一个半断路器总结

一个半断路器总结
一个半断路器总结

随着电力系统容量的发展大型发电厂和重要的变电站普遍采用一个半开关的主接线方式。由于接线方式具有很大的灵活性,在开关解环、母线停运等方式发生变异的工况下,其复杂性的特点就突现出来。很有必要结合实际全面分析和掌握一个半开关变异后的特点,为合理安排运行方式为防范和处理事故提供参考。

目前我国包括三峡在内的大型电站和一些重要的枢纽变电站普遍都采用一个半开关的电气主接线方式(见图)。这种主接线方式由于具有高度的可靠性、方式的灵活性和操作的简便性,因此也受到使用方面的普遍赞誉。可以说一个半开关的主接线方式在电力系统中已经占据了一个重要的角色,需要探讨如何在运行中更有效地发挥这种电气主接线的优越性是必要的,关系和把握开关解环、出线停运和母线检修等方式发生变异的复杂的工况下的一些特点,可以在方式改变之前,从理念上预见到易发生事故的薄弱点,对事故处理做到心中有数。也可以充分利用一个半开关主接线方式的灵活性,起到其它主接线方式所不能做到的挽救事故和限制事故扩大的作用,甚至还可以在一些特殊的情况下利用这些特点满足电力系统安全的需要。

图1:一个半开关原则接线

1、一个半开关主接线的母线特点

一个半开关接线中的母线与双母线接线中的母线相比,完全不同。其一,它没有显著的汇集和分配电能的母线功能,只是在结构上连通各串接线形成电流走廊;其二,一个半开关接线中的两条母线相互独立,互不影响,没有双母接线的固定与非固定联接方式之分,显著地减少了一次和二次之间方式变化的复杂性;其三,运行中一个半开关接线的母线可随时快捷停运,甚至两条母线均停运也不影响发变组和线路的正常运行,双母接线停运一条母线要经过烦琐的负荷转移操作,双母线停运就意味着全厂停电的工况。

一个半开关接线的母线安全屏障停运,不影响接入回路正常运行的特点,使母线成为一道限制事故扩大的安全屏障。一个半开关接线的开关一般采用分相操作机构,以使满足线路相重合闸的要求,因此要有防止开关非全相运行的防范

措施。在遇到发变组解列或线路停运时,先拉开之间开关,查三相电流回零后再拉开母线侧开关,就是为了防止开关拒动时,利用停运母线的手段隔离故障开关限制事故扩大。如果操作时先拉开母线侧开关,后拉开中间开关,会造成事故处理的被动,甚至使设备造成损坏。渭河发电公司停机时几次遇到开关一相拒分,失灵保护未启动的问题,由于执行了这样的操作规定在母线侧开关一相拒分时,立即停运母线,没有因开关故障时的负荷电流,对发电机转子造成明显伤害,而在母线侧开关一相拒分时,从容地联系调度停运了同串中的线路进行扩大隔离,正因为一个半开关接线的母线是一道安全屏障,利用这一特点,在发电机并网,线路充电及实现线路重合闸时,实现操作母线侧开关,如果有短路故障,开关拒分时,则可利用失灵保护启动母差保护限制事故扩大。

母线作为重要的电气设备,需要进行维护和清扫。一个半开关接线的一条母线停运后,如果把运行母线看作一个点,一种放射状接线方式变得很薄弱,突出的问题是当靠运行母线一侧的发电机组或线路故障跳闸时会造成联切的后果,使事故扩大。因此,母线停运检修时,即要考虑天气情况,也要考虑当时机组设备的健康情况,还要注意尽量避免在运行机组的保护回路进行工作,以防保护误动使机组跳闸。

2、一个半开关接线中母线侧开关停运需考虑的问题

一个半开关接线中任一台靠母线侧开关的停运,都会形成可能扩大事故的安全隐患,主要表现在接在同串的另一母线侧的发电机组或线路故障跳闸时要跳掉两个开关,使运行正常的线路或发电机组被联切。停运的开关是发电机组侧的开关还是线路侧的开关,所需考虑的问题又有所不同。

当发电机组靠母线一侧的开关停运检修时需考虑1)线路跳闸联切发电机组与发电机组自身保护动作情况有所不同。发电机组保护动作时一般出口开关、厂用开关和灭磁开关同时跳闸,而发电机组被跳闸线路联切时,并不联跳灭磁开关,如调压器性能迟缓,有可能发生瞬间发电机过电压,因此必要时应限制发电机的无功不要太高。2)当线路跳闸,发电机组被联切后成为带自身厂用电运行的孤立系统,要注意对频率和电压的调正进行厂用电切换操作时必须采用联动切换法,严禁采用并列法切换方式。由于操作习惯在这种情况下就发生过厂用系统非同期并列的问题。3)当线路跳闸发电机被联切后,要先加运线路,发电机组才能参照线路侧电压用中间开关进行并网操作。如果线路长时间不能恢复而发电机组又要哦并网时,就必须拉开故障线路的出线刀闸,先停运线路侧的母线,然后采用被切发电机带该母线零起升压,用其它串开关异地进行并网操作。这种情况在实际中也确实偶有发生。当输出线路靠母线侧开关停运检修时需考虑:1)注意将重合时间由母线侧开关先重改投至中间开关先重。2)与出线接在同串中的发电机组跳闸联切该线路后,注意解决好发电机组不并网或不拉开发电机组出线刀闸,线路不能加运的问题。

3、一个半开关主接线方式中间开关特点

有人把一个半开关主接线方式的特点总结为“不怕误跳,就怕不跳”,其实母线侧开关拒跳时,可依赖母线的停运,进行隔离,不影响发电机组和线路的运行,开关拒动造成事故扩大的问题主要表现在两侧接入回路共用的中间开关上。即一侧回路发生故障时中间开关的拒动会通过启动开关失灵保护或人为的操作将另一正常的回路切除。这在实际中也有发生,因此应该把防止中间开关拒动作为重点考虑,在遇到中间开关控制回路异常,操作气压低可能闭锁跳闸等问题时,提前拉开该开关,对避免设备跳闸时,开关拒动造成事故扩大是有益的。

中间开关的另一个特点是能将一个半开关主接线方式的接入回路及母线进行对称的分隔利用这一特点在系统发生故障的情况下为保护选择故障区域限制事故扩大提供了条件。例如:作为发电机组和主系统后备保护的阻抗保护和主变高压侧零序保护,就可以把动作的第一时限作用于所有中间开关跳闸进行区域分隔,这与母主接线同时保护第一时限开母联开关的效果是一样的,然后再用保护的第二时限动作于解列出口或解列灭磁出口。有的发电机组阻抗保护和主变高压侧零序保护,在设计时,第一时限只跳开一个半开关接线中本串的中间开关,这是达不到分隔故障区域的效果。

4、一个半开关主接线的串数及交叉接线问题

一个半开关主接线的优点在三串以上才能体现出来。在两串运行时,由于母线侧的两个开关之间没有接入的回路,停运一个开关和停运两个开关效果是一样的,因此这样的方式实际上是四角形接线方式,任一开关停运或任一回路跳闸后,其它运行的开关都会成为链状方式非常薄弱。两串运行时任意两个非相邻回路的停运都会使电厂主接系统瓦解。这种情况的威胁经常表现在发电机组并网前或解列后,出线开关停运期间。一个半开关主接线两串运行的情况一般在电厂机组没有全部投产期间可能遇到,是一个暂时的过渡期。

一个半开关主接线采用交叉接线是指将发电机组分开布置在各串中,并且线路和发电机组的引接位置相互错开,这样有利于主接线在异常状态或被分割时的可靠运行。对变电站应注意同名线路不宜接在同串上,发生过同串中两同名一、二回线路由于母线侧开关停运检修,另一母线侧开关跳闸,尽管中间开关在合闸状态,但实际已造成两条重载线路同时跳闸,无法输送负荷的事故。

5、利用一个半开关主接线实现方式切机

发电厂在遇到线路停运检修等情况下,有时为了防止运行的重载线路跳闸时负荷转移到其它的运行线路或电力系统的某些线路上,造成设备过载损坏。这时电网调度就需要在运行线路跳闸的同时切除一到两台机组来保证电力系统和设备的安全。一个半开关主接线为满足这种需要提供了条件。在线路故障跳闸的同时实现切机是利用停运开关的一次方式来实现的,哟于方案很多,安排停运哪些开关即能实现切机要求,又不会派生意外事故也是一个应注意的问题。最简单的方案是把接在该线路同串中的发电机组出线靠母线侧开关停运,可实现线路跳闸联切一台发电机组的目的。采用其它的一次方式切机方案时要防止发电机组或非防范线路跳闸时相互联切造成事故扩大的问题。

开关电源测量的经验总结

开关电源测量的经验总结-标准化文件发布号:(9556-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

开关电源测量的经验总结 电子器件的电源测量通常情况是指开关电源的测量(当然还有线性电源)。讲述开关电源的资料非常多,本文讨论的内容为PWM开关电源,而且仅仅是作为测试经验的总结,为大家简述容易引起系统失效的一些因素。因此,在阅读本文之前,已经假定您对于开关电源有一定的了解。 1 开关电源简述 开关电源(Switching Mode Power Supply,常常简化为SMPS),是一种高频电能转换装置。其功能是将电压透过不同形式的架构转换为用户端所需求的电压或电流。 开关电源的拓扑指开关电源电路的构成形式。一般是根据输出地线与输入地线有无电气隔离,分为隔离及非隔离变换器。非隔离即输入端与输出端相通,没有隔离措施,常见的DC/DC变换器大多是这种类型。所谓隔离是指输入端与输出端在电路上不是直接联通的,使用隔离变压器通过电磁变换方式进行能量传递,输入端和输出端之间是完全电气隔离的。 对于开关变换器来说,只有三种基本拓扑形式,即: ● Buck(降压) ● Boost(升压) ● Buck-Boost(升降压) 三种基本拓扑形式,是电感的连接方式决定。若电感放置于输出端,则为Buck拓扑;电感放置于输入端,则是Boost拓扑。当电感连接到地时,就是Buck-Boost拓扑。 2 容易引发系统失效的关键参数测试 以下的测试项目除了是指在静态负载的情况下测试的结果,只有噪声(noise)测试需要用到动态负载。 2.1 Phase点的jitter

图一 对于典型的PWM开关电源,如果phase点jitter太大,通常系统会不稳定(和后面提到的相位裕量相关),对于200~500K的PWM开关电源,典型的jitter值应该在1ns以下。 2.2 Phase点的塌陷 有时候工程师测量到下面的波形,这是典型的电感饱和的现象。对于经验不够丰富的工程师,往往会忽略掉。电感饱和会让电感值急剧下降,类似于短路了,这样会造成电流的急剧增加,MOS管往往会因为温度的急剧增加而烧毁。这时需要更换饱和电流更大的电感。 图二

低压断路器基本参数知识

低压断路器的几个基本参数 断路器的额定持续电流:Iu,额定持续电流Iu是制造商声明该设备可连续工作的电流值。当低压电器流过额定持续电流时,低压电器必须工作在长期工作制下,低压电器的各部件温升不超过极限值 断路器的额定电流:Ie,在规定条件下保证电器正常工作的电流值 断路器的额定短时耐受电流:Icw,额定短时耐受电流Icw是指在规定使用条件将处于闭合位置的低压断路器流过其能够承载的最大电流,同时对该电流流过断路器的时间也做了规定(1秒和3秒),断路器必须能够承载Icw 断路器的极限短路分断能力:Icu,断路器在额定工作电压下,按“打开→延时T→再次闭合→再次打开”的工作顺序O-t-CO执行操作,在执行顺序中的流过断路器的电流为最大短路电流,顺序后则不再要求断路器承载额定电流。其实此时的断路器已经损坏。 断路器的额定运行短路分断能力:Ics,断路器在额定工作电压和功率因素下,按“第一次打开→第一次延时T→第二次闭合→第二次打开→第二次延时T→第三次闭合→第三次打开”的工作顺序O-t-CO-t-CO执行操作,在执行顺序中的流过断路器的电流为短路电流,顺序后则要求断路器能继续工作并且满足承载额定电流的要求。显然,Ics是衡量断路器分断 短路电流的能力,是断路器动稳定性的指标。Ics和Icu的关系是:Ics≤Icu

断路器的额定短路接通能力:Icm,断路器在额定工作电压、额定频率和规定的功率因数下能够接通的短路电流。 未完待续 问题描述 我们的问题是:在断路器的样本中已经指明只要断路器的极限短路分断能力Icu满足Icu>I k,则此断路器就能分断该电力变压器的短路电流。可是:变压器产生的ipk怎么办呢?难道它不会影响到断路器的分断能力吗? 4)Icm开始起作用了 额定短路接通能力Icm是断路器的重要技术指标,它的值约为Icu的2.0~2.2倍,所以尽管冲击短路电流峰值ipk是如此之大,但只要在足够短的时间内通过断路器,那么对断路器也就不会产生什么影响。 所以,在各大公司的断路器样本中都把Icu作为分断变压器产生的短路电流的主要技术指标。 5)知识扩充 我们已经知道,断路器一旦流过Icu以后,这台断路器就永久地损坏了,而断路器的额定运行短路分断能力Ics则不一样,断路器流过Ics后能够重复使用。那么为什么不将Ics作为断路器分断变压器短路电流的主要技术指标呢? 从Ics的定义中我们看到它的试验程序是O-t-CO-t-CO,其中C表示CLOSE(闭合)而O 表示OPEN(打开),所以Ics比Icu的测试条件要严酷的多。 目前在电气工程设计中有两种意见,第一种意见认为Ics有两个CO,Ics比Icu的保险系数更大,所以在工程中应当选用Ics;第二种意见认为应当认为Icu更重要。我个人的意见也赞同后者,理由如下: A)当短路线路中出现最大预期短路电流时,只要Icu大于此电流,则断路器就可以安全可靠地切断此电流。尽管此后此断路器已经损坏而必须更换,但考虑到线路中出现最大预期短路电流的机会少而又少,几乎在断路器的一生中都碰不到一次。 B)由于Ics小于Icu,因此会出现选用问题。 例如:若线路预期短路电流是60kA,则选用Icu是60kA而Ics为50kA。若选用Ics为60k A,则务必Icu更大,造成采购成本增加;另外,如果没有Ics=50kA同时Icu=60kA规格的断路器的化,势必要使用更大规格的断路器,造成不必要的浪费。 现在我们再看看Icw的问题。 Icw是短时耐受电流,一般时间是1秒,它是衡量断路器承受短路电流发热的冲击作用的物理参量。 我们知道热能Q可以表达为UIt,也可表达为RI2t。将热能除电阻就得到一个新的参量I2t,I2t参量表征了某元件容许流过的最大发热电流,其单位是电流的平方乘以时间,这个参量就是Icw。

一个半断路器接线方式之欧阳家百创编

一台半断路器接线 欧阳家百(2021.03.07) 1.2.3.1 近几年来,我国已相继建成了许多区域性的大型电网,如果在大型电力网络中的大容量发电厂和枢纽变电站发生了停电事故,则将给整个电力系统的安全稳定运行带来严重威胁。因此,为了提高这些重要厂、站的运行可靠性,在330KV及以上的电压等级系统中,3/2断路器接线已经得到广泛采用。那么,什么是3/2接线或者叫一个半接线方式呢?它有什么特点呢? 1.2.3.2每一回路经一台断路器1QF或3QF接至一组母线,两回路之间设一联络断路器2QF,形成一个“串”,两个回路共用三台断路器,故又称二分之三接线。 和常规双母线带旁路接线方式比较,3/2主接线方式主要有以下优点。 (1)运行调度灵活,操作更加方便。当任一开关需要检修时,只需把相应开关及刀闸拉开即可,不影响送电和保护运行。因此,操作更加简便,减少了人为误操作的可能性。而常规接线开关需要检修时必须带路,尤其是母联开关需要检修时,必须倒成单母线运行,一次操作量大,且十分繁琐,每次停电需要很长时间。 (2)供电更加可靠、安全。 ①当任何一台断路器在切除故障过程中拒动时,最多只扩

大到多切除一条引出线或一台主变。如下图所示:当线路3上发生故障时,6DL跳开,而5DL开关拒动时,由5DL的断路器失灵保护动作切除4DL,这时最多切除线路2,而其它线路、主变和发电机照样正常运行,因此供电可靠性较高。而在双母线带旁路主接线中,若一条出线故障,其开关若发生拒动,失灵保护将跳开该开关所在母线上连接的所有开关。 ②当两台断路器同时运行时,如果引出线故障,两侧开关同时跳开后,若先重合的断路器拒绝重合或重合失败,可以由后重合的断路器来补救。常规接线在重合闸拒动或重合失败时将影响正常供电。因此,和双母线带旁路主接线相比较,3/2接线的供电可靠性将大大提高。 ③在3/2接线中,母线保护不再象常规接线中那么重要,即使母差保护误动也不会影响正常运行。 ④在3/2接线中,每路出线保护所用电压不公用,只取自本路CVT,因此,CVT有故障时,只会影响本路保护运行,不会影响到其它出线的正常运行。 1.2.3.3和常规双母线带旁路接线方式比较,3/2主接线方式主要有以下缺点: (1)一次设备投资巨大,CVT和开关数量多,占地面积大。 (2)二次接线及保护配置更复杂,比较突出的是断路器失灵保护。

多路模拟开关的选择

今天做电路研究的时候要用到多路数据选择器,多路开关。和开发部的头讨论了下,才发现里面有很多东西要学,这里就贴出来一些心得分享一下,一下的内容也有从别处摘来的一部分。选择开关时需考察以下指标: 1 多路开关通断方式的选择 目前市场上的多路开关的通断切换方式大多为“先断后通” (Break-Before-Make)。在自动数据采集中,应选用“先断后通”的多路开关。否则,就会发生两个通道短接的现象,严重时会损坏信号源或多路开关自身。然而,在程控增益放大器中,若用多路开关来改变集成运算放大器的反馈电阻,以改变放大器的增益,就不宜选用“先断后通”的多路开关。否则,放大器就会出现开环状态。放大器的开环增益极高,易破坏电路的正常工作,甚至损坏元器件,一般应予避免。 2. 通道数量 集成模拟开关通常包括多个通道。通道数量对传输信号的精度和开关切换速率有直接的影响,通道数越多,寄生电容和泄漏电流就越大。因为当选通一路时,其它阻断的通道并不是完全断开,而是处于高阻状态,会对导通通道产生泄漏电流,通道越多,漏电流越大,通道之间的干扰也越强。 3. 泄漏电流 一个理想的开关要求导通时电阻为零,断开时电阻趋于无限大,漏电流为零。而实际开关断开时为高阻状态,漏电流不为零,常规的CMOS漏电流约1nA。如果信号源内阻很高,传输信号是电流量,就特别需要考虑模拟开关的泄漏电流,一般希望泄漏电流越小越好。 4. 导通电阻 导通电阻的平坦度与导通电阻一致性。导通电阻会损失信号,使精度降低,尤其是当开关串联的负载为低阻抗时损失更大。应用中应根据实际情况选择导通电阻足够低的开关。必须注意,导通电阻的值与电源电压有直接关系,通常电源电压越大,导通电阻就越小,而且导通电阻和泄漏电流是矛盾的。要求导通电阻小,则应扩大沟道,结果会使泄漏电流增大。导通电阻随输入电压的变化会产生波动,导通电阻平坦度是指在限定的输入电压范围内,导通电阻的最大起伏值△RON=△RONMAX—△RONMIN。它表明导通电阻的平坦程度,△RON应该越小越好。

开关电源测量的经验总结

电子器件的电源测量通常情况是指开关电源的测量(当然还有线性电源)。讲述开关电源的资料非常多,本文讨论的内容为PWM开关电源,而且仅仅是作为测试经验的总结,为大家简述容易引起系统失效的一些因素。因此,在阅读本文之前,已经假定您对于开关电源有一定的了解。 1 开关电源简述 开关电源(Switching Mode Power Supply,常常简化为SMPS),是一种高频电能转换装置。其功能是将电压透过不同形式的架构转换为用户端所需求的电压或电流。 开关电源的拓扑指开关电源电路的构成形式。一般是根据输出地线与输入地线有无电气隔离,分为隔离及非隔离变换器。非隔离即输入端与输出端相通,没有隔离措施,常见的DC/DC变换器大多是这种类型。所谓隔离是指输入端与输出端在电路上不是直接联通的,使用隔离变压器通过电磁变换方式进行能量传递,输入端和输出端之间是完全电气隔离的。 对于开关变换器来说,只有三种基本拓扑形式,即: ● Buck(降压) ● Boost(升压) ● Buck-Boost(升降压) 三种基本拓扑形式,是电感的连接方式决定。若电感放置于输出端,则为Buck 拓扑;电感放置于输入端,则是Boost拓扑。当电感连接到地时,就是Buck-Boost拓扑。 2 容易引发系统失效的关键参数测试 以下的测试项目除了是指在静态负载的情况下测试的结果,只有噪声(noise)测试需要用到动态负载。

2.1 Phase点的jitter 图一 对于典型的PWM开关电源,如果phase点jitter太大,通常系统会不稳定(和后面提到的相位裕量相关),对于200~500K的PWM开关电源,典型的jitter 值应该在1ns以下。 2.2 Phase点的塌陷 有时候工程师测量到下面的波形,这是典型的电感饱和的现象。对于经验不够丰富的工程师,往往会忽略掉。电感饱和会让电感值急剧下降,类似于短路了,这样会造成电流的急剧增加,MOS管往往会因为温度的急剧增加而烧毁。这时需要更换饱和电流更大的电感。 图二 2.3 Shoot through测试

一个 200W 开关电源的功率级设计总结

一个 200W 开关电源的功率级设计总结 1. 导言 新的功率在200W-500W 的交流电源设计,越来越需要功率因素校正(PFC),以在减少电源线上的能源浪费,并增加最多来自电源插座的功率。这篇文章描述了一个用於液晶电视的200W 电源的设计与构造,所以提到了很多注意事项,以达到高效率,待机功率低於1W,外形小巧尤其是高度为25mm ,无风扇的简单冷却,低成本。这些特徵对於将要应用的场合是不可或缺的。 2. 电路描述和设计 设计指标如下∶ ·交流输入电压∶85-265VRMS ·功率因素∶> 0.95 ·总输出功率∶200W ·三个直流输出∶5V/0.3A 12V/5A 24V/6A 电源分为两个单元。第一电源集成一个功率因素校正电路,内置在 FAN4800 PFC/PWM(脉宽调制)二合一控制器周围,产生一个 24V/6A 和12V/5A 的输出。这个器件包含一个平均电流模式PFC 控制器和一个能够在电压和电流模式下工作的PWM控制器。在描述的这项应用中,PWM工作在电流模式,控制一个双管正激变换器。这种变换器能产生一个稳压的24V 输出。12V输出则由一个采用MC34063A PWM控制器的Buck 变换器产生。这个附加模块改善了12V输出校正,减少交叉调节问题,这对於多重输出正激变换器总是一个问题,当负载大范围变化时。附加变换器成本不是很高,如果与一个双管输出变换器的更复杂、更大的耦合电感相比。

第二电源是一个基於飞兆半导体功率开关(FPS)的Flyback 变换器,它给FAN4800提供电源和5V 输出。这个电源工作在待机模式下,它的无负载功耗低於500mW。因此,即使对於省电模式下小负载情况,也有可能满足1W待机功耗的限制。 为了简洁,设计计算和电路图将在每个模组中单独给出。最终完成的示意图和布局,可在附录中查到。 3. 功率因素校正 本节回顾了功率因素校正电路的电源选择。用来设立乘法器的工作点和差动放大器的增益和频率补偿的低功率部件的设计在[1]中给出。图1为电路示意图 图1∶PFC级示意图,元件编号和FAN4800应用说明[1]相对应 3.1 整流器 由於主电源用来提供一个200W的输出功率,即总输入功率。假设PFC的

高低压开关柜知识总结

开关柜知识总结 开关柜是指按一定的线路方案将一次设备、二次设备组装而成的成套配电装置,是用来对线路、设备实施控制、保护的,分固定式和手车式,而按进出线电压等级又可以分高压开关柜(固定式和手车式)和低压开关柜(固定式和抽屉式)。开关柜的结构大体类似,主要分为母线室、断路器室、二次控制室(仪表室)、馈线室,各室之间一般有钢板隔离。 内部元器件包括:母线(汇流排)、断路器、常规继电器、综合继电保护装置、计量仪表、隔离刀、指示灯、接地刀等。 从应用角度划分: (1)进线柜:又叫受电柜,是用来从电网上接受电能的设备(从进线到母线),一般安装有断路器、CT、PT、隔离刀等元器件。 (2)出线柜:也叫馈电柜或配电柜,是用来分配电能的设备(从母线到各个出线),一般也安装有断路器、CT、PT、隔离刀等元器件。 (3)母线联络柜:也叫母线分断柜,是用来连接两段母线的设备(从母线到母线),在单母线分段、双母线系统中常常要用到母线联络,以满足用户选择不同运行方式的要求或保证故障情况下有选择的切除负荷。 (4)PT柜:电压互感器柜,一般是直接装设到母线上,以检测母线电压和实现保护功能。内部主要安装电压互感器PT、隔离刀、熔断器和避雷器等。 (5)隔离柜:是用来隔离两端母线用的或者是隔离受电设备与供电设备用的,它可以给运行人员提供一个可见的端点,以方便维护和检修作业。由于隔离柜不具有分断、接通负荷电流的能力,所以在与其配合的断路器闭合的情况下,不能够推拉隔离柜的手车。在一般的应用中,都

需要设置断路器辅助接点与隔离手车的联锁,防止运行人员的误操作。 (6)电容器柜:也叫补偿柜,是用来作改善电网的功率因数用的,或者说作无功补偿,主要的器件就是并联在一起的成组的电容器组、投切控制回路和熔断器等保护用电器。一般与进线柜并列安装,可以一台或多台电容器柜并列运行。电容器柜从电网上断开后,由于电容器组需要一段时间来完成放电的过程,所以不能直接用手触摸柜内的元器件,尤其是电容器组;在断电后的一定时间内(根据电容器组的容量大小而定,如:1分钟),不允许重新合闸,以免产生过电压损坏电容器。作自动控制功能时,也要注意合理分配各组电容器组的投切次数,以免出现一组电容器损坏,而其他组却很少投切的情况。 (7)计量柜:主要用来作计量电能用的(千瓦时),又有高压、低压之分,一般安装有隔离开关、熔断器、CT、PT、有功电度表(传统仪表或数字电表)、无功电度表、继电器、以及一些其他的辅助二次设备(如负荷监控仪等)。 (8)GIS柜:又叫封闭式组合电器柜,它是将断路器、隔离开关、接地开关、CT、PT、避雷器、母线等封闭组合在金属壳体内,然后以绝缘性能和灭弧性能良好的气体(一般用六氟化硫SF6)作为相间和对地的绝缘措施,适用于高电压等级和高容量等级的电网中,用作受配电及控制。 (9)断路器: 正常工作情况下,断路器处于合闸状态(特殊应用除外),接通电路。当进行自动控制或保护控制操作时,断路器可以在综保装置控制下进行电路的分断或接通操作。断路器不仅可以通断正常的负荷电流,而且能够承受一定时间的短路电流(数倍甚至几十倍的正常工作电流),并可以分断短路电流,切除故障线路和设备。所以说,断路器的主要功能就是分断和接通电路(包括分断和接通正常电流、分断短路电流)。 由于在分断和接通电路的过程中,断路器的动触头与静触头之间不可避免的要产生电弧。为了保护触头,减少触头材料的损耗和可靠分断电路,必须采取措施来尽快熄灭电弧,其中一种就是采用不同的灭弧介质填充到断路器的动、静触头间。按灭弧介质的不同断路器可以分为:油断路器(多油、少油)、六氟化硫(SF6)断路器、真空断路器、空气断路器等。我们在工程中经常接触到的高低压开关柜里的主要一次设备就是断路器。

开关电源设计及调试总结

线性稳压电路具有结构简单,调整方便,输出电压脉动小的优点,但缺点是效率低,一般只有20%~40%,并且比较笨重。开关型稳压电路能克服线性稳 压电源的缺点,具有效率高,一般能达到65%~90%,并且体积小,重量轻,对电网电压要求不高,因而在实际生活中得到广泛应用。也正因为其应用的广泛性,相应专业的学生就更应该深刻和熟练地掌握它,在此以设计脉冲宽度调制型开关电路(PWM)为基础,详细解说该系统的调试过程。 1 系统设计原理 PWM 型的开关电源整体框图如图1所示。变压、整流、滤波模块处理起来比较简单,只要采用相应的变压器、单相全波整流、电容式滤波即可实现,这里不用更多的篇幅介绍。此系统的核心模块是方框图中的闭合(负反馈)模块。如果直接采用Boost型DC-DC升压器,实现起来简单,但输出/输入电压比太大,占空比也大,而将使输出电压范围变小,难以达到较高的指标,且为开环控制。对此采用专用开关芯片TL494芯片,它采用开关脉宽调制(PWM),效率高,外围电路也较简单,可以方便实现闭环控制。 1.1 TL494工作原理 TL494 内部结构如图2所示,它是一种固定频率可自行设置,并应用脉空调制的控制电路,其中,振荡频率fosc=1.1/(RTCT)。具体来讲,由于误差放大器输入口1,2(或3,4)的值不等,产生偏差,偏差送入PWM比较器与锯齿波(锯齿波的频率由振荡频率确定,幅值是定值)比较,在偏差大于锯齿波范围内时,9口(或10口)输出低电平,在偏差小于锯齿波范围内时,9口(或10口)输出高电平。若偏差值越大,TL494输出高电平的区间越小。由此可见,通过调整误差放大器输入口的偏差可改变占空比。

低压断路器的常识及几种常用型号的应用

低压断路器的常识及几种常用型号的应用 低压断路器旧称低压自动开关或空气开关。它既能带负电荷通断电路,又能在短路、过负荷和低电压(或失压)时自动跳闸,其功能与高压断路器类似当线路上出现短路故障时,其过流脱扣器动作,使开关跳闸;如出现过负荷,其串联在一次线路的加热电阻丝加热,使双金属片弯曲,也使开关跳闸;当线路电压严重下降或电压消失时,其失压脱扣器动作,同样使开关跳闸;如果按下按钮脱扣按钮,使分励脱扣器通电或使失压脱扣器失压,则可使开关远距离跳闸。 低压断路器按灭弧介质分类,有空气断路器和真空断路器等;按用途分类,有配电用断路器、电动机保护用断路器、照明用断路器和漏电保护断路器等。 配电用低压断路器按保护性能分,有非选择型和选择型两类。非选择型断路器,一般为瞬时动作,只作短路保护用;也有的为长延时动作,只作过负荷保护用。选择型断路器,有两段保护、三段保护和智能化保护。两段保护为瞬时或短延时与长延时两段。三段保护为瞬时、短延时与长延时特性三段。其中瞬时和短延时特性适于短路保护,而长延时特性适于过负荷保护。而智能化保护,其脱扣器由微机控制,保护功能更多,选择性更好,这种断路器称为智能型断路器。 DZ5系列塑料外壳式断路器适用于交流50hz、380v、额定电流自0.15至50a 的电路中。保护电动机用断路器用来保护电动机的过载和短路,配电用断路器在配电网络中用来分配电能和作线路及电源设备的过载和短路保护之用,亦可分别作为电动机不频繁起动及线路的不频繁转换之用。 DZ10系列塑壳断路器 DZ10系列塑壳断路器适用于交流50hz、380v或直流220v及以下的配电线路中用来分配电能和保线路及电源设备的过载、欠电压和短路,以及在正常工作条件下不频繁分断和接通线路之用。 DZ12塑料外壳式断路器 DZ12系列塑料外壳式断路器,体积小巧,结构新颖、性能优良可靠。主要装在照明配电箱中,用于宾馆、公寓、高层建筑、广场、航空港、火车站和工商

一个半断路器接线方式

一台半断路器接线 1.2.3.1 近几年来,我国已相继建成了许多区域性的大型电网,如果在大型电力网络中的大容量发电厂和枢纽变电站发生了停电事故,则将给整个电力系统的安全稳定运行带来严重威胁。因此,为了提高这些重要厂、站的运行可靠性,在330KV及以上的电压等级系统中,3/2断路器接线已经得到广泛采用。那么,什么是3/2接线或者叫一个半接线方式呢?它有什么特点呢? 1.2.3.2每一回路经一台断路器1QF或3QF接至一组母线,两回路之间设一联络断路器2QF,形成一个“串”,两个回路共用三台断路器,故又称二分之三接线。 和常规双母线带旁路接线方式比较,3/2主接线方式主要有以下优点。 (1)运行调度灵活,操作更加方便。当任一开关需要检修时,只需把相应开关及刀闸拉开即可,不影响送电和保护运行。因此,操作更加简便,减少了人为误操作的可能性。而常规接线开关需要检修时必须带路,尤其是母联开关需要检修时,必须倒成单母线运行,一次操作量大,且十分繁琐,每次停电需要很长时间。 (2)供电更加可靠、安全。 ①当任何一台断路器在切除故障过程中拒动时,最多只扩大到多切除一条引出线或一台主变。如下图所示: 当线路3上发生故障时,6DL跳开,而5DL开关拒动时,由5DL的断路器失灵保护动作切除4DL,这时最多切除线路2,而其它线路、主变和发电机照样正常运行,因此供电可靠性较高。而在双母线带旁路主接线中,若一条出线故障,其开关若发生拒动,失灵保护将跳开该开关所在母线上连接的所有开关。 ②当两台断路器同时运行时,如果引出线故障,两侧开关同时跳开后,若先重合的断路器拒绝重合或重合失败,可以由后重合的断路器来补救。常规接线在重合闸拒动或重合失败时将影响正常供电。因此,和双母线带旁路主接线相比较,3/2接线的供电可靠性将大大提高。 ③在3/2接线中,母线保护不再象常规接线中那么重要,即使母差保护误动也不会影响正常运行。 ④在3/2接线中,每路出线保护所用电压不公用,只取自本路CVT,因此,CVT有故障时,只会影响本路保护运行,不会影响到其它出线的正常运行。

开关电源EMC总结.a

开关电源EMC总结 时间:2013-03-14 来源:电源网作者:https://www.360docs.net/doc/e21055585.html,/dc/technical/201303/31415.html 开关电源EMC知识全面汇总,包括开关电源EMC的分类及标准,常用的EMC 标准及实验配置,关于制订电磁兼容标准的组织和标准的介绍,开关电源电磁干扰的产生机理及其传播途径, EMC的分类及标准: EMC(Electromagnetic Compatibility)是电磁兼容,它包括EMI(电磁骚扰)和EMS(电磁抗骚扰)。EMC定义为:设备或系统在其电磁环境中能正常工作且不对该环境中的任何设备的任何事物构成不能承受的电磁骚扰的能力。EMC整的称呼为电磁兼容。EMP是指电磁脉冲。 EMC = EMI + EMS EMI : 電磁干擾EMS : 電磁相容性(免疫力) EMI可分为传导Conduction及辐射Radiation两部分,Conduction规范一般可分为: FCC Part 15J Class B;CISPR 22(EN55022, EN61000-3-2, EN61000-3-3) Class B;国标IT类(GB9254,GB17625)和AV类(GB13837,GB17625)。FCC测试频率在450K-30MHz,CISPR 22测试频率在150K--30MHz,Conduction可以用频谱分析仪测试,Radiation则必须到专门的实验室测试。 EN55022为Radiation Test & Conduction Test (传导& 辐射测试); EN61000-3-2为Harmonic Test (电源谐波测试) ;EN61000-3-3为Flicker Test (电压变动测试)。 CISPR22(Comite Special des Purturbations Radioelectrique)应用于信息技 术类装置, 适用于欧洲和亚洲地区;EN55022为欧洲标准,FCC Part 15 (Federal Communications Commission) 适用于美国,EN30220欧洲EMI测试标准,功率辐射测试标准是EN55013频率在30MHZ-300MHz。 EN55011辐射测试标准是:有的频率段要求较高,有的频率段要求较低。传 导(150KHZ-30MHZ) LISN主要是差模电流, 其共模阻抗为100欧姆(50 + 50); LISN主要是共模电流, 其总的电路阻抗为25欧姆(50 // 50)。 4线AV 60dB/uV 150KHZ-2MHZ start 9KHZ 5线PEAK 100dB/uV 150KHZ-3MHZ 6线PEAK 100dB/uV 2MHZ-30MHZ 7线QP 70dB/uV 150KHZ-500KHZ Radiated (30MHZ-1GHZ): ADD 4N7/250V Y CAP 90dB/uV 30MHZ-300MHZ EMI为电磁干扰,EMI是EMC其中的一部分,EMI(Electronic Magnetic Interference) 电磁干扰,EMI包括传导、辐射、电流谐波、电压闪烁等等。电磁干扰是由干扰源、藕合通道和接收器三部分构成的,通常称作干扰的三要素。EMI

如何选择模拟开关

如何选择模拟开关 模拟开关 模拟开关和多路转换器的作用主要是用于信号的切换。目前集成模拟电子开关在小信号领域已成为主导产品,与以往的机械触点式电子开关相比,集成电子开关有许多优点,例如切换速率快、无抖动、耗电省、体积小、工作可靠且容易控制等。但也有若干缺点,如导通电阻较大,输入电流容量有限,动态范围小等。因而集成模拟开关主要使用在高速切换、要求系统体积小的场合。在较低的频段上f<10MHz),集成模拟开关通常采用CMOS工艺制成:而在较高的频段上(f>10MHz),则广泛采用双极型晶体管工艺。 如何选择模拟开关 选择开关时需考察以下指标: 通道数量集成模拟开关通常包括多个通道。通道数量对传输信号的精度和开关切换速率有直接的影响,通道数越多,寄生电容和泄漏电流就越大。因为当选通一路时,其它阻断的通道并不是完全断开,而是处于高阻状态,会对导通通道产生泄漏电流,通道越多,漏电流越大,通道之间的干扰也越强。 泄漏电流一个理想的开关要求导通时电阻为零,断开时电阻趋于无限大,漏电流为零。而实际开关断开时为高阻状态,漏电流不为零,常规的CMOS漏电流约1nA。如果信号源内阻很高,传输信号是电流量,就特别需要考虑模拟开关的泄漏电流,一般希望泄漏电流越小越好。 导通电阻导通电阻的平坦度与导通电阻一致性导通电阻会损失信号,使精度降低,尤其是当开关串联的负载为低阻抗时损失更大。应用中应根据实际情况选择导通电阻足够低的开关。必须注意,导通电阻的值与电源电压有直接关系,通常电源电压越大,导通电阻就越小,而且导通电阻和泄漏电流是矛盾的。要求导通电阻小,则应扩大沟道,结果会使泄漏电流增大。导通电阻随输入电压的变化会产生波动,导通电阻平坦度是指在限定的输入电压范围内,导通电阻的最大起伏值△RON=△RONMAX—△RONMI N。它表明导通电阻的平坦程度,△RON应该越小越好。导通电阻一致性代表各通道导通电阻的差值,导通电阻的一致性越好,系统在采集各路信号时由开关引起的误差也就越小。 开关速度指开关接通或断开的速度。通常用接通时间TON和断开时间TOFF表示。对于需要传输快变化信号的场合,要求模拟开关的切换速度高,同时还应该考虑与后级采样保持电路和A/D转换器的速度相适应,从而以最优的性能价格比来选择器件。

一个半开关主接线方式的特点及注意问题

一个半开关主接线方式的特点及注意问题 来源:电力技术网作者: 关键词:电气主接线分析事故处理防范特点 一个半开关主接线方式的特点及注意问题 摘要: 随着电力系统容量的发展大型发电厂和重要的变电站普遍采用一个半开关的主接线方式。由于接线方式具有很大的灵活性,在开关解环、母线停运等方式发生变异的工况下,其复杂性的特点就突现出来。很有必要结合实际全面分析和掌握一个半开关变异后的特点,为合理安排运行方式为防范和处理事故提供参考。 关键词:电气主接线分析事故处理防范 目前我国包括三峡在内的大型电站和一些重要的枢纽变电站普遍都采用一个半开关的电气主接线方式(见图)。这种主接线方式由于具有高度的可靠性、方式的灵活性和操作的简便性,因此也受到使用方面的普遍赞誉。可以说一个半开关的主接线方式在电力系统中已经占据了一个重要的角色,需要探讨如何在运行中更有效地发挥这种电气主接线的优越性是必要的,关系和把握开关解环、出线停运和母线检修等方式发生变异的复杂的工况下的一些特点,可以在方式改变

之前,从理念上预见到易发生事故的薄弱点,对事故处理做到心中有数。也可以充分利用一个半开关主接线方式的灵活性,起到其它主接线方式所不能做到的挽救事故和限制事故扩大的作用,甚至还可以在一些特殊的情况下利用这些特点满足电力系统安全的需要。 图1:一个半开关原则接线 1、一个半开关主接线的母线特点 一个半开关接线中的母线与双母线接线中的母线相比,完全不同。其一,它没有显著的汇集和分配电能的母线功能,只是在结构上连通各串接线形成电流走廊;其二,一个半开关接线中的两条母线相互独立,互不影响,没有双母接线的固定与非固定联接方式之分,显著地减少了一次和二次之间方式变化的复杂性;其三,运行中一个半开关接线的母线可随时快捷停运,甚至两条母线均停运也不影响发变组和线路的正常运行,双母接线停运一条母线要经过烦琐的负荷转移操作,双母线停运就意味着全厂停电的工况。 一个半开关接线的母线安全屏障停运,不影响接入回路正常运行的特点,使母线成为一道限制事故扩大的安全屏障。一个半开关接线的开关一般采用分相操作机构,以使满足线路相重合闸的要求,因此要有防止开关非全相运行的防范措施。在遇到发变组解列或线路停运时,

开关电源实习报告

第十届TI杯电子设计竞赛培训实 习报告 日8月7年2012 1.开关稳压电源 1.1工频变压器 工频变压器作为本电源降低电压的核心。它把有效值为220V的交流市电降低为20V的交流电压。为后级稳压环节输入一个低的直流电压做了准备。 1.2整流滤波 本电源整流采用4安的集成整流桥堆。前级滤波采用三个电容进行。如图1示,分别为C12,C14,C15。C14是一个1000uF的铝电解电容,它可以很好地滤除低频脉动成分,使整流输出波形变得很平滑。电容的高频小信号模型为电感、电容、电阻的串联。铝电解电容,由于其内部结构决定了它的高频等效电感比较大。再加之铝电解电容的容值比较大,这就导致它的自身谐振频率比较低。这样它可以很好地滤除低频杂波成分,但是对于高频杂波成分,它的滤除效果不是很好。这就需要给他并联一个0.1uF的瓷片电容C15,这样滤波器的带宽就会大大提高,可以滤除掉更多的杂波成分。C12是作为LM2576的输入滤波的,以保证输入LM2576的交流杂波成分更小。 1.3稳压 本电源稳压环节采用LM2576开关降压(Buck)型集成稳压芯片。其内部集成了52KHz的振荡器,功率管,PWM调制器和反馈环路。LM2576输出最大电流可以保证3A,输入最大电压40V。D4是一个肖特基二极管,型号为MBR20200。它是作为Buck电路的续流二极管使用的。电感L2是一个用铁粉磁环绕制的100uH 的大功率电感,它是Buck电路的储能电感。L2和C13共同组成了一个LC滤波器。R12,R10是一个电阻串联分压网络。LM2576的4脚在分压网络分压点采集电压反馈给其内部误差放大器,控制PWM调制器改变PWM波的脉宽,从而控制功

断路器基本常识要点

断路器 中文名称:断路器 英文名称:circuit-breaker;circuit breaker 定义1: 能够关合、承载和开断正常回路条件下的电流,并能关合、在规定的时间内承载和开断异常回路条件(包括短路条件)下的电流的开关装置。 定义2: 用以切断或关合高压电路中工作电流或故障电流的电器。 断路器 断路器按其使用范围分为高压断路器和低压断路器,高低压界线划分比较模糊,一般将3kV以上的称为高压电器。低压断路器又称自动开关,俗称"空气开关"也是指低压断路器,它是一种既有手动开关作用,又能自动进行失压、欠压、过载、和短路保护的电器。它可用来分配电能,不频繁地启动异步电动机,对电源线路及电动机等实行保护,当它们发生严重的过载或者短路及欠压等故障时能自动切断电路,其功能相当于熔断器式开关与过欠热继电器等的组合。而且在分断故障电流后一般不需要变更零部件,已获得了广泛的应用。 分类 按操作方式分:有电动操作、储能操作和手动操作。

按结构分:有万能式和塑壳式。 按使用类别分:有选择型和非选择型。 按灭弧介质分:有油浸式、真空式和空气式。 按动作速度分:有快速型和普通型。 按极数分:有单极、二极、三极和四极等。 按安装方式分:有插入式、固定式和抽屉式等。 高压断路器(或称高压开关)是发电厂、变电所主要的电力控制设备,具有灭弧特性,当系统正常运行时,它能切断和接通线路以及各种电气设备的空载和负载电流;当系统发生故障时,它和继电保护配合,能迅速切断故障电流,以防止扩大事故范围。因此,高压断路器工作的好坏,直接影响到电力系统的安全运行;高压断路器种类很多,按其灭弧的不同,可分为:油断路器(多油断路器、少油断路器)、六氟化硫断路器(SF6断路器)、真空断路器、压缩空气断路器等 内部附件 辅助触头 与断路器主电路分、合机构机械上连动的触头,主要用于断路器分、合状态的显示,接在断路器的控制电路中通过断路器的分合,对其相关电器实施控制或联锁。例如向信号灯、继电器等输出信号。塑壳断路器壳架

选择CMOS模拟开关的心得体会及建议

选择CMOS模拟开关的心得体会及建议 集成模拟开关常常用作模拟信号与数字控制器的接口。当今市场上的模拟开关数量众多,产品设计人员需要考虑多项性能标准。同时也有许多35年前开发的标准CMOS开关已经发展为专用的开关电路。 本文回顾标准CMOS模拟开关的基本结构并介绍常见模拟开关参数,例如导通电阻(RO N)、RON平坦度、漏电流、电荷注入及关断隔离。文中讨论最新模拟开关的性能改善:更好的开关特性、更低的供电电压,以及更小的封装。也介绍了专用的特性,例如故障保护、E SD保护、校准型多路复用器(cal-mux)和加载-感应功能。介绍了适用于视频、高速USB、H DMI和PCIe的专用开关。 标准模拟开关基础 传统模拟开关的结构如图1所示。将n沟道MOSFET与p沟道MOSFET并联,可使信号在两个方向上同等顺畅地通过。n沟道与p沟道器件之间承载信号电流的多少由输入与输出电压比决定。由于开关对电流流向不存在选择问题,因而也没有严格的输入端与输出端之分。两个MOSFET由内部反相与同相放大器控制下导通或断开。这些放大器根据控制信号是CMOS 或是TTL逻辑、以及模拟电源电压是单或是双,对数字输入信号进行所需的电平转换。 图1. 采用并联n沟道和p沟道MOSFET的典型模拟开关的内部结构 现在,许多半导体制造商都提供诸如早期CD4066这样的传统模拟开关。有些最新设计的模拟开关与这些早期开关的引脚兼容,但性能更高。例如,有些与CD4066引脚兼容的器件(例如MAX4610)相对于原来的CD4066具有更低的RON和更高的精度。 对基本模拟开关结构也有一些功能性改变。有些低电容模拟开关在信号通路中只使用n 沟道MOSFET(例如MAX4887),省去了较大的大幅降低模拟开关带宽的p沟道MOSFET。

200W_开关电源的功率级设计总结

200W 开关电源的功率级设计总结 1. 导言 新的功率在200W-500W 的交流电源设计,越来越需要功率因素校正(PFC),以在减少电源线上的能源浪费,并增加最多来自电源插座的功率。这篇文章描述了一个用于液晶电视的200W 电源的设计与构造,所以提到了很多注意事项,以达到高效率,待机功率低于1W,外形小巧尤其是高度为25mm ,无风扇的简单冷却,低成本。这些特征对于将要应用的场合是不可或缺的。 2. 电路描述和设计 设计指标如下∶ ·交流输入电压∶85-265VRMS ·功率因素∶> 0.95 ·总输出功率∶200W ·三个直流输出∶5V/0.3A 12V/5A 24V/6A 电源分为两个单元。第一电源集成一个功率因素校正电路,内置在FAN4800 PFC/PWM(脉宽调制)二合一控制器周围,产生一个24V/6A 和12V/5A 的输出。这个器件包含一个平均电流模式PFC 控制器和一个能够在电压和电流模式下工作的PWM控制器。在描述的这项应用中,PWM工作在电流模式,控制一个双管正激变换器。这种变换器能产生一个稳压的24V 输出。12V输出则由一个采用MC34063A PWM控制器的Buck 变换器产生。这个附加模块改善了12V输出校正,减少交叉调节问题,这对于多重输出正激变换器总是一个问题,当负载大范围变化时。附加变换器成本不是很高,如果与一个双管输出变换器的更复杂、更大的耦合电感相比。 第二电源是一个基于飞兆半导体功率开关(FPS)的Flyback 变换器,它给FAN4800提供电源和5V 输出。这个电源工作在待机模式下,它的无负载功耗低于500mW。因此,即使对于省电模式下小负载情况,也有可能满足1W待机功耗的限制。 为了简洁,设计计算和电路图将在每个模组中单独给出。最终完成的示意图和布局,可在附录中查到。 3. 功率因素校正 本节回顾了功率因素校正电路的电源选择。用来设立乘法器的工作点和差动放大器的增益和频率补偿的低功率部件的设计在[1]中给出。图1为电路示意图

最新开关电源总结心得体会

开关电源总结心得体会 从20x年x月开始,经过了两个月的奋战,我的毕业设计终于圆满完成。我认为有必要写一下这两个月毕业设计总结,这对我自己来说,即是一个总结,也是一个提醒。因为毕业论文的完成,既为大学四年划上了一个完美的句号,也为将来的人生之路做好了一个很好的铺垫 在大学的学习过程中,毕业设计是一个重要的环节,是我们步入社会参与实际项目的规划建设的一次极好的演示。也是四年大学学习的总结和提高自身能力的好机会。和做科研开发工作一样,要有严谨求实的科学态度。毕业设计有一定的学术价值和实用价值,能反映出作者所具有的专业基础知识和分析解决问题的能力。此次毕业设计是我们从大学毕业生走向未来工作重要的一步。从最初的选题,开题到分析调查、绘图直到完成设计。其间,自己查找资料,老师的指导,与同学的交流,都让我学到很多知识。反复修改图纸,每一个过程都是对自己能力的一次检验和充实。一次优秀的设计对启发我们的思维,掌握设计的规范、流程、具体操作都很有帮助。 但是毕业设计期间也暴露出自己专业基础的很多不足之处。比如缺乏综合应用专业知识的能力,对资料的不了解,对具体设计涉及到的规范要求的不熟悉等等,需要在做的过程中需要去不断的翻阅相关的资料和书籍,这降低了自己的速度和设计的进程,但这个过程对我来说是对自己知识的不足处的一个很好的补充和对已学过知识的一个巩固。这个过程虽然是有一定的难度但还是通过自己的慢慢的摸索和老师的指导下从熟悉到上手,经过这次努力对自己的信心很好的提高。通过这样的一个自己从开始到结束全程自己参与的设计来说对知识的了解和掌握是纯理论的学习远远达不到的效果。这次实践是对自己大学四年所学的一次大检阅,使我明白自己知识还很浅薄,虽然马上要毕业了,但是自己的求学之路还很长,以后更应该在工作中学习,努力使自己成为一个可以参与工作能独立完成设计的人。 本设计主要设计了单相交流输入,输出为48V/10A、频率为80KHz的电源。选用复合结构的主电路结构,将Boost型APFC与移相桥式变换器相结合达到效果。选用MOSSFET作为功率变换器器件,用光耦进行隔离反馈,构成完整的桥式开关变换器,完成DC-AC-DC变换。在变换器中引入了软开关技术,通过采用谐振软开关PWM变换器实现开关管的零电压开通,极大的降低了电源的开关损耗,提高了电源效率。采用PWM控制方式,其控制信号由集成控制器UC3875提供。通过四路PWM波的移相时产生的重合度来控制占空比,同时反馈电压可以直接反映PWM的占空比的大小,以达到稳压。此控制器还将过压保护、过流保护、欠电压锁定、软启动等功能集成进去,用UC3875驱动MOSSFET,保证其可靠开通或关断。并设计了显示部分,使电源具有实时显示、监控输出电压和电流功能。主要分成摘要部分及目录部分、绪论部分、总方案设计部分、输入电路设计部分、功率因素校正(PFC)部分、直流变换器设计部分、辅助及保护电路设计部分、显示和监控模块设计部分及仿真与分析部分十个部分。

一个半断路器接线电压互感器的配置及电压回路

一个半断路器接线电压互感器的配置及电压回路 3/2断路器接线的电压互感器配置,如下图所示: 电压互感器配置的一般原则如下: 1.每回线路配置一组电容式电压互感器,作为线 路保护、测量表计、同期和载波通道用。 2.母线电压互感器的配置,取决于母线保护和测 量表计的需要。如母线保护不需要接入电压回路, 为了接测量表计和同期装置,只需在母线上装设一 台单相电压互感器。 3.在变压器回路一般只装设一台单相式电压互感 器。只有在变压器保护需要三相电压时(例如,在 500kV侧装阻抗保护时)才装设三相式电压互感器。 每个元件的测量、保护和自动装置的电压回路 都接至元件自己的电压互感器,不设公用的电压小 母线,使电压回路接线大为简化。 220~500kV电压互感器具有三个二次绕组,其 中一个0.1/3P级,供测量表计和保护用;第二个 3P级供保护和自动装置用;第三个3P或6P级或开 口三角,供保护用。两套主保护分别接在电压互感器的二个二次绕组。 3/2断路器接线每个元件的保护电压回路一般不考虑接母线电压互感器,其主要原因是:第一,如接母线电压互感器,电压回路需经切换后才能接到保护装置。与双母线接线时电压回路切换不同,此时切换回路要串入有关的断路器和隔离开关辅助接点,接线复杂、可靠性低。第二,当母线故障、母线侧断路器断开后,元件不应停电,但因母线侧断路器断开,相应的切换回路断开,有可能使线路保护失去电压,阻抗继电器误动作。 500kV线路都配有双重化主保护,每套保护都有独立的电流互感器和直流电源以及跳闸回路。在双母线接线的情况下,两套主保护的电压回路也是分开的,一套接线路电压互感器,另一套接母线电压互感器,因此,电压回路的可靠性较高。当线路侧电压互感器故障退出运行时,线路保护仍能保留一套主保护运行。在3/2断路器接线时,线路电压互感器故障退出,两套主保护均失去电压而不能运行。但这种情况很少发生。

相关文档
最新文档