并联电容器无功补偿及其正确使用

并联电容器无功补偿及其正确使用
并联电容器无功补偿及其正确使用

并联电容器无功补偿及其正确使用

异步电动机的无功就地补偿技术,近些年来得到推广应用。就地补偿方式的主要优点是:所需设备少,投资少,运行可靠,维护方便,特别对单机容量较大,运行时间长,距离电源较远的电动机更为适用。它对减少企业电能损失,提高电压质量有重大意义。采用并联电容器进行无功补偿,其主要作用是:1、补偿无功功率,提高功率因数;2、提高设备出力;3、降低功率损耗和电能损失;4、改善电压质量。一般工矿企业要求功率因数必须大于0.9,为提高功率因数常采用变电所集中补偿和就地补偿或两者结合使用。无功补偿容量按下式计算:Q=P(tgθ1—tgθ2),其中tgθ1、tgθ2为补偿前后的正切值,在补偿前后,由于有功功率不变,有功功率损耗值也无改变,但是,无功功率发生了变化,由Q降低为Q—Q C,故通过输、变配、用电设备有效电阻R时,有功功率的损耗由降低为ΔP2Q,所以并联电容器补偿的经济当量为K C=ΔP1Q—ΔP2Q=[Q2/U2*10-3—(Q-Q C)2/U2*R*10-3]/ Q C=(2Q- Q C)/ U2Q(2- Q C/Q)=ΔP1Q/Q(2- Q C/Q),可见采取并联电容器补偿的经济当量的大小取决于补偿容量与无功功率的比值。并且还表明,K C与两个因素有关:一是与ΔP1Q/Q成正比,二是与(2- Q C/Q)成正比。由于Q C可大可小,从自身效益和社会效益整体来考虑,多少合适,这是一个值得研究的问题。(1)、当Q C《Q时,2- Q C/Q≈2,这种情况等于没有补偿,谈不上降低有功功率的损耗。(2)、当Q C≈Q 时,2- Q C/Q≈1,这种情况等于全补偿,因负荷的变化,有时会出现

过补偿,经济效益不一定很好。因此选择合适的无功补偿容量,才能确定最佳功率因数,一般原则以稍高于功率因数标准为宜。

并联电容器在使用过程中要防止过负荷的产生

一般说来,引起并联电容器过负荷的原因主要有三个方面:(1)、实际运行电压高于电容器额定电压;(2)、谐波电压引起的过电压;(3)、电容器容量的正偏差;引起第一个过负荷的原因是由于并联电容无功功率Q C=UI=U*U/X C=U2WC,可见,电容器无功出力与电压的平方成正比,运行电压太高,将使电容器无功出力大大增加,并使电容器温度升高,严重时使电容器发生热击穿。防止的措施是:采取降低连接电容器的母线电压。若电压波动幅度较大,可装设按电压自动投切电容器装置。引起第二种过负荷的原因是由于电路中的非完全正弦电势和非线性元件造成。非线性元件一般指:整流器、电弧炉、铁心线圈等。负载在非正弦电压作用下将产生非正弦电流,而高次谐波的在使总电流有效值比基波电流增增加,亦使平均功率增加。防止的措施是:在电容器回路串电抗器,它还具有限制投切涌流的作用。若电容器安装地点运行的电压并不高,但电容器过电流严重,则须考虑供电网络高次谐波的影响。

电容器容量大小的选择

在选用电容器时,容量不能选得太大,否则会产生过电压,特别在惯性大的电机上。我厂在源水泵站及出厂水泵站多台710KW电机上

均装有并联电容器无功就地补偿柜,结合实践,采用以下方法选择电

容器容量:

在图中(见下图),U E、I0为电机额定电压和空载电流。设在电容量为C1时电容线与磁化曲线的交点“I”对应于U E、I0,电容线与横坐标夹角为α,则tgα= U E/ I0=1/ωC1,当电容量增大时,电容线斜率减小,设增加到C2与磁化曲线交于“Ⅱ”点,显然,“Ⅱ”点电压值高于“I”电压值。一般补偿电容器Q C为:Q C≤ 3U E I0,图中与磁

化曲线不饱和段相切的直线称临界电容线,此时电容器为C

β,一般

临界电容线斜率与电容额定状态下斜率的关系为tg

β=(1.15-1.45)tgα,不同容量电机的空载电流也有所区别,一般国产电机的空载电流约为额定电流的20%-50%。我厂八极10KV、710KW电机的空载电流约为34A,根据计算,我厂选用电容器的容量范围为Q≤ 3U E I0=300 Kvar。

高压并联电容器装置说明书

高压并联电容器装置说明书 一.概述 1.1产品适用范围与用途 TBB型高压并联电容器装置(以下简称装置),主要用于3~ 110kV,频率为50Hz的三相交流电力系统中,用以提高功率因数,调整网络电压,降低线路损耗,改善供电质量,提高供配电设备的使用效率的容性无功补偿装置。 1.2型号、规格 及外形尺寸 1.2.1型号说明 装置的保护方式通常与电容器组的接线方式有关系,一般的有

AK、AC、AQ和BC、BL之分。 1.2.2执行标准 GB 50227 标称电压1kV以上交流电力系统用并联电容器 GB 10229 电抗器 GB 311.1 高压输变电设备的绝缘配合 GB 50060 3~110kV高压配电装置设计规范 JB/T 5346 串联电抗器 JB/T 7111 高压并联电容器装置 DL/T 840 高压并联电容器使用技术条件 其它现行国家标准。 DL/T 604 高压并联电容器装置订货技术条件 1.2.3产品规格与外形尺寸 常用的产品规格与柜体外形尺寸如表1~5所示。装置的外形和基础的示意图分如图1、图2所示。 产品规格与外形尺寸 注:以下尺寸仅供参考,实际尺寸根据用户情况而定。以单台电容额定电压11/3kV 表格 1 卧式-阻尼电抗后置 单位:mm

序 号型号规格额定容量L1 L2 H 额定电 流 (A) 1 TBB10-600/100A K 600 1200 2800 2600 94.5 2 TBB10-900/100A K 900 1200 3100 2600 141.7 3 TBB10-1000/334A K 1000 1200 2100 2600 157.5 4 TBB10-2000/334A K 2000 1200 2800 2600 315 5 TBB10-2400/200A K 2400 1200 3400 2600 378 6 TBB10-3000/334A K 3000 1200 3000 2600 472.4 7 TBB10-3600/200A K 3600 1200 4000 2600 566.9 8 TBB10-4008/334A K 4008 1200 3400 2600 631.2 9 TBB10-4200/200A K 4200 1200 4400 2600 661.4 10 TBB10-4800/200A4800 1200 4600 2600 755.9

无功补偿装置几种常见类型比较

无功补偿装置几种常见类型比较 常见的动态无功补偿装置有四种:调压式动态无功补偿装置、磁控式动态无功补偿装置、相控式(TCR型)动态无功补偿装置、SVG 动态无功发生器。 ① 调压式动态无功补偿装置 调压式动态补偿装置原理是:在普通的电容器组前面增加一台电压调节器,利用电压调节器来改变电容器端部输出电压。根据 Q=2πfCU2改变电容器端电压来调节无功输出,从而改变无功输出容量来调节系统功率因数,目前生产的装置大多可分九级输出。该装置为分级补偿方式,容易产生过补、欠补。由于调压变压器的分接头开关为机械动作过程,响应时间慢(约3~4s),虽能及时跟踪系统无功变化和电压闪变,但跟踪和补偿效果稍差。但比常规的电容器组的补偿效果要好的多;在调压过程中,电容器频繁充、放电,极大影响电容器的使用寿命。由于有载调压变压器的阻抗,使得滤波效果差。虽然价格便宜, 占地面积小,维护方便,一般年损耗在0.2%以下。 ② 磁控式(MCR型)动态无功补偿装置 磁控式动态无功补偿装置原理是:在普通的电容器组上并联一套磁控电抗器。磁控电抗器采用直流助磁原理,利用附加直流励磁磁化铁心,改变铁心磁导率,实现电抗值的连续可调,从而调节电抗器的输出容量,利用电抗器的容量和电容器的容量相互抵消,可实现无功功率的柔性补偿。 能够实现快速平滑调节,响应时间为100-300ms,补偿效果满足风场工况要求。

磁控电抗器采用低压晶闸管控制,其端电压仅为系统电压的1%~2%,无需串、并联,不容易被击穿,安全可靠。设备自身谐波含量少,不会对系统产生二次污染。占地面积小,安装布置方便。装置投运后功率因数可达0.95以上,可消除电压波动及闪变,三相平衡符合国际标准。免维护,损耗较小,年损耗一般在0.8%左右。 ③相控式动态无功补偿装置(TCR) 相控式动态无功补偿装置(TCR)原理是:在普通的电容器组上并联一套相控电抗器(相控电抗器一般由可控硅、平衡电抗器、控制设备及相应的辅助设备组成)。相控式原理的可控电抗器的调节原理见下图 所示。 通过对可控硅导通时间进行控制,控制角(相位角)为α,电流基波分量随控制角α的增大而减小,控制角α可在0°~90°范围内变化。控制角α的变化,会导致流过相控电抗器的电流发生变化,从而改变电抗器输出的感性无功的容量。 普通的电容器组提供固定的容性无功,感性无功和容性无功相抵消,从而实现总的输出无功的连续可调。 i 相控式原理图 优点: 响应速度快,≤40ms。适合于冶金行业。 一般年损耗在0.5%以下。缺点:晶闸管要长期运行在高电压和大电流工况下,容易被

配电变压器损坏原因分析及对策(标准版)

Safety is the goal, prevention is the means, and achieving or realizing the goal of safety is the basic connotation of safety prevention. (安全管理) 单位:___________________ 姓名:___________________ 日期:___________________ 配电变压器损坏原因分析及对策 (标准版)

配电变压器损坏原因分析及对策(标准版)导语:做好准备和保护,以应付攻击或者避免受害,从而使被保护对象处于没有危险、不受侵害、不出现事故的安全状态。显而易见,安全是目的,防范是手段,通过防范的手段达到或实现安全的目的,就是安全防范的基本内涵。 1原因分析 在广大农村,配电变压器时常损坏,特别是在农村用电高峰期和雷雨季节更是时有发生,笔者通过长期跟踪调查发现导致配电变压器损坏的主要原因有以下几个方面。 1.1过载 一是随着人们生活的提高,用电量普遍迅速增加,原来的配电变压器容量小,小马拉大车,不能满足用户的需要,造成变压器过负载运行。二是由于季节性和特殊天气等原因造成用电高峰,使配电变压器过载运行。由于变压器长期过载运行,造成变压器内部各部件、线圈、油绝缘老化而使变压器烧毁。 1.2绕组绝缘受潮 一是配电变压器的负荷大部分随季节性和时间性分配,特别是在农村农忙季节配电变压器将在过负荷或满负荷下使用,在夜晚又是轻负荷使用,负荷曲线差值很大,运行温度最高达80℃以上,而最低温

度在10℃。而且农村变压器因容量小没有安装专门的呼吸装置,多在油枕加油盖上进行呼吸,所以空气中的水分在绝缘油中会逐渐增加,从运行八年以上的配电变压器的检修情况来看,每台变压器底部水分平均达100g以上,这些水分都是通过变压器油热胀冷缩的呼吸空气从油中沉淀下来的。二是变压器内部缺油使油面降低造成绝缘油与空气接触面增大,加速了空气中水分进入油面,降低了变压器内部绝缘强度,当绝缘降低到一定值时变压器内部就发生了击穿短路故障。 1.3对配电变压器违章加油 某电工对正在运行的配电变压器加油,时隔1h后,该变压器高压跌落开关保险熔丝熔断两相,并有轻微喷油,经现场检查,需要大修。造成该变压器烧毁的主要原因:一是新加的变压器油与该变压器箱体内的油型号不一致,变压器油有几种油基,不同型号的油基原则上不能混用;二是在对该配电变压器加油时没有停电,造成变压器内部冷热油相混后,循环油流加速,将器身底部的水分带起循环到高低压线圈内部使绝缘下降造成击穿短路;三是加入了不合格变压器油。 1.4无功补偿不当引起谐振过电压 为了降低线损,提高设备的利用率,在《农村低压电力技术规程》中规定配电变压器容量在100kVA以上的宜采用无功补偿装置。如果补

浅谈无功补偿原理及无功补偿率

浅谈无功补偿原理及无功补偿率 无功补偿原理 电网中的电力负荷如电动机、变压器等,大部分属于感性负荷,在运行过程中需向这些设备提供相应的无功功率。在电网中安装并联电容器等无功补偿设备以后,可以提供感性负载所消耗的无功功率,减少了电网电源向感性负荷提供、由线路输送的无功功率,由于减少了无功功率在电网中的流动,因此可以降低线路和变压器因输送无功功率造成的电能损耗,这就是无功补偿。 简介编辑 无功补偿原理 当电网电压的波形为正弦波,且电压与电流同相位时,电阻性电气设备如白炽灯、电热器等从电网上获得的功率P等于电压U和电流I的乘积,即:P=U×I。 电感性电气设备如电动机和变压器等由于在运行时需要建立磁场,此时所消耗的能量不能转化为有功功率,故被称为无功功率Q。此时电流滞后电压一个角度φ。在选择变配电设备时所根据的是视在功率S,即有功功率和无功功率的矢量和:  无功功率为: 有功功率与视在功率的比值为功率因数: cosf=P/S 无功功率的传输加重了电网负荷,使电网损耗增加,系统电压下降。故需对其进行就近和就地补偿。并联电容器可补偿或平衡电气设备的感性无功功率。当容性无功功率QC等于感性无功功率QL时,电网只传输有功功率P。根据国家有关规定,高压用户的功率因数应达到0.9以上,低压用户的功率因数应达到0.85以上。 如果选择电容器功率为Qc,则功率因数为: cosφ= P/ (P2 + (QL-Qc)2)1/2 在实际工程中首先应根据负荷情况和供电部门的要求确定补偿后所需达到的功率因数值,然后再计算电容器的安装容量: Qc = P(tanf1 - tanf2)=P〔(1/cos2f1-1)1/2-(1/cos2f2-1)1/2〕 式中:

高压并联电容使用说明

产品名称:高电压并联电容器出品单位:西安华超电力电容器有限公司 1 产品用途 本产品适用于频率50Hz电力系统,提高功率因数用的并联电容器。主要用于改善交流电力系统的功率因数,降低线路损耗,提高网路末端电压质量,增大变压器的有功输出。 2 特点 2.1该产品以粗化聚丙烯薄膜及苄基甲苯做介质,电子、电力电容器专用铝箔 为电极,采用无感卷制方式,为扁形元件,元件内部场强分布均匀,容量无衰减、比特性小、寿命长以及优良的电气性能等特点。 2.2采用高真空干燥浸渍技术除去电容器中全部残余水分和空气,填注苄基甲 苯浸渍剂(法国C101)。具有不易导磁、过流大、损耗小等特点,有良 好的耐低温特性。 2.3采用不锈钢外壳封装。两侧带有固定架,陶瓷绝缘子。以及科学合理的引出方式。 3 产品型号及含义

4 技术参数 4.1主要参数 4.1.1额定频率:50Hz 4.1.2端子间试验电压:交流试验电压2.15Un或直流试验电压4.3Un。 4.1.3损耗角正切值:小于0.0009。 4.1.4相数:单相。 4.1.5绝缘水平: 电容器的高压端子与地之间应能承受表1规定的耐受电压。工频耐受电压施加的时间为1min。 表1 绝缘水平(kV) 4.1.6放电电阻:电容器内部装有内放电电阻,从电网断开后,端子上的电压在10分钟内可降至75V以下。 4.1.7电容偏差:±5% 4.1.8电容器组三相最大电容量与最小电容量之比不大于1.01。 4.1.9执行标准:GB/11024-2001《标称电压1kV以上交流电力系统用并联电容器》 4.2过负载 4.2.1电容器可在表2的电压水平下运行。 表2

SVC静止型动态无功补偿解决方案

SVC 静止型动态无功补偿解决方案 1 系统需求概述 随着中国经济的迅猛发展以及新能源应用的推进,对电力系统运行的安全性、可靠性和经济性以及对电能的质量的要求越来越高。一些大功率负荷的投入、退出,或者系统局部故障等,都会造成系统中有功功率和无功功率的大幅扰动,从而对电网的稳定性和经济性产生影响。同时,这些扰动引起的电磁暂态过程产生的过电流和过电压又往往会危害到有关电器设备的安全。 快速有效地调节电网的无功功率,使整个电网负荷的潮流分配更趋合理,这对电网的稳定、调相、调压、限制过电压等等方面都是十分重要的。 另外,现在的直流输电工程日益发展,大功率换流装置(无论整流或逆变)都需要系统 提供大量无功功率。特别是一端为弱系统或临近的交流系统发生故障时,如果不能迅速补偿大幅度波动的无功功率,就会导致系统失控或瓦解。 在SVC 出现前,人们除了精心设计和布局整个电网外,往往采用下面几种经典的办法或设备来调节电网的无功功率。 1)、适当调节发电机励磁,以调节机组运行功率因数。 2)、在交流系统适当地点(或直流输电弱系统侧)装设同步调相机。 3)、使用带抽头或有载开关的变压器,通过调节电网某些点的电压来调节潮流。 4)、采用串联补偿电容器来改善受端电压,提高电网极限传输能力并增强系统的稳定性。 5)、用开关投切并联电抗器或电容器,以满足系统随时变化的无功功率需求量,达到调相调压的目的。 这几种措施和方法,有些因其固有的优点,迄今仍为人们采用着。但是,许多方法明显存在着响应速度慢、调节性能差、运行维护和管理不便、长年运行损耗过大、自动监控跟踪性能差以及对整个电网的技术效益和经济效益都偏低等等缺陷。现在,性能优良的SVC (静止型动态无功补偿器)正逐步替换这些陈旧的设备。尤其在一些重要的场合,如大型钢厂,风力发电厂以及在大型复杂电网运行中有特殊要求的电站,SVC 正获得越

并联电容器无功补偿方案

课程设计 并联电容器无功补偿方案设计 指导老师:江宁强 1010190456 尹兆京

目录 1绪论 (2) 1.1引言 (2) 1.2无功补偿的提出 (3) 1.3本文所做的工作 (3) 2无功补偿的认识 (3) 2.1无功补偿装置 (3) 2.2无功补偿方式 (4) 2.3无功补偿装置的选择 (4) 2.4投切开关的选取 (4) 2.5无功补偿的意义 (5) 3电容器无功补偿方式 (5) 3.1串联无功补偿 (5) 3.2并联无功补偿 (6) 3.3确定电容器补偿容量 (6) 4案例分析 (6) 4.1利用并联电容器进行无功功率补偿,对变电站调压 (6) 4.2利用串联电容器,改变线路参数进行调压 (13) 4.3利用并联电容器进行无功功率补偿,提高功率因素 (15) 5总结 (21) 1绪论 1.1引言 随着现代科学技术的发展和国民经济的增长,电力系统发展迅猛,负荷日益增多,供电容量扩大,出现了大规模的联合电力系统。用电负荷的增加,必然要

求电网系统利用率的提高。但由于接入电网的用电设备绝大多数是电感性负荷,自然功率因素低,影响发电机的输出功率; 降低有功功率的输出; 影响变电、输电的供电能力; 降低有功功率的容量; 增加电力系统的电能损耗; 增加输电线路的电压降等。因此,连接到电网中的大多数电器不仅需要有功功率,还需要一定的无功功率。 1.2无功补偿的提出 电网输出的功率包括两部分:一是有功功率;二是无功功率。无功,简单的说就是用于电路内电场与磁场的交换,并用来在电气设备中建立和维持磁场的电功率。电机和变压器中的磁场靠无功电流维持,输电线中的电感也消耗无功,电抗器、荧光灯等所有感性电路全部需要一定的无功功率。为减少电力输送中的损耗,提高电力输送的容量和质量,必须进行无功功率的补偿。 1.3本文所做的工作 主要对变电站并联电容器无功补偿作了简单的分析计算,提出了目前在变电站无功补偿实际应用中计算总容量与分组的方法,本文主要作了以下几个方面的工作: 对无功补偿作了简单的介绍,尤其是电容器无功补偿,选取了相关的案例进行了简单的计算和分析。 2无功补偿的认识 2.1无功补偿装置 变电站中传统的无功补偿装置主要是调相机和静电电容器。随着电力电子技术的发展及其在电力系统中的应用,交流无触点开关SCR、GTR、GTO等相继出现,将其作为投切开关无功补偿都可以在一个周波内完成,而且可以进行单相调节。如今所指的静止无功补偿装置一般专指使用晶闸管投切的无功补偿设备,主要有以下三大类型: 1、具有饱和电抗器的静止无功补偿装置; 2、晶闸管控制电抗器、晶闸管投切电容器,这两种装置统称为SVC 3、采用自换相变流技术的静止无功补偿装置——高级静止无功发生器。

浅谈变压器低压侧无功补偿容量的选择分析

浅谈变压器低压侧无功补偿容量的选择分析[摘要]为了提高功率因数,减少电能损耗,应对某些配电变压器在低压侧安 装补偿电容器进行无功补偿。采取配变低压侧补偿和用户端就地补偿相结合的补偿方式,可以在提高功率因数的同时,减少低压线路损耗,取得最佳的经济效益。本文中,就从无功补偿的节电原理入手,对变压器低压侧无功补偿容量的选择进行分析探讨。 【关键词】无功补偿;变压器;容量选择分析 引言 电网改造中,在配电变压器的低压侧可以安装一个一定容量的补偿电容器,这个电容器可以起到无功补偿的作用,不仅可以提高电网的功率因数,减少电网中电能的损耗,还可以增强供电能力,起到了无功补偿的作用。 就目前的观点来看,有人认为安装的配电变压器容量的补偿容量比较小,不能完全补偿低压侧所有的无功负荷。笔者以为,这种观点是一种误解。因为配变低压侧无功补偿,仅仅是用来减少变压器自身或者配电网方面的功率损耗的,它并不能减少向负荷输送的无功功率,这是因为向负荷输送的无功功率要经过低压线路的电抗或电阻,因此,配电线路上的功率损耗并不能减少。根据以上分析,配电低压侧的无功补偿容量的选择是无用过大的,过大反而是一种浪费。并起不到多大作用。采取用户端就地补偿和配变低压侧补偿组合的方式无疑是最佳的结合方式。 1、节电原理分析 在电网中,发电机、变压器等电力负荷基本都属于感性负荷,这些设备在运行的时候是需要无功功率的。如果在电网中安装无功补偿设备,就等于给这些感性负荷提供了它们所消耗的无功功率,减少了电网向这些感性负荷提供无功功率,降低了线路和变压器等设备在输送电能过程中的损耗。 2、无功补偿的意义及具体实现方式 2.1就无功补偿的意义而言,笔者以为可以从以下几个方面阐述: ⑴对无功功率进行补偿后,电网中的有功功率的比例常数无疑得到了提高; ⑵电网中,进行无功补偿后,减少了相关的投资成本,减少了发电、供电设备的设计容量。特别是对改建或者新建的工程项目,可以考虑采用无功补偿的办法,减少其设计容量,达到投资成本的控制问题;

浅析无功补偿在电力电网中的应用

浅析无功补偿在电力电网中的应用 发表时间:2017-11-01T11:42:22.800Z 来源:《电力设备》2017年第18期作者:马静 [导读] 摘要:在现代供电行业内部,功率因数是考核电网运行的重要指标之一,为了确保功率因数达到考核指标,保证电网供电的政策运行,无功补偿就显得尤为重要。本文就无功补偿的原因和策略进行了探讨,以期给电网企业一些借鉴价值。 (国网吴忠供电公司宁夏回族自治区吴忠市 751100) 摘要:在现代供电行业内部,功率因数是考核电网运行的重要指标之一,为了确保功率因数达到考核指标,保证电网供电的政策运行,无功补偿就显得尤为重要。本文就无功补偿的原因和策略进行了探讨,以期给电网企业一些借鉴价值。 关键词:无功补偿;电力电网;应用 电力系统中先天性地存在着大量的无功负荷,这些无功负荷来自电力线路、电力变压器以及客户的用电设备。系统运行中大量的无功功率将降低系统的功率因数,增大线路电压损失和电能损失,严重地影响着电力企业的经济效益,解决这些问题的一个行之有效的方法就是进行无功补偿。为了起到节能降损的作用,改善电能的质量,提高输变电设备的有功出力,使电气设备处在最佳经济状态下运行,使有限的电力能更好地为社会主义建设服务,做好无功补偿工作势在必行。 1 电力电网中无功补偿的原因 随着国民经济的快速发展,国内的工业用电和生活用电不断增加,需求的增加对供电系统提出了更高的要求,无功补偿的运用,可以有效的降低电力电网的有功损耗,提高电力电网运行的科学性、经济性。无功补偿设备可以有效的降低电网中的功率耗损,根据公式I=P/Ucos可知,其中电流与cos成反比,因此,按装无功补偿设备之后可以有效的提高功率因数,线路中的负荷电流降低,进而使有功功率的损耗有所降低,同时还可以减少电网中电压的损失,提高电压的质量,减少客户的电费费用,减少设备投资。由于无功补偿可以减少无功功率在电网中的流动,降低线路和变压器因为输送无功功率而造成电能损失,安装无功补偿设备可以有效的降低电力网的损耗。而且无功补偿可以提高功率因数,相对其他节能措施而言,是一项收效快、投资少的降损节能措施,它可以使电力系统少送无功功率,多送有功功率,而且可以在电力系统无功功率不足时,迅速提供无功功率。 2 电力电网中无功补偿的使用 一般无功补偿设备是在用户的负载点或者配电室进行补偿,供电部门会与用户进行协商,鼓励用户在在用电处安装无功补偿设备,减少电费支出,进而提高功率因数,使功率因数符合考核标准。相关资料表明,无功功率约有40%在消耗在变压器和电线线路,剩余的则消耗在客户的用电设备中。为此,供电部门要与用户加强沟通,共同做好无功补偿设备的配置,保证电力资源的高效合理使用,减少能源浪费。 2.1无功补偿设备的选定 无功补偿设备的选定要按照合理布局、就地平衡、全面规划的原则,保证电力电网的无功补偿取得最佳的经济效益和社会效益。合理的无功补偿设备容量设定是决定其是否能够实现节能降耗的重要因素,在实际工作中,电力企业首先要根据不同的负荷情况,以及供电部门的要求确定无功补偿后应该达到的功率因数,然后计算无功补偿设备应具有的实际容量大小。 2.2并联电容器的无功补偿 提高功率因数最常用的办法就是与电感性负载并联静电电容器,并联补偿的电力电容器,根据电压高低的不同内部接线也不同,高压电容器组一般宜接成中性点不接地星形;低压变压器组一般接成三角形。目前我国使用的补偿方式有单独就地补偿、低压集中补偿、高压集中补偿三种。 2.2.1单独就地补偿 相比其他两种补偿方式,单独就地补偿的补偿范围最大,补偿效果也最好,电力企业一般优先采用这种方式进行补偿。单独就地补偿的电容器组是使用电设备自身的绕组电阻来放电,它是将并联补偿电容器组装在需要进行补偿的用电设备附近,它可以直接补偿安装部位的变压器和所有高低压电线线路的无功功率。单独就地补偿需要的投资费用较大,利用率较低,一般而言,当被补偿的用电设备停止作业时,单独就地补偿的电容器组也会被切除,导致资源浪费。为此,它适用于一些经常运转,负荷较平稳而且容量又大的设备,如,高频电炉、感应电动机等等,以及一些虽然容量较小,但是数量多,长期稳定运行的机械设备,如荧光灯等。 2.2.2低压集中补偿 低压集中补偿主要用于补偿高压配电线路、电力系统以及车间变电所低压母线前车间变电所的无功功率,可以使用专门的放电电阻或者白炽灯的灯丝进行放电,使用成本较低,运行和维修也比较方便安全,同时,它可以依据用户的用电负荷水平的波动,投入相应的电容器,进行跟踪补偿。低压集中补偿的目的在于提高专用变压器用户的功率因数,投资费用和后期维护都是由专用变压器用户自己承担。 2.2.3高压集中补偿 高压集中补偿是将高压电容器组集中装设在工厂变电所的6~10kV母线上,因此,这种补偿方式只能补偿6~10kV母线前的所有线路的无功功率,而母线后的电线线路的无功功率得不到有效补偿。但是相对而言,这种补偿方式的投资较小,而且便于工厂进行集中管理和控制,同时对于工厂高压的无功功率进行有效的补偿,比较适用于大中型的工厂。 3 无功补偿设备的使用管理 在进行无功补偿设备配置和管理的过程中,坚持集中补偿与分散补偿相结合,以分散补偿为主。对分散补偿的配置要从实际出发,确保无功补偿之后可以达到功率因数的审核标准,对于供电公司而言,无功补偿设备过于分散,导致企业的设备维护量大,工作难度较大,为此,大多采用变电站集中补偿和配变就地分散补偿相结合的方式。另外,在无功补偿过程中要坚持调压与降损相结合,同时以降损为主,因为无功补偿产生的最大的经济效益和社会价值是降损,在一定程度上调整电压只是为了保证电压质量。特别是对于很多轻载运行的电线线路,由于电压偏高,会导致配电变压器的铁损占线损的70%以上,这种情况下,就不宜再安装电容,否则在线路电压升高过快时,配电变压器的损坏程度会进一步增加,使线损程度增大,为此,投切无功补偿设备,使电网中的电力功率因数提高,减低电网的损耗。能源建设是我国国民经济建设的战略重点之一,在进行能源建设的过程中,我国坚持贯彻实施科学发展观,要求相关部门在加强能源开发的过程中,不断提高资源的使用效率,使有限的能源发挥尽可能多的经济效益,同时减少在使用过程中的能源浪费。为此,在电力电网内出现大负荷欠补偿时,供电企业、发电企业和用电企业要协同合作,共同把无功补偿工作搞好。电力电网通过无功补偿节约电能,不仅可以降低工厂的生产成本,而且可以为国家积累更多的财富,促进国

并联电容器使用说明书

AAM型 滤波电容器 使用说明书杭州银湖电气有限公司

本说明书适用于频率50赫兹交流电力系统提高功率因数用的并联电容器(以下简称电容器) 1、产品型号命名及表示意义 户外式(户内式不用字母表示) 相数(1表示单相,3表示三相) (千乏,kvar) (千伏,kV) [F表示二芳基乙烷,A表示苄基甲苯] 例如:AFM11/√3—100—1W。 表示:滤波电容器,二芳基乙烷浸渍全膜介质,额定电压为11/√3千伏,额定容量为100千乏,单相,户外式。 2、结构 电容器由箱壳和芯子组成,箱壳用薄钢板密封焊接制成。箱壳盖上焊有出线瓷套,箱壁两侧焊有供安装用的吊攀,一侧吊攀上装有接地螺栓。 电容器芯子由若干个元件和绝缘件迭压组成。元件用电容器膜作为介质,铝箔作极板卷制组成。为适应各种电压,在芯子中元件接成并联或串联,根据用户需要可在电容器内部装有放电电阻。千伏及以上的电容器每台可配备单独的外装熔断器。 3、技术数据 所有系列电容器装置于普通气候条件,在环境温度-50℃~+55℃,海拔高度不超过1000 米的地区使用。 电容器的实测电容与额定值的偏差不超过标准值的+10%~-5%。

电容器在工频交流的额定电压下,温度为20℃时的损耗角正切(tgδ)值应符合表1。凡 内部装有放电电阻的电容器损耗角正切值允许增大。 电容器及电容器元件的工频稳态过电压和相应的运行时间应符合表2。为了延长电容器的 使用寿命,电容器应经常维持在不超过额定电压下运行。 持续1/2周波的过渡过电压。 电容器应能承受第一个峰值电压不超过2√2U n 电容器允许在由于电压升高及高次谐波引起的不超过的稳态过电流下长期运行。对于电容量有最大正偏差的电容器,这种过电流允许达到。为了延长电容器的使用寿命,电容器应维持在额定电流下运行。 电容器应能承受100倍电容器额定电流的涌流冲击,每年这样的涌流冲击不超过1000次,其中若干次是在电容器内部温度低于0℃与下限温度之间发生的。 内部并有放电电阻的电容器,从电网断开后,端子上的电压在10分钟内应降到75伏以下。 4、运输、搬运及保存 为了免于损坏,在搬运至较远的地方时,电容器必须装在密封的塑料袋内,然后再装入包装木箱。电容器之间,电容器与木箱内壁之间应填以软状物,谨防电容器受潮及互相碰撞。 在运输时,电容器应直立(套管向上),严禁拿电容器套管进行搬运。 4.3户内式电容器应该保存在能防雨雪及无腐蚀性及气体的房屋内,应使周围 空气温度在第3.1条规定的范围内,应避免灰尘直接落在电容器上,并应严防任何热源的影响。 4.4在保存期间,电容器应直立放置,套管向上,不允许不加支撑将一台电容器迭置于另 一台电容器上。 5、验收 用户收到电容器时,应该先检查外观即检查箱壳,瓷套,出线导杆,接地螺栓和铭牌的正确性以及是否漏油。 验收时,如果检查电容器的电容,应用测量相对误差不大于3%的仪器进行。三相电容器应按表3所示方法进行确定。 6、安装

无功补偿的意义及原理

四、无功补偿的意义及原理 人们对有功功率的理解非常容易,而要深刻认识无功功率却并不轻而易举的。在正弦电路中,无功功率的概念是清楚的,而在含有谐波时,至今尚无公认的无功功率定义。但是,对无功功率这一概念的重要性和无功补偿重要性的认识,却是一致的。无功功率应包含对基波无功功率的补偿和对谐波无功功率的补偿。 无功功率对供电系统和负荷的运行都是十分重要的。电力系统网络元件的阻抗主要是电感性的。因此,粗略地说,为了输送有功功率,就要求送电端和受电端有一相位差,这在相当宽的范围内可以实现。而为了输送无功功率,则要求两端电压有一幅值差,这只能在很窄的范围内实现。不仅大多网络元件消耗无功功率,大多数负载也需要消耗无功功率。网络元件和负载所需要的无功功率必须从网络中某个地方获得。显然,这些无功功率如果都要由发电机提供并经过长距离传送是不合理的,通常也是不可能的。合理的方法应是在需要消耗无功功率的地方产生无功功率,这就是无功补偿。 无功补偿的作用主要有以下几点: (1)提高供用电系统及负载的功率因数,降低设备容量,减少功率损耗; (2)稳定受电端及电网的电压,提高供电质量。在长距离输电线路合适的地点设置动态无功补偿装置,还可以改善输系统的稳定性,提高输电能力; (3)在电气化铁道等三相负载不平衡的场合,通过适当的无功补偿可以平衡三相的有功及无功负载。 (一).无功补偿的物理意义 无功功率只是描述了能量交换的幅度,而并不消耗功率。图中的单相电路就是这

方面的一个例子,其负载为一阻感负载。电阻消耗有功功率,而电感则在一周期内的一部分时间把从电源吸收的能量储存起来,另一部分时间再把储存的能量向电源和负载释放,并不消耗能量。无功功率的大小表示了电源和负载电感之间交换能量的幅度。电源向负载提供这种功率是阻感负载内在的需要,同时也对电源的输出带来一定的影响。 下图是带有阻感负载的三相电路,为了和上图对照,假设u、R、L的参数均和上图相同,且为对称三相电路。这时无功功率的大小当然也表示了电源和负载电感之间能量交换的幅度。无功能量在电源和负载之间来回流动。

国家标准《静止式动态无功补偿装置功能特性》(精)

国家标准《静止式动态无功补偿装置功能特性》 征求意见稿编制说明 2005年7月 一、概述 国家标准《静止式无功功率补偿装置(SVC)功能特性导则》被列入了2003年国家标准制修订计划,计划编号为20032411-T-469。完成年限2005年。本标准由国家标准化管理委员会提出;全国电压电流等级和频率标准化技术委员会(以下简称“标委会”)归口并负责起草。 本标准主要起草单位: 本标准主要起草人: 本标准参加起草单位: 本标准参加起草人: 为了保证标准质量,特别邀请西安交通大学夏道止教授、王兆安教授、清华大学陈建业教授、中国电力科学研究院林海雪教授级高工(兼)、全国电力电子学标委会秘书处周观允教授级高工(兼)担任标准编制工作组顾问。 1 标准项目的提出和编制过程 该项目是在全国电压电流等级和频率标委会委员、鞍山荣信电力电子有限公司左强总经理的提议下,于2001年初和《静止式动态无功补偿装置(SVC) 现场试验导则》国家标准项目一起,向国家标准委提出立项申请,2003年底被批准立项的。 2004年第1季度,标委会秘书处研究确定:成立以全国电压电流等级和频率标委会秘书处、全国电力电子学标委会秘书处、中国电力科学研究院、西安领步电能质量研究、鞍山容信电力电子有限公司为主要起草单位的标准编制工作组;随着工作的进一步开展,还将扩展供电、用电、设备及其主要部件制造行业的工程技术人员参加标准编制工作。 根据2004年6月23日国家标准委高新技术部有关“无功补偿装置”国家标准规划及制定工作会议精神,两项《静止式动态无功补偿装置(SVC)》国家标准的制定过程中将积极吸收相关行业和单位的意见。 2004年12月21-23日,于北京召开了主要起草人和顾问工作扩大会议。会议就采用美国IEEE相应标准的基本原则达成以下共识: ——本标准不是等同、也不是修改采用,但鉴于美国IEEE 1303:1994相应标准的框架和技术内容有一定价值,因此在编制我国标准时应作为主要参考文件;关键是要保证国家标准的先进性,提高产品竞争力,技术内容可适当超前以指导科研; ——标准的适用范围要突破美国IEEE相应标准,涵盖输电和配电系统; ——保持立项时的标准名称,暂不改变; ——标准中,对实现产品性能的方法(例如冷却方式)不应强行做推荐性规定; ——该标准在编制过程中,要注意与国家标准《静止式动态无功补偿装置现场试验》的编制工作的密切协调; ——标准内容不应与现行国家标准发生矛盾; ——编制标准时应注意充分研究现正在编制的相关电力行业标准和可控硅阀国家标准。 会议对由西安领步电能质量研究所、鞍山荣信电力电子有限公司分别组织翻译,并聘请有关专家校对的最新IEEE标准进行了集体校对;研究商讨了IEEE 1303:1994各章条的采用程度和增删意见。会议决定由刘军成高级工程师执笔起草、林海雪教授级高工校核本标准的征求意见稿讨论稿,然后提交2005年5月召开的主要起草人会议,供集体讨论修改。

配电变压器低压侧无功补偿容量选择

配电变压器低压侧无功补偿容量选择 为了提高功率因数,减少电能损耗,增强供电能力,在农网改造中,应对100kVA及以上配电变压器在低压侧安装 容量为配变额定容量8%左右的补偿电容器进行无功补偿。但许多人认为按配电变压器容量的8%配置补偿容量太 小,不足以补偿低压侧所有的无功负荷,配变高压侧功率因数提高不大。其实,这是一种误解,因为配变低压侧无 功补偿,作用仅限于减少变压器本身及以上配电网的功率损耗,凡是向负荷输送的无功功率,由于仍然要经过低压 线路的电阻和电抗,配电线路上产生的功率损耗并未减少。所以,配变低压侧无功补偿容量选择过大是无益的。而 只有采取配变低压侧补偿和用户端就地补偿相结合的补偿方式才可以在提高功率因数的同时,减少低压线路损耗, 取得最佳的经济效益。 配变低压侧补偿容量过大不但不经济,而且在变压器空载运行时,或者负荷较轻时,还会造成过补偿,使功率 因数角超前、无功功率向电力系统倒送和电源电压升高。 功率因数角超前的坏处是: (1)电容器与电源仍有无功功率交换,同样减少电源的有功出力。 (2)网络因传输容性无功功率,仍会造成有功损耗。 (3)白白耗费了电容器的设备投资。 另外,如补偿电容过大,当电源缺相时有可能发生铁磁谐振过电压,烧毁电容器和变压器。 所以,配变低压侧补偿容量过大不但不经济,而且还会影响设备的安全运行。 根据以上分析,配变低压侧集中无功补偿根据功率因数的需求选择不科学,补偿容量不应过大。为了防止发生 过补偿现象,配变低压侧无功补偿原则为:其补偿容量不应超过配变的无功功率。 变压器总的无功功率:Qb=Qb0+QbH·(S/Se)2 Qb=[I0%/100+Ud%/100·(S/Se)2]·Se(1) 式中Qb0-变压器空载无功功率,kvar QbH-变压器满载无功功率,kvar I0%-变压器空载电流百分数

无功补偿技术发展及其应用研究学士学位论文

提供全套毕业论文图纸,欢迎咨询 编号(学号):13894049 毕业设计 (2013届本科) 题目:无功补偿技术的发展及其应用研究 学院:信息与电气工程学院 专业: 电气工程及其自动化专业 姓名: 指导教师: 完成日期:2013年06月13 日

毕业论文(设计)任务书 论文(设计) 题目无功补偿技术的发展及其应用研究 下发任务 日期 2013.03.01 学生姓名张晟指导教师栗庆吉讲师一.论文(设计)主要内容 本文研究的是电力系统无功补偿技术的发展以及在现代工业领域的应用。随着国民经济的迅速发展,用电量的增加,电网的经济运行日益受到重视。为了做好降损节能,改善电能质量,提高电气设备的有功出力,使电气设备在最佳经济状态下运行,无功功率补偿工作势在必行。本文揭示无功功率补偿发展根本并介绍无功功率补偿的应用,意在突出无功补偿技术与现代科技发展的有机结合。

二.论文(设计)的基本要求 1.有关资料的收集: 要求尽量收集第一手资料,资料要真实、可靠、有代表性。 2 资料的整理与分析: 要求条理清晰,数据分析详尽。 3 查阅相关文献: 要求贴近主题,有参考价值。 4 认真撰写论文,字数在10000字以上。 三.论文(设计)工作进度安排 阶段论文(设计)各阶段名称日期 1 现场观察无功补偿装置2013. 3. 2—2013. 3.10 2 参数进行分析与处理2013.3.11—2013.3.20 3 查阅相关文献2013.3.21—2013.4.10 4 撰写论文初稿2013.4.11—2013. 5.21 5 论文修改2013. 5. 21—2013. 6.2 6 论文完成2013. 6.3

无功功率补偿投切原理

无功功率(reactive power ):无功功率是按电磁感应原理工作的某个交流供用电设备和交流电源之间的能量交换,这种能量互换的最大值称为无功功率。这部分能量是用电器工作所必须的,但不能转换为我们所需要的能量,如机械能和热能。为了形象的描述电源利用的程度,我们提出了功率因数的概念,功率因数就是电路中有用功率和视在功率(电源总功率)的比值。由此可见,提高电网的功率因数对国民经济发展的重要意义。功率因数的提高,能使发电设备的容量得到充分利用,减少线路电流和功率损失。 无功补偿原理:通常我们用来提高功率因数的方法就是补偿法。即采用能够提供无功功率的装置来补偿用电设备所需的无功功率,降低电源的功率损失,提高功率因数,采用电力电容器来补偿用电设备所需无功功率的方法,称为电容无功补偿法。 这是由于理想的电容器在电路里是不消耗电能的,它只是从电源吸收电能转换成电场能,再把电场能转换成电能还给电源,完成它与电源之间的能量互换,因此电容上的功率也是无功功率,它的无功功率是由于电容上的电流I超前电压90°引起的,而我们的用电设备大多数都是感性负载,其工作时由于电流滞后引起的无功功率刚好与电容引起的无功功率相反。所以我们可以利用电容工作时产生的无功功率来补偿用电设备在工作时消耗的无功功率。 电容投切无功补偿简介:通过以上分析我们知道在电路中接入电容可以为设备提供无功功率,提高功率因数。由于我们的设备不可能是纯容性或纯感性的,且设备运行的状态也是不可预知的,如开、关机,或开机时不同工作状态所需要的无功功率都不相同。当补偿器提供的无功功率大于设备所需时,也会对电网造成极大影响。所以我们需要适时的调整无功功率的补偿来匹配设备所需的无功功率,即电容组投切方式。电容组投切的时机和数量则由专用控制器决定,而电容组容量一般选择系统额定容量的15%~40%。 电容投切无功补偿装置组成及其技术要点: 电容器:选用优质自愈式并联电容器,可按不同容量灵活编码组合,投切级数多,大容量补偿可一次到位。 控制器:选用快速DSP芯片,能够准确快速的检测出电路当前的功率因数,并根据当前功率因数选择合适的电容组数量投入到电路中,或在过补偿时及时投入感性电抗消除影响。 投切开关:触点式:功耗较小,但不适合频繁开启的场合。 晶闸管式:开关频率高,但功耗较高,容易损坏。 复合式:开关时采用晶闸管,导通后切换到触点式,开关频率高,功耗小,但是结构复杂 电抗器(装置中多为感性):多用在高压系统中,用来消除过补偿功率,滤除谐波。

电力电容器及无功补偿技术手册

电力电容器及无功补偿 技术手册 沙舟编著

目录 前言 第一章基本概念 (1) §1-1 交流电的能量转换 (1) §1-2 有功功率与无功功率 (2) §1-3 电容器的串联与并联 (3) §1-4 并联电容器的容量与损耗 (3) §1-5 并联电容器的无功补偿作用 (4) 第二章并联电容器无功补偿的技术经济效益 (5) §2-1 无功补偿经济当量 (5) §2-2 最佳功率因数的确定 (7) §2-3 安装并联电容器改善电网电压质量 (8) §2-4 安装并联电容器降低线损 (11) §2-5 安装并联电容器释放发电和供电设备容量 (13) §2-6 安装并联电容器减少电费支出 (15)

前言 众所周知,供电质量主要决定于电压、频率和波形三个方面。电网频率稳定决定于电网有功平衡,波形主要决定于网络和负荷的谐波,电压稳定则决定于无功平衡。当然三者之间也具有一定的内在关系。无功平衡决定于网络中无功的产生和消耗。在系统中无功电源有同步发电机、同步调相机、电容器、电缆、输电线路电容、静止无功补偿装置和用户同步电动机,无功负荷则有电力变压器,输电线路电感和用户的感应电动机,各种感应式加热炉、电弧炉等。为了满足系统中无功电力的需求,单靠发电机、调相机、电缆和输电线路电容是不够的,静补装置中也是采用电容器等。因此电容器在系统的无功电源中占有相当比重,加之调相机为旋转设备。建设投资大,运行维护费用高。近年来世界各国都积极装设电容器,满足系统无功电力要求,维持电压稳定。但各国主要是装设并联电容器,装串联电容器者较少,因此编者主要介绍并联电容器无功补偿技术,它还广泛应用于谐波滤波装置,动态无功补偿设备和电气化铁道无功补偿装置之中,因与电力系统谐波有关。限于篇幅,准备在“谐波技术”中详述。这里主要介绍一些无功补偿技术基础。限于编者水平,加上时间仓促,不当之处难免,请读者批评指正。

城区供电公司关于规范柱上配电变压器无功补偿箱施工安装的实施细则

附件 城区供电公司关于规范柱上配电变压器无功补偿箱施工安装的实施细则 第一章总则 第一条为进一步规范城区供电公司低压无功补偿箱的施工工艺,确保新投运无功补偿箱的施工质量,全面降低无功补偿箱及其接线的故障率,特制定本实施细则。 第二条本实施细则适用于城区公司范围内的所有工程,有关无功补偿箱及其连接线缆的施工应严格执行本规定。 第二章无功补偿箱箱体安装 第三条柱上变压器低压无功自动补偿装置的设备规范、主要元部件、组装应满足《低压无功补偿装置及运行监测系统通用订货技术条件》(—)。 第四条补偿箱安装托架宜紧贴变台槽担上端、担头向上翘起,角铁背板固定应牢固。无安装托架的补偿箱应使用横担以及角戗作为补偿箱托架,横担安装位置应高于变压器槽钢。 第五条补偿箱接地引线应采用截面不小于的黑色绝缘线,接地引线与补偿箱连接用螺栓应紧固,接地引线与变

台接地引线连接采用绑扎法,绑扎应整齐紧密,绑扎长度不应小于; 第三章补偿箱用及二次线施工 第六条补偿箱用电流互感器(以下简称补偿箱)应配套选用户外穿芯式电流互感器。 第七条补偿箱应安装于变台低压刀闸负荷侧的担上,变比应根据变压器二次额定电流确定,二次侧接线端子应向下且必须采取防水措施。 第八条补偿箱二次线应选用芯铜芯内层聚氯乙稀绝缘、黑色外护套具有耐气候耐日光性能的电缆,接线前线芯两端应做好相别、极性标记,连接牢固,经检查无误后,装好接线端子防水盖; 第九条补偿箱二次电缆应沿担引至电杆,再沿电杆向下引入补偿箱内。电缆缆身端头处、转弯处及直线段每隔应采用直径铁线与电杆绑扎一圈,缆身应横平竖直,不应沿杆扭斜,电缆与端子连接处应预留返水弯。 第十条伸入补偿箱内的二次电缆应加以固定,芯线接于端子排对应的接线端子上,接线前应进行核相,确保接线正确。 第四章补偿箱电源电缆施工 第十一条补偿箱电源电缆应选用铜芯内层聚氯乙稀绝缘、黑色外护套具有耐气候耐日光性能的四芯统包电缆,

并联电容器通用使用说明书西安西电电力电容器新样本

目录 内容 1、电容器名称和型号…………………………………………….…. 2、主要技术参数及主要技术性能指标…………………………….. 3、主要结构………………………………………………………….. 4、吊运、验收、保存及安装……………………………………….. 5、使用前的试验…………………………………………………….. 6、保护……………………………………………………………….. 7、接通和断开……………………………………………………….. 8、电容器的放电…………………………………………………….. 9、使用中的维护保养及故障排除………………………………… 10、电容器安装容量的确定…………………………………………..

本说明书适用于频率50Hz或60Hz、额定电压1kV以上交流电力系统用并联电容器, 该种电容器主要为工频交流电力系统提供无功功率, 用来提高电网功率因数, 降低损耗, 改进电压质量, 充分发挥发电、供电设备的效率。 西安西电电力电容器有限责任公司( 以下简称西容公司) 高压并联电容器产品性能优良, 质量可靠。电容器开发、设计、制造及试验严格执行IEC60871-1.1997国际电工委员会标准、 GB/T11024- 国家标准和DL/T840- 电力行业标准要求, 某些参数高于标准要求。 1电容器的名称和型号 1.1电容器的名称—高压并联电容器 1.2电容器型号表示方法 其中—以大写的汉语拼音字母表示 —以阿拉伯数字表示 1.2.1系列代号: B—并联电容器 1.2.2介质代号 FM—二芳基乙烷(S油)或苯基乙苯基乙烷( PEPE油) 浸全膜介质 AM—苄基甲苯( C101油) 浸全膜介质 1.2.3第一特征号: 表示额定电压, 以kV为单位。 1.2.4第二特征号: 表示额定容量, 以kvar为单位。 1.2.5第三特征号: 表示相数: 1为单相, 3为三相( 内部星接) , 1×3W为单相连接, 三相独立。

相关文档
最新文档