热学基本知识点汇总

热学基本知识点汇总
热学基本知识点汇总

气体动理论知识点小结

1、理想气体状态方程

mol

M

PV RT RT M ν==

或p nkT = 其中R 为普适气体常量,M 为气体质量,273.15T t =+为热力学温度;N n V

=为单位体积内的分子数,A

R

k N =

是玻尔兹曼常数,A N 为阿佛加德罗常数。 2、理想气体压强和温度公式

23p n ω=

;3

2

kT ω= 其中2

12

mv ω=

为分子的平均平动动能。公式表明温度是气体分子平均平动动能的量度,分子模型为弹性自由运动的质点,两式只对大量气体分子有意义。 3、能量按自由度均分定理 在平衡状态下,分子的任何一种热运动的形式的每一个自由度具有相同的平均动

能,其大小都等于1

2

kT 。

若气体分子有i 个自由度,则每一个气

体分子热运动的平均总动能为 2

i

kT ε=

一般刚性单原子分子有3个自由度,双原子分子有5个自由度,多原子分子有6个自由度。

4、理想气体分子的内能

1摩尔理想气体的内能为02

i

E RT =

ν摩尔理想气体的内能为

02

mol M i

E E RT M ν==

5、速率分布函数1()dN

f v N dv

=

dN 为速率在v v dv +:区间内的分子

数,N 为总分子数,()f v 代表的就是单位

速率区间内的分子数占总分子数的比率。 1)

()1f v dv ∞

=?

即在整个速率分布区间找

到的分子数占总分子数的比率为100%。 2)麦克斯韦速率分布函数(无外场时处于平衡态的理想气体满足的速率分布规律) 3)三种速率(与温度有关,与气体摩尔质量有关) ①最概然速率

P v =

表示麦克斯韦速率分布曲线取最大值时对应的分子速率,表征了气体分子按速率分布的特征,即随便取一个分子位于该速率附近的几率最大。 ②平均速率

v =

≈平均速率用于描述气体分子的碰撞。

③方均根速率(用于计算分子的平均平动动能)

=

≈6、分子的平均碰撞频率和平均自由程

(将分子看做有效直径为d 的弹性小球) 1

)平均碰撞频率2Z d vn =

2

)平均自由程v Z λ=

=热力学基础知识点小结

1、热力学第一定律 21()Q E E W =-+ 一切热力学过程都应满足能量守恒。 即系统从外界吸收的热量,一部分用于改变系统内能,一部分用于对外界做功。

2、平衡过程中功的计算 2

1

V V W P d V

=?

3、平衡过程中热量的计算

等容过程 ()21V V mol

M

Q C T T M =

-

等压过程 ()21P p mol

M

Q C T T M =-

其中定体摩尔热容量2v i

C R =;定压

摩尔热容量2

2

p v i C C R R +=+= 4、绝热过程0Q ?=

方程 1122

P V P V γγ

= 其中2

p v

C i C i

γ+=

=

5、热机效率

211

1W Q

Q Q η=

-净=(其中Q 1为整个循环过程中吸收的热量,Q 2为放出的

热量)

6、

2Q W ω=循

7、卡诺循环:由两个准静态等温过程和绝

热过程所组成的循环。 卡诺热机效率: 2

1

T 1T η-

= (其中T 1为高温热源热力学温度,T 2为低温热源温度) 卡诺制冷机效率:

2

12

T T T ω=

-

8、热力学第二定律

1)开尔文表述:不可能制成一种循环动作的热机,它只从单一温度的热源吸热,使其全部转变为有用的功,而不引起其他变化。

(用热机做功的效率不可能达到100%)

2)克劳修斯表述:热量不能自动地由低温物体传向高温物体。

(能量的流动具有方向性,能量的“品质”是不同的)

3)熵增加原理:孤立系统或绝热系统中所发生的一切不可逆过程的熵总是增加的,可逆过程熵不变。0S ?≥

(熵是描述系统内分子热运动无序化程度的一个物理量,无序化程度越高,熵越大。一切与热现象有关的实际宏观过程都是不可逆的,一切自然过程总是沿着无序性增大的方向进行。)

4)玻尔兹曼熵=ln S k Ω

Ω为热力学概率,系统的每一个宏观状态对应一个热力学概率值,它表征了分子运动的无序化程度,自然过程总是由热力学概率小的宏观态向热力学概率大的宏观态进行。

高温物体

低温物体

热机 Q 1

Q 2

W 净

材料力学知识点总结教学内容

材料力学总结一、基本变形

二、还有: (1)外力偶矩:)(9549 m N n N m ?= N —千瓦;n —转/分 (2)薄壁圆管扭转剪应力:t r T 22πτ= (3)矩形截面杆扭转剪应力:h b G T h b T 32max ;β?ατ= =

三、截面几何性质 (1)平行移轴公式:;2A a I I ZC Z += abA I I c c Y Z YZ += (2)组合截面: 1.形 心:∑∑=== n i i n i ci i c A y A y 1 1 ; ∑∑=== n i i n i ci i c A z A z 1 1 2.静 矩:∑=ci i Z y A S ; ∑=ci i y z A S 3. 惯性矩:∑=i Z Z I I )( ;∑=i y y I I )( 四、应力分析: (1)二向应力状态(解析法、图解法) a . 解析法: b.应力圆: σ:拉为“+”,压为“-” τ:使单元体顺时针转动为“+” α:从x 轴逆时针转到截面的 法线为“+” ατασσσσσα2sin 2cos 2 2 x y x y x --+ += ατασστα2cos 2sin 2 x y x +-= y x x tg σστα-- =220 22 min max 22 x y x y x τσσσσσ+??? ? ? ?-±+= c :适用条件:平衡状态 (2)三向应力圆: 1max σσ=; 3min σσ=;2 3 1max σστ-= x

(3)广义虎克定律: [])(13211σσνσε+-=E [] )(1 z y x x E σσνσε+-= [])(11322σσνσε+-=E [] )(1 x z y y E σσνσε+-= [])(12133σσνσε+-=E [] )(1 y x z z E σσνσε+-= *适用条件:各向同性材料;材料服从虎克定律 (4)常用的二向应力状态 1.纯剪切应力状态: τσ=1 ,02=σ,τσ-=3 2.一种常见的二向应力状态: 22 3122τσσ σ+?? ? ??±= 2234τσσ+=r 2243τσσ+=r 五、强度理论 *相当应力:r σ 11σσ=r ,313σσσ-=r ,()()()][2 12 132322214σσσσσσσ-+-+-= r σx σ

初中数学知识点全总结(齐全)

七年级数学(上)知识点 人教版七年级数学上册主要包含了有理数、整式的加减、一元一次方程、图形的认识初步四个章节的内容 第一章有理数 一、知识框架 二.知识概念 1?有理数: (1)凡能写成q (p,q 为整数且p=0)形式的数,都是有理数?正整数、0、负整数统称整数;正分数、负分数统 P 称分数;整数和分数统称有理数 ?注意:0即不是正数,也不是负数;-a 不一定是负数,+a 也不一定是正数; 5?有理数比大小:(1)正数的绝对值越大,这个数越大; (2)正数永远比0大,负数永远比0小;(3)正数 大于一切负数;(4)两个负数比大小,绝对值大的反而小;(5)数轴上的两个数,右边的数总比左边的数大; (6)大数-小数> 0,小数-大数V 0. 1 art ; "f 厂 工 1 [ “不是有理数; ⑵有理数的分类 正有理数< ■ 正整数 正分数 '正整 数 负有理数 J 负整数 负分数 分数 P ■正分数 I 负分数 2 .数轴:数轴是规定了原点、正方向、单位长度的一条直线 3 ?相反数: (1)只有符号不同的两个数,我们说其中一个是另一个的相反数; ⑵相反数的和为 0二a+b=0二a 、b 互为相反数? 0的相反数还是0 ; (1)正数的绝对值是其本身, 0的绝对值是0,负数的绝对值是它的相反数;注意:绝对值的意义是数轴上表 示某数的点离开原点的距离; (2)绝对值可表示为: a (a>0) a =」0 (a =0)或 a| =*_ ,-a (a c0) (a-0) (a : ;绝对值的问题经常分类讨论; A'itt 的恥

6?互为倒数:乘积为1的两个数互为倒数;注意:0没有倒数;若0,那么a的倒数是—;若ab=1二a、 a b互为倒数;若ab=-1= a、b互为负倒数. 7. 有理数加法法则: (1)同号两数相加,取相同的符号,并把绝对值相加; (2)异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值; (3 )一个数与0相加,仍得这个数. 8. 有理数加法的运算律: (1 )加法的交换律:a+b=b+a ; ( 2)加法的结合律:(a+b) +c=a+ (b+c). 9. 有理数减法法则:减去一个数,等于加上这个数的相反数;即a-b=a+ (-b). 10有理数乘法法则: (1 )两数相乘,同号为正,异号为负,并把绝对值相乘; (2)任何数同零相乘都得零; (3)几个数相乘,有一个因式为零,积为零;各个因式都不为零,积的符号由负因式的个数决定. 11有理数乘法的运算律: (1 )乘法的交换律:ab=ba; (2)乘法的结合律:(ab) c=a (bc); (3 )乘法的分配律: a (b+c) =ab+ac . a 12 ?有理数除法法则:除以一个数等于乘以这个数的倒数;注意:零不能做除数,即-无意义. 13. 有理数乘方的法则: (1)正数的任何次幕都是正数; (2)负数的奇次幕是负数;负数的偶次幕是正数;注意:当n为正奇数时:(-a)n=-a n或(a -b)n=-(b-a)n ,当n 为正偶数时:(-a)n =a n或(a-b)n=(b-a)n . 14. 乘方的定义: (1) 求相同因式积的运算,叫做乘方; (2) 乘方中,相同的因式叫做底数,相同因式的个数叫做指数,乘方的结果叫做幕; 15. 科学记数法:把一个大于10的数记成a x 10n的形式,其中a是整数数位只有一位的数,这种记数法叫科学记数法. 16. 近似数的精确位:一个近似数,四舍五入到那一位,就说这个近似数的精确到那一位 17. 有效数字:从左边第一个不为零的数字起,到精确的位数止,所有数字,都叫这个近似数的有效数字. 18. 混合运算法则:先乘方,后乘除,最后加减. 本章内容要求学生正确认识有理数的概念,在实际生活和学习数轴的基础上,理解正负数、相反数、绝对值的意义所在。重点利用有理数的运算法则解决实际问题 体验数学发展的一个重要原因是生活实际的需要.激发学生学习数学的兴趣,教师培养学生的观察、归纳与 概括的能力,使学生建立正确的数感和解决实际问题的能力。教师在讲授本章内容时,应该多创设情境,充分体现学生学习的主体性地位。

(高考必背)原子物理和热学知识点总结

原子物理 一、波粒二象性 1、热辐射:一切物体均在向外辐射电磁波。这种辐射与温度有关。故叫热辐射。 特点:1)物体所辐射的电磁波的波长分布情况随温度的不同而不同;即同时辐射各种 波长的电磁波,但某些波长的电磁波辐射强度较强,某些较弱,分布情况与 温度有关。 2)温度一定时,不同物体所辐射的光谱成分不同。 2、黑体:一切物体在热辐射同时,还会吸收并反射一部分外界的电磁波。若某种物体,在热辐射的同时能够完全吸收入射的各种波长的电磁波,而不发生反射,这种物体叫做黑体(或绝对黑体)。在自然界中,绝对黑体实际是并不存在的,但有些物体可近似看成黑体,例如,空腔壁上的小孔。 注意,黑体并不一定是黑色的。 热辐射特点 吸收反射特点 一般物体 辐射电磁波的情况与温度,材 料种类及表面状况有关 既吸收,又反射,其能力与材料的种类及入射光波长等因素有关 黑体 辐射电磁波的强度按波长的 分布只与黑体温度有关 完全吸收各种入射电磁波,不反射 黑体辐射的实验规律: 1)温度一定时,黑体辐射的强度,随波长分布有一个极大值。 2)温度升高时,各种波长的辐射强度均增加。 3)温度升高时,辐射强度的极大值向波长较短方向移动。 4、能量子:上述图像在用经典物理学解释时与该图像存在严重的不符(维恩、瑞利的解释)。普朗克认为能量的辐射或者吸收只能是一份一份的.这个不可再分的最小能量值ε叫做能量子.νεh = )1063.6(34叫普朗克常量s J h ??=?。由量子理论得出的结果与黑体的辐射强度 图像吻合的非常完美,这印证了该理论的正确性。 5光电效应:在光的照射下,金属中的电子从金属表面逸出的现象。发 射出来的电子叫光电子。光电效应由赫兹首先发现。 爱因斯坦指出: ① 光的能量是不连续的,是一份一份的,每一份能量子叫做一个光子.光子的能量为ε=h ν,其中h=6.63×10-34 J ·s 叫普朗克常量,ν是光的频率; ② 当光照射到金属表面上时,一个光子会被一个电子吸收,吸收的过程是瞬间的(不超过10-9 s )。电子在吸收光子之后,其能量变大并向金属外逃逸,从而产生光电效应现象;

材料力学主要知识点归纳

材料力学主要知识点 一、基本概念 1、构件正常工作的要求:强度、刚度、稳定性。 2、可变形固体的两个基本假设:连续性假设、均匀性假设。另外对于常用工程材料(如钢材),还有各向同性假设。 3、什么是应力、正应力、切应力、线应变、切应变。 杆件截面上的分布内力集度,称为应力。应力的法向分量σ称为正应力,切向分量τ称为切应力。 杆件单位长度的伸长(或缩短),称为线应变;单元体直角的改变量称为切应变。 4、低碳钢工作段的伸长量与荷载间的关系可分为以下四个阶段:弹性阶段、屈服阶段、强化阶段、局部变形阶段。 5、应力集中:由于杆件截面骤然变化(或几何外形局部不规则)而引起的局部应力骤增现象,称为应力集中。 6、强度理论及其相当应力(详见材料力学ⅠP229)。 7、截面几何性质 A 、截面的静矩及形心 ①对x 轴静矩?=A x ydA S ,对y 轴静矩?=A y xdA S ②截面对于某一轴的静矩为0,则该轴必通过截面的形心;反之亦然。 B 、极惯性矩、惯性矩、惯性积、惯性半径 ① 极惯性矩:?=A P dA I 2ρ ② 对x 轴惯性矩:?= A x dA y I 2,对y 轴惯性矩:?=A y dA x I 2 ③ 惯性积:?=A xy xydA I ④ 惯性半径:A I i x x =,A I i y y =。 C 、平行移轴公式: ① 基本公式:A a aS I I xc xc x 22++=;A b bS I I yc yc y 22++= ;a 为x c 轴距x 轴距离,b 为y c 距y 轴距离。 ② 原坐标系通过截面形心时A a I I xc x 2+=;A b I I yc y 2+=;a 为截面形心距x 轴距离, b 为截面形心距y 轴距离。 二、杆件变形的基本形式 1、轴向拉伸或轴向压缩: A 、应力公式 A F = σ B 、杆件伸长量EA F N l l =?,E 为弹性模量。

初中政治知识点总结归纳大全

初中政治知识点总结归纳大全 1.我国社会主义公有制(经济)的主要内容:全民所有制(国有经济)、集体所有制(集体经济)和混 合所有制(混合经济)中的国有成分和集体成分 2.我国现阶段基本经济制度的主要内容:公有制经济[全民所有制(国有经济)、集体所有制(集体 经济)和混合所有制(混合经济)中的国有成分和集体成分]和非公有制(个体经济、私营经济和外资经济) 3.经济活动的参与者:生产者、销售者和消费者 4.社会主义精神文明建设(文化建设)的主要内容:思想道德建设和教育科学文化建设其中,社 会主义精神文明建设(文化建设)的核心内容:思想道德建设 5.社会主义精神文明建设(文化建设)措施的内容:保障性措施和促进性措施 6.我国宪法的主要内容:规定国家和社会生活中各方面的最重要、最根本的问题。包括国家的 根本制度、根本任务、公民的基本权利和义务、国家机构及其组织与活动原则以及国家的标志 等 7.公民人身权利的内容:生命健康权、肖像权、名誉权、荣誉权、姓名权、隐私权等 8.公民人身自由权利受法律保护的内容:公民不受非法逮捕和拘禁;公民的身体不受非法搜查; 公民的人格尊严不受侵犯;公民的住宅不受侵犯;公民的通信自由和通信秘密受法律保护 9.消费者依法享有合法权益的内容:消费者享有人身、财产安全不受损害和要求赔偿的权利;消费者有权知悉商品和服务的真实情况,有权自主选择商品和服务;消费者公平交易的权利,享有人格尊严、民族风俗习惯得到尊重的权利 10.劳动者依法享有的合法权利的主要内容:享有平等就业的权利;享有与用人单位平等协商签 订劳动合同的权利;享有获得劳动报酬的权利;享有休息和休假的权利(每天工作不超过8 小时,平均每周工作时间不超过40 小时的工作制度) 11.我国税收的种类(内容):增值税、营业税、消费税、资源税、企业所得税和个人所得税 12.公民政治自由权利的内容:公民有言论、出版、集会、结社、游行、示威的自由

高中物理热学知识点归纳全面很好

选修3-3热学知识点归纳 一、分子运动论 1. 物质是由大量分子组成的 (1)分子体积 分子体积很小,它的直径数量级是 (2)分子质量 分子质量很小,一般分子质量的数量级是 (3)阿伏伽德罗常数(宏观世界与微观世界的桥梁) 1摩尔的任何物质含有的微粒数相同,这个数的测量值: 设微观量为:分子体积V 0、分子直径d 、分子质量m ; 宏观量为:物质体积V 、摩尔体积V 1、物质质量M 、摩尔质量μ、物质密度ρ. 分子质量: 分子体积: (对气体,V 0应为气体分子平均占据的空间大小) 分子直径: 球体模型: V d N =3A )2(34π 303 A 6=6=ππV N V d (固体、液体一般用此模型) 立方体模型:30=V d (气体一般用此模型)(对气体,d 理解为相邻分子间的平均距离) 分子的数量.A 1 A 1A A N V V N V M N V N M n ====ρμρμ 2. 分子永不停息地做无规则热运动 (1)分子永不停息做无规则热运动的实验事实:扩散现象和布郎运动。 (2)布朗运动 布朗运动是悬浮在液体(或气体)中的固体微粒的无规则运动。布朗运动不是分子本身的 运动,但它间接地反映了液体(气体)分子的无规则运动。 (3)实验中画出的布朗运动路线的折线,不是微粒运动的真实轨迹。 因为图中的每一段折线,是每隔30s 时间观察到的微粒位置的连线,就是在这短短的30s 内,小颗粒的运动也是极不规则的。 (4)布朗运动产生的原因 大量液体分子(或气体)永不停息地做无规则运动时,对悬浮在其中的微粒撞击作用的不平衡性是产生布朗运动的原因。简言之:液体(或气体)分子永不停息的无规则运动是产生布朗运动的原因。 (5)影响布朗运动激烈程度的因素

初中数学知识点总结大全(经典版)

初中数学必考知识点总结 一、基本知识 ㈠、数与代数 A、数与式: 1、有理数 有理数: ①整数→正整数/0/负整数 ②分数→正分数/负分数 数轴: ①画一条水平直线,在直线上取一点表示0(原点),选取某一长度作为单位长度,规定直线上向右的方向为正方向,就得到数轴。 ②任何一个有理数都可以用数轴上的一个点来表示。 ③如果两个数只有符号不同,那么我们称其中一个数为另外一个数的相反数,也称这两 个数互为相反数。在数轴上,表示互为相反数的两个点,位于原点的两侧,并且与原点距离相等。 ④数轴上两个点表示的数,右边的总比左边的大。正数大于0,负数小于0,正数大于 负数。 绝对值: ①在数轴上,一个数所对应的点与原点的距离叫做该数的绝对值。 ②正数的绝对值是他的本身、负数的绝对值是他的相反数、0的绝对值是0。两个负数 比较大小,绝对值大的反而小。 有理数的运算: 加法: ①同号相加,取相同的符号,把绝对值相加。 ②异号相加,绝对值相等时和为0;绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值。 ③一个数与0相加不变。 减法:减去一个数,等于加上这个数的相反数。 乘法:

①两数相乘,同号得正,异号得负,绝对值相乘。 ②任何数与0相乘得0。 ③乘积为1的两个有理数互为倒数。 除法: ①除以一个数等于乘以一个数的倒数。 ②0不能作除数。 乘方:求N个相同因数A的积的运算叫做乘方,乘方的结果叫幂,A叫底数,N叫次数。混合顺序:先算乘法,再算乘除,最后算加减,有括号要先算括号里的。 2、实数 无理数:无限不循环小数叫无理数。 平方根: ①如果一个正数X的平方等于A,那么这个正数X就叫做A的算术平方根。 ②如果一个数X的平方等于A,那么这个数X就叫做A的平方根。 ③一个正数有2个平方根/0的平方根为0/负数没有平方根。 ④求一个数A的平方根运算,叫做开平方,其中A叫做被开方数。 立方根: ①如果一个数X的立方等于A,那么这个数X就叫做A的立方根。 ②正数的立方根是正数、0的立方根是0、负数的立方根是负数。 ③求一个数A的立方根的运算叫开立方,其中A叫做被开方数。 实数: ②实数分有理数和无理数。 ②在实数范围内,相反数,倒数,绝对值的意义和有理数范围内的相反数、倒数、绝对值的意义完全一样。 ③每一个实数都可以在数轴上的一个点来表示。 3、代数式 代数式:单独一个数或者一个字母也是代数式。 合并同类项:

3-3热学知识点总结归纳

第七章:分子动理论 内容1、物体是由大量分子组成的 内容2、 分子永不停息的做无规则热运动 内容3、分子间同时存在相互作用的引力和斥力 一、物体是由大量分子组成的 阿伏加德罗常数(N A =6.02×1023mol -1:联系微观量与宏观量的桥梁。 微观量: 分子体积v 0、分子直径d 、分子质量m 0 分子总个数N 宏观量: 物质体积v 、摩尔体积V 、物质质量m 、摩尔质量M 物质密度ρ、物质的量n 。 分子质量m 0=摩尔质量M/阿伏加德罗常数N A 即m 0= M/N A 分子质量m 0=物质密度ρ*摩尔体积V/阿伏加德罗常数N A 即m 0= ρV/N A 分子质量数量级10-26kg 分子体积v 0=摩尔体积V/阿伏加德罗常数N A :v 0=V/N A 分子体积v 0=摩尔质量M/物质密度ρ*阿伏加德罗常数N A 即v 0=M/ρN A (对气体,v 0应为气体分子占据的空间大小)分子直径:(数量级10-10m ) ○1球体模型.V d =3)2(34π (固体、液体一般用此模型) ○2立方体模型.30=V d (气体一般用此模型 固体、液体估算直径也可)(对气体,d 应理解为相邻分子间的平均距离) 分子的数量:N=n N A =m/m 0 =v/v 0 n=m/M n=v/V ( n=ρv/M n=m/ρV ) (*对气体,v 0应理解为气体分子所占空间体积*) 固体、液体分子可估算分子大小(认为分子一个挨一个紧密排列);气体分子不可估算大小,只能估算分子间平均距离、所占空间体积 油膜法测油酸分子直径 (利用宏观量求微观量) 原理: d= V/S d: 单分子油膜层厚度 v: 1滴油酸酒精溶液中油酸体积=N 滴油酸酒精溶液总体积*浓度/N s:单分子油膜面积(查格数:多于半格算一个格,少于半格不算) 二、 分子永不停息的做无规则热运动 分子永不停息的无规则运动叫热运动------(微观运动) 1、扩散现象:不同物质彼此进入对方。 温度越高,扩散越快。 (扩散现象由于分子热运动引起的,是宏观现象,不是分子的热运动) 应用举例:向半导体材料掺入其它元素 扩散现象不是外界作用引起的,是分子无规则运动的直接结果,是分子无规则运动宏观反映 间 接 说 明:分子间有间隙 2、布朗运动:悬浮在液(气)体中的固体小微粒的无规则运动,要用显微镜来观察. 布朗运动发生的原因是固体小微粒受到周围微粒的 液(气)体分子无规则运动地撞击的不平衡性造成的.因而布朗运动说明了(与固体小微粒接触的液体或气体)分子在永不停息地做无规则运动. (1)布朗运动不是固体微粒中分子的无规则运动.

大学热学知识点总结

热学复习大纲 等温压缩系数 K^-1 (dV )T V d P 体膨胀系数 P p = -( dV )p p V dT p 压强系数O V =2(业)V p dT =1 ('d L)p 通常 ot v =3。 l dT 热力学第零定律 B 没有接触,它们仍然处于热平衡状态,这种规律被称为热力学第零定律。 1) f 选择某种测温物质,确定它的测温属性; 经验温标三要素: ) 选定固定点; 经验温标:理想气体温标、华氏温标、兰氏温标、摄氏温标 (热力学温标是国际实用温标不是经验温标 理想气体物态方程 p 0V 0 R=-— =8.31J / mol K T 0 ?M = Nm ,M m = N A m k = R 1.3^10^3 J / K n 为单位体积内的数密度 N A N A =6.02 X1023 个 /mol 理想气体微观模型 1分子本身线度比起分子间距小得多而可忽略不计 23 洛喜密脱常数 :n o = — m A = 2.7Xio 25 m A 22.4X10 距离: 1 1 "3 Q =( 25 )3 m =3.3X10 m 2.7X10 1 1 3 3 3M m 3 二0 r =( --- ) =(—-—)3 =2.4X10 m '4 兀 n '4 兀 PN A 2、 除碰撞一瞬间外,分子间互作用力可忽略不计。分子在两次碰撞之间作自由的匀速直线 运动; 3、 处于平衡态的理想气体,分子之间及分子与器壁间的碰撞是完全弹性碰撞; 4、 分子的运动遵从经典力学的规律 :在常温下,压强在数个大气压以下的气体,一般都能 很好地满足理 3) 进行分度,即对测温属性随温度的变化关系作出规定。 线膨胀系数a :在不受外界影响的情况下,只要 A 和B 同时与C 处于热平衡,即使 A 和 空/亘量 T pV =\RT =—RT M m p = nkT 标准状态下分子间平均 1 U)3 n o 氢分子半径

(完整版)材料力学各章重点内容总结

材料力学各章重点内容总结 第一章 绪论 一、材料力学中工程构件应满足的3方面要求是:强度要求、刚度要求和稳定性 要求。 二、强度要求是指构件应有足够的抵抗破坏的能力;刚度要求是指构件应有足够 的抵抗变形的能力;稳定性要求是指构件应有足够的保持原有平衡形态的能 力。 三、材料力学中对可变形固体进行的3个的基本假设是:连续性假设、均匀性假 设和各向同性假设。 第二章 轴向拉压 一、轴力图:注意要标明轴力的大小、单位和正负号。 二、轴力正负号的规定:拉伸时的轴力为正,压缩时的轴力为负。注意此规定只 适用于轴力,轴力是内力,不适用于外力。 三、轴向拉压时横截面上正应力的计算公式:N F A σ= 注意正应力有正负号,拉伸时的正应力为正,压缩时的正应力为负。 四、斜截面上的正应力及切应力的计算公式:2cos ασσα=,sin 22αστα= 注意角度α是指斜截面与横截面的夹角。 五、轴向拉压时横截面上正应力的强度条件[],max max N F A σσ=≤ 六、利用正应力强度条件可解决的三种问题:1.强度校核[],max max N F A σσ=≤ 一定要有结论 2.设计截面[],max N F A σ≥ 3.确定许可荷载[],max N F A σ≤ 七、线应变l l ε?=没有量纲、泊松比'εμε =没有量纲且只与材料有关、 胡克定律的两种表达形式:E σε=,N F l l EA ?= 注意当杆件伸长时l ?为正,缩短时l ?为负。 八、低碳钢的轴向拉伸实验:会画过程的应力-应变曲线,知道四个阶段及相应 的四个极限应力:弹性阶段(比例极限p σ,弹性极限e σ)、屈服阶段(屈服 极限s σ)、强化阶段(强度极限b σ)和局部变形阶段。 会画低碳钢轴向压缩、铸铁轴向拉伸和压缩时的应力-应变曲线。

初中物理热学知识点总结

初中物理热学知识点总结 1.温度:是指物体的冷热程度。 2.温度计使用:(1)使用前应观察它的量程和最小刻度值;(2)使用时温度计玻璃泡要全部浸入被测液体中,不要碰到容器底或容器壁;(3)待温度计示数稳定后再读数;(4)读数时玻璃泡要继续留在被测液体中,视线与温度计中液柱的上表面相平。 3.固体、液体、气体是物质存在的三种状态。 第二、分子运动论初步知识 1.分子运动论的内容是:(1)物质由分子组成;(2)一切物体的分子都永不停息地做无规则运动。(3)分子间存在相互作用的引力和斥力。 2.扩散:不同物质相互接触,彼此进入对方现象。 3.固体、液体压缩时分子间表现为斥力大于引力。 固体很难拉长是分子间表现为引力大于斥力。 4.内能:物体内部所有分子做无规则运动的动能和分子势能的总和叫内能。。一切物体都有内能。内能单位:焦(内能也称热能) 5.物体的内能与温度有关:物体的温度越高,分子无规则运动越剧烈,内能就越大。 6.热运动:物体内部大量分子的无规则运动。 7.改变物体的内能两种方法:做功和热传递,这两种方法对改变物体的内能是等效的。 8.物体对外做功,物体的内能减小;外界对物体做功,物体的内能增大。 9.物体吸收热量,当温度升高时,物体内能增大;物体放出热量,当温度降低时,物体内能减小。 10.所有能量的单位都是:焦耳。 11.热量(Q):在热传递过程中,传递能量的多少叫热量。(物体含有多少热量的说法是错误的) 12.比热(c ):单位质量的某种物质温度升高(或降低)1℃,吸收(或放出)的热量叫做这种物质的比热。 13.比热是物质的一种属性,它不随物质的体积、质量、形状、位置、温度的改变而改变,只要物质相同,比热就相同。 14.比热的单位是:焦耳/(千克?℃),读作:焦耳每千克摄氏度。

热力学统计物理总复习知识点

热力学部分 第一章 热力学的基本规律 1、热力学与统计物理学所研究的对象:由大量微观粒子组成的宏观物质系统 其中所要研究的系统可分为三类 孤立系:与其他物体既没有物质交换也没有能量交换的系统; 闭系:与外界有能量交换但没有物质交换的系统; 开系:与外界既有能量交换又有物质交换的系统。 2、热力学系统平衡状态的四种参量:几何参量、力学参量、化学参量和电磁参量。 3、一个物理性质均匀的热力学系统称为一个相;根据相的数量,可以分为单相系和复相系。 4、热平衡定律(热力学第零定律):如果两个物体各自与第三个物体达到热平衡,它们彼此 也处在热平衡. 5、符合玻意耳定律、阿氏定律和理想气体温标的气体称为理想气体。 6、范德瓦尔斯方程是考虑了气体分子之间的相互作用力(排斥力和吸引力),对理想气体状 态方程作了修正之后的实际气体的物态方程。 7、准静态过程:过程由无限靠近的平衡态组成,过程进行的每一步,系统都处于平衡态。 8、准静态过程外界对气体所作的功:,外界对气体所作的功是个过程量。 9、绝热过程:系统状态的变化完全是机械作用或电磁作用的结果而没有受到其他影响。绝 热过程中内能U 是一个态函数:A B U U W -= 10、热力学第一定律(即能量守恒定律)表述:任何形式的能量,既不能消灭也不能创造, 只能从一种形式转换成另一种形式,在转换过程中能量的总量保持恒定;热力学表达式: Q W U U A B +=-;微分形式:W Q U d d d += 11、态函数焓H :pV U H +=,等压过程:V p U H ?+?=?,与热力学第一定律的公 式一比较即得:等压过程系统从外界吸收的热量等于态函数焓的增加量。 12、焦耳定律:气体的内能只是温度的函数,与体积无关,即)(T U U =。 13.定压热容比:p p T H C ??? ????=;定容热容比:V V T U C ??? ????= 迈耶公式:nR C C V p =- 14、绝热过程的状态方程:const =γpV ;const =γ TV ;const 1 =-γγT p 。 15、卡诺循环过程由两个等温过程和两个绝热过程组成。正循环为卡诺热机,效率 211T T -=η,逆循环为卡诺制冷机,效率为2 11T T T -=η(只能用于卡诺热机)。 16、热力学第二定律:克劳修斯表述:不可能把热量从低温物体传到高温物体 而不引起其他变化(表明热传导过程是不可逆的); 开尔文(汤姆孙)表述:不可能从单一热源吸收热量使之完全变成有用的功而不引起其 他变化(表明功变热的过程是不可逆的); 另一种开氏表述:第二类永动机不可能造成的。 V p W d d -=

大学热学知识点总结.doc

热学复习大纲 α αααβ3 )(1 )(1 )(1 )(1 ====- =V p V V p p T T dT dl l dT dp p dT dV V dP dV V K 通常线膨胀系数压强系数体膨胀系数等温压缩系数 热力学第零定律:在不受外界影响的情况下,只要A 和B 同时与C 处于热平衡,即使A 和B 没有接触,它们仍然处于热平衡状态,这种规律被称为热力学第零定律。 为单位体积内的数密度恒量理想气体物态方程 n K J N R k m N M Nm M K mol J T V p R nkT p RT M M RT pV T pV A A m m /1038.1,/31.823000-?===?==???? ? ???? ====νmol N A /1002.623个?= 理想气体微观模型 1、分子本身线度比起分子间距小得多而可忽略不计 m N M n r m m n L m m n A m 10313 1 931 25 31 03 253 3 230104.2)43()43(103.3)107.21()1(:107.210 4.221002.6:-----?===?=?==?=??=πρπ氢分子半径距离标准状态下分子间平均洛喜密脱常数 2、除碰撞一瞬间外,分子间互作用力可忽略不计。分子在两次碰撞之间作自由的匀速直线 运动; 3、处于平衡态的理想气体,分子之间及分子与器壁间的碰撞是完全弹性碰撞; 4、分子的运动遵从经典力学的规律:在常温下,压强在数个大气压以下的气体,一般都能很好地满足理想气体方程。 处于平衡态的气体均具有分子混沌性 单位时间内碰在单位面积器壁上的平均分子数

材料热力学与相变复习总结

热力学定律定义表达式:一、能量从一种形式转化为其他形式时,其总量不变。▽u=q —W 二、一切自发过程都是不可逆的。或热不可能从低温物体传到高温物体而不引起其他变化。 盖.吕萨克(Gay-Lussac )定律:恒压下,任何气体温度升高或降低1℃所引起的体积膨胀都等于它们零度时体积的1/273.16。)16.2731(16.273000t V t V V V t +=+= 敞开体系或开放体系: 与环境之间既有物质交换,也有能量交换的体系 封闭体系或关闭体系:与环境之间只有能量交换,而无物质交换的体系 隔离体系或孤立体系:与环境之间既无物质交换,也无能量交换的体系 体系的性质是状态的函数。我们把这些性质,包括体系的温度、压力、体积、能量或其他,都叫做体系的状态函数 强度性质:与体系的总量无关的性质,例如温度、压强、比表面能、磁场强度等 广度性质:与体系的总量成比例的性质,例如体积、面积、质量等。 盖斯定律:同一化学反应,不论其经过的历程如何(一步或几步完成),只要体系的初态和终态一定,则反应的热效应总是一定的(相同的)。 对于可逆过程而言,qR/T 最大,所以对于同样的△u ,qR 是一定的,且仅取决于体系的状态。这样,qR /T 就具备了状态函数的特点。以S 表示之,称为熵。T q S R ?=?,T dq dS R =熵虽然可以作为此问题判断的依据,但是只适用于隔离体系。 G 称为吉布斯(Gibbs )自由能,也是个状态函数,可以判断恒温恒压下过程可逆与否。若令 G =H -TS 则dW' ≤-dG 如果过程只作膨胀功,即dW' =0,则有 dG ≤0,或 △G ≤0 判断恒温恒压、无非膨功的条件下过程自发进行的可能性。自由能减小不可逆、自发。不变则可逆平衡。 能斯特定理0)()( lim lim 00=?=???→→T T P T S T G 后来人们提出了另外两种热力学第三 定律的表达式: 0)(lim 0=?→S T 00 l i m S S T =→ 将偏摩尔量的定义式中的广度性质G 以自由能F 代之,则得到偏摩尔自由能1 21......,,,)/(-??=i n n n P T i i n F μ 化学位的物理意义是:恒温恒压下,加入微量i 所引起的体系自由能的变化。显然,化学位与自由能之间存在以下关系∑=i i dn dF μ 化学位反映了某一组元从某一相中逸出的能力。某一组元在一相内的化学位越高,它从这相迁移到另一相中的倾向越大。所以可以用化学位来判断过程的方向和平衡: 0≤∑i i dn μ“<”表示反应的方向;“=”表示平衡条件 拉乌尔定律:如果溶质是不挥发性的,即它的蒸气压极小,与溶剂相比可以忽略不计,则一定的温度下,稀溶液的蒸气压等于纯溶剂的蒸气压与其摩尔分数的乘积。 亨利定律:在一定的温度下,气体在液体中的溶解度和该气体的平衡分压成正比 大多数实际溶液都对拉乌尔定律有偏差,即蒸气压大于或小于拉乌尔定律的计算值。如果蒸气压大于拉乌尔定律的计算值,称为正偏差;如果蒸气压小于拉乌尔定律的计算值,叫做负

材料热力学知识点

第一章单组元材料热力学 名词解释: 1 可逆过程 2 Gibbs自由能最小判据 3 空位激活能 4 自发磁化: 5 熵: 6 热力学第一定律热力学第二定律 7 Richard定律 填空题 1 热力学第二定律指出:一个孤立系统总是由熵低的状态向熵高的状态变化,平衡状态则是具有最大熵的状态。 2 按Boltzmann方程,熵S与微观状态数W的关系式为S=klnW 3 热容的定义是系统升高1K时所吸收的热量,它的条件是物质被加热时不发生相变和化学反应 4 α-Fe的定压热容包括:振动热容、电子热容和磁性热容。 5 纯Fe的A3的加热相变会导致体积缩小 6 Gibbs-Helmholtz方程表达式是 7 铁磁性物质的原子磁矩因交换作用而排列成平行状态以降低能量的行为被称为自发磁化 论述题 1 根据材料热力学原理解释为什么大多数纯金属加热产生固态相变时会产生体积膨胀的效应? 2 试根据单元材料的两相平衡原理推导克拉伯龙(Clapeyron)方程。 3 试用G-T图的图解法说明纯铁中的A3点相变是异常相变。 4 试画出磁有序度、磁性转变热容及磁性转变(指铁磁-顺磁转变)自由能与温度的关系曲线。 计算题 1已知纯钛α/β的平衡相变温度为882O C,相变焓为4142J?mol-1,试求将β-Ti过冷到800O C 时,β→α的相变驱动力 2若某金属形成空位的激活能为58.2KJ?mol-1,试求在700O C下,该金属的空位浓度。 3纯Bi在0.1MPa压力下的熔点为544K。增加压力时,其熔点以3.55/10000K?MPa-1的速率下降。另外已知融化潜热为52.7J?g-1,试求熔点下液、固两相的摩尔体积差。(Bi的原子量为209g?mol-1.

大学有机化学知识点总结

有机化学 一.有机化合物的命名 1. 能够用系统命名法命名各种类型化合物: 包括烷烃,烯烃,炔烃,烯炔,脂环烃(单环脂环烃和多环置换脂环烃中的螺环烃和桥环烃),芳烃,醇,酚,醚,醛,酮,羧酸,羧酸衍生物(酰卤,酸酐,酯,酰胺),多官能团化合物(官能团优先顺序:-COOH >-SO3H >-COOR >-COX >-CN >-CHO >>C =O >-OH(醇)>-OH(酚)>-SH >-NH2>-OR >C =C >-C ≡C ->(-R >-X >-NO2),并能够判断出Z/E 构型和R/S 构型。 2. 根据化合物的系统命名,写出相应的结构式或立体结构式(伞形式,锯架式,纽曼投影式,Fischer 投影式)。 立体结构的表示方法: 1 )伞形式:COOH OH 3 2)锯架式:CH 3 OH H H OH 2H 5 3) 纽曼投影式: 4)菲舍尔投影式:COOH 3 OH H 5)构象(conformation) (1) 乙烷构象:最稳定构象是交叉式,最不稳定构象是重叠式。 (2) 正丁烷构象:最稳定构象是对位交叉式,最不稳定构象是全重叠式。 (3) 环己烷构象:最稳定构象是椅式构象。一取代环己烷最稳定构象是e 取代的椅 式构象。多取代环己烷最稳定构象是e 取代最多或大基团处于e 键上的椅式构象。 立体结构的标记方法 1. Z/E 标记法:在表示烯烃的构型时,如果在次序规则中两个优先的基团在同一 侧,为Z 构型,在相反侧,为E 构型。 CH 3 C C H C 2H 5CH 3C C H 2H 5Cl (Z)-3-氯-2-戊烯 (E)-3-氯-2-戊烯 2、 顺/反标记法:在标记烯烃和脂环烃的构型时,如果两个相同的基团在同一侧, 则为顺式;在相反侧,则为反式。 CH 3C C H CH 3H CH 3C C H H CH 3顺-2-丁烯 反-2-丁烯3 3 3顺-1,4-二甲基环己烷反-1,4-二甲基环己烷

材料力学知识点总结.doc

一、基本变形 轴向拉压材料力学总结 扭转弯曲 外外力合力作用线沿杆轴 力线 内轴力: N 规定: 力拉为“ +” 压为“-” 几 变形现象: 何 平面假设: 应 方应变规律: 面 d l 常数 dx 力 应 力 N 公 A 式 力偶作用在垂直于轴 的平面内 扭转: T 规定: 矩矢离开截面为“ +” 反之为“ - ” 变形现象: 平面假设: 应变规律: d dx T T I P max W t 外力作用线垂直杆轴,或外力偶作用 在杆轴平面 剪力: Q 规定:左上右下为“ +” 弯矩: M 规定:左顺右逆为“ +” 微分关系: dQ ; dM q Q dx dx 弯曲正应力 变形现象: 平面假设:弯曲剪应力 应变规律: y My QS*z I Z I z b M QS max max max W Z I z b

应 力 分 布 应 等直杆 用 外力合力作用条 线沿杆轴线 件 应力-应 E 变 (单向应力状态)关系 强N max 度 A max u 条 n 件塑材:u s 脆材:u b 圆轴平面弯曲 应力在比例极限内应力在比例极限内 G (纯剪应力状态) 弯曲正应力 T 1.t c max 弯曲剪应力W t max max 2. t c Q max S max max I z b t max t cmac c 轴向拉压扭转弯曲刚 度T 180 0 y max y max GI P 条注意:单位统一max 件 d l N ; L NL d T 1 M ( x) EA 变dx EA dx GI Z ( x) EI TL y '' M (x) GI P EI EA—抗拉压刚度GI p—抗扭刚度EI —抗弯刚度

物理热学知识点总结

物理初三热学知识点总结 1.温度、温度计 --温度:物体的冷热程度 --测量温度的工具——温度计 ℃:摄氏度(冰水混合物的温度规定为0℃,沸水的温度规定为100℃,100等分后每一份为1℃) ℉:华氏度 注意:在做“读出温度计示数”题时应看好温度数值增加是向上还是向下,上则为正度数,下则为负度数 2.熔化&凝固、汽化&液化、升华&凝华 --基本概念 固→液熔化吸热液→气汽化吸热固→气升华吸热 液→固凝固放热气→液液化放热气→固凝华放热 --重要知识点 熔化&凝固:晶体有固定的熔点(凝固点),非晶体没有固定的熔点(凝固点)。 不同的晶体,熔点(凝固点)一般不同。 影响液体蒸发快慢的因素有:①液体温度的高低;②液体表面积的大小;③液体表面空气流动的快慢。 海拔高,气压低,沸点低;海拔低,气压高,沸点高。 液化的两种方法:降低温度&压缩体积。 蒸发的两个条件:温度达到沸点&持续吸热。 蒸发吸热,有致冷作用。 -- 3.分子动理论&内能 --基本概念 分子动理论:①物质是由分子构成的;

②分子在永不停息做无规则运动; ③分子之间有着相互作用的引力与斥力。 (实例:两物体吸在一起拆不开,错例:挂钩吸在墙壁上——压强) 扩散现象:①扩散现象说明了分子在永不停息做无规则运动; ②温度越高,分子运动得越快(剧烈),扩散现象进行越快。 内能:①物体所有分子所具有的分子动能和分子势能的总和; ②改变物体内能的两种方法:做功和热传递。 ③内能改变的两种宏观表现:温度、物态 --易错点 1.物体吸收热量,内能不一定增加(同时对外做功) 2.外界对物体做功,内能不一定增加(同时吸收热量) 3.内能增加,温度不一定上升(晶体熔化时) 4.水达到沸点后,内能增加,温度不再上升 5.做功和热传递改变内能是等效的 6.热传递的实质:内能的转移;做功的实质:能量的转化 4.热量&比热容、燃料&热机 --热量 在热传递的过程中,传递能量的多少,叫热量(热传递时内能变化的量度)。单位焦耳(J) --比热容 单位质量的某种物质,温度升高(降低)1℃吸收(放出)的热量,叫做这种物质的比热容。 公式:Q=cm?t 单位:J/(kg·℃) 比热容是物质的一种特性,同一种物质比热容一般不变,不同物质比热容一般不同。(注:①Q=cm?t中,任意一个量和Q为定值时,其他两个量成反比;②通常情况下水的比热容要比大多物质要大。) --燃料、热机 热值:1kg某种燃料完全燃烧时放出的热量叫做燃料的热值。 热机:把内能转化为机械能的机器。分为蒸汽机、内燃机(汽油、柴油)、喷气式发动机。汽油机四冲程:吸气(汽油和空气)、压缩(机械→内)、做功(内→机械)、排气 热机效率:转化为机械能的内能÷总内能×100%

材料力学复习总结

1、 应力 全应力正应力切应力线应变 外力偶矩 当功率P 单位为千瓦(kW ),转速为n (r/min )时,外力偶矩为 m).(N 9549e n P M = 当功率P 单位为马力(PS ),转速为n (r/min )时,外力偶矩为 m).(N 7024e n P M = 拉(压)杆横截面上的正应力 拉压杆件横截面上只有正应力σ,且为平均分布,其计算公式为 N F A σ= (3-1) 式中N F 为该横截面的轴力,A 为横截面面积。 正负号规定 拉应力为正,压应力为负。 公式(3-1)的适用条件: (1)杆端外力的合力作用线与杆轴线重合,即只适于轴向拉(压)杆件; (2)适用于离杆件受力区域稍远处的横截面; (3)杆件上有孔洞或凹槽时,该处将产生局部应力集中现象,横截面上应力分布很不均匀; (4)截面连续变化的直杆,杆件两侧棱边的夹角0 20α≤时 拉压杆件任意斜截面(a 图)上的应力为平均分布,其计算公式为 全应力 cos p ασα= (3-2) 正应力 2cos ασσα=(3-3) 切应力1 sin 22 ατα= (3-4) 式中σ为横截面上的应力。 正负号规定: α 由横截面外法线转至斜截面的外法线,逆时针转向为正,反之为负。 ασ 拉应力为正,压应力为负。 ατ 对脱离体内一点产生顺时针力矩的ατ为正,反之为负。

两点结论: (1)当0 0α=时,即横截面上,ασ达到最大值,即()max ασσ=。当α=0 90时,即纵截面上,ασ=0 90=0。 (2)当0 45α=时,即与杆轴成045的斜截面上,ατ达到最大值,即max ()2αα τ= 1.2 拉(压)杆的应变和胡克定律 (1)变形及应变 杆件受到轴向拉力时,轴向伸长,横向缩短;受到轴向压力时,轴向缩短,横向伸长。如图3-2。 图3-2 轴向变形 1l l l ?=- 轴向线应变 l l ε?= 横向变形 1b b b ?=- 横向线应变 b b ε?'= 正负号规定 伸长为正,缩短为负。 (2)胡克定律 当应力不超过材料的比例极限时,应力与应变成正比。即 E σε= (3-5) 或用轴力及杆件的变形量表示为 N F l l EA ?= (3-6) 式中EA 称为杆件的抗拉(压)刚度,是表征杆件抵抗拉压弹性变形能力的量。 公式(3-6)的适用条件: (a)材料在线弹性范围内工作,即p σσ?; (b)在计算l ?时,l 长度内其N 、E 、A 均应为常量。如杆件上各段不同,则应分段计算,求其代数和得总变形。即 1 n i i i i i N l l E A =?=∑ (3-7) (3)泊松比 当应力不超过材料的比例极限时,横向应变与轴向应变之比的绝对值。即 ενε ' = (3-8) 表1-1 低碳钢拉伸过程的四个阶段

相关文档
最新文档