安全性测试方法

安全性测试方法
安全性测试方法

1. 功能验证

功能验证是采用软件测试当中的黑盒测试方法,对涉及安全的软件功能,如:用户管理模块,权限管理模块,加密系统,认证系统等进行测试,主要验证上述功能是否有效,具体方法可使用黑盒测试方法。

2. 漏洞扫描

安全漏洞扫描通常都是借助于特定的漏洞扫描器完成的。漏洞扫描器是一种自动检测远程或本地主机安全性弱点的程序。通过使用漏洞扫描器,系统管理员能够发现所维护信息系统存在的安全漏洞,从而在信息系统网络安全保卫站中做到“有的放矢”,及时修补漏洞。按常规标准,可以将漏洞扫描分为两种类型:主机漏洞扫描器(Host Scanner)和网络漏洞扫描器(Net Scanner)。主机漏洞扫描器是指在系统本地运行检测系统漏洞的程序,如著名的COPS、Tripewire、Tiger等自由软件。网络漏洞扫描器是指基于网络远程检测目标网络和主机系统漏洞的程序,如Satan、ISS Internet Scanner等。

安全漏洞扫描是可以用于日常安全防护,同时可以作为对软件产品或信息系统进行测试的手段,可以在安全漏洞造成严重危害前,发现漏洞并加以防范。

3. 模拟攻击实验

对于安全测试来说,模拟攻击测试是一组特殊的黑盒测试案例,我们以模拟攻击来验证软件或信息系统的安全防护能力,下面简要列举在数据处理与数据通信环境中特别关心的几种攻击。在下列各项中,出现了“授权”和“非授权”两个术语。“授权”意指“授予权力”,包含两层意思:这里的权力是指进行某种活动的权力(例如访问数据);这样的权力被授予某个实体、代理人或进程。于是,授权行为就是履行被授予权力(未被撤销)的那些活动

??●?冒充:就是意个实体假装成一个不同的实体。冒充常与某些别的主动攻击形式一起使用,特别是消息的重演与篡改。例如,截获鉴别序列,并在一个有效的鉴别序列使用过一次后再次使用。特权很少的实体为了得到额外的特权,可能使用冒充成具有这些特权的实体,举例如下。

1)口令猜测:一旦黑客识别了一台主机,而且发现了基于NetBIOS、Telnet或NFS服务的可利用的用户帐号,并成功地猜测出了口令,就能对机器进行控制。

2)缓冲区溢出:由于在很多地服务程序中大意的程序员使用类似于“strcpy(),strcat()”不进行有效位检查的函数,最终可能导致恶意用户编写一小段程序来进一步打开安全缺口,然后将该代码放在缓冲区有效载荷末尾,这样,当发生缓冲区溢出时,返回指针指向恶意代码,执行恶意指令,就可以得到系统的控制权。

??●?重演:当一个消息或部分消息为了产生非授权效果而被重复时,出现重演。例如,一个含有鉴别信息的有效消息可能被另一个实体所重演,目的是鉴别它自己(把它当作其他实体)。

??●?消息篡改:数据所传送的内容被改变而未被发觉,并导致非授权后果,如下所示。

1) DNS高速缓存污染:由于DNS服务器与其他名称服务器交换信息的时候并不进行身份验证,这就使得黑客可以加入不正确得信息,并把用户引向黑客自己的主机。

2)伪造电子邮件:由于SMTP并不对邮件发送者的身份进行鉴定,因此黑客可以对内部客户伪造电子邮件,声称是来自某个客户认识并相信的人,并附上可安装的特洛伊木马程序,或者是一个指向恶意网站的链接。

服务拒绝:当溢个实体不能执行它的正常功能,或它的动作防碍了别的实体执行它们的正常功能的时候,便发生服务拒绝。这种攻击可能是一般性的,比如一个实体抑制所有的消息,也可能是有具体目标的。例如,一个实体抑制所有流向某一特定目的端的消息,如安全审计服务。这种攻击可以是对通信业务流的抑制,或产生额外的通信业务流。也可能制造出试图破坏网络操作的消息,特别是如果网络具有中继实体,这些中继实体根据从别的中继实体那里接收到的状态报告,来做出路由选择的决定。拒绝服务攻击种类很多,举例如下。

1)死亡之ping(ping of death):由于在早期的阶段,路由器对包的最大尺寸都有限制,许多操作系统对TCP/IP栈的实现在ICMP包上都规定为

64KB,并且在读取包的标题后,要根据该标题头里包含的信息来为有效载荷生成缓冲区。当产生畸形的、声称自己的尺寸超过ICMP上限,也就是加载尺寸超过64K上限的包时,就会出现内存分配错误,导致TCP/IP堆栈崩溃,致使接受方宕机。

2)泪滴(Teardorop):泪滴攻击利用那些在TCP/IP堆栈实现中信任IP 碎片中的包的标题头所包含的信息来实现自己的攻击。IP分段含有指示该分段所包含的是原包的哪一段的信息,某些TCP/IP(包括Service Pack 4 以前的NT)在收到含有重叠偏移的伪造分段时将崩溃。

3) UDP洪水(UDP Flood):各种各样的假冒攻击利用简单的TCP/IP 服务,如Chargen和Echo 来传送毫无用处的数据以占满带宽。通过伪造与某一主机的Chargen服务之间的一次的UDP连接,回复地址指向开着Echo服务的一台主机,这样就生成在两台主机之间的足够多的无用数据流,如果数据流足够多,就会导致带宽的服务攻击。

4) SYN洪水(SYN Flood):一些TCP/IP栈的实现,只能等待从有限数量的计算机发来的ACK消息,因为它们只有有限的内存缓冲区用于创建连接,如果这一缓冲区充满了虚假连接的初始信息,该服务器就会对接下来的连接请求停止响应,直到缓冲区里的连接企图超时为止。在一些创建连接不受限制的实现里,SYN洪水也具有类似的影响。

5) Land攻击:在Land攻击中,一个特别打造的SYN包的原地址和目标地址都被设置成某一个服务器地址,这将导致接受服务器向它自己的地址发送SYN-ACK消息,结果,这个地址又发回ACK消息并创建一个空连接,每一个这样的连接都将保留,直到超时。各种系统对Land攻击的反应不同,许多UNIX 实现将崩溃,NT变得极其缓慢(大约持续5分钟)。

6) Smurf攻击:一个简单的Smurf攻击,通过使用将回复地址设置成受害网络的广播地址的ICMP应答请求(ping)数据包,来淹没受害主机的方式进行,最终导致该网络的所有主机都对此ICMP应答请求作出答复,导致网络阻塞,比“Ping of Death”洪水的流量高出一个或两个数量级。更加复杂的Smurf将源地址改为第三方的受害者,最终导致第三方雪崩。

7) Fraggle攻击:Fraggle攻击对Smurf攻击作了简单的修改,使用的是UDP应答消息,而非ICMP。

8)电子邮件炸弹:电子邮件炸弹是最古老的匿名攻击之一,通过设置一台机器,不断大量地向同一地址发送电子邮件,攻击者能够耗尽接收者网络的带宽。

9)畸形消息攻击:各类操作系统上的许多服务都存在此类问题,由于这些服务在处理信息之前没有进行适当正确的错误校验,在收到畸形的信息时可能会崩溃。

??●?内部攻击:当系统的合法用户以非故意或非授权方式进行动作时就成为内部攻击。多数已知的计算机犯罪都和使系统安全遭受损害的内部攻击有密切的关系。能用来防止内部攻击的保护方法包括:所有管理数据流进行加密;利用包括使用强口令在内的多级控制机制和集中管理机制来加强系统的控制能力;为分布在不同场所的业务部门划分VLAN,将数据流隔离在特定部门;利用防火墙为进出网络的用户提供认证功能,提供访问控制保护;使用安全日志记录网络管理数据流等。

??●?外部攻击:外部攻击可以使用的方法有:搭线(主动的与被动的)、截取辐射、冒充为系统的授权用户、冒充为系统的组成部分、为鉴别或访问控制机制设置旁路等。

??●?陷阱门:当系统的实体受到改变,致使一个攻击者能对命令或对预定的事件或事件序列产生非授权的影响时,其结果就称为陷阱门。例如,口令的有效性可能被修改,使得除了其正常效力之外也使攻击者的口令生效。

??●?特洛伊木马:对系统而言的特洛伊木马,是指它不但具有自己的授权功能,而且还有非授权功能。一个向非授权信道拷贝消息的中继就是一个特洛伊木马。典型的特洛伊木马有NetBus、BackOrifice和BO2k 等。

4. 侦听技术

侦听技术实际上是在数据通信或数据交互过程,对数据进行截取分析的过程。目前最为流行的是网络数据包的捕获技术,通常我们称为 Capture,黑客可以利用该项技术实现数据的盗用,而测试人员同样可以利用该项技术实现安全测试。该项技术主要用于对网络加密的验证。

------------------摘自《软件评测师教程》

功能验证采用黑盒测试方法,对涉及安全的软件功能进行测试

漏洞扫描采用主机或系统漏洞扫描器自动检测远程或本机安全性弱点

模拟攻击试验采用冒充、重演、消息篡改、服务拒绝、内部攻击、外部攻击、陷阱门、特洛伊木马方法进行测试

侦听技术对数据进行截取分析的过程,主要用于对网络加密的验证

总结的是不错。但如果是用来做Web Security Testing的话,就相差甚远了……就比如说,LZ可以分享一下您的Checklist,呵呵!

就目前来说,对于一个新的project,我们发现的最多的安全问题可能是XSS或者一些安全意识单薄的问题(比如登陆时密码错误的提示问题);由于我所在的公司用的.NET,所以暂时不考虑注入。

也希望大家能分享更多的安全测试方法,谢谢!

BTW,服务器的安全和代码的安全最好是分开,因为一个和IT相关,一个和DEV

相关;二者并不是一回事!

安全性测试规定

安全性测试规定 1.目的 是针对软件系统安全性,为防止对程序及数据的非授权的故意或意外访问进行检验的测试工作。其目的在于发现软件系统內部可能存在的各种差错,修改软件错误,提高软件质量。 2.实施细则 1.安全性测试的基本步骤 安全性测试活动主要包括 ?制定安全性测试计划并准备安全性测试用例和安全性测试规程; ?对照基线化软件和基线化分配需求及软件需求的文档,进行软件安全性测试; ?用文档记载在安全性测试期间所鉴别出的问题并跟踪直到结束; ?将安全性测试结果写成文档并用作为确定软件是否满足其需求的基础; ?提交安全性测试分析报告。 2.安全性测试方法从如下几方面考虑: ?文件操作权限检测 ?系统启动和关闭配置检测 ? Crontab安全检测 ?用户登录环境检测 ? FTP服务安全性检测

?检测可能的入侵征兆 ?远程登录安全性检测 ?非必需的帐号安全检测 ?用户安全检测 ?系统工具安全性检测 3.互操作性测试的结果分析 ?软件能力【经过测试所表明的软件能力。】 ?缺陷和限制【说明测试所揭露的软件缺陷和不足,以及可能给软件运行带来的影响。】 ?建议【提出为弥补上述缺陷的建议。】 测试结论【说明能否通过。】 互操作性测试规定 1.目的 是针对软件系统同其他指定系统进行交互的能力进行检验的测试工作。其目的在于发现软件系统內部可能存在的各种差错,修改软件错误,提高软件质量。 2.实施细则 1.互操作性测试的基本步骤 互操作性测试活动主要包括 ?制定互操作性测试计划并准备互操作性测试用例和互操作性测试规程;

?对照基线化软件和基线化分配需求及软件需求的文档,进行软件互操作性测试; ?用文档记载在互操作性测试期间所鉴别出的问题并跟踪直到结束; ?将互操作性测试结果写成文档并用作为确定软件是否满足其需求的基础; ?提交互操作性测试分析报告。 2.互操作性测试方法 ?根据软件需求设计需交互的系统的列表,然后分别搭建相应的测试环境。 ?测试本系统对需交互的某个系统的操作能力。 ?测试需交互的某个系统对本系统的操作能力。 3.互操作性测试的结果分析 ?软件能力【经过测试所表明的软件能力。】 ?缺陷和限制【说明测试所揭露的软件缺陷和不足,以及可能给软件运行带来的影响。】 适合性测试规定 1.目的 是针对软件系统与规定任务能否提供一组功能以及这组功能的适合程度进行检验的测试工作。其目的在于发现软件系统內部可能存在的各种差错,修改软件错误,提高软件适合程度。

胶带保持力和胶黏剂类产品粘力保持力测试试验方法以及使用

胶带保持力和胶黏剂类产品粘力保持力测试试验方法以及 使用仪器 1 概述 本产品按照中华人民共和国国家标准GB/T4851-1998之规定制造,适用于压敏胶粘带等产品进行持粘性测试试验。 1.1 工作原理:把贴有试样的试验板垂直吊挂在试验架上,下端挂规定重量的砝码,用一定时间后试样粘脱的位移量或试样完全脱离所需的时间来测定胶粘带抵抗拉脱的能力。 1.2 仪器结构:主要由计时机构、试验板、加载板、砝码、机架及标准压辊等部分构成。 1.3 技术指标:砝码—1000±10g(含加载板重量) 试验板—60(L)*40(B)*1.5(D)mm(与加载板相同) 压辊荷重:2000±50g 橡胶硬度:80°±5°(邵尔硬度) 计时器—99小时59分钟60秒 工位—6工位 净重—12.5kg 电源—220V 50Hz 外形尺寸—600(L)*240(B)*400(H)mm 2操作方法 2.1水平放置仪器,打开电源开关,并将砝码放置在吊架下方槽内。

2.2不使用的工位可按“关闭”键停止使用,重新计时可按“开启/清零”键。 2.3 除去胶粘带试卷最外层的3~5 圈胶粘带后,以约300 mm/min的速率解开试样卷(对片状试样也以同样速率揭去其隔离层),每隔200mm左右,在胶粘带中部裁取宽25 mm,长约100 mm的试样。除非另有规定,每组试样的数量不少于三个。 2.4 用擦拭材料沾清洗剂擦洗试验板和加载板,然后用干净的纱布将其仔细擦干,如此反复清洗三次。以上,直至板的工作面经目视检查达到清洁为止。清洗以后,不得用手或其他物体接触板的工作面。 2.5 在温度23℃±2℃,相对湿度65%±5%的条件下,按图2规定的尺寸,将试样平行于板的纵向粘贴在紧挨着的试验板和加载板的中部。用压辊以约300 mm/min的速度在试样上滚压。注意滚压时,只能用产生于压辊质量的力,施加于试样上。滚压的次数可根据具体产品情况加以规定,如无规定,则往复滚压三次。 2.6 试样在板上粘贴后,应在温度 23℃±2℃,相对湿度 65%±5%的条件下放置20 min。然后将试验。板垂直固定在试验架上,轻轻用销子连接加载板和砝码。整个试验架置于已调整到所要求的试验环境下的试验箱内。记录测试起始时间。 2.7 到达规定时间后,卸去重物。用带分度的放大镜测出试样下滑的位移量,精确至0.1mm;或者记录试样从试验板上脱落的时间。时间数大于等于1h的,以min为单位,小于1h的以s为单位。 3 试验结果处理 试验结果以一组试样的位移量或脱落时间的算术平均值表示。

测量磁导率

一、测量磁导率 一.实验目的:测量介质中的磁导率大小 二.实验器材:DH4512型霍尔效应实验仪和测试仪一套,线圈一副(N匝)万用表一个三.实验步骤 1. 测量并计算磁场强度H ○1测量线圈周长L。 ○2线圈通电,测的线圈中的电流为I0,则总的电流为I M=N ?I0 ○3由磁介质安培环路定理的积分形式可知:∮c H ?dl=I故H ?L= N ?I0,H=(N ?I0)/L. 2.测量并计算磁感应强度B——利用霍尔效应实验 ○1实验原理: 霍尔效应从本质上讲,是运动的带电粒子在磁场中受洛仑兹力的作用而引起的偏转。当带电粒子(电子或空穴)被约束在固体材料中,这种偏转就导致在垂直电流和磁场的方向上产生正负电荷在不同侧的聚积,从而形成附加的横向电场。如下图1所示,磁场B位于Z的正向,与之垂直的半导体薄片上沿X 正向通以电流Is(称为工作电流),假设载流子为电子(N型半导体材料),它沿着与电流Is相反的X负向运动。由于洛仑兹力f L作用,电子即向图中虚线箭头所指的位于y轴负方向的B侧偏转,并使B侧形成电子积累,而相对的A侧形成正电荷积累。 与此同时运动的电子还受到由于两种积累的异种电荷形成的反向电场力f E的作用。随着电荷积累的增加,f E增大,当两力大小相等(方向相反)时,f L=-f E,则电子积累便达到动态平衡。这时在A、B两端面之间建立的电场称为霍尔电场E H,相应的电势差称为霍尔电势V H。 设电子按平均速度,向图示的X负方向运动,在磁场B作用下,所受洛仑兹力为: f L=-e B 式中:e 为电子电量,为电子漂移平均速度,B为磁感应强度。 同时,电场作用于电子的力为:f l E

安全性测试方法

安全性测试方法 集团标准化工作小组 #Q8QGGQT-GX8G08Q8-GNQGJ8-MHHGN#

1.功能验证 功能验证是采用软件测试当中的黑盒测试方法,对涉及安全的软件功能,如:用户管理模块,权限管理模块,加密系统,认证系统等进行测试,主要验证上述功能是否有效,具体方法可使用黑盒测试方法。 2.漏洞扫描 安全漏洞扫描通常都是借助于特定的漏洞扫描器完成的。漏洞扫描器是一种自动检测远程或本地主机安全性弱点的程序。通过使用漏洞扫描器,系统管理员能够发现所维护信息系统存在的安全漏洞,从而在信息系统网络安全保卫站中做到“有的放矢”,及时修补漏洞。按常规标准,可以将漏洞扫描分为两种类型:主机漏洞扫描器(Host Scanner)和网络漏洞扫描器(Net Scanner)。主机漏洞扫描器是指在系统本地运行检测系统漏洞的程序,如着名的COPS、Tripewire、Tiger等自由软件。网络漏洞扫描器是指基于网络远程检测目标网络和主机系统漏洞的程序,如Satan、ISS Internet Scanner等。 安全漏洞扫描是可以用于日常安全防护,同时可以作为对软件产品或信息系统进行测试的手段,可以在安全漏洞造成严重危害前,发现漏洞并加以防范。 3.模拟攻击实验 对于安全测试来说,模拟攻击测试是一组特殊的黑盒测试案例,我们以模拟攻击来验证软件或信息系统的安全防护能力,下面简要列举在数据处理与数据通信环境中特别关心的几种攻击。在下列各项中,出现了“授权”和“非授权”两个术语。“授权”意指“授予权力”,包含两层意思:这

里的权力是指进行某种活动的权力(例如访问数据);这样的权力被授予某个实体、代理人或进程。于是,授权行为就是履行被授予权力(未被撤销)的那些活动 冒充:就是意个实体假装成一个不同的实体。冒充常与某些别的主动攻击形式一起使用,特别是消息的重演与篡改。例如,截获鉴别序列,并在一个有效的鉴别序列使用过一次后再次使用。特权很少的实体为了得到额外的特权,可能使用冒充成具有这些特权的实体,举例如下。 1)口令猜测:一旦黑客识别了一台主机,而且发现了基于NetBIOS、Telnet或NFS服务的可利用的用户帐号,并成功地猜测出了口令,就能对机器进行控制。 2)缓冲区溢出:由于在很多地服务程序中大意的程序员使用类似于“strcpy(),strcat()”不进行有效位检查的函数,最终可能导致恶意用户编写一小段程序来进一步打开安全缺口,然后将该代码放在缓冲区有效载荷末尾,这样,当发生缓冲区溢出时,返回指针指向恶意代码,执行恶意指令,就可以得到系统的控制权。 重演:当一个消息或部分消息为了产生非授权效果而被重复时,出现重演。例如,一个含有鉴别信息的有效消息可能被另一个实体所重演,目的是鉴别它自己(把它当作其他实体)。 消息篡改:数据所传送的内容被改变而未被发觉,并导致非授权后果,如下所示。

稳定性试验办法

附件3 特殊医学用途配方食品稳定性研究要求(试行) 一、基本原则 特殊医学用途配方食品稳定性研究是质量控制研究的重要组成部分,其目的是通过设计试验获得产品质量特性在各种环境因素影响下随时间 稳定性研究用样品应在满足《特殊医学用途配方食品良好生产规范》要求及商业化生产条件下生产,产品配方、生产工艺、质量要求应与注册申请材料一致,包装材料和产品包装规格应与拟上市产品一致。 影响因素试验、开启后使用的稳定性试验等采用一批样品进行;加速试验和长期试验分别采用三批样品进行。 (二)考察时间点和考察时间

稳定性研究目的是考察产品质量在确定的温度、湿度等条件下随时间变化的规律,因此研究中一般需要设置多个时间点考察产品的质量变化。考察时间点应基于对产品性质的认识、稳定性趋势评价的要求而设置。加速试验考察时间为产品保质期的四分之一,且不得少于3个月。长期试验总体考察时间应涵盖所预期的保质期,中间取样点的设置应当考虑产品的稳定性特点和产品形态特点。对某些环境因素敏感的产品,应适当增加考 3.检验方法:稳定性试验考察项目原则上应当采用《食品安全国家标准特殊医学用途配方食品通则》(GB 29922)、《食品安全国家标准特殊医学用途婴儿配方食品通则》(GB 25596)规定的检验方法。国家标准中规定了检验方法而未采用的,或者国家标准中未规定检验方法而由申请人自行提供检验方法的,应当提供检验方法来源和(或)方法学验证资料。检验方法应当具有专属性并符合准确度和精密度等相关要求。

四、试验方法 (一)加速试验 加速试验是在高于长期贮存温度和湿度条件下,考察产品的稳定性,为配方和工艺设计、偏离实际贮存条件产品是否依旧能保持质量稳定提供依据,并初步预测产品在规定的贮存条件下的长期稳定性。加速试验条件由申请人根据产品特性、包装材料等因素确定。 %。如在6 温度 %, 25℃±2℃ 长期试验是在拟定贮存条件下考察产品在运输、保存、使用过程中的稳定性,为确认贮存条件及保质期等提供依据。长期试验条件由申请人根据产品特性、包装材料等因素确定。 长期试验考察时间应与产品保质期一致,取样时间点为第一年每3个月末一次,第二年每6个月末一次,第3年每年一次。 如保质期为24个月的产品,则应对0、3、6、9、12、18、24月样品进行

线性测量方法

一、检验项目:原材料的线性成品线性 二、定义:量测待测物(以下简称为试片)测量电压值与理论电压值的误差 三、适用范围:本标准检验方法适用于公司所有须做线性测试之试片。 四、目的:本实验的目的在测试试片的导电情形是否良好。 五、检验方法: Ⅰ、方法一(适用于纳米银导电材料) 1. 样品准备:SNWFilm 2. 使用装置:激光机、万用表、稳压电源 3. 测量原理 a)在导电膜上刻上电极(宽度10mm),给电极加5V(DC)电压,然后用电压表测量待测 位置的电压,如图1所示 b)按图2所示分好测试点,(长220mm、23个测试点)A点、B点电压在所示位置取 得,10mm为距离测一个点 c)测量参数:E A:输出电压测量起点A处的电压 E B:输出电压测量终点B处的电压 E X:输出电压测量任意点X处的电压 E XX:理论计算电压 L:线性 计算公式: E XX(理论电压)=E AB*X/(B-A)+ E A L(%)= (︱E XX- E X︱)÷(E B- E A)×100 图 1

图 2 V A(0) mm 5V 0V EB 图 3 4. 操作步骤: a) 设计图纸,开好材料,覆膜 b) 激光镭射 c) 将稳压电源调至ON ,电压调至5V 。 d) 将稳压电源正极夹至右边银棒、负极夹至左边银棒。 e) 将万用表表负极夹至右边银棒,正极拿来测试。 f) 将试片置入定位,开始测试并记录分压值。 g) 将所测得之电压值输入表(一)~表(五),计算其线性。 Ⅱ、方法二(适用于成品) 1. 样品准备:成品

2. 使用仪器:线性测试机 3. 测量原理及要求 ※线性度的定义:当施加DC 5V在“X”方向电极和“Y”方向电极时,用笔(Special stylus)压点(X,Y)以得到各自输出电压(E OX,E OY)。如Fig.1(测量关系)。在A和B的区域内(Active area),在X,Y方向各以2mm为间隔划直线。如Fig2。 ※注:线性测量范围:A.A区边缘单边内缩2mm。 测量关系 测 量 Y 坐 标 Y (X+电极) Vcc (Y+电极) 测量X坐标 X Fig 2 ※计算公式:V XX(理论电压)=V AB*X/(B-A)+ V A L(%)= (︱V XX- V X︱)÷(V B- V A)×100 V A:输出电压测量起点A处的电压 V B:输出电压测量终点B处的电压 V X:输出电压测量任意点X处的电压 V XX:理论计算电压 L:线性 4. 操作步骤:见作业指导书 六、检验数据处理: 1、表(一):分压表&线性表。 2、表(二):线性错误及异常对照表。 3、表(三):线性错误及异常统计表。 4、表(四):平均线性分析图。 5、表(五):平均电压分析图。

插拔力测试仪简介和操作方法

插拔力测试仪简介和操作方法 一、概述 GH-951C插拔力测试仪试验装臵适合连接器、插头插座等接插件产品作插入、拔出之力量及抗疲劳寿命测试。搭配专利设计之自动求心装臵,将可得到完全准确之插拔力试验,利用Windows 视窗中文画面设定,操作简单方便,且所有资料皆可储存( 试验条件、位移、曲线图、寿命曲线图、检查报表等)解决各种连接器测试的夹具问题及测试时公母连接器能自动对准,不会有吃单边的问题。搭配动态阻抗测试系统,可在测试插拔力同时测试动态阻抗并绘制(荷重行程-阻抗曲线图)。 二、主要技术参数 1、测定最大荷重:50Kg,20Kg,5Kg,2Kg 2、最小分解能力:0.01Kg或1g 3、最大测定高度:150mm 4、最小微调距离:0.01mm 5、测定速度范围:0-200mm/min 6、X轴移动范围:0-75mm 7、Y轴移动范围:0-75mm 8、传动机构:丝杆传动 9、驱动马达:伺服马达 10、外观尺寸:360×260×940mm 11、重量:约60Kg 12、电源:220V/50Hz 三、功能

本机主要用于测试公插从母插拔出时所需最大的力及插入时最小的力。本机配臵力量数显表。以具体数值显示力的大小。 四、设备特点 1、测试条件皆由电脑画面设定,并可储存。由下拉式菜单勾选设定或直接输入数据。(含试验类别、测定运动方向、荷重测定范围、行程测定范围、行程原点位臵、行程原点检出、测定速度、测定总次数、暂停时间每次等候位臵、空压次数等)。 2、可储存及打印图形(荷重-行程曲线图-荷重衰减寿命曲线图-检验报表)荷重元超负载之保护功能、可确保荷重元不致损坏。 3、同时显示荷重-行程曲线图及寿命曲线图。 4、自动荷重零点检出,并可设定原点检出荷重值。 5、荷重单位显示:N、lb、gf、Kgf可自由切换。 6、可同时搭配数个荷重元(2Kgf/5Kgf/20Kgf/50Kgf选购)。 7、机台采用高钢性结构设计,搭配伺服马达,长时间使用下能确保精度,适合一般引张压缩测试及插拔力寿命测试。 8、超规格值停止(于寿命测试时,测试数据超出设定上下限值时机器自动停止。 9、测定项目:最大荷重值、峰值、谷值、行程之荷重值、荷重之行程值插入点电阻值、荷重或行程之电阻值。 五、测试项目 1、连接器单孔插拔试验 2、连接器插拔寿命试验 3、连接器Normal Force 测试 4、连接器整排插拔试验 5、连接器单Pin与塑胶保持力试验 6、可同时与接触阻抗机连线(选购) 7、各种压缩、拉伸破坏强度试验。 六、操作方法 1、检视输入电压是否220V。

磁导率

磁导率表示物质磁化性能的一个物理量,是物质中磁感应强度B与磁场强度H之比,又成为绝对磁导率。物质的绝对磁导率和真空磁导率(设为μ0=4*3.14*0.0000001H/m)比值称为相对磁导率,也就是我们一般意义上的磁导率。对于顺磁质μr>1,对于抗磁质μr<1,但它们都与1相差很小(例如铜的μr与1之差的绝对值是0.94×10-5)。然而铁磁质的μr可以大至几万。 非铁磁性物质的μ近似等于μ0。而铁磁性物质的磁导率很高,μ>>μ0。铁磁性材料的相对磁导率μr=μ/μ0如铸铁为200~400;硅钢片为7000~10000;镍锌铁氧体为10~1000;镍铁合金为2000;锰锌铁氧体为300~5000;坡莫合金为20000~200000。空气的相对磁导率为1.00000004;铂为1.00026;汞、银、铜、碳(金刚石)、铅等均为抗磁性物质,其相对磁导率都小于1,分别为0.999971、0.999974、0.99990、0.999979、0.999982。 所以,铜虽然具有抗磁性,但相对磁导率也有0.99990;纯铁为顺磁性物质,其相对磁导率会达到400以上。所以用铜裹住铁并不能阻断磁力,而且是远远不能。在某些特殊情况下,铜的抗磁性就会表现出来,如规格很小的烧结钕铁硼磁体D3*0.8电镀镍铜镍后,磁通量会降低7-8%(当然,这个损失还包括倒角和镍层屏蔽导致的磁损)。 直截了当地讲,磁场无处不在,是不能阻断的。只不过各种物质导磁性有所差异,如空气、材料、铜、铝、橡胶、塑料等相对磁导率近似为1,它们对磁不感兴趣;而铁磁性材料如铸铁、铸钢、硅钢片、铁氧体、坡莫合金等材料具有良好的导磁性

稳定性试验方案

稳定性试验方案 1 2020年4月19日

Stability Study Protocol for Exhibit Batch of Chloroquine Phosphate Tablets USP, 250mg 规格为250 mg的USP磷酸氯喹片长期、中期及加速稳定性研究方案 Prepared By: Date: 起草者:日期:Reviewed By QA: Date: 审核者:日期: Approved By: Date: 批准者:日期: Starting Date: Completed Date:

文档仅供参考,不当之处,请联系改正。 开始日期:结束日期: 3 2020年4月19日

Contents 目录 1. Purpose目的…………………………………………………………………………………………错误!未定义书签。 2. Scope范围…………………………………………………………………………………………..错误!未定义书签。 3. R e f e r e n c e s参考资料…………………………………………………………………………………..错误!未定义书签。 4. G e n e r a l I n f o r m a t i o n基本信息………………………………………………………………………..错误!未定义书签。 4.1 S t a b i l i t y S a m p l e s稳定性研究样品…………………………………………………………错误!未定义书签。 4.2 P r o d u c t O u t l i n e样品概述………………………………………………………………..……错误!未定义书签。 4.3 F o r m u l a t i o n处方………………………………………………………………………………错误!未定义书签。 4.4 C o n t a i n e r-C l o s u r e S y s t e m s包装……………………………………………………………错误!未定义书签。 4.5 Labeling标签…………………………………………………………………………………..错误!未定义书签。 4.6 S a m p l e s a n d P a c k a g e样品与包装………………………………………………………….错误!未定义书签。

材料的介电常数和磁导率的测量

无机材料的介电常数及磁导率的测定 一、实验目的 1. 掌握无机材料介电常数及磁导率的测试原理及测试方法。 2. 学会使用Agilent4991A 射频阻抗分析仪的各种功能及操作方法。 3. 分析影响介电常数和磁导率的的因素。 二、实验原理 1.介电性能 介电材料(又称电介质)是一类具有电极化能力的功能材料,它是以正负电荷重心不重合的电极化方式来传递和储存电的作用。极化指在外加电场作用下,构成电介质材料的内部微观粒子,如原子,离子和分子这些微观粒子的正负电荷中心发生分离,并沿着外部电场的方向在一定的范围内做短距离移动,从而形成偶极子的过程。极化现象和频率密切相关,在特定的的频率范围主要有四种极化机制:电子极化 (electronic polarization ,1015Hz),离子极化 (ionic polarization ,1012~1013Hz),转向极化 (orientation polarization ,1011~1012Hz)和空间电荷极化 (space charge polarization ,103Hz)。这些极化的基本形式又分为位移极化和松弛极化,位移极化是弹性的,不需要消耗时间,也无能量消耗,如电子位移极化和离子位移极化。而松弛极化与质点的热运动密切相关,极化的建立需要消耗一定的时间,也通常伴随有能量的消耗,如电子松弛极化和离子松弛极化。 相对介电常数(ε),简称为介电常数,是表征电介质材料介电性能的最重要的基本参数,它反映了电介质材料在电场作用下的极化程度。ε的数值等于以该材料为介质所作的电容器的电容量与以真空为介质所作的同样形状的电容器的电容量之比值。表达式如下: A Cd C C ?==001εε (1) 式中C 为含有电介质材料的电容器的电容量;C 0为相同情况下真空电容器的电容量;A 为电极极板面积;d 为电极间距离;ε0为真空介电常数,等于8.85×10-12 F/m 。 另外一个表征材料的介电性能的重要参数是介电损耗,一般用损耗角的正切(tanδ)表示。它是指材料在电场作用下,由于介质电导和介质极化的滞后效应

Web应用安全测试方案

1 Web 安全测试技术方案 1.1测试的目标 更好的发现当前系统存在的可能的安全隐患,避免发生危害性的安全事件 更好的为今后系统建设提供指导和有价值的意见及建议 1.2测试的范围 本期测试服务范围包含如下各个系统: Web 系统: 1.3测试的内容 1.3.1WEB 应用 针对网站及WEB 系统的安全测试,我们将进行以下方面的测试: Web 服务器安全漏洞 Web 服务器错误配置 SQL 注入 RSS (跨站脚本) CRLF 注入 目录遍历 文件包含 输入验证 认证逻辑错误 GoogleHacAing 密码保护区域猜测字典攻击特定的错误页面检测脆弱权限的目录危险的HTTP

方法(如:PUT、DELETE) 1.4测试的流程 方案制定部分:获取到客户的书面授权许可后,才进行安全测试的实施。并且将实施范围、方法、时间、人员等具体的方案与客户进行交流,并得到客户的认同。 在测试实施之前,让客户对安全测试过程和风险知晓,使随后的正式测试流程都在客户的控制下。 信息收集部分:这包括:操作系统类型指纹收集;网络拓扑结构分析;端口扫描和目标系统提供的服务识别等。采用商业和开源的检测工具(AWVS 、burpsuite 、Nmap 等)进行收集。 测试实施部分:在规避防火墙、入侵检测、防毒软件等安全产品监控的条件下进行:操作系统可检测到的漏洞测试、应用系统检测到的漏洞测试(如:Web 应用),此阶段如果成功的话,可能获得普通权限。 安全测试人员可能用到的测试手段有:扫描分析、溢出测试、口令爆破、社会工程学、客户端攻击、中间人攻击等,用于测试人员顺利完成工程。在获取到普通权限后,尝试由普

软件测试之服务器稳定性测试方法

服务器稳定性是最重要的,如果在稳定性方面不能够保证业务运行的需要,在高的性能也是无用的。 正规的服务器厂商都会对产品惊醒不同温度和湿度下的运行稳定性测试。重点要考虑的是冗余功能,如:数据冗余、网卡荣誉、电源冗余、风扇冗余等。 一些测试方法主要分以下几种: 压力测试:已知系统高峰期使用人数,验证各事务在最大并发数(通过高峰期人数换算)下事务响应时间能够达到客户要求。系统各性能指标在这种压力下是否还在正常数值之内。系统是否会因这样的压力导致不良反应(如:宕机、应用异常中止等)。 Ramp Up 增量设计:如并发用户为75人,系统注册用户为1500人,以5%-7%作为并发用户参考值。一般以每15s加载5人的方式进行增压设计,该数值主要参考测试加压机性能,建议Run几次。以事务通过率与错误率衡量实际加载方式。 Ramp Up增量设计目标:寻找已增量方式加压系统性能瓶颈位置,抓住出现的性能拐点时机,一般常用参考Hits点击率与吞吐量、CPU、内存使用情况综合判断。模拟高峰期使用人数,如早晨的登录,下班后的退出,工资发送时的消息系统等。 另一种极限模拟方式,可视为在峰值压力情况下同时点击事务操作的系统极限操作指标。加压方式不变,在各脚本事务点中设置同集合点名称(如:lr_rendzvous("same");)在场景设计中,使用事务点集合策略。以同时达到集合点百分率为标准,同时释放所有正在Run的Vuser。 稳定性测试:已知系统高峰期使用人数、各事务操作频率等。设计综合测试场景,测试时将每个场景按照一定人数比率一起运行,模拟用户使用数年的情况。并监控在测试中,系统各性能指标在这种压力下是否能保持正常数值。事务响应时间是否会出现波动或随测试时

线性度

TP 线性度测试 一:线性度定义 备注: △ Ymax :输出平均值与最佳直线问的最大偏差 Ymax-Ymin :传感器的量程,是测量上限(高端)和测量下限(低端)的代数差 ? 以电阻屏为例:电阻式TP 由上下两个导电层构成,其等效电阻为Rx 、Ry 。测试时,先给X 向加基准 电压5V ,测试Y 向电压。因为触摸压力使两个导电层接触,通过计算测量Y 向电压就可以解析出触点Y 向基于相对零点的偏移量。同理可以测得X 向基于相对零点的偏移量。 在线性度测试中,根据所选定参考直线的不同,可获得不同的线性度 在不同衡量标准中,独立线性度足衡量线性特性的最客观标准(以最佳直线作为参考直线) 独立线性度定义为实际平均输 特性曲线对最佳直线的最大偏差,以满量程输出的分比来表示 Xmax-Xmin Lx=± △Xmax X 100% Ymax-Ymin Ly=± △Ymax X 100% Ymax Ymi Xmi Xma

二:测试原理 测试接触点的选择:在测试触摸屏线性度时,为了能够精确反应触摸屏的整体特性,需要选取尽量多的测 点。然而,对于测试时间与效率而言,希望选取尽量少的测试点。因此,在精度和效率之间需要选取一个平衡点。 线性度:支持并行线、垂直线、对角线、圆弧等多种图像来检测产品的线性偏差,可在测试区域内任意设 臵线距、线数及弧度大小,并支持两点同时划线、两点划圆等多种测试方式,达到更精确的体现产品特性; 灵敏度:可设定不同的划线轨迹,实现接触式划线或非接触式划线,触笔离产品的高度可按设定调节,并 能自动找出触控高度 在实际应用中,常用两个步进电机作为驱动装臵实现一个二维定位系统控制测试笔在触摸屏上打点,实现 测试的输入。 根据接触点输入集P (P1,P2,P2……….Pn-1,Pn )与输出集T (T1,T2,T3……Tn-1,Tn )中对应点的最大偏差 值即可求出整块屏的线性度 测试点分布示意 测试区域定位图

磁导率介绍

中文名称:磁导率 英文名称:magnetic permeability 定义:磁介质中磁感应强度与磁场强度之比。分为绝对磁导率和相对 磁导率,是表征磁介质导磁性能的物理量。 磁导率μ等于中B与磁场强度H之比,即μ=B/H 通常使用的是磁介质的相对磁导率μr,其定义为磁导率μ与μ0之比,即μr=μ/μ0 相对磁导率μr与χ的关系是:μr=1+χ 磁导率μ,相对磁导率μr和磁化率xm都是描述磁介质磁性的物理量。 对于μr>1;对于μr<1,但两者的μr都与1相差无几。在大多数情况下,导体的相对磁导率等于1.在中,B与 H 的关系是非线性的磁滞回线,μr不是常量,与H有关,其数值远大于1。 例如,如果空气(非)的磁导率是1,则的磁导率为10,000,即当比较时,以通过磁性材料的是10,000倍。 涉及磁导率的公式:

磁场的能量密度=B^2/2μ 在(SI)中,相对磁导率μr是无量纲的,磁导率μ的单位是/米(H/m)。 常用的真空磁导率 常用参数 (1)初始磁导率μi:是指基本磁化曲线当H→0时的磁导率 (2)最大磁导率μm:在初始段以后,随着H的增大,斜率μ=B/H逐渐增大,到某一强度下(Hm),磁密度达到最大值(Bm),即 (3)饱和磁导率μS:基本磁化曲线饱和段的磁导率,μs值一般很小,深度饱和时,μs=μo。

(4)()磁导率μΔ∶μΔ=△B/△H。ΔB及△H是在(B1,H1)点所取的增量如图1和图2所示。 (5)微分磁导率,μd∶μd=dB /dH,在(B1,H1)点取微分,可得μd。 可知:μ1=B1/H1,μ△=△B /△H,μd=dB1/dH1,三者虽是在同一点上的磁导率,但在数值上是不相等的。 非磁性材料(如铝、木材、玻璃、自由空间)B与H之比为一个常数,用μ。来表示非磁性材料的的磁导率,即μ。=1(在CGS单位制中)或μ。=4πX10o-7(在RMKS中)。 在众多的材料中,如果自由空间(真空)的μo=1,那△么比1略大的材料称为顺磁性材料(如白金、空气等);比1略小的材料,称为反磁性材料(如银、铜、水等)。本章介绍的磁性元件μ1是大有用处的。只有在需要时,才会用铜等反磁性材料做成使磁元件的磁不会辐射到空间中去。 下面给出几个常用的参数式: (1)有效磁导率μro。在用L形成闭合中(漏磁可以忽略),的有效磁导率为:

网站安全性测试要点

1 安全测试检查点 1.1网页安全检查点 1.1.1输入的数据没有进行有效的控制和验证 1)数据类型(字符串,整型,实数,等) 2)允许的字符集 3)最小和最大的长度 4)是否允许空输入 5)参数是否是必须的 6)重复是否允许 7)数值范围 8)特定的值(枚举型) 1.1.2用户名和密码 1)检测接口程序连接登录时,是否需要输入相应的用户 2)是否设置密码最小长度(密码强度) 3)用户名和密码中是否可以有空格或回车? 4)是否允许密码和用户名一致 5)防恶意注册:可否用自动填表工具自动注册用户? 6)遗忘密码处理 7)有无缺省的超级用户? 8)有无超级密码? 9)是否有校验码? 10)密码错误次数有无限制? 11)大小写敏感? 12)口令不允许以明码显示在输出设备上 13)强制修改的时间间隔限制(初始默认密码) 14)口令的唯一性限制(看需求是否需要) 15)口令过期失效后,是否可以不登陆而直接浏览某个页面 16)哪些页面或者文件需要登录后才能访问/下载 17)cookie中或隐藏变量中是否含有用户名、密码、userid等关键信息

1.1.3直接输入需要权限的网页地址可以访问 避免研发只是简单的在客户端不显示权限高的功能项 举例Bug: 1)没有登录或注销登录后,直接输入登录后才能查看的页面的网址(含跳转页面), 能直接打开页面; 2)注销后,点浏览器上的后退,可以进行操作。 3)正常登录后,直接输入自己没有权限查看的页面的网址,可以打开页面。 4)通过Http抓包的方式获取Http请求信息包经改装后重新发送 5)从权限低的页面可以退回到高的页面(如发送消息后,浏览器后退到信息填写页面, 这就是错误的) 1.1.4上传文件没有限制 1)上传文件还要有大小的限制。 2)上传木马病毒等(往往与权限一起验证) 3)上传文件最好要有格式的限制; 1.1.5不安全的存储 1)在页面输入密码,页面应显示“*****”; 2)数据库中存的密码应经过加密; 3)地址栏中不可以看到刚才填写的密码; 4)右键查看源文件不能看见刚才输入的密码; 5)帐号列表:系统不应该允许用户浏览到网站所有的帐号,如果必须要一个用户列表, 推荐使用某种形式的假名(屏幕名)来指向实际的帐号 1.1.6操作时间的失效性 1)检测系统是否支持操作失效时间的配置,同时达到所配置的时间内没有对界面进行 任何操作时,检测系统是否会将用户自动失效,需要重新登录系统。 2)支持操作失效时间的配置。 3)支持当用户在所配置的时间内没有对界面进行任何操作则该应用自动失效。 如,用户登陆后在一定时间内(例如15 分钟)没有点击任何页面,是否需要重新登陆才能正常使用。

服务器的稳定性服务器稳定性测试思路方法

服务器的稳定性:服务器稳定性测试思路方法疯狂代码 https://www.360docs.net/doc/e28049206.html,/ ?:http:/https://www.360docs.net/doc/e28049206.html,/SoftwareTesting/Article35038.html 服务器稳定性是最重要如果在稳定性方面不能够保证业务运行需要在高性能也是无用 正规服务器厂商都会对产品惊醒区别温度和湿度下运行稳定性测试重点要考虑是冗余功能如:数据冗余、网卡荣誉、电源冗余、风扇冗余等 些测试思路方法主要分以下几种: 压力测试:已知系统高峰期使用人数验证各事务在最大并发数(通过高峰期人数换算)下事务响应时间能够达到客户要求系统各性能指标在这种压力下是否还在正常数值的内系统是否会因这样压力导致不良反应(如:宕机、应用异常中止等) Ramp Up 增量设计:如并发用户为75人系统注册用户为1500人以5%-7%作为并发用户参考值般以每 15s加载5人方式进行增压设计该数值主要参考测试加压机性能建议Run几次以事务通过率和率衡量实际加载方式 Ramp Up增量设计目标: 寻找已增量方式加压系统性能瓶颈位置抓住出现性能拐点时机般常用参考Hits点击率和吞吐量、CPU、内存使用情况综合判断模拟高峰期使用人数如早晨登录下班后退出工资发送时消息系统等 另种极限模拟方式可视为在峰值压力情况下同时点击事务操作系统极限操作指标加压方式不变在各脚本事务点中设置同集合点名称(如:lr_rendzvous("same");)在场景设计中使用事务点集合策略以同时达到集合点百分率为标准同时释放所有正在RunVuser 稳定性测试:已知系统高峰期使用人数、各事务操作频率等设计综合测试场景测试时将每个场景按照定人数比率起运行模拟用户使用数年情况并监控在测试中系统各性能指标在这种压力下是否能保持正常数值事务响应时间是否会出现波动或随测试时间增涨而增加系统是否会在测试期间内发生如宕机、应用中止等异常情况 根据上述测试中各事务条件下出现性能拐点位置已确定稳定性测试并发用户人数仍然根据实际测试服务器(加压机、应用服务器、数据服务器 3方性能)估算最终并发用户人数 场景设计思想: 从稳定性测试场景设计意义应分多种情况考虑: 针对同个场景为例以下以公文附件上传为例简要分析场景设计思想: 1)场景:已压力测试环境下性能拐点并发用户为设计测试场景目验证极限压力情况下测试服务器各性能指标 2)场景 2:根据压力测试环境中CPU、内存等指标选取服务器所能承受最大压力50%来确定并发用户数 测试思路方法:采用1)Ramp Up-Load all Vusers simultaneously

传感器线性度的概念及表示方法

传感器线性度的概念及表示方法 1传感器线性度的概念 线性度是描述传感器静态特性的一个重要指标,以被测输入量处于稳定状态为前提。 线性度又称非线性,表征传感器输出—输入校准曲线(或平均校准曲线)与所选定的作为工作直线的拟合直线之间的偏离程度。这一指标通常以相对误差表示如下。 %100.max ??±=S F L y L ξ (1) 式中:max L ?——输出平均校准曲线与拟合直线间的最大偏差; S F y .——理论满量程输出。 由式(1)可见,拟合直线是获得相应的线性度的基础,选择的拟合直线不同,max L ?不同,计算所得的线性度数值也就不同。 2线性度表示方法 线性度表示方法很多,一般常用的有以下四种方法。 2.1理论直线法 理论直线法是以传感器的理论特性直线作为拟合直线,与传感器被测输出值无关。 例如:在一个标准大气压力试验条件下,设定被测温度传感器下限值为0℃,上限值为100℃,以测量范围为0℃~100℃的二等标准水银温度计作为标准计量器具,不管温度标定试验级数如何确定,均以标准水银温度计示值作为拟合直线,即试验各温度测试点温度传感器计算温度值均直接与该测试点标准水银温度计示值进行比较,从中获取max L ?,max L ?值即为被测温度传感器线性误差,暂名之以“理论线性度”。理论直线法示意见图1。 图1 理论直线法示意图 0 y x

2.2最佳直线法 通过图解法或计算机辅助解算,获得一条“最佳直线”,使得传感器正反行程校准曲线相对于该直线的正、负偏差相等且最小,如图2所示。由此所得的线性度称为“独立线性度”。 2.3端点直线法 以传感器校准曲线两端点间的连线作为拟合直线,这种方法可为称之为端点直线法,端基直线法,相应地线性度称之为端点线性度或端基线性度。端点直线法示意见图3。 图3 端点直线法示意图 端点直线法拟合直线方程为: kx b y += (2) 2.4最小二乘直线法 利用最小二乘原理获取拟合直线的方法称为最小二乘直线法。这种方法的基本原理是使传感器校准数据的残差的平方和最小。 最小二乘法拟合直线以式(2)表示,设定传感器校准测试点为n ,第i 个标准数据i y 的残差i ?为: )(i i i kx b y +-=? (3) 按最小二乘法原理,应使∑=?n i i 12 最小。因此,以∑=?n i i 12 分别对b 和k 求一阶偏0 x y 0

安全性测试

一、安全性测试 定义:安全性测试是指有关验证应用程序的安全等级和识别潜在安全性缺陷的过程。应用程序级安全测试的主要目的是查找软件自身程序设计中存在的安全隐患,并检查应用程序对非法侵入的防范能力,根据安全指标不同测试策略也不同。 二、测试范围 正式环境: 1.发布前需要对发布包进行一次杀毒。 2.服务器需要安装杀毒软件并且定期更新和杀毒。 3.服务器和数据库等密码需要满足一定的复杂度。 功能类: 1.认证模块必须采用防暴力破解机制。例如:验证码或者多次连续尝试登录失败后锁定帐号或IP,账号冻结后,管理员可以手动解冻。 2.对于每一个需要授权访问的页面或servlet的请求都必须核实用户的会话标识是否合法、用户是否被授权执行这个操作,以防止URL越权。 3.登录过程中,往服务器端传递用户名和口令时,必须采用HTTPS安全协议(也就是带服务器端证书的SSL)。 4.用户产生的数据必须在服务端进行校验。 5.所有非查询的操作必须有日志记录。 6.密码需要满足一定的长度和复杂度,并且以高级的加密方法保存在数据库。 7.口令在传输的过程中以密文的形式传输。 8.输入密码时密码不能明文回显。输入密码不接受拷贝功能。 9.修改密码时需要验证旧密码。 10.日志中的密码不能以明文显示。 11.超时验证。 攻击类: SQL注入: 通过把SQL命令插入到Web表单递交或输入域名或页面请求的查询字符串,最终达到欺骗服务器执行恶意的SQL命令。 测试方法: a验证绕过漏洞就是'or'='or'后台绕过漏洞,利用的就是AND和OR的运算规则,从而造成后台脚本逻辑性错误。 例如管理员的账号密码都是admin,那么再比如后台的数据库查询语句是 user=request("user") passwd=request("passwd") sql='select admin from adminbate where user='&'''&user&'''&' and passwd='&'''&passwd&''' 那么我使用'or 'a'='a来做用户名密码的话,那么查询就变成了 select admin from adminbate where user=''or 'a'='a' and passwd=''or 'a'='a' 根据运算规则,这里一共有4个查询语句,那么查询结果就是:假or真and假or真,先算and 再算or,最终结果为真,这样就可以进到后台了 b猜数据库的表名、列名 猜表名 And (Select count(*) from 表名)<>0 猜列名

试验测试线性范围的确认

化学分析方法确认 线性范围 a)采用校准曲线法定量,并至少具有6个校准点(包括空白),浓度范围尽可能覆盖一个 或多个数量级,每个校准点至少随机顺序重复测量2次,最好是3次或更多;对于筛选方法,线性回归方程的相关系数不低于0.98;对于准确定量的方法,线性回归方程的相关系数不低于0.99。 b)校准用的校准点应尽可能均匀地分布在关注的浓度范围内并能覆盖该范围。在理想的情 况下,不同浓度的校准溶液应独立配置,低浓度的校准点不宜通过稀释校准曲线中高浓度的校准点进行配置。 c)浓度范围一般应覆盖关注浓度的50%~150%,如需做空白时,则应覆盖关注浓度的0%~ 150%。 d)应充分考虑可能的基质效应影响,排除其对校准曲线的干扰。实验室应提供文献或实验 数据,说明目标分析物在溶剂中、样品中和基质成分中的稳定性,并在方法中予以明确。 通常各种分析物在保持条件的稳定性都已有很好的研究,监测保存条件应作为常规实验室确认系统的一部分。对于缺少稳定性数据的目标分析物,应提供能分析其稳定性的测定方法和确认结果。 检出限 a)仪器检出限(IDL):为用仪器可靠的将目标分析物信号从背景(噪音)中识别出来时分 析物的最低浓度或量,该值表示为仪器检出限(IDL)。随着一起灵敏度的增加,仪器噪声也会降低,相应IDL也降低。 b)方法检出限(MDL):为用特定方法可靠的将分析物测定信号从特定基质背景中识别或 区分出来时分析物的最低浓度或量。即MDL就是用该方法测定出大于相关不确定度的最低值。确定MDL时,应考虑到所有基质的干扰。 注:方法的检出限(LOD)不宜与仪器最低相应值相混淆。使用信噪比可用来考察仪器性能但不适用于评估方法的检出限(LOD)。 c)确定检出限的方法 1)目视评估法评估LOD 目视评估法是通过在样品空白中添加已知浓度的分析物,然后确定能够可靠检测出分析物最低浓度值的方法。即在样品空白中加入一系列不同浓度的分析物,随机对每一个浓度点进行约7次的独立测试,通过绘制阳性(或阴性)结果百分比与浓度相对应的反应曲线确定阀值浓度。该方法也可用于定性方法中检出限的确定。 2)空白标准偏差法评估LOD 即通过分析大量的样品空白或加入最低可接受浓度的样品空白来确定LOD。独立测试的次数应不少于10次(n≧10),计算出检测结果的标准偏差(s),计算方法见下表。

相关文档
最新文档