光传输通信基本原理(完整资料).doc

光传输通信基本原理(完整资料).doc
光传输通信基本原理(完整资料).doc

【最新整理,下载后即可编辑】

第一部分光传输通信基本原理

第一章、光纤通信原理

第一节、光纤通信的概念

一、光纤通信的概念

光纤通信概念:利用光纤来传输携带信息的光波以达到通信的目的。典型的光纤通信系统方框图如下:

模拟信息模拟信息

数字光纤通信系统方框图

从图中可以看出,数字光纤通信系统基本上由光发送机、光纤与光接收机组成。发送端的电端机把信息(如话音)进行模/数转换,用转换后的数字信号去调制发送机中的光源器件LD,则LD就会发出携带信息的光波。即当数字信号为“1”时,光源器件发送一个“传号”光脉冲;当数字信号为“0”时,光源器件发送一个“空号”(不发光)。光波经低衰耗光纤传输后到达接收端。在接收端,光接收机把数字信号从光波中检测出来送给

电端机,而电端机再进行数/模转换,恢复成原来的信息。就这样完成了一次通信的全过程。其中光发送机的调制方式有两种:直接调制也称内调制(一般速率小于等于2.5GB/S时);间接调制也称外调制(一般速率大于2.5GB/S时)。

二、光纤通信的特点

1、通信容量大

2、中继距离长

3、保密性能好

2、适应能力强

5、体积小、重量轻、便于施工和维护

6、原材料来源丰富,潜在的价格低廉

第二节、光纤的导光原理

一、全反射原理

我们知道,当光线在均匀介质中传播时是以直线方向进行的,但在到达两种不同介质的分界面时,会发生反射与折射现象,如图2.5所示。

图2.5 光的反射与折射

根据光的反射定律,反射角等于入射角。

根据光的折射定律:

n Sin n Sin 1222θθ=

(2.2)

其中n 1为纤芯的折射率,n 2为包层的折射率。

显然,若n 1>n 2,则会有θ2>θ1。如果n 1与n 2的比值增大到一定程度,则会使折射角θ2≥90°,此时的折射光线不再进入包层,而会在纤芯与包层的分界面上掠过(θ2=90°时),或者重返回到纤芯中进行传播(θ2>90°时)。这种现象叫做光的全反射现象,如图2.6所示。

θ2=90

图:光的全反射现象

人们把对应于折射角θ2等于90°的入射角叫做临界角。很容易可以得到临界角θK Sin n n =-12

1。

不难理解,当光在光纤中发生全反射现象时,由于光线基本上全部在纤芯区进行传播,没有光跑到包层中去,所以可以大大降低光纤的衰耗。早期的阶跃光纤就是按这种思路进行设计的。

第三节、光纤与光缆基本概念

一、光纤的结构

光纤呈圆柱形,由纤芯(直径约9-50um )、包层(直径约125um )与涂敷层(直径约1.5cm )三大部分组成,如下图:

纤芯 n1

包层 n2

涂层

包层 n2

涂层

纤芯主要采用高纯度的SiO2(二氧化硅),并掺有少量的掺杂剂,提高纤芯的光折射率n1;包层也是高纯度的二氧化硅,也掺杂一些掺杂剂,主要是降低包层的光折射率n2;涂敷层采用丙烯酸酯、硅橡胶、尼龙,增加机械强度和可弯曲性。

二、光纤的分类方式

光纤有以下的分类方式:

1、 按折射率分布分类

A 、阶跃光纤SI

定义:在纤芯与包层区域内,折射率的分布分别是

均匀的,其值分别是n1与n2,但在纤芯与包层的分界处,其折射率的变化是阶跃的。

其折射率分布的表达式为:

n1 r 小于等于a1时

n(r)=

n2 r

式中:

n1为光纤纤芯区的折射率

n2为包层区的折射率

a1为纤芯半径

a2为包层半经

B 、渐变光纤GI

定义:光纤蛛心处的折射率最大,但随横截面的增加而逐渐变小,其变化规律一般符合抛物线规律,到了纤芯与包层的分界处,正好降到与包层区域的折射率相等的数值;在包层区域中其折射率的分布是均匀的。

2、按传输的模式分类

●多模光纤

定义:传输光波的模式不止一种。

多模光纤纤芯的几何尺寸远大于光波波长,一般在50um左右,光信号是以多个模式方式进行传播的,光信号的波长以主纵模为准。不同的传播模式会具有不同的传播速度和相位,因此经过长距离的传播之后会产生时延,导致光脉冲变宽,叫做光纤的模式色散或模间色散。由于模式色散影响较严重,降低了多模光纤的传输容量和距离,多模光纤仅用于较小容量、短距离的光纤传输通信。

●单模光纤

定义:传输光波的模式只有一种。(目前主用)

当光纤的几何尺寸可以于光波长相比拟时,即纤芯的几何尺寸与光信号波长相差不大时,一般为5~10um,光纤只允许一种模式在其中传播,其余的高次模全部截止,这样的光纤叫做单模光纤。单模光纤只允许一种模式在其中传播,从而避免了模式色散的问题,故单模光纤具有极宽的带宽,特别适用于大容量的光纤通信。对于单模光纤,由于光纤的几何尺寸小,使V的值小于2.2028,这样N的值就为1,只有一种模式

3、按工作波长分类

●短波长光纤

定义:习惯上把波长在600-900nm范围内呈现低衰耗光纤称做短波长光纤。

●长波长光纤

定义:习惯上把波长在1000-2000nm范围内的光纤称做短波长光纤。

2、套塑类型分类

A、紧套光纤

定义:指二次、三次涂敷层与予涂敷层及光纤的纤芯、包层等紧密的结合在一起的光纤。目前居多。

B、松套光纤

定义:指经过予涂敷层的光纤松散的放在一塑料管中,不再进行二次、三次涂敷。

三、光纤的种类以及应用状况

①、G.652光纤

1310nm性能最佳光纤(色散未移位光纤)。

它有二个波长工作区:1310nm与1550nm。

在1310nm波长:色散最小(未移位),小于3.5ps/nm.km;但损耗较大,为0.3~0.4dB/km。

在1550nm波长:色散较大,为20ps/nm.km;但损耗很小,为

0.15~0.25dB/km。

在我国占99﹪以上。虽称1310nm性能最佳光纤,但绝大部分却用于1550nm,其原因是在1310nm无实用化光放大器。

它可会传输2.5G或以2.5G为基群的WDM系统;但传输TDM 的10G ,面临色散受限的难题(色度色散与PMD)。

②、G.653光纤

1550nm性能最佳光纤(色散移位光纤)。

它主要用于1550nm波长工作区。

在1550nm波长,色散较小(色散移位),为3.5ps/nm.km;损耗也很小,为0.15~0.25dB/km。

但它不能用于WDM方式,因会出现四波混频效应(FWM)。③、G.654光纤

1550nm损耗最小光纤。它主要用于1550nm波长工作区,其损耗为0.15~0.19dB/km;主要用于海缆通信。

④、G.655光纤

它是为克服G.653光纤的FWM效应而设计的新型光纤。其性能与G.653光纤类似,但既能用于WDM,又能传输TDM方式的10G。

理想情况:

A)、低色散:2~10ps/nm.km;

B)、色散斜率小于0.05ps/nm 2.km ,便于色散补偿;

C)、大的有效面积,可避免出现非线性效应。

目前,G.655光纤尚无国际统一规范。

---大的有效面积,会有效地避免非线性效应,但将导致色散斜的增加。

---小的色散斜率将会便于色散的补偿;但其有效面积却减小。

四、光缆结构

层绞式、骨架式、束管式、带状式

第四节、 光纤的特性与参数

一、光纤的三大特性

光纤的特性参数可以分为三大类即几何特性参数、光学特性参数与传输特性参数。

二、光纤的衰耗

① 衰耗系数a

衰耗系数是光纤最重要的特性参数之一。因为在很大程度上决定了光纤通信的中继距离。

衰耗系数的定义为:每公里光纤对光功率信号的衰减值。其表达式为:

a p P i

O =10lg (dB/km)

(2.6)

其中

P i 为输入光功率值(瓦特)

P O 为输出光功率值(瓦特)

如某光纤的衰耗系数为a=3dB/km ,则

P P i O

==10203. 这就意味着,经过一公里的光纤传输之后,其光功率信号减少了一半。

长度为L公里的光纤的衰耗值为A = aL 。

②光纤的衰耗机理

使光纤产生衰耗的原因很多,但可归纳如下:

本征吸收

吸收衰耗:

杂质吸收

线性散射

衰耗:散射衰耗:非线性散射

结构不完整散射

其它衰耗(微弯曲衰耗)

本征吸收:

定义:构成光纤材料本身所固有的吸收作用。

纯二氧化硅对光的吸收作用所引起的光纤衰耗是比较小,在600-900NM波长范围稍大,但小于1dB/km,而在1000-1800波长范围,几乎为零。

杂质吸收:

光纤中的杂质对光的吸收作用,是造成光纤衰耗的主要原因。

光纤中的杂质大致可以分为二大类,即过渡金属离子与氢氧根离子。

过渡金属离子包括铜、铁、铬、钴、锰、镍离子等,这些离子在光的作用下会发生震动而吸收光能量;每种离子都有自己的吸收峰波长,上述过渡金属离子的吸收峰波长都落在600~1800nm波长范围。

氢氧根离子对光的吸收峰波长落在1000~1800nm波长范

围;因此在此波长范围氢氧根离子的含量多少对光纤的衰耗具有重大影响。

散射衰耗:

定义:所谓散射衰耗是指光在光纤中发生散射时所引起的衰耗。

光的散射现象可分为线性散射与非线性散射。

A.线性散射衰耗-----瑞利散射

所谓线性散射,是指光波的某种模式的功率线性地(与其功率成正比)转换成另一种模式的功率,但光的波长不变。线性散射会把光功率辐射到光纤外部而引起衰耗。

瑞利散射是典型的线性散射,它与波长的2次方成反比,即光波长越长,瑞利散射衰耗越小。

光纤材料不均匀,会造成其折射率会布不均匀,易产生瑞利散射。

B.非线性散射衰耗

所谓非线性散射,是指某光波长模式的部分功率非线性地

转换到其它的波长中。

布里渊散射与拉曼散射是典型的非线性散射。

如果光纤中的光功率过大,就会出现非线性散射现象。因

此防止发生非线性散射的根本方法,就是不要使光纤中的

光功率信号过大,如不超过+25dBm。

其它衰耗

其它衰耗包括微弯曲衰耗与连接衰耗等;它们占的比例很小。

总之,在影响光纤衰耗的诸多因素中,最主要的是杂质吸收所引起的衰耗。光纤材料中的杂质如氢氧根离子与过渡金属离子对光的吸收能力极强,它们是产生光纤衰耗的主要因素。因此要想获得低衰耗光纤,必须对制造光纤用的原材料二氧化硅等进行非常严格的化学提纯,使其杂质的含量降到几个PPb以下。

三、光纤的色散:

当一个光脉冲从光纤输入,经过一段长度的光纤传输之后,其输出端的光脉冲会变宽,甚至有了明显的失真。这说明光纤对光脉冲有展宽作用,即光纤存在着色散(色散是沿用了光学中的名词)。

光纤的色散是引起光纤带宽变窄的主要原因,而光纤带宽变窄则会限制光纤的传输容量。

对于多模光纤引起色散的原因主要有三种:模式间色散、材料色散与波导色散。

对于单模光纤,因只有一种传输模式(HE11,LP01),所以没有模式间色散,而只有材料色散与波导色散。

模式间色散

因为光在多模光纤中传输时会存在着许多种传播模式,而每种传播模式具有不同的传播速度与相位,因此虽然在输入端同时输入光脉冲信号,但到达到接收端的时间却不同,于是产生了脉冲展宽现象。

材料色散Δτλ

所谓材料色散是指组成光纤的材料即二氧化硅本身所产生的色散。

波导色散Δτw

所谓波导色散是指由光纤的波导结构所引起的色散。对多模光纤而言,其波导色散的影响甚小。

四、光纤的带宽

带宽系数的定义为:一公里长的光纤,其输出光功率信号下降到其最大值(直流光输入时的输出光功率值)的一半时,此时光功率信号的调制频率就叫做光纤的带宽系数。如下图所示:

需要注意的是,由于光信号是以光功率来度量的,所以其带宽又称为3dB光带宽。即光功率信号衰减3dB时意味着输出光功率信号减少一半。而一般的电缆之带宽称为6dB电带宽,因为输出电信号是以电压或电流来度量的。

引起光纤带宽变窄的主要原因是光纤的色散。注意,单模光纤没有带宽系数的概念,仅有色散系数的概念。

五、光纤的数值孔径(NA)

数值孔径是多模光纤的重要参数,它表征光纤端面接收光的能力,其取值的大小要兼顾光纤接收光的能力和对模式色散的影响。CCITT建议多模光纤的数值孔径取值范围为0.18~0.23,其对应的光纤端面接收角θc=10°~13°。

六、模场直径d

模场直径表征单模光纤集中光能量的程度。

由于单模光纤中只有基模在进行传输,因此粗略地讲,模场直径就是在单模光纤的接收端面上基模光斑的直径(实际上基模光斑并没有明显的边界)。

七、截止波长λ

c

要实现单模传输还必须使光波波长大于某个数值,即λ≥λc,这个数值就叫做单模光纤的截止波长。因此,截止波长λc的含义是,能使光纤实现单模传输的最小工作光波波长。也就是说,尽管其它条件皆满足,但如果光波波长不大于单模光纤的截止波长,仍不可能实现单模传输。

第五节、光源对光器件的要求

一、光纤通信对光源器件的要求

1、发射光波长适中

光源器件发射光波的波长,必须落在光纤呈现低衰耗的0.85μm、1.31μm和1.55μm附近。2、发射光功率足够大

光源器件一定要能在室温下连续工作,而且其入纤光功率足够大,最少也应有数百微瓦,当然达到一毫瓦以上(odBm)更好。在这里我们强调的是入纤光功率而不指单纯的发光功率。因为只有进入光纤后的光功率才有实际意义,由于光纤的几何尺寸极小(单模光纤的芯径不足10微米),所以要求光源器件要具有与光纤较高的耦合效率。

3、温度特性好

光源器件的输出特性如发光波长与发射光功率大小等,一般来讲随温度变化而变化,尤其是在较高温度下其性能容易劣化。在光纤通信的初期与中期,经常需要对半导体激光器加致冷器和自动温控电路,而目前一些性能优良的激光器可以不需要任何温度保护措施。

2、发光谱宽窄

光源器件发射出来的光的谱线宽度应该越窄越好。因为若其谱线过宽,会增大光纤的色散,减少了光纤的传输容量与传输距离(色散受限制时)。例如对于长距离、大容量的光纤通信系统,其光源的谱线宽度应该小于2nm。

5、工作寿命长

光纤通信要求其光源器件长期连续工作,因此光源器件的工作寿命越长越好。光源器件寿命的终结并不是我们所想象的完全损坏,而是其发光功率降低到初始值的一半或者其阈值电流增大到其初始值的二倍以上。

目前工作寿命近百万小时(约100年)的半导体激光器已经商用化。

6、体积小重量轻

光源器件要安装在光发送机或光中继器内,为使这些设备小型化,光源器件必须体积小、重量轻。

目前,光纤通信中经常使用的光源器件可以分为二大类,即发光二极管(LED)和激光二极管(LD)。当然LD又可以包括异质结激光二极管、分布反馈型激光二极管和多量子阱式激光二极管等(就结构而言)。

第六节、光发送机与光接收机的性能指标

一、光发送机

1、光功率单位

顺便介绍一下3个单位之间换算关系。

xdB=ydBm-zdBm=10lg(ymW/zmW) dB是以dBm为单位的两个光信号功率的差值。

xdBm=10lg(ymW/1mW) dBm是以mW为单位光信号功率的一种换算单位

2、发送光功率Ps

在规定伪随机码序列的调制下,光发送机在参考点S的平均发光功率。如-3~+2dBm。

二、光接收机

1、接收灵敏度

定义为R点处为达到1×10-10的BER值所需要的平均接收功率的最小值。一般开始使用时、正常温度条件下的接收机与寿命终了时、处于最恶劣温度条件下的接收机相比,灵敏度余度大约为2—2dB。一般情况下,对设备灵敏度的实测值要比指标最小要求值(最坏值)大3dB左右(灵敏度余度)。

2、过载光功率

定义为在R点处为达到1×10-10的BER值所需要的平均接收光功率的最大值。因为,当接收光功率高于接收灵敏度时,由于信噪比的改善使BER变小,但随着光接收功率的继续增加,接收机进入非线性工作区,反而会使BER下降,如图6-3所示。

1×10

接收光功率

BER曲线图

图中A点处的光功率是接收灵敏度,B点处的光功率是接收过载功率,A—B之间的范围是接收机可正常工作的动态范围。

第七节、光接口特性

一、光接口类型与代码

①第一类光接口

不含光放大器以及线路速率低于10G/s的接口。

光接口代码:

W---y.z

W:I-代表局内通信;S-代表短距离通信;

L-代长距离通信;V-代表甚长距离通信;

U-代表超长距离通信。

Y:代表STM等级,Y=1、2、16、62。

Z:代表使用光纤类型与工作窗口;

1---G.652光纤,工作波长为1310nm;

2---G.652光纤,工作波长为1550nm;

3---G.653光纤,工作波长为1550nm;

5---G.655光纤,工作波长为1550nm。

例:L-16.2:工作在G.652光纤的1550nm波长区,传输速率为2.5G的长距离光接口。

S-16.1:工作在G.652光纤的1310nm波长区,传输速率为2.5G 的短距离光接口。

应用代码:I 表示局内通信,S 表示短距离、L 表示长距离、V 表示甚长距离、U 表示超长距离局间通信。字母后第一位数字表示STM 等级,第二位数字表示光纤类型和工作波长。

应用代码:I 表示局内通信,S 表示短距离、L 表示长距离、V 表示甚长距离、U 表示超长距离局间通信。字母后第一位数字表示STM 等级,第二位数字表示光纤类型和工作波长。

通信原理-樊昌信-考试知识点总结

★分集接收:分散接收,集中处理。在不同位置用多个接收端接收同一信号①空间分集:多副天线接收同一天线发送的信息,分集天线数(分集重数)越多,性能改善越好。接收天线之间的间距d ≥3λ。②频率分集:载频间隔大于相关带宽 移动通信900 1800。③角度分集:天线指向。④极化分集:水平垂直相互独立与地磁有关。 ★起伏噪声:P77是遍布在时域和频域内的随机噪声,包括热噪声、电子管内产生的散弹噪声和宇宙噪声等都属于起伏噪声。 ★各态历经性:P40随机过程中的任意一次实现都经历了随机过程的所有可能状态。因此,关于各态历经性的一个直接结论是,在求解各种统计平均(均值或自相关函数等)是,无需做无限多次的考察,只要获得一次考察,用一次实现的“时间平均”值代替过程的“统计平均”值即可,从而使测量和计算的问题大为简化。 部分相应系统:人为地、有规律地在码元的抽样时刻引入码间串扰,并在接收端判决前加以消除,从而可以达到改善频谱特性,压缩传输频带,是频带利用率提高到理论上的最大值,并加速传输波形尾巴的衰减和降低对定时精度要求的目的。通常把这种波形称为部分相应波形。以用部分相应波形传输的基带系统成为部分相应系统。 多电平调制、意义:为了提高频带利用率,可以采用多电平波形或多值波形。由于多电平波形的一个脉冲对应多个二进制码,在波特率相同(传输带宽相同)的条件下,比特率提高了,因此多电平波形在频带受限的高速数据传输系统中得到了广泛应用。 MQAM :多进制键控体制中,相位键控的带宽和功率占用方面都具有优势,即带宽占用小和比特信噪比要求低。因此MPSK 和MDPSK 体制为人们所喜用。但是MPSK 体制中随着M 的增大,相邻相位的距离逐渐减小,使噪声容县随之减小,误码率难于保证。为了改善在M 大时的噪声容限,发展出了QAM 体制。在QAM 体制中,信号的振幅和相位作为作为两个独立的参量同时受到调制。这种信号的一个码元可以表示为: )cos()(0k k k t A t S θω+=,T k t kT )1(+≤<,式中:k=整数;k θ和k A 分别可以取多个离散值。 (解决MPSK 随着M 增加性能急剧下降) ★相位不连续的影响:频带会扩展;包络产生失真。 ★相干解调与非相干解调:P95 相干解调:也叫同步检波,解调与调制的实质一样,均是频谱搬移。调制是把基带信号频谱搬到了载频位置,这一过程可以通过一个乘法器与载波相乘来实现。解调则是调制的反过程,即把载频位置的已调信号的频谱搬回到原始基带位置,因此同样可以用乘法器与载波相乘来实现。相干解调时,为了无失真地恢复原基带信号,接收端必须提供一个与接收的已调载波严格同步(同频同相)的本地载波(成为相干载波),他与接收的已调信号相乘后,经低通滤波器取出低频分量,即可得到原始的基带调制信号。相干解调适用于所有现行调制信号的解调。相干解调的关键是接收端要提供一个与载波信号严格同步的相干载波。否则,相干借条后将会使原始基带信号减弱,甚至带来严重失真,这在传输数字信号时尤为严重。 非相干解调:包络检波属于非相干解调,。络检波器通常由半波或全波整流器和低通滤波器组成。它属于非相干解调,因此不需要相干载波,一个二极管峰值包络检波器由二极管VD 和RC 低通滤波器组成。包络检波器就是直接从已调波的幅度中提取原调制信号。其结构简单,且解调输出时相干解调输出的2倍。 4PSK 只能用相干解调,其他的即可用相干解调,也可用非相干解调。 ★电话信号非均匀量化的原因:P268 非均匀量化的实现方法通常是在进行量化之前,现将信号抽样值压缩,在进行均匀量化。这里的压缩是用一个非线性电路将输入电压x 变换成输出电压y 。输入电压x 越小,量化间隔也就越小。也就是说,小信号的量化误差也小,从而使信号量噪比有可能不致变坏。为了对不同的信号强度保持信号量噪比恒定,当输入电压x 减小时,应当使量化间隔Δx 按比例地减小,即要求:Δx ∝x 。为了对不同的信号强度保持信号量噪比恒定,在理论上要求压缩特性具有对数特性。 (小信号发生概率大,均匀量化时,小信号信噪比差。) ★A 律13折线:P269 ITU 国际电信联盟制定了两种建议:即A 压缩率和μ压缩率,以及相应的近似算法——13折线法和15折线法。我国大陆、欧洲各国以及国际间互联时采用A 压缩率及相应的13折线法,北美、日本和韩国等少数国家和地区采用μ压缩率及15折线法。 A 压缩率是指符合下式的对数压缩规律:式中:x 为压缩器归一化输入电压;y 为压缩器归一化输出电压;A 为常数,它决定压缩程度。

基于电力通信光传输网络的优化 刘帅

基于电力通信光传输网络的优化刘帅 发表时间:2017-11-27T12:11:43.580Z 来源:《电力设备》2017年第19期作者:刘帅 [导读] 摘要:随着我国经济不断发展,人们生活水平提高,科学技术进步,人们对电力事业的要求也越来越高,电力通信作为电网运行安全的重要支撑,其光传输技术提高,对电力通信安全可靠运行起到了非常重要的作用。 (晋城供电公司 048000) 摘要:随着我国经济不断发展,人们生活水平提高,科学技术进步,人们对电力事业的要求也越来越高,电力通信作为电网运行安全的重要支撑,其光传输技术提高,对电力通信安全可靠运行起到了非常重要的作用。由于电力通信不断发展,光传输过程遇到了一些问题,针对出现的这些问题,采取一定措施,对光传输网进行优化是很有必要的,可有效提高电力通信的可靠性与安全性。 关键词电力通信;光传输网络;优化措施 1 对电力通信光传输网的概述 1.1 电力通信 所谓的电力通信,是指使得电力系统安全与稳定运行的通讯网络。从这可以看出,它是构成电力系统安全稳定运行的不可或缺的部分,尤其是在现代电力网络系统覆盖范围越来越广,运行越来越复杂的背景下,需要的安全性也就越来越高。保证电力系统安全稳定运行的,主要包括继电站、安全稳定控制系统以及调度自动化,而电力通信是构成这些网络信息现代化的基础,也是电力系统实现现代化发展的必要手段。由于电力通信的安全性要求非常高,而不同的国家,甚至不同的电力企业,各自的资源优势等又不一样,基本都是自己建立自己的电力系统的通信网络。 1.2 光传输 光传输实质上是指一种技术,是一种以光信号形态在发送方与接收方间进行传输的技术。国际上为了规范光纤传输体制,制定了同步光纤网与同步数字系列两种体制。光传输具有传输速度快、稳定安全等优点,因而建立光传输网络体系越来越受到人们的重视,随着光传输市场的不断扩展,在电力通信中应用光传输进行电力系统的通信网络建设,具有非比寻常的意义。可以使电力通信更加的及时,特别是在发生灾害、事故时,对电力的需求更加的突出,利用优化的光传输网进行电力通信中的调度、确保安全等十分重要。 2 电力通信光传输网优化的必要性 电力通信光传输网最显著的优势就是传输容量大、可靠稳定、传输指标准确等,电力通信光传输网的优化,能不断增强电力网络整体效益,提高电力信息水平,同时,存在着依赖电网建设和服务的特殊性,所以,实施电力通信光传输网的优化很必要。电网建设过程中离不开可靠性高的光缆建设作为支撑,而电网发展需要通过光传输网来开展通信业务。由于光传输技术的更新速度快、设备使用寿命长,在寿命期内,相同型号设备的采购具有一定的困难性,而只有通过相同型号设备才能将光传输的整体效益全面发挥,当前的光传输网络功能一定程度上降低,并未达到投资效益最大化的目标。开展光传输网优化工作是业务发展的需要,在为电力企业服务过程中,不仅要实现电网的生产需要,还必须达到企业经营管理和信息建设的要求,以确保业务范围的不断拓展。 3 电力通信光传输网络存在的问题 3.1 光缆方面存在的问题 光缆建设在当前的电力通信光传输网络系统的建设中发挥着十分重要的作用,但是当前光缆方面存在的问题不仅仅影响电力通信光传输网络的优化,同时也造成了一些经济损失。一方面光缆的电腐蚀影响了电力通信光传输网络的优化。在电力通信光传输系统的建设中光缆的建设是滞后于电网的建设的,大部分采用的光缆都是在原有的电力线路杆塔上架设的,而且大多数采用的都是ADSS光缆并没有采用可靠性比较高的OPGW光缆,这在一定程度上造成了光缆的电腐蚀隐患。另一方面光缆并没有得到有效地利用。当前的电力通信光传输网络的建设中电力企业往往仅仅是建设并应用两条或者是两条以上的不同陆游的光缆,其他的光缆并不能发挥出有效的作用。 3.2 网络方面存在的问题 电力通信光传输网络的建设中网络的应用在整个系统中占据着十分重要的位置,但是当前的网络应用并没有发挥出应有的作用,电力通信光传输网络的建设中网络资源的利用效率比较低,导致了宽带资源的浪费。另外网络的结构设置不合理也在一定程度上影响了网络的正常使用,网络安全问题的存在对电力通信光传输网络的发展造成了一定的影响。 3.3 设备配置方面的问题 电力通信光传输网络的建设和应用需要一系列的设备配置,才能更好地发挥电力通信网络的优势。电力通信光传输网络的环网设备主要是1+0配置,随着网络结构的变化或者是接入的网元增加,再加上网管通道,设备板卡配置和网络同步等一些配置的不合理造成了电力通信光传输网络存在一定的问题,可靠性和扩展性受到严重的影响。 4 电力通信光纤传输网络优化方法 4.1骨干层优化策略 骨干层优化策略主要有四点内容,分别是:对骨干层的路由与带宽进行收敛,使其形成环状或是网状型的组网,而节点就要有很强的扩展性;尽可能的选用不同的光缆路由组网以及可以自愈保护的不同SDH环网系统中的直达电路;为了使障碍点最少,则需要尽可能的缩减跳线转接;对接入层业务进行负荷分担,可以尽可能的进行接入环双归属,对骨干节点和骨干环的数量进行合理的增加。 4.2接入层优化策略 接入层优化策略主要是从两个方面进行,分别是运用光纤资源根据容量已经趋于饱和的接入环的实际情况,做出接入环的裂变,即是把接入进行一分为二的裂变,以此增加网络的容量;由当前的环网中的节点数的情况,最好把接入环路所带的接入接点数设置在8个的范围内。接入节点相对多的环路,则可以运用拆环的方法来提高环路的容量大小。根据业务不断增大的需要,提升环网的容量可以通过升级的方法实现。 4.3电路层网络方案 电路在整个电力通信光传输网路的建设和传输的过程中起着重要的作用。随着信息量的不断增大,光传输网络中所需传输的信息量也逐渐增加,所以需要进一步完善网络传输的电路,以保证网络传输工作的顺利进行。网络传输的电路优化主要是对电路两端网元设备的端口进行优化,将网元支路或者网元优化完成之后接串接接入光传输网络的环网,优化后的电路接入已经设计好的网元端口,以提高电路的

网络优化解决方案

网优中心 针对多厂家交换数据的装置 基于数据仓库技术的元数据驱动设计及多维分析方法 基于 基于数据仓库多维分析方法的网络性能分析、指标( 网络运行性能、运行资源、运行收益及客户满意度的综合分析网络关键数据的自动发布、监控告警体系 网络容量、性能、负荷等运行趋势分析、预测 网络资源、负荷、话务等均衡优化 基于 用户自定义的多维报表体系 为网络的中高级领导层提供管理决策支持 为网络的综合监测、网络优化、网络规划提供服务

参数高速的跟踪分析,发现影响网络性能的关键参数及参数最优设置 运行参数与设计参数的对比分析,指导参数的设置和检查规划数据的合理性不同时期的参数对比分析,发现影响网络性能的关键参数及参数最优设置可视化、地理化的参数查询 运行参数自动合理性检查 适应网络体系结构的变化,可以进行基站割接、增加和删除等操作 根据不同的用户设置不同的权限 方便的网优维护日志管理 针对多厂家话务数据的装载 主要网元( 可由用户自定义的网络性能指标体系和计算公式 多维度的指标分析、追踪 异常网元的定位 网络性能指标的地理化分析 实时自动生成用户定义的动态报表体系 自动生成专业的分析报告 针对典型网络问题的专家分析 用户定义的网络性能监控与报警 针对单个或多个呼叫过程的跟踪、分析 失败事件的统计、跟踪和分析,根据失败信令点的无线环境和 小区无线指标分布分析( 小区无线统计报告 移动网络测试优化分析系统

带有数字化电子地图实时地理导航 测试和回放时所有窗口实时关联、互相对应测试时自动识别网络 广播信道 时隙测试功能 CQT

强制切换测试和锁频测试 可同时对移动 实时邻频干扰载干比测试 GSM 测试和回放时测试点与服务主小区实时连线 扫频支持: 支持 主叫自动拨号、被叫自动应答 CDD 地理化描述无线网络的各项测试参数 专题分析无线下行覆盖、干扰、切换等网络问题 话务数据的地理化观测 准确的双网关对比统计报告,用户可选的强大综合统计报告空闲 频率复用的地理化观测 利用高速扫频数据做信号传播及干扰分析 主小区的 六个邻小区信息 三层信令信息 信道和无线 SQI 网络参数信息( 信令事件实时显示和统计 采集事件实时显示和统计 GSM/DCS 协议支持 对于 连续信道场强扫频速度 设备尺寸长 移动网络室内测试系统

通信原理公式总结

第一章 绪论 模拟通信系统一般模型: 数字通信系统模型: 点对点的通信按时间和传递方向可以分为:单工,半双工,全双工通信。 有效性指标 可靠性指标 模拟 频宽利用率 输出信噪比 数字 传码率,传信率,带宽利用率 误码率,误信率 参量: 公式 单位 信息量 )(log 2x P I -= bit 平均信息量/信源熵 ∑=-=M i i i x P x P x H 12)(log )()( bit/符号 传码率 T R B /1= B 传信率 )(x H R R B b = b/s 带宽利用率 B R B =η B/Hz 误码率 P e =错误码元数/码元总数 误信率 P b =错误比特数/比特总数 第二章 确知信号 确 知 信 号 功率 信号 频谱 ? --= 2 2 20 000)(1 T T t nf j n dt e t s T C π 功率谱密度 2|)(|1 lim )(f S T f P T T ∞→= 自相 关函数 dt t s t s T R T T T ?-∞→+=2 /2 )()(1lim )(ττ 能 量 信 号 频谱 密度 ∑∞ ∞--=dt e t s f S ft j π2)()( 能量谱密度 2|)(|)(f S f G =;)()]([1τR f G F =- 自相关函数 ?∞ ∞ -+=)()()(ττt s t s R ;)()]([f G R F =τ 第三章 随机过程 公式 备注 统计均值 dx x f t t E )()()]([?∞ ∞ -=ξξ f (x )是x 的概率密度函数 统计自相关 函数 )]()([)(212,1t t E t t R ξξ== 参照统计均值计算方法 广义平稳随 机过程 1. 均值为常数,与时间t 无关 2. 自相关函数只与时间间隔τ有关 时间均值 ?-∞→- =2 /2)(1lim T T T dt t x T a 时间自相关 ?-∞→----+=2 /2 )()(1lim )(T T T dt t x t x T R ττ

通信原理公式总结

第一章 绪论 模拟通信系统一般模型: 数字通信系统模型: 点对点的通信按时间和传递方向可以分为:单工,半双工,全双工通信。 有效性指标 可靠性指标 模拟 频宽利用率 输出信噪比 数字 传码率,传信率,带宽利用率 误码率,误信率 参量: 公式 单位 信息量 )(log 2x P I -= bit 平均信息量/信源熵 ∑=-=M i i i x P x P x H 12)(log )()( bit/符号 传码率 T R B /1= B 传信率 )(x H R R B b = b/s 带宽利用率 B R B =η B/Hz 误码率 P e =错误码元数/码元总数 误信率 P b =错误比特数/比特总数 第二章 确知信号 确知信号 功率信 号 频谱 ? --= 2 2 20 000)(1 T T t nf j n dt e t s T C π 功率谱密 度 2|)(|1 lim )(f S T f P T T ∞→= 自相关函数 dt t s t s T R T T T ?-∞→+=2 /2 )()(1lim )(ττ 能量信 号 频谱密度 ∑∞ ∞--=dt e t s f S ft j π2)()( 能量谱密度 2 |)(|)(f S f G =;)()]([1 τR f G F =- 自相关函数 ?∞ ∞ -+=)()()(ττt s t s R ;)()]([f G R F =τ 第三章 随机过程 公式 备注 统计均值 dx x f t t E )()()]([?∞ ∞ -=ξξ f (x )是x 的概率密度函数 统计自相关函数 )]()([)(212,1t t E t t R ξξ== 参照统计均值计算方法 广义平稳随机过程 1. 均值为常数,与时间t 无关 2. 自相关函数只与时间间隔τ有关 时间均值 ?-∞→- =2 /2)(1lim T T T dt t x T a 时间自相关函数 ?-∞→----+=2 /2 )()(1lim )(T T T dt t x t x T R ττ 各态历经性 1.- =a t E )]([ξ 2.- ----= )(),(21τR t t R 平稳随机过程自相关函数性质 )0(R 代表平均功率 )(∞R 代表直流功率(均值的平方) )()(ττ-=R R 偶函数 )0(|)(|R R ≤τ 有上界 2)()0(σ=∞-R R 方差代表交流功率 高斯随机过程: )2)(ex p(21)(2 2 σσ πa x x f -- 结论1:线性系统:输出过程的功率谱密度是输入过程的功率谱密度乘以系统频率响应模值的平方,即)(|)(|)(2f P f H f P i o = 结论2:如果线性系统的输入是高斯型的,则输出也是高斯型的。 结论3:一个均值为零的窄带平稳高斯过程,他的同相分量和正交 分量同样是平稳高斯过程,而且均值为零,方差也相同。此外在同一时刻上得到的同相分量和正交分量是统计独立的。 结论4:一个均值为零、方差为2 ξσ的窄带平稳高斯过程)(t ξ,其包络的一维分布是瑞利分布,相位的一维分布是均匀分布,并且就一维分布而言他们是统计独立的。 结论5:正弦波加窄带高斯噪声的包络:小信噪比时接近瑞利分布,大信噪比时接近高斯分布,一般情况下是莱斯分布。 第四章 信道 无线信道:天波、地波、视线传播。 有线信道:明线、对称电缆、同轴电缆。 信号无失真条件:1.具有线性相位(相频特性为通过原点的直线) 2.幅频响应为常数

电力系统通信光传输网络优化策略

电力系统通信光传输网络优化策略 发表时间:2018-08-29T09:46:19.593Z 来源:《建筑模拟》2018年第14期作者:符坚[导读] 本文主要对电力系统光通信传输网络框架特点及传输网面临的挑战进行了分析,并提出了光传输网络结构的优化策略,以供同仁参考。 公诚管理咨询有限公司第七分公司 摘要:本文主要对电力系统光通信传输网络框架特点及传输网面临的挑战进行了分析,并提出了光传输网络结构的优化策略,以供同仁参考。 关键词:电力通信光传输网网络;优化策略 一、引言 随着电力通信系统的快速发展,通信方式手段已从单一的载波通信方式发展成为由载波、集群、无线、数字微波、SDH光纤等通信方式共同组成的一个复杂的通信网络。在电力通信中,光传输网络不仅传输容量大,而且稳定可靠,同时传输的指标非常准确。在电力通信中进行光传输网的优化,不仅能够使得电力通信网络的效益得到充分地发挥,而且能够提高电力信息水平。基于此,本文主要对电力系统光通信传输网络框架特点及传输网面临的挑战进行了分析,并提出了光传输网络结构的优化策略,以供同仁参考。 二、电力通信光传输网络框架特点 (1)电力通信光传输网络的主要构建。当前在经济技术条件下构成通信光传输网络主要的电路有SDH环网电路和环状电力。对于SDH环网电路的管传输网络构架是由输电线走向进行决定的。依托层光缆路之所以难以进行维护,是因为其是由构成光传输网架,而穿透业务是因跨环产生的,从而引发带宽瓶颈和节点瓶颈等问题。SDH制式主要用在光传输网中,并通过运用环型拓扑把其安全性提升到最大限度。SDH环网数和承载的业务之间存在一定的矛盾,光传输网络的维护性能和中心接入点的安全性会受到环型拓扑中的缺陷的影响。(2)底层光缆网架的基本的特点。当前底层光缆一般都可以分为两种:普通光缆和电力线特种光缆。电力线特种光缆又可以分为ADSS光缆和OPGW光缆,总而言之,电力线特种光缆是有异于运营商网络特有底层光缆的一种。目前电力底层光缆资源的主流是OPGW光缆,并在电厂形成了以OPGWE光缆为主要的网状底层光缆网架。OPGW路由是通过输电线路的走向进行决定的,这是由于电网生产的需要。进行电源点到负荷点原则的规划,电网的接线会随着新电源的增加而增加,这样就会导致输电线路出现变化,从而使光传输网架结构受到一定的影响。同时,为了确保传输网运行的可靠性,需要不断的进行网络的修补。当前情况下,被大量运用的是OPGW光缆,这就需要及时的解决构架光传输的合理性和可靠性问题。 三、电力通信光传输网络面临的挑战 目前为止,电力通信光传输网主要的组网方式是SDH/MSTP,对于光传送网的SDH方式,最初只需要考虑TDM信号,在分组信号上也只是对ATM 进行考虑,没有考虑到IP数据等业务,所以等到IP业务出现并成为通信网主要的业务时,SDH 这种组网方式的不足就显示出来。主要有以下几点:①环网电路主要容量在622M以上,而到变电所仅有2M的宽带,倘若没有监控手段的话,IP传送量还远远不够,适应不了电力通信网络发展的需要;②电力通信的组网方式交叉颗粒小,适应不了颗粒较大的业务传送问题,且SDH传输的效率比较低。另外,光传输网络的宽带指配主要依靠网管系统,宽带不灵活,已无法适应如今高容量的IP业务生成业务困难;③现在的SDH设备已经不能完全支持组播业务,满足不了将来的视频业务,也缺乏层次地址结构,网络扩展单一。 四、电力通信光传输网络的优化策略 (1)骨干层优化策略。骨干层优化策略主要有四点内容,分别是:对骨干层的路由与带宽进行收敛,使其形成环状或是网状型的组网,而节点就要有很强的扩展性;尽可能的选用不同的光缆路由组网以及可以自愈保护的不同SDH环网系统中的直达电路;为了使障碍点最少,则需要尽可能的缩减跳线转接;对接入层业务进行负荷分担,可以尽可能的进行接入环双归属,对骨干节点和骨干环的数量进行合理的增加。 (2)接入层优化策略。接入层优化策略主要是从两个方面进行,分别是运用光纤资源根据容量已经趋干饱和的接入环的实际情况,做出接入环的裂变,即是把接入进行一分为二的裂变,以此增加网络的容量;由当前的环网中的节点数的情况,最好把按入环路所带的接入接点数的设置在8个的范围内。接入节点相对多的环路,可通过拆环的方法来提高环路的容量大小。根据业务不断增大的需要,提升环网的容量可以通过升级的方法实现。 (3)传输媒介层的网络优化方案。传输媒介层的网络优化,开始时期是把厂家独立段的光传输设备调整到地区或者支线网中,把主干网通过支线网调整优化成环网,再根据网元的增加把网络调整为独立的2层网络。在对传输媒介层的网络进行优化时,也可以把网管、同步、网络保护一起进行,这样有利于提高传输媒介层的网络优化效率。 (4)通道层的网络优化方案。集中型的业务一般是固定局向,业务可设立汇聚点,且业务流向一般形成某个环路,并且通过汇聚点之后是以VC4通道汇聚至业务通达地;分散性业务流向不固定,且保护方式复杂,倘若和集中型业务混杂在同一VC4中,查找VC12繁琐,且维护不便,管理十分复杂,并且无法灵活进行通道的调度工作。因此,为了业务调度方便以及业务流向清晰,我们将分散型业务同集中型业务以VC4通道分开,将两类业务作VC4级别的分离在通道配置上是十分必要的。传输设备的交叉容量是有限的,网元交叉的优化是关键,对于低阶交叉的 VC12 业务尽量整合在同一个 VC4 中,避免占有太多的 VC4;对于需要在本地落地的业务,线路时隙尽量整合在同一个 VC4 中,支路端口尽量在同一个支路板上,减少相应的交叉总线占用。为了维护方便,在配置时隙时也需注意各种业务的配置方式的不同;并且对于突发情况也需有一定的应急配置措施。 对电力系统通信传输网的时隙配置建议如下:对于不同区域的集中型业务,可先从该局采用端到端的配置方式分配VC4颗粒,高阶穿通至该区域集中型业务的汇聚点,这样配置后,该局至汇聚点之间所经过的节点的业务就无法占用该VC4,保证了1个VC4业务隶属于1个区域的独立性,再行配置该区域各节点至汇聚节点的VC12业务。对于分散型VC12业务,主要进行单点的业务配置原则,需在其途经的路径点上做VC12级别的交叉。开通电路中,工作VC12以及保护VC12在VC4中的时隙号全程一致;网元源节点至网元宿节点之间开通E1业务。对于新建某类VC12业务电路,在网元源――网元宿路径上某段链路上这个业务的VC4已经填满的情况下,可考虑将此VC12电路到此链路上的其余VC4,但前提是该业务VC4与原对应业务的VC4业务种类相同。

教育学移动通信网络优化试题库

《移动通信网络优化》试题库 一、选择题: 1.移动通信按多址方式可分为。 A、FDMA B、TDMA C、CDMA D、WDM 2.蜂窝式组网将服务区分成许多以()为基本几何图形的覆盖区域。 A、正六边形 B、正三角形 C、正方形 D、圆 3.GSM采用()和()相结合的多址方式。 A、FDMA B、CDMA C、WMA D、TDMA 4.我国的信令网结构分()三层。 A、高级信令转接点(HSTP) B、初级信令转接点(LSTP) C、信令点(SP) D、信令链(SL) 5.在移动通信系统中,影响传播的三种最基本的传播机制是()。 A、直射 B、反射 C、绕射 D、散射 6.1W=()dBm。 A、30 B、 33 C、 27 D、10 7.天线中半波振子天线长度L与波长λ的关系为()。 A、L=λ B、L=λ/2 C、L=λ/4 D、L=2λ 8.0dBd=()dBi。 A.1、14 B、 2.14 C、 3.14 D、 4.14 9.移动通信中分集技术主要用于解决()问题。 A、干扰 B、衰落 C、覆盖 D、切换 10.天线下倾实现方式有()。 A、机械下倾 B、电下倾 C、铁塔下倾 D、抱杆下倾 11.GSM900的上行频率是()。 A、 890~915MHz B、 935~960MHz C、 870~890MHz D、 825~845MHz 12.GSM系统中时间提前量(TA)的一个单位对应空间传播的距离接近()米。 A、 450

B、 500 C、 550 D、 600 13.GSM采用的数字调制方式是()。 A、 GMSK B、 QPSK C、 ASK D、 QAM 14.在GSM系统中跳频的作用是()。 A、克服瑞利衰落 B、降低干扰 C、提高频率复用 D、提高覆盖范围15.GSM系统中控制信道(CCH)可分为()。 A、广播信道(BCH) B、公共控制信道(CCCH) C、专用控制信道(DCCH) D、业务信道 16.GSM系统中位置区识别码(LAI)由哪些参数组成()。 A、MCC(移动国家号) B、 MNC(移动网号) C、 LAC(位置区码) D、CC 17.路测软件中RXQUAL代表( )。 A、手机发射功率 B、手机接收信号电平大小 C、手机接收信号质量 D、基站接收信号质量 18.室外型直放站的分类有()。 A、无线宽带射频式直放站 B、无线载波选频式直放站 C、光纤直放站 D、拉远直放站 19.对选频直放站,下面说法正确的是()。 A、直放站的频点要与施主小区一致 B、直放站的频点要与施主小区不一样 C、施主小区频点改变后直放站要相应调整 D、施主小区频点改变后直放站不需调整20.路测时,采样长度通常设为()个波长。 A、20 B、30 C、40 D、50 21.移动通信按工作方式可分为()。 A、单工制 B、半双工制 C、双工制 D、蜂窝制 22.GSM系统中时间提前量(TA)的2个单位对应空间传播的距离接近()km。 A、0.9 B、1.1 C、0.5 D、0.8 23.GSM没有采用的多址方式是()。 A、CDMA B、WDM C、FDMA D、TDMA 24.全波振子天线长度L与波长λ的关系是()。 A、L=λ B、L=λ/2 C、L=λ/4 D、L=2λ 25.SAGEM路测手机数据业务的手机速率是( )。 A、4800 B、9600 C、57600 D、115200 26.GSM系统中基站识别码(BSIC)由哪些参数组成()。 A、 MCC(移动国家号) B、 NCC(国家色码) C、 BCC(基站色码) D、MNC(移动网

通信工程竣工资料

工程项目编 号: 建 设 单 位: 监 理 单 位: 施 工 单 位: 20 年 月 竣 工 资 料

目录一 一、资质证书 1、营业执照 2、税务登记证 3、企业资质证书 4、通信工程施工许可证 5、施工协议 二、工程竣工说明 1、工程竣工说明 2、建筑安装工程量总表 三、复测报告 四、施工组织设计 1、安全措施 2、工程资金控制措施 3、技术及质量保证措施 4、工程进度实施措施及工程进度表 5、人员、车辆、工器具安排 6、光缆配盘表及配盘图 7、建筑安装工程量总表 五、开工报告 六、线路工程随工检查验收记录表 1、成端光缆检查验收记录表

2、管道光缆检查验收记录表 3、杆路检查验收记录表(无) 4、架空式、吊线式、钉固式检查验收记录表 5、光缆割接通知单---附:割接方案(无) 6、光缆接续封焊卡 七、工程主要材料目录 产品质量检验及合格证 八、光缆测试记录表 1、中继段测试记录表---曲线图标 2、接地测试记录 3、光缆单盘测试记录 九、工程延期报告(无) 十、工程设计变更单(无) 十一、工程竣工报告 十二、工程交(完)工报告 十三、线路工程验收纪录表及工程质量评定表十四、竣工图纸

工程竣工说明 一、概述: 本工程是根据2015年9月编制的一阶段设计()及中国电信股份有限公司与签订的《中国电信昌吉分公司本地网接入网络工程施工协议》(合同)进行工程施工的。 该工程由以包工不包料方式进行工程承包。 该工程计划于20 15年9月10日开工,20 15年9月20日完工,实际于20 15年9月20日完工。 二、工程建设的目的和必要性: 本工程建设方式为模块局与模块局间传输光缆,要求充分考虑利旧现有光缆资源,避免重复建设,光缆容量的选定要结合当前需求和今后发展需求考虑,要考虑传输网的可扩展性。 三、主要工程量表 20 年月日

电力通信光传输网络的优化及应用探讨

电力通信光传输网络的优化及应用探讨 随着社会和经济的快速发展,各行各业对电能的需求不断增加,在这种情况下,人们对电力系统运行的稳定性有了更高了的要求。电力通信作为电网安全运行的重要网络支持,近年来在科学技术不断进步的情况下其安全性和可靠性也得到了较大的提升,同时光纤通信技术得以广泛的应用。但当前光传输网还存在着一些不足之处,需要对其进一步优化,提高光传输网的安全性和可靠性。文中从光传输网实施优化的必要性入手,对光传输网应用问题进行了分析,并进一步对光传输网优化原则和优化方案进行了具体的阐述。 标签:电力通信;优化;光传输网;电网建设;网络结构 前言 近年来在科学技术的快速发展的基础上,电力通信行业取得了较快的发展,光纤通信技术水平有了较大程度的提升,而且成为当前电力通信行业重要的技术,在当前电力通信行业中具有不可或缺性。但由于我国光纤通信技术起步较晚,所以光传输网络系统还存在着一些不完善的地方,需要对光传输网进行优化,从而更好的确保电力通信系统能够安全、稳定的运行。 1 光传输网实施优化的必要性 当前电力通信行业中光纤通信技术占据十分重要的位置,由于其容量大、稳定性好、传输指标准确,可以更好的确保电力网络整体效益的发挥,通过对光传输网进行优化,可以有效的提高电力信息水平,因此在当前情况下,针对光传输网中存在的不足之处,依靠电网建设和服务的特殊性来对光传输网进行优化,更好的提高光传输网的安全性和可靠性。 光缆建设作为电网建设的可靠后盾,在电网发展过程中,其通信服务主要通过光传输网来进行,所以对光传输网技术进行优化,可以更好的满足电网经济效益的要求。当前光传输技术由于更新速度较快,而且设备使用寿命相对较长,这就导致同一型号的设备一旦需要更换很难采购到相同的设备,这样就会对光传输网的性能带来一定的影响,从而影响光传输的整体效益,使其网络功能不能有效的发挥出来,无法确保投资收益的最大化。对光传输网进行优化,这也是当前电力业务发展的必然要求,当前电力企业不仅需要提供优质的服务,而且还需要更好的满足电网生产的需要,满足企业经营管理和信息建设建设的需要,同时企业在发展过程中对大容量、多用户及多类型的业务也有了一定的需求。 2 光传输网应用问题 站点网元作为当前电力通信光传输网的重要组成部分,而且由于站点网元与电压不同,所以可以将站点分为110kV与220kV,同时整体网络面积可以围绕一个中心点来进行全面覆盖,物理路由则由OPG跟ADSS组成。作为光设备传

移动通信网络优化

什么是移动通信网络优化(扫盲篇) 西安巨人培训中心党军虎 注:转载请注明出处“西安巨人培训中心”,不得修改原文,否则追究相关责任! 前言 当前咨询或参加我们培训的学员多次要求:希望能够给大家介绍什么是移动通信网络优化,甚至有人给我们感言“移动通信网络优化”这个行业了解的太晚了!更有甚至表示不是大家不想进入网优行业,而是大家根本就不了解这个行业甚至就没听过这个行业!尤其是那些还没毕业或者将要毕业的学生们反映强烈。。。。。。 在这里我可以告诉大家移动通信网络优化是什么,做什么,怎么做,怎么入行等。 移动通信网络优化的概念 移动通信网络优化与传统的互联网网络优化是有本质区别的!移动通信网络优化又称为无线通信网络优化,我们通常简称为无线网优或网优。主要是对大家所熟悉的移动、联通、电信等提供的移动业务进行维护和性能改善,包含核心网、传输网、无线网三部分的优化,但由于核心网、传输网网元相对较少,性能相对稳定,一般需求量和人员较少;相反的无线网网元数目繁多,无线环境复杂多变,加上用户的移动性,维护人员需求和性能提升压力较大,因此一般意义上的移动通信网络优化主要是指无线网络部分的优化,又简称为无线网络优化,从事该工作的工程师通常称为无线网优工程师。 无线网络优化主要是指改善空中接口的信号性能变化,比如我们用手机打电话碰到的通话中断(掉话)、听不清对方声音(杂音干扰)、回音、接不通、单通、双不通等网络故障就属于无线网络优化人员要从事的改善范畴。空中接口专业称为UM接口或UU接口,其中UM为2G网络叫法,UU为3G网络叫法,简单可以认为是手机和基站之间的接口。因此可以说,无线网络优化就是手机和基站之间的信号性能改善或提升。 无线网络优化的分类 目前无线网络优化可以分为2G无线网络优化和3G无线网络优化,2G主要包括GSM和CDMA两种制式,3G包括TD-SCDMA、WCDMA和CDMA2000三种制式。目前中国移动运营GSM和TD-SCDMA;中国联通运营GSM和WCDMA;中国电信运营CDMA 和CDMA2000。2G和3G的区别主要在于无线网部分,传输和核心网可以通过升级等手段完成,因此严格意义上只有无线网可以说是“3G网络”。

通信原理知识点归纳

1.2.1 通信系统的一般模型 1.2.3 数字通信的特点 (1) 抗干扰能力强,且噪声不积累 (2) 传输差错可控 (3) 便于处理、变换、存储,将来自不同信源的信号综合到一起传输 (4) 易于集成,使通信设备微型化,重量轻 (5) 易于加密处理,且保密性好 1.3.1 通信系统的分类 按调制方式分类:基带传输系统和带通(调制)传输系统 。调制传输系统又分为多种 调制,详见书中表1-1。 按信号特征分类:模拟通信系统和数字通信系统 按传输媒介分类:有线通信系统和无线通信系统 3.1.2 随机过程的数字特征 均值(数学期望): 方差: 相关函数 3.2.1 平稳随机过程的定义 (1)其均值与t 无关,为常数a ; (2)自相关函数只与时间间隔τ 有关。 把同时满足(1)和(2)的过程定义为广义平稳随机过程。 3.2.2 各态历经性 如果平稳过程使下式成立 则称该平稳过程具有各态历经性。 3.2.4 平稳过程的功率谱密度 非周期的功率型确知信号的自相关函数与其功率谱密度是一对傅里叶变换。这种关系对平稳随机过程同样成立,即有 []∫∞∞?=dx t x xf t E ),()(1ξ} {2)]()([)]([t a t E t D ?=ξξ2121212212121),;,()] ()([),(dx dx t t x x f x x t t E t t R ∫∫ ∞∞?∞∞?==ξξ???==)()(τR R a a ∫∫ ∞ ∞?∞∞??==ω ωπτττωωτξωτξd e P R d e R P j j )(21)()()(

3.3.2 重要性质 广义平稳的高斯过程也是严平稳的。 高斯过程经过线性变换后生成的过程仍是高斯过程。 3.3.3 高斯随机变量 (1)f (x )对称于直线 x = a ,即 (2) 3.4 平稳随机过程通过线性系统 输出过程ξo (t )的均值: 输出过程ξo (t )的自相关函数: 输出过程ξo (t )的功率谱密度: 若线性系统的输入是平稳的,则输出也是平稳的。 如果线性系统的输入过程是高斯型的,则系统的输出过程也是高斯型的。 3.5 窄带随机过程 若随机过程ξ(t )的谱密度集中在中心频率f c 附近相对窄的频带范围Δf 内,即满足Δf << f c 的条件,且 f c 远离零频率,则称该ξ(t )为窄带随机过程。 3.7 高斯白噪声和带限白噪声 白噪声n (t ) 定义:功率谱密度在所有频率上均为常数的噪声 - 双边功率谱密度 - 单边功率谱密度 4.1 无线信道 电磁波的分类: 地波:频率 < 2 MHz ;距离:数百或数千千米 天波:频率:2 ~ 30 MHz ;一次反射距离:< 4000 km 视线传播:频率 > 30 MHz ;距离: 4.3.2 编码信道模型 P(0 / 0)和P(1 / 1) - 正确转移概率,P(1/ 0)和P(0 / 1) - 错误转移概率 P (0 / 0) = 1 – P (1 / 0) P (1 / 1) = 1 – P (0 / 1) 2)(0 n f P n =)(+∞<

实例分析电力通信光传输网络优化 4000

实例分析电力通信系统光传输网络优化 摘要:随着光传输技术在电力通信系统中的广泛应用,以某省电力网络建设为例,通过对电力通信光传输网现存问题和面临的困境的分析,指出了对电力通信光传输网络优化的必要性,并详细介绍对电力系统光传输网络的优化的具体方案。关键词:电力通信;光传输网;优化 0引言 随着我国经济快速发展,科学技术不断进步, 光纤通信技术已广泛应用于电力通信系统中,并成为电网安全可靠运营重要的网络支持,其安全可靠性也要随着不断优化而得到进一步的提高。文章针对某省电力通信光传输网存在的问题进行了分析,提出了光传输网的优化方案。 1电力通信系统光传输网概述 1.1电力通信系统光传输网基本功能 通信网按功能大体可划分为传输网、业务网和支撑网三个部分。传输网是“信息”广域交互的基础平台。业务网可以更灵活地适应小颗粒业务的接入、交换等。支撑网用于满足系统同步运行,并实时监控设备状态、电路调度等。传输网:电力通信传输网主要有光纤通信、微波通信和电力线载波通信三种方式,远景还将增设卫星通信作为应急通信手段,其中光纤通信占据绝对优势。下图1为通信网基本功能示意图 图1 电力通信网基本功能示意图 1.2目前某省电力通信光传输网存在的问题

由于电力系统建设的特殊性,工程往往并不是整体一次性施工,而是分段逐次进行。而且由于此省特殊的地理环境,使得电力系统工程没有办法得到很好的宏观调控,因此造成与通信系统的要求不能相匹配的状况。 光缆方面,由于为了更好的衔接电力通信系统往往建设时会铺设两条通信线路,这样造成了冗余光缆的作用很小增加了不必要的资源的浪费。在网络方面规划不到位。网络拓扑结构不清晰,骨干层和网络核心层以及接入层十分混乱,这样会造成饶洁接入设备过多,传输网不能很好的承载过多的信息资源,使得网络利用率低,环网资源过度浪费等状况。 目前环网设备大部分仍然采用设备1+0的模式。这样会导致王元接入增多,破坏了原有的环网模式,网络设备不能同步而降低了电力通信系统中传输网的扩展性和功能性。 2 电力通信系统光传输网络优化意义 电力光纤通信传输网络的重要性不言而喻,但就目前现状来看存在着诸多的问题。传输网就是各类电力系统综合业务数据传输的“高速公路”,是各种上层业务的承载体,传输是电力通信的基础。因此它的安全性和稳定性至关重要。优化电力通信光传输网可以充分满足电网业务的需求也可以满足各类电力企业的经营管理需求。随着光传输设备的更新而不断优化自身的网络寿命,提高网络功能性和灵活性,实现投资效益最大化。因此,从长远发展角度考虑,需要对其现状进行评估及优化。文章结合实际工作经验,在综合性的提出电力通信光纤传输网络的评估方法的基础上,简要的提出优化策略,以促进其健康、稳定、可持续性发展。 3 电力通信光传输网的优化方案 3.1电力通信光传输网的优化基本要求 根据用户业务需求和系统/网络资源状况来配置系统/网络、开通业务;对系统运行状况(传输性能、关键部件状态等)进行不中断业务的在线实时监测,数字光纤传输系统最重要的一项监测项就是误码性能的监测;一旦设备或设备中的部件或光缆线路出现故障,系统应能检测到并在网管界面上显示出来或在设备上指示出来,发出故障警告,并要能够及时通知维护人员。为故障定位和其他维护需求而提供环回控制、主要项目的测试等;为系统/网络OAM信息提供传输

移动通信网络优化

移动通信网络优化 潘森 (山西晋通邮电实业有限公司,山西太原030006) 摘要:信息时代的发展使得人们的通信手段逐渐增多,移动通信技术已经成为人们日常生活中不可或缺的一部分,给人们的通信交流带来了诸多便利。移动通信网络是通信技术的核心组成部分,直接影响人们的移动通信质量,必须对移动通信网络进行不断的优化。文章将在移动通信网络优化现状的基础上,对移动通信网络的优化措施以及发展趋势进行探讨。 关键词:移动通信;网络优化;可靠性 中图分类号:TP31文献标识码:A文章编号:1673-1131(2014)11-0241-01 1移动网络优化概述 在日常生活之中,人们经常会接触移动通信业务,比如移动、联通等等,而这些业务的发展都离不开移动网络优化。移动网络优化是指通过一定的手段持续提升移动通信的质量,为用户提供优质的服务,主要内容包括对移动传输网络的优化、对核心网络的优化、对无线网络的优化[1]。移动通信网络优化可以通过运营商自己进行,或者将优化任务委托给第三方进行执行,对网络系统进行数据采集、分析和处理,通过对系统数据的不断调整,提高移动通信网络的安全性、稳定性、可靠性,从而达到网络优化的目的。移动通信网络优化的基本流程是每天对基站和网络的性能进行观察和统计,及时发现其中存在的问题,对于网络性能不稳定的情况要及时上报,并与各个部门之间做好沟通协作,快速准确的对移动通信网络之中存在的问题进行处理,保障用户的移动通信质量。移动通信网络优化工作人员要每天关注网络和基站的运行情况,并对网络性能进行测试,对测试结果和优化数据进行准确的记录和归档,为移动通信网络优化做好数据储备。 2移动通信网络优化现状 2.1移动通信网络优化的发展现状 移动通信技术的发展使得移动通信业务种类逐渐增多,为人们的移动通信多样化需求提供了各种可能性,也使得移动通信网络发挥着越来越重要的作用。移动通信网络优化需要先进的技术和工具作为支撑,在一定程度上促进了移动通信技术的发展,形成了移动通信网络优化的产业经营。移动通信网络的基础设施建设得到了一定程度的发展,出现了一些新型的网络优化设备与技术,提高了移动通信设备的安全性和可靠性[2]。移动通信网络优化技术的发展,将通信设备的功能消耗大大降低,提高了运营商的资源使用效率,降低了生产经营成本,满足移动通信用户对于通信业务的多样化需求。移动通信网络的优化使得移动通信业务向着更加多样化的方向发展,为移动通信用户提供了更多的业务可能性,不断丰富移动设备终端的性能和应用。移动通信网络优化的发展将与移动通信系统相互促进,在激烈的市场竞争之中不断完善自我,为用户提供多样化的移动通信服务,满足人们日益增长的通信需求,为移动通信行业的发展贡献力量。 2.2移动通信网络优化的影响因素 移动通信网络的优化需要专业的人员和技术对其进行维护和管理,在优化的过程中会受到诸多因素的影响。移动通信网络优化质量的好坏与优化产品的进步具有较大的关系,在网络优化的过程中,需要使用一些优化技术和自动化的优化系统与软件,对采集的数据进行分析,对系统网络性能进行测试。因此,移动通信网络优化技术和设备对网络优化效果具有较大的影响。移动通信网络具有不同的特点,在进行网络优化的过程中,需要根据移动通信网络特点的不同,制定有针对性的优化方案,如果优化方案与实际的移动通信网络系统不符,网络优化的效果也无法得到保障。网络优化人员的专业素质也是移动通信网络优化的影响因素之一,网络优化人员必须具备专业的优化技能,同时具有较高的责任意识和安全优化意识,才能及时、准确完成网络优化任务。 3移动通信网络优化措施和发展趋势 3.1移动通信网络优化措施 进行移动通信网络优化首先要对移动通信网络进行定期的维护和检查,每天对网络运行情况进行实时的监测,对移动通信网络的薄弱环节进行重点的检查与维护,并提出具有针对性的应急处理预案,一旦网络出现问题,能够及时对其进行处理。其次,加强对移动通信网络优化的监督和管理,根据国家和相关通信主管部门的规定,严格执行网络优化制度,规范移动通信网络优化行为。领会网络优化相关法律、文件精神,对网络优化的具体工作进行有效的监督,确保网络优化工作落到实处[3]。最后,提高网络优化人员的专业素质和技能,对其进行规范化的管理和定期的培训,在提高其专业技能的同时,安全优化意识也得到提升,更好地为移动通信网络优化进行服务。 3.2移动通信网络优化的发展趋势 随着移动通信用户的增多以及用户通信需求的多样化增长,移动通信网络优化也将向着自动化、智能化方向发展。在未来的移动通信网络优化过程中,网络优化的设备和技术将更加先进,可以对数据进行自动化采集,并通过人工智能系统对数据进行分析,根据网络运行的实际情况做出智能化的网络优化决策,提高移动通信网络优化的现代化水平。智能的移动通信网络优化系统可以对大量的基础信息进行处理,深入挖掘系统数据的价值,对网络优化进行简单化、一体化的处理。 参考文献: [1]杨云,冯亚.基于云计算模型的移动通信网络优化[J].微型 电脑应用,2011,10(3):42-44 [2]高今明.移动通信网络优化系统的设计[D].吉林大学,2012 [3]靳晓嘉,潘阳发,宋俊德.移动通信网络优化技术的现状及 其发展趋势[J].电信技术,2013,12(5):1-3 2014年第11期(总第143期) 2014 (Sum.No143)信息通信 INFORMATION&COMMUNICATIONS 241

相关文档
最新文档