定地基承载力的理论基础。 地基承载力的确定方法有: (1)原位试验法(in-situ testing method):是一种通过现场直接试验确定承载力的方法。包括(静)载荷试验、静力触探试验、标准贯入试验、旁压试验等,其中以载荷试验法为最可靠的基本的原位测试法。 (2)理论公式法(theoretical equation method):是根据土的抗剪强度指标计算的理论公式确定承载力的方法。 (3)规范表格法(code table method):是根据室内试验指标、现场

脚手架的抗倾覆验算与稳定性计算

脚手架的抗倾覆验算与稳定性计算[摘要]当模板支架、施工用操作架等脚手架不设连墙杆时,必须首先对脚手架进行抗倾覆验算,然后才是强度、刚度和稳定性计算。而现行的国家标准中没有倾覆验算和稳定性验算内容。根据国家有关标准导出了脚手架倾覆验算公式,并有2个算例辅以说明。最后指出脚手架高宽比与脚手架的倾覆有关,与脚手架稳定性承载能力无关。 [关键词]脚手架;倾覆;稳定性;验算 结构设计中,“倾覆”与“稳定”这两个含义是不相同的,设计时都应考虑。《建筑结构可靠度设计统一标准》gb50068-2001第3.0.2条第一款规定承载能力极限状态包括:“①整个结构或结构的一部分作为刚体失去平衡(如倾覆等)……。④结构或结构构件丧失稳定(如压屈等)”。可见它们同属于承载能力极限状态,但应分别考虑。《建筑结构设计术语和符号标准》gb/t 50083-97,对“倾覆”和“稳定”分别作出了定义,并称“倾覆验算”和“稳定计算”。《建筑地基基础设计规范》gb50007-2002,关于地基稳定性计算就是防止地基整体(刚体)滑动的计算。《砌体结构设计规范》gb50003-2001对悬挑梁及雨篷的倾覆验算都有专门规定。施工现场的起重机械在起吊重物时也要做倾覆验算。对于脚手架,由于浮搁在地基上,更应该做倾覆验算。 《建筑施工扣件式钢管脚手架安全技术规范》jgj130-2001及《建筑施工门式钢管脚手架安全技术规范》jgj128-2000中都没有

倾覆验算的内容,这是因为这两本规范规定的脚手架都设置了“连墙杆”,倾覆力矩由墙体抵抗,因此就免去了倾覆验算。如果不设连墙杆,则脚手架的倾覆验算在这两本规范中就成为不可缺少的内容了。所以,对于模板支架、施工用的操作架等无连墙杆的脚手架,首先应保证脚手架不倾覆而进行倾覆验算,然后才是强度、刚度和稳定性计算。如果需要,还可进行正常使用极限状态计算。 1脚手架的倾覆验算 1.1通用的验算公式推导 无连墙杆的脚手架,作为一个刚体应按如下表达式进行倾覆验算: (1)式中:γg1、cg1、g1 k分别为起有利作用的永久荷载的分项系数、效应系数、荷载标准值;γg2、cg2、g2 k分别为起不利作用的永久荷载的荷载分项系数、效应系数、荷载标准值;cq1、q1 k 分别为第一个可变荷载的荷载效应系数、荷载标准值;cqi、qik分别为第i个可变荷载的荷载效应系数、荷载标准值;ψci为第i个可变荷载的组合值系数。当风荷载与一个以上的其它可变荷载组合时采用0.9;当风荷载仅与永久荷载组合时采用1.0。 对于平、立面无突出凹凸不平的脚手架,以下简称为规整脚手架,其倾覆验算应按如下表达式进行: (2)式中:0.9为起有利作用的永久荷载的荷载分顶系数;cw、wk为风荷载的效应系数、风荷载的标准值。 对于规整脚手架,其上作用的永久荷载、可变荷载是抗倾覆的,

地基承载力计算公式(附小桥涵地基承载力检测)

地基承载力计算公式(附小桥涵地基承载力检测) 【摘要】简明列出太沙基、汉森、魏锡克、梅耶霍夫、沈珠江、普兹列夫斯基、王长科等地基承载力理论计算公式。下面用TXT文本简明列出太沙基、汉森、魏锡克、梅耶霍夫、沈珠江、普兹列夫斯基、王长科等地基承载力理论计算公式,供参考使用。适于标准受压,只考虑基础宽度、超载影响,不考虑其他诸如倾斜等因素。 1、太沙基(Terzaghi)地基极限承载力qu公式 qu=c*Nc+q*Nq+0.5*γ*B*Nγ 其中 Nc=(Nq-1)*cotφ Nq=exp(π*tanφ) * tan2(45+φ/2) Nγ= 6 * φ / (40 -φ) 式中c、φ分别表示土的粘聚力、内摩擦角,B表示基础宽度。以下同。 2、汉森(Hansen)地基极限承载力qu公式 qu=c*Nc+q*Nq+0.5*γ*B*Nγ 其中 Nc=(Nq-1)*cotφ Nq=exp(π*tanφ) * tan2(π/4+φ/2) Nγ = 1.5 * Nc * tan2φ 3、梅耶霍夫(Meyerhof)地基极限承载力qu公式 qu=c*Nc+q*Nq+0.5*γ*B*Nγ 其中 Nc=(Nq-1) * cotφ Nq=exp(π*tanφ)*tan2(π/4+φ/2) Nγ = (Nq - 1) * tan(1.4 * φ) 4、魏锡克(Vesic)地基极限承载力qu公式 qu=c*Nc+q*Nq+0.5*γ*B*Nγ 其中 Nc=(Nq-1) * cotφ Nq=exp(π*tanφ) * tan2(π/4+φ/2) Nγ = 2 * (Nq + 1) * tanφ 5、沈珠江地基极限承载力qu公式 qu= (1 + d / B) ^ (1 / 3) * (c / tanφ * (Nq - 1) + 0.5 * γ * b * Nγ)

立杆稳定性计算

立杆的稳定性计算: 1.不考虑风荷载时,立杆的稳定性计算 其中N ——立杆的轴心压力设计值,N=14.35kN; ——轴心受压立杆的稳定系数,由长细比l0/i 的结果查表得到0.26; i ——计算立杆的截面回转半径,i=1.58cm; l0 ——计算长度(m),由公式l0 = kuh 确定,l0=2.60m; k ——计算长度附加系数,取1.155; 1)对受弯构件: 不组合风荷载 上列式中S Gk、S Qk——永久荷载与可变荷载的标准值分别产生的力和。对受弯构件力为弯矩、剪力,对轴心受压构件为轴力; S Wk——风荷载标准值产生的力; f——钢材强度设计值; f k——钢材强度的标准值; W——杆件的截面模量;

φ——轴心压杆的稳定系数; A——杆件的截面面积; 0.9,1.2,1.4,0.85——分别为结构重要性系数,恒荷载分项系数,活荷载分项系数,荷载效应组合系数; u ——计算长度系数,由脚手架的高度确定,u=1.50; 表5.3.3 脚手架立杆的计算长度系数μ

A ——立杆净截面面积,A=4.89cm2; W ——立杆净截面模量(抵抗矩),W=5.08cm3; ——钢管立杆受压强度计算值(N/mm2);经计算得到= 111.83 [f] ——钢管立杆抗压强度设计值,[f] = 205.00N/mm2; 不考虑风荷载时,立杆的稳定性计算< [f],满足要求! 2.考虑风荷载时,立杆的稳定性计算 其中N ——立杆的轴心压力设计值,N=13.56kN; ——轴心受压立杆的稳定系数,由长细比λ=l0/i 的结果查表得到0.26;λ值根据规表进行查表得出,如下图:

胎架立杆承载力计算分析_姚刚

2006年9月重庆大学学报(自然科学版)Sep.2006第29卷第9期Journa l o fC hongqing Universit y(N at u r a l Science Edition)Vo.l29 No.9 文章编号:1000-582X(2006)09-0134-04 胎架立杆承载力计算分析* 姚 刚1,刘伟亮1,周忠明2 (1.重庆大学土木工程学院,重庆 400030;2.广厦重庆第一建筑(集团)有限公司,重庆 400051) 摘 要:胎架是指主要起承重受力作用的脚手架,在模板工程、钢结构安装工程、桥梁工程中应用广泛.为了保证结构施工中胎架的安全,快速准确地对胎架进行设计计算具有重要的工程意义.与常用的单双排脚手架计算不同,胎架承载力的计算需要通过设计确定.通过分析影响承载力的各种因素及胎架破坏形式,运用参考规范的概率极限状态设计法和ANSYS程序分析的方法,得出了给定胎架参数下的承载力数值表格,对胎架立杆的搭设具有指导作用. 关键词:胎架;承载力;脚手架 中图分类号TU712文献标识码:A 胎架是指主要起承重受力作用的脚手架,在模板工程、钢结构安装工程、桥梁工程中应用广泛.与常用单双排脚手架不同,由于其支撑的结构形式、重量差别很大,胎架的设计差异较大.作为施工时的临时结构,计算方法应简便可靠的确定其承载能力同时保证经济合理. 1 胎架承载力计算分析 1.1 胎架破坏形式分析 大量工程实践表明,胎架的破坏主要是立杆失稳导致脚手架坍塌,包括整体失稳和局部失稳.整体失稳破坏时,立柱与水平杆组成的空间框架结构顺惯性矩较小的弱轴平面内呈大波鼓曲现象,各排立柱的鼓曲方向一致,失稳曲线的半波长度大于步距.局部失稳破坏时,立柱在步距之间发生小波鼓曲,鼓曲方向可能在立柱与水平杆组成的2个方向的竖向平面内,也可能沿任意方向,失稳曲线的半波长度接近等于步距[1-2]. 从胎架构造形式分析[3],当以相等的步距、柱距、排距搭设时,立柱的局部承载力高于整体承载力,但胎架的长宽比较为接近,平面接近于正方形而不是长条形时,二者承载力值应相差不多.当胎架搭设时步距、柱距有变化,局部的脚手架较稀疏时,立柱受荷不均则容易发生局部失稳破坏. 从受力状态分析,胎架主要承受钢桁架等结构的自重,结构往往通过千斤顶、枕木等传力给胎架,此时胎架的受力面积较小,荷载传递集中在局部,而其他作为施工操作面的地方荷载相对较小,胎架整体受力不均匀,易发生局部失稳破坏的情况,因此施工中应尽量加大荷载传递至胎架的接触面积. 无论哪种破坏,胎架的承载能力主要由立杆决定,立杆的承载能力由其整体或局部失稳时的临界荷载决定. 1.2 胎架计算的特殊性 胎架是由水平杆、立杆组成的多层多跨框架结构,立杆稳定计算问题,实际上是一个节点为半刚性的空间框架稳定计算问题,但和一般的框架相比其特殊点是: 1)构架的不严格性.胎架的构造型式、尺寸参数和杆件设置常随应用对象和施工要求的不同而变化,有时需要局部改变杆件设置:它的搭设也不像工程结构那样严格地按照设计图纸施工,在搭设中又常常由于各种原因,例如施工人员认识不足、要求不严,架设材料供应不足,操作工人的经验和主观意见等而改变构架参数,例如整架或局部地改变构件尺寸、随意减少杆件等.而基础和立杆支垫不好和立杆偏斜过大的情况较为普遍地存在.这些情况的存在,都将导致脚手架的设计计算依据与施工的实际情况不符,甚至差别显著. 2)节点性能的差异性.连接杆件的扣件节点,在荷载作用下具有相当的抗转动能力,是一种半刚性节点.其刚 *收稿日期:2006-03-05 作者简介:姚刚(1963-),男,四川营山人,重庆大学副教授,博士,主要从事建筑施工技术教学与研究的研究.

脚手架稳定性计算学习资料

脚手架立杆的稳定性计算 2010-09-12 外脚手架采用双立杆搭设,按照均匀受力计算稳定性 稳定性计算考虑风荷载,按立杆变截面处和架体底部不同高度分别计算风荷载标准值。风荷载标准值按照 以下公式计算 Wk=0.7 卩 z 卩 s 3 0 其中3 0 --基本风压(kN/m2),按照《建筑结构荷载规范》 (GB50009-2001) 的规定采用: 3 0=0.37kN/m2 ; 卩Z--风荷载高度变化系数,按照《建筑结构荷载规范》 (GB50009-2001) 的规定采用:卩z= 0.74 , 0.74 ; 卩s--风荷载体型系数:取值为 1.132 ; 经计算得到,立杆变截面处和架体底部风荷载标准值分别为 : Wk 仁0.7 X 0.37 X 0.74 X 1.132=0.217kN/m2 ; Wk2=0.7 X 0.37 X 0.74 X 1.132=0.217kN/m2 ; 风荷载设计值产生的立杆段弯矩 MW 分别为: Mw1=0.85 X 1.4Wk1Lah2/10=0.85 X 1.4 X0.217 X 1.5 X 1.82/10=0.12 5kN?m ; b =N/( ? A) + MW/W < [f] 立杆的轴心压力设计值 :N=Nd=8.487kN ; 不考虑风荷载时,立杆的稳定性计算公式 b =N/( ? A) < [f] 立杆的轴心压力设计值 :N=N'd= 8.991kN ; 计算立杆的截面回转半径 :i=1.59 cm ; 计算长度附加系数参照《建筑施工扣件式钢管脚手架安全技术规范》 k=1.155 : 计算长度系数参照《建筑施工扣件式钢管脚手架安全技 术规 范》 计算长度,由公式IO=kuh 确定:10=3.118 m ; Mw2=0.85 X 1.4Wk2Lah2/10=0.85 1. 主立杆变截面上部单立杆稳定性计算。 X 1.4 X 0.217 X 1.5 X 1.82/10=0.125kN?m (JGJ130-2001)表 5.3.3 得 (JGJ130-2001)表 5.3.3 得:卩=1.5

浅基础地基承载力验算部分计算题

一、计算题 图示浅埋基础的底面尺寸为6.5m×7m,作用在基础上的荷载如图中所示(其中竖向力 ]=240kPa[。试检算地为主要荷载,水平力为附加荷载)。持力层为砂粘土,其容许承载力基承载力、偏心距、倾覆稳定性是否满足要求。 K≥1.5(提示:要求倾覆安全系数)0 [本题15分] 参考答案: 解: )(1

代入后,解得: ,满足要求 ),2满足要求( ), 满足要求(3 3kN,对应的偏心距e=0.3m×10。持力层的=5.0二、图示浅埋基础,已知主要荷载的合力为N容许承载力为420kPa,现已确定其中一边的长度为4.0m (1)试计算为满足承载力的要求,另一边所需的最小尺寸。 (2)确定相应的基底最大、最小压应力。 [本题12分] 参考答案: 解:由题,应有 )2(N=6×1m×3m,已知作用在基础上的主要荷载为:竖向力图示浅埋基础的底面尺寸为6三、32M。试计算:kNm。此外,持力层的容许承载力0kN,弯矩×=1.510 1)基底最大及最小压应力各为多少?能否满足承载力要求?( e的要求?(2)其偏心距是否满足ρ≤N不变,在保持基底不与土层脱离的前提下,基础可承受的最大弯矩是多少?此时3)若(基底的最大及最小压应力各为多少?

[本题12分] 参考答案: )解:(1 )(2 )3( ba,四周襟边尺寸相同,埋=某旱地桥墩的矩形基础,基底平面尺寸为7.4m=7.5m,四、hN=6105kN2m=,在主力加附加力的组合下,简化到基底中心,竖向荷载置深度,水平荷载HM=3770.67kN.m。试根据图示荷载及地质资料进行下列项目的检算:,弯矩=273.9kN(1)检算持力层及下卧层的承载力; (2)检算基础本身强度; )检算基底偏心距,基础滑动和倾覆稳定性。3 (.

脚手架立杆稳定性计算

屋面搭设满堂红脚手架立杆稳定性计算 1、钢管脚手架主要验算立杆的稳定性,可简化为按两端铰接的受压杆件计算。 2、荷载统计 钢管支架自重力 钢管:0.8*4*5*3.84*9.8=602n/m 2 扣件:4*5*13.2=264n/m 2 木板:0.8*0.8*0.35=224n/m 2 小计:602+264+224=1090n/m 2 吊篮后支座及配重 (1000+50)*9.8=10290n/m 2 合计:1090+10290=11380n/m 2 3、立杆纵距、横距均800mm ,每区格面积0.8*0.8=0.64m 2。 每根立杆承受的荷载为0.64*11380=7283.2n 。 4、设用ф48*3mm 钢管,A=424mm 2 钢管回转半径 15.9mm 442484d d i 2 221 2=+=+= 按强度计算,立杆的受压力为 2mm 17.17424 2.7283a n ===? 按稳定性计算立杆的受压力为 长细比47.759 .151200i l ===λ 查表得750.0=? 22mm n 215f mm n 90.22424 *750.02.7283a n =?===?? 考虑组合风荷载,计算公式 f w ≤+W M A N ?。 10 h 4.1*85.04.1*85.02 a wk w L W M M K == O W U U W s z k 7.0=,经查表得知,U z =1.27,U s =0.115,W O =0.65,

W K =0.7*1.27*0.115*0.65=0.066 立杆纵距L a =0.8 立杆步距h=1.2 009.010 2.1*8.0*066.0*4.1*85.0Mw 2 == 经计算 223mm n 215f mm n 67.2477.19.2210 *08.5009.090.22=?=+=+- 满堂红脚手架进过计算,立杆稳定性满足要求。

地基承载力计算

地基承载力=8*N-20(N为锤击数) 地基的承载力是随负载增加而地基单位面积的承载力。常用单位KPa是评估基础稳定性的综合术语。应该指出的是,基础承载力是基础设计的一个实用术语,它有助于评估基础的强度和稳定性,而不是土壤的基础特性指标。土的抗剪强度理论是研究和确定地基承载力的理论基础。 在荷载作用下,地基要产生变形。随着荷载的增大,地基变形逐渐增大,初始阶段地基土中应力处在弹性平衡状态,具有安全承载能力。当荷载增大到地基中开始出现某点或小区域内各点在其某一方向平面上的剪应力达到土的抗剪强度时,该点或小区域内各点就发生剪切破坏而处在极限平衡状态,土中应力将发生重分布。这种小范围的剪切破坏区,称为塑性区(plastic zone)。地基小范围的极限平衡状态大都可以恢复到弹性平衡状态,地基尚能趋于稳定,仍具有安全的承载能力。但此时地基变形稍大,必须验算变形的计算值不允许超过允许值。当荷载继续增大,地基出现较大范围的塑性区时,将显示地基承载力不足而失去稳定。此时地基达到极限承载力。 确定方法: (1)原位试验法(in-situ testing method):是一种通过现场直接试验确定承载力的方法。包括(静)载荷试验、静力触探试验、标准贯入试验、旁压试验等,其中以载荷试验法为最可靠的基本的原位测试法。 (2)理论公式法(theoretical equation method):是根据土

的抗剪强度指标计算的理论公式确定承载力的方法。 (3)规范表格法(code table method):是根据室内试验指标、现场测试指标或野外鉴别指标,通过查规范所列表格得到承载力的方法。规范不同(包括不同部门、不同行业、不同地区的规范),其承载力不会完全相同,应用时需注意各自的使用条件。 (4)当地经验法(local empirical method):是一种基于地区的使用经验,进行类比判断确定承载力的方法,它是一种宏观辅助方法。

木方__立杆_承载力的计算

木方按照均布荷载下连续梁计算。 1.荷载的计算 (1)钢筋混凝土板自重(kN/m): q11 = 25.000×0.120×0.300=0.900kN/m (2)模板的自重线荷载(kN/m): q12 = 0.300×0.300=0.090kN/m (3)活荷载为施工荷载标准值与振捣混凝土时产生的荷载(kN/m): 经计算得到,活荷载标准值 q2 = (1.000+2.000)×0.300=0.900kN/m 静荷载 q1 = 1.20×0.900+1.20×0.090=1.188kN/m 活荷载 q2 = 1.4×0.900=1.260kN/m 2.木方的计算 按照三跨连续梁计算,最大弯矩考虑为静荷载与活荷载的计算值最不利分配的弯矩和,计算公式如下: 均布荷载 q = 2.203/0.900=2.448kN/m 最大弯矩 M = 0.1ql2=0.1×2.45×0.90×0.90=0.198kN.m 最大剪力 Q=0.6×0.900×2.448=1.322kN 最大支座力 N=1.1×0.900×2.448=2.424kN 木方的截面力学参数为 本算例中,截面惯性矩I和截面抵抗矩W分别为: W = 4.00×7.00×7.00/6 = 32.67cm3; I = 4.00×7.00×7.00×7.00/12 = 114.33cm4; (1)木方抗弯强度计算 抗弯计算强度 f=0.198×106/32666.7=6.07N/mm2 木方的抗弯计算强度小于13.0N/mm2,满足要求! (2)木方抗剪计算 [可以不计算] (3)木方挠度计算 最大变形 v =0.677×0.990×900.04/(100×9500.00× 1143333.4)=0.405mm

地基承载力计算

地基bai承载力=8*N-20(N为锤击数) 地基基础允许承载力是指在保证地基稳定的条件下,房屋和构筑物 的沉降量不超过容许值的地基承载力。中国制定的“工业与民用建 筑地基基础设计规范”(TJ7-74)中规定,在基础宽度小于3米,埋深0.5—1.0米的条件下,粘性土主要根据孔隙比(e)、天然含 水量(Wo)、相对含水量(Wb)考虑。砂根据饱和度(Sr)和紧密度(D)决定,也可按标准贯入试验及钻探试验锤击数确定地基 承载力。当基础宽度大于3米,埋深大于1米时,必须按下式校正:P=[σ]+ k1r0(b-3)+k2r(h-1)。式中P为计算承载力(吨/平 方米),[σ]为按表查得的承载力(吨/平方米),r0及r为地基土 持力层的天然容重(地下水位以下取水下容重,吨/立方米),k1 及k2为安全系数,取2—3。 密实法 用密实法处理地基又可分为:①碾压夯实法:对含水量在一定 范围内的土层进行碾压或夯实。此法影响深度约为200毫米,仅适于平整基槽或填土分层夯实。②重锤夯实法:利用起重机械提起重锤,反复夯打(图a),其有效加固深度可达1.2米。此法适用于处理粘性土、砂土、杂填土、湿陷性黄土地基和对大面积填土的压实以及杂 填土地基的处理。③机械碾压法:用平碾、羊足碾、压路机、推土 机及其他压实机械压实松散土层(图b)。碾压效果取决于被压土层的含水量和压实机械的能量。对于杂填土地基常用 8~12吨的平碾或13~16吨的羊足碾,逐层填土,逐层碾压。④振动压实法:在地基表面施加振动力,以振实浅层松散土(图c)。振动压实效果取决于 振动力、被振的成分和振动时间等因素。用此法处理以砂土、炉渣、碎石等无粘性土为主的填土地基,效果良好。⑤强夯法:利用重量 为8~40吨的重锤从6~40米的高处自由落下,对地基进行强力夯实的处理方法。经过强夯的地基承载能力可提高3~4倍,以至6倍,

脚手架的计算和荷载计算

脚手架的计算和荷载 落地式扣件钢管脚手架计算书 钢管脚手架的计算参照《建筑施工扣件式钢管脚手架安全技术规范》(JGJ130-2001)。 计算的脚手架为双排脚手架,立杆采用单立管。 搭设尺寸为:立杆的纵距1.50米,立杆的横距0.80米,立杆的步距1.80米。 采用的钢管类型为48×3.5,连墙件采用2步3跨,竖向间距3.60米,水平间距4.50米。 施工均布荷载为3.0kN/m2,同时施工2层,脚手板共铺设4层。 一、大横杆的计算: 大横杆按照三跨连续梁进行强度和挠度计算,大横杆在小横杆的上面。按照大横杆上面的脚手板和活荷载作为均布荷载计算大横杆的最大弯矩和变形。 1.均布荷载值计算 大横杆的自重标准值: P1=0.038kN/m 脚手板的荷载标准值: P2=0.300×0.800/3=0.080kN/m 活荷载标准值: Q=3.000×0.800/3=0.800kN/m 静荷载的计算值: q1=1.2×0.038+1.2×0.080=0.142kN/m 活荷载的计算值: q2=1.4×0.800=1.120kN/m 大横杆计算荷载组合简图(跨中最大弯矩和跨中最大挠度)

大横杆计算荷载组合简图(支座最大弯矩) 2.抗弯强度计算 最大弯矩考虑为三跨连续梁均布荷载作用下的弯矩 跨中最大弯矩计算公式如下: 跨中最大弯矩为 M1=(0.08×0.142+0.10×1.120)×1.5002=0.278kN.m 支座最大弯矩计算公式如下: 支座最大弯矩为 M2=-(0.10×0.142+0.117×1.120)×1.5002=-0.327kN.m 我们选择支座弯矩和跨中弯矩的最大值进行强度验算: =0.327× 106/5080.0=64.332N/mm2 大横杆的计算强度小于205.0N/mm2,满足要求! 3.挠度计算 最大挠度考虑为三跨连续梁均布荷载作用下的挠度 计算公式如下: 静荷载标准值q1=0.038+0.080=0.118kN/m 活荷载标准值q2=0.800kN/m 三跨连续梁均布荷载作用下的最大挠度

地基承载力计算书

地基承载力验算书 楼上钢结构重量统计如下: 1). 柱子(22aI工字钢) 3*22*33.07=2.2t 2). 梁(22aI工字钢) (10.8*10+9.8*2)*33.07=4.2 t 3). 钢柱(方管60*120) 2.9*48*14.13+11*36*14.13+94*14.13=8.9 t 4). 连梁(方管60*60) (90*3+32*6)*14.3=6.6 t 5). 圆管(圆76) 32*4*5.76=0.7 t 5). 水槽(3mm) 94*0.64*23.55=1.4 t 5). 混凝土柱子500*600 0.5*0.6*0.7*2400*0.5=5.5 t 合计:2.2+4.2*8.9+6.6+0.7+1.4+5.5=29.5 t 二:取中间跨一米宽基础核算, 1)荷载统计 钢屋架荷载设计按300 kN计算(包括活荷载0.7kN/m): 300x5.55/(36x11.1) =4.2Kn 一二层墙体总重(包括装修0.5kN/m):20x7x0.25=35kN 一二层板荷载计算(包括活荷载2.5kN/m):板厚为150mm 板自重0.15x25=3.75kN/m2 板底装修0.50kN/m2 楼面做法,考虑到原来二层板为屋面做法,故取1.50kN/m2 每层楼面横荷载合计为4.25kN/m2 2*4.25x2.7+2.5*2.7+1.5=31.25kN 一米宽基础荷载总计为N=4.2+35+31.25=70.45kN

2)确定基础宽度 b>=N/(fa-yd)=70.45/(100-20x1.2)=0.93<1m (式中fa为地基承载力特征值=100kPa,y为土和基础的容重20kN/m2 ,d为基础埋深1.2米) 根据现在结果看,满足。 3)地基净反力 p=N/b=70.45/1=70.45KP 计算基础悬臂部分最大内力 a=(1-0.24)/2=0.38m M=0.5Pa^2=0.5x70.45x0.38x0.38=5.1kN*m 基础底板配筋A=M/0.9hof=5.1x1000000/(0.9x200x210)=134.8mm2<565(12@200),满足.。 三:加固方案论述 1.先在楼房四角及中间埋设8个沉降观测点,每天观测楼房的基础沉降,如果楼房沉降大于3mm用以下方案进行加固处理。 方案一: 1.1加大基础底面积法适用于当既有建筑的地基承载力或基础底面积尺寸不满足设计要求时的加固。可采用混凝土套或钢筋混凝土套加大基础底面积。加大基础底面积的设计和施工应符合下列规定: 1 当基础承受偏心受压时,可采用不对称加宽;当承受中心受压时,可采用对称加宽。 2 在灌注混凝土前应将原基础凿毛和刷洗干净后,铺一层高强度等级水泥浆或涂混凝土界面剂,以增加新老混凝土基础的粘结力。 3 对加宽部分,地基上应铺设厚度和材料均与原基础垫层相同的夯实垫层。 4 当采用混凝土套加固时,基础每边加宽的宽度其外形尺寸应符合国家现行标准《建筑地基基础设计规范》GBJ7中有关刚性基础台阶宽高比允许值的规定。沿基础高度隔一定距离应设置锚固钢筋。 5 当采用钢筋混凝土套加固时,加宽部分的主筋应与原基础内主筋相焊接。 6 对条形基础加宽时,应按长度1.5-2.0m划分成单独区段,分批、分段、间隔

支模架稳定性和立杆基础计算

支模架稳定性和立杆基础计算 按《混凝土结构工程施工质量验收规范》GB50204–2002和《建筑施工扣件式钢管脚手架安全技术规程》JGJ130–2001的规定,根据本工程的实际情况,对乍浦东方建材装饰城钢管支模架进行复验计算。 A:立杆承载力计算 根据公式N≤φAf ?48×3.5钢管截面积:查JGJ130–2001附录B表B得 A=489mm2 钢材的强度设计值:查表5.1.6得 f=205N/mm2 由于l0=kuh=1.155×1800=2079 i=15.8mm λ=l0/i=2079/15.8=132 查表C得:φ=0.386 则每根立杆的承载力为:N≤φAf=0.386×489×205=38695N B:立杆间距计算 先进行荷载计算:以每平方米为单位 模板及钢管支模架子 1.1KN 钢筋砼 25×0.13=3.25KN 以上恒载小计 4.25KN 施工人员及设备 2.00KN 倾倒砼 2.00KN 砼振捣 1.00KN 以上活载小计5,00KN Σ荷载=1.2×4.25+1.4×5=12.72KN=12720N 立杆间距C C×C≤38695/12720=3.042m2 则C≤1.74m 备注:考虑到楼板的设计承载力不大,而回填土难以在短期内沉实,支模架的实际搭设与设计要求的差异,故施工单位提供的底层支模架立杆的间距控制在1.0m内符合规范要求。 C、立杆基础计算 按规范5.5章公式(5.5.1)p≤fg 而 N=1.2×1.2×12.72=18.3168KN 地基承载力按96KN/M2,回填土调整系数取kc=0.4 则立杆基础面积为A=N/p=18.3168÷96×0.4=0.477m2 本工程立杆基础采用C15素混泥土20厚为垫板。立杆间除用纵横水平杆外应再辅以剪刀撑直接支撑在砼基础上,形成稳定的模板支撑体系。

地基承载力计算书

地基承载力计算书

————————————————————————————————作者:————————————————————————————————日期:

地基承载力计算书 吊车履带长度为9.5m,履带宽度为1.3m,两履带中心距离为6.4m,吊车自重为260t,地基承载力计算按最大起重量100t时计算,若起吊100t重物地基承载力满足要求,则其余均满足。 现假设履带吊重心位于两履带中央,不考虑履带吊配重对吊装物的平衡作用,其受力分析如图: 图5.4-1 履带吊受力简化图 考虑起吊物在吊装过程中的动载力,取动载系数为1.1则由力矩平衡原理可以得出靠近盾构井处履带压力为: RMAX=(260×6.4/2+1.1×100×(9.74+6.4/2))/6.4=357.4t 履带长度为9.5m,单个履带宽度为1.3m,履带承压面积S为: S=9.5×1.3=12.35m2 P=R MAX/S=374.6/12.35×10=303.3Kpa 地表为杂填土,顶面浇筑0.3m厚的C30混凝土。把所压的地面面积理想为方形基础,方形基础宽2m,长度2m,埋置深度0.30m,通过本标段岩土工程勘察报告得知,地基自上而下为

杂填土、黏土、淤泥质土、粉质黏土等,通过查岩土工程勘察报 告列表,土的重度18kN/m3,粘聚力c=35kPa,内摩擦角φ =10°。根据太沙基极限承载力公式: Pu=0.5Nγ×γ×b+Nc×c+Nq×γ×d γ—地基土的重度,kN/m3; b—基础的宽度,m; c—地基土的粘聚力,kN/m3; d—基础的埋深,m。 Nγ、Nc、Nq—地基承载力系数,是内摩擦角的函数,可以通 过查太沙基承载力系数表见表1或图1所示: 表1太沙基地基承载力系数Nγ、Nc、Nq的数值 内摩擦角地基承载力系数内摩擦角地基承载力系数 φ(度)NγNc Nq φ(度)NγNc Nq00 5.7 1.0022 6.50 20.2 9.17 6.5 1.22 248.6 23.4 11.4 2 0.2 3 4 0.39 7.01.48 2611. 5 27.0 14.2 7.7 1.81 2815.031.6 17.8 6 0.6 3

相关文档
最新文档