筛板精馏实验报告

筛板精馏实验报告
筛板精馏实验报告

筛板精馏实验报告

篇一:化工原理筛板塔精馏实验报告

筛板塔精馏实验

一.实验目的

1.了解筛板精馏塔及其附属设备的基本结构,掌握精馏过程的基本操作方法。 2.学会判断系统达到稳定的方法,掌握测定塔顶、塔釜溶液浓度的实验方法。

3.学习测定精馏塔全塔效率和单板效率的实验方法,研究回流比对精馏塔分离效率的影响。

二.基本原理

1.全塔效率ET

全塔效率又称总板效率,是指达到指定分离效果所需理论板数与实际板数的比值:

NT——完成一定分离任务所需的理论塔板数,包括蒸馏釜; NP——完成一定分离任务所需的实际塔板数,本装置NP=10。 2.图解法求理论塔板数NT

以回流比R写成的精馏段操作线方程如下:

yn+1——精馏段第n+1块塔板上升的蒸汽组成,摩尔分

数; xn——精馏段第n块塔板下流的液体组成,摩尔分数;xD——塔顶溜出液的液体组成,摩尔分数; R——泡点回流下的回流比。

提馏段操作线方程如下:

ym+1——提馏段第m+1块塔板上升的蒸汽组成,摩尔分数; xm——提馏段第m块塔板下流的液体组成,摩尔分数;xW-塔底釜液的液体组成,摩尔分数; L'-提馏段内下流的液体量,kmol/s;

W-釜液流量,kmol/s。

加料线(q线)方程可表示为:

其中,

q——进料热状况参数;

rF——进料液组成下的汽化潜热,kJ/kmol; tS——进料液的泡点温度,℃; tF——进料液温度,℃;

cpF——进料液在平均温度 (tS ? tF ) /2 下的比热容,kJ/(kmol℃); xF——进料液组成,摩尔分数。(1)全回流操作

在精馏全回流操作时,操作线在y-x图上为对角线,如图1所示,根据塔顶、塔釜的组成在操作线和平衡线间作

梯级,即可得到理论塔板数。

图1 全回流时理论塔板数确定

(2)部分回流操作

部分回流操作时,如图2,图解法的主要步骤为:

A.根据物系和操作压力画出相平衡曲线,并画出对角线作为辅助线;

B.在对角线上定出a点(xD,xD)、f点(xF,xF)和b点(xW,xW);

C.在y轴上定出yC=xD/(R+1)的点c,连接a、c作出精馏段操作线;

D.由进料热状况求出q,过点f作出斜率为q/(q-1)的q线交精馏段操作线于点d,连接点d、b作出提馏段操作线;

E.从点a开始在平衡线和精馏段操作线之间画阶梯,当梯级跨过点d时,就改在平衡线和提馏段操作线之间画阶梯,直至梯级跨过点b为止;

G.所画的总阶梯数就是全塔所需的理论踏板数(包含再沸器),跨过点d的那块板就是加料板,其上的阶梯数为精馏段的理论塔板数。

图2 部分回流时理论板数的确定

本实验料液为乙醇水溶液,釜内液体由电加热器产生蒸汽逐板上升,经与各板上的液体传质后,进入盘管式换热器壳程,冷凝成液体后再从集液器流出,一部分作为回流液从塔顶流入塔内,另一部分作为产品馏出,进入产品贮罐;残液经釜液转子流量计流入釜液贮罐。

三.实验步骤

实验主要操作步骤如下: 1.全回流

(1)在贮罐中配制浓度21%(体积百分比)的料液,以泵混合均匀。打开进料管路上的阀门,由进料泵将料液打入塔釜,观察塔釜液位计高度,进料至釜容积的2/3处。

(2)关闭塔身进料管路上的阀门,启动电加热管电源,逐步增加加热电压,使塔釜温度缓慢上升。

(3)打开塔顶冷凝器的冷却水,调节合适冷凝量,并关闭塔顶出料管路,使整塔处于全回流状态。

(4)当塔顶温度、回流量和塔釜温度稳定后,分别取适量塔顶液(浓度XD)和塔釜液(浓度XW),待其冷却至室温后,以密度计测量其体积百分比。 2.部分回流(1)在储料罐中配制一定浓度为21%的乙醇水溶液。

(2)待塔全回流操作稳定时,打开进料阀,调节进料

量至适当的流量。(3)控制塔顶回流和出料两转子流量计,调节回流比R为3。(4)打开塔釜残液流量计,调节至适当流量。

(5)当塔顶、塔内温度读数以及流量都稳定后,即如全回流第4步取样测定体积百分比。

四.实验结果

1.实验记录数据如表1:

表1 实验数据

2.全回流操作

全回流图见图

3

图3 全回流示意图

图中阶梯数为12,即全回流理论塔板数NT=12-1=11。而实际塔板数NP=16。故全塔效率3.部分回流

回流比R=3时,部分回流图见图

4

图4 部分回流图

图中阶梯数为13,即部分回流理论塔板数NT=13-1=12。

而实际塔板数NP=16。故全塔效率

篇二:筛板精馏塔精馏实验报告

筛板精馏塔精馏实验

6.1实验目的

1.了解板式塔的结构及精馏流程

2.理论联系实际,掌握精馏塔的操作

3.掌握精馏塔全塔效率的测定方法。

6.2实验内容

⑴采用乙醇~水系统测定精馏塔全塔效率、液泛点、漏液点

⑵在规定时间内,完成D=500ml、同时达到xD≥93v%、xW≤3v%分离任务

6.3实验原理

塔釜加热,液体沸腾,在塔内产生上升蒸汽,上升蒸汽与沸腾液

体有着不同的组成,这种不同组成来自轻重组份间有不同的挥发度,

由此塔顶冷凝,只需要部分回流即可达到塔顶轻组份增浓和塔底重

组份提浓的目的。部分凝液作为轻组份较浓的塔顶产品,部分凝液

作为回流,形成塔内下降液流,下降液流的浓度自塔顶而下逐步下

降,至塔底浓度合格后,连续或间歇地自塔釜排出部分釜液作为重

组份较浓的塔底产品。

在塔中部适当位置加入待分离料液,加料液中轻组份浓度与塔截

面下降液流浓度最接近,该处即为加料的适当位置。因此,加料液

中轻组分浓度愈高,加料位置也愈高,加料位置将塔分成上下二个

塔段,上段为精馏段,下段为提馏段。

在精馏段中上升蒸汽与回流之间进行物质传递,使上升蒸汽中轻

组份不断增浓,至塔顶达到要求浓度。在提馏段中,下

降液流与上

升蒸汽间的物质传递使下降液流中的轻组份转入汽相,重组份则转

入液相,下降液流中重组份浓度不断增浓,至塔底达到要求浓度。

6.3.1评价精馏的指标—全塔效率η

全回流下测全塔效率有二个目的。一是在尽可能短的时间内在塔

内各塔板,至上而下建立浓度分布,从而使未达平衡的不合格产品

全部回入塔内直至塔顶塔底产品浓度合格,并维持若干时间后为部

分回流提供质量保证。二是由于全回流下的全塔效率和部分回流下

的全塔效率相差不大,在工程处理时,可以用全回流下的全塔效率

代替部分回流下的全塔效率,全回流时精馏段和提馏段操作线重合,

气液两相间的传质具有最大的推动力,操作变量只有1

个,即塔釜

加热量,所测定的全塔效率比较准确地反映了该精馏塔的最佳性

能,对应的塔顶或塔底浓度即为该塔的极限浓度。全塔效率的定

义式如下: ??NT?1 (1) N

NT:全回流下的理论板数;

N:精馏塔实际板数。

6.3.2维持正常精馏的设备因素和操作因素

精馏塔的结构应能提供所需的塔板数和塔板上足够的相间传递面积。塔底加热(产生上升蒸汽)、塔顶冷凝(形成回流)是精馏操作的主要能量消耗;回流比愈大,塔顶冷凝量愈大,塔底加热量也必须愈大。回流比愈大,相间物质传递的推动力也愈大。

6.3.2.1设备因素

合理的塔板数和塔结构为正常精馏达到指定分离任务提供了质量保证,塔板数和塔板结构为汽液接触提供传质面积。塔板数愈少,塔高愈矮,设备投资愈省。塔板数多少和被分离的物系性质有关,轻重组份间挥发度愈大,塔板数愈

少。反之,塔板数愈多。塔结构合理,操作弹性大,不易发生液沫夹带、漏液、溢流液泛。反之,会使操作不易控制,塔顶塔底质量难以保证。为有效地实现汽液两相之间的传质,为了使传质具有最大的推动力,设计良好的塔结构能使操作时的板式精馏塔(如图2所示)应同时具有以下两方面流动特征:

⑴汽液两相总体逆流;

⑵汽液两相在板上错流。

塔结构设计不合理和操作不当时会发生以下三种不正常现象:

(i)严重的液沫夹带现象

由于开孔率太小,而加热量过大,导致汽速过大,塔板上的一

部分液体被上升汽流带至上层塔板,这种现象称为液沫夹带。液

沫夹带是一种与液体主流方向相反的流动,属返混现象,使板效

率降低,严重时还会发生夹带液泛,破坏塔的正常操作(见图3

所示)。这种现象可通过P釜显示,由于:

P釜=P顶+∑板压降(2)

此时板压降急剧上升,表现P釜读数超出正常范围的上限。

(ii)严重的漏液现象

由于开孔率太大,加上加热量太小,导致汽速过小,部分液体从塔

板开孔处直接漏下,这种现象称为漏液。漏液造成液体与气体在板上

无法错流接触,传质推动力降低。严重的漏液,将使塔板上不能积液

而无法正常操作,上升的蒸汽直接从降液管里走,板压降几乎为0,

见图4所示。此时P釜≈P顶。

荷愈大,表现为操作压力P釜也愈大。P釜

过大,液沫夹带将发生,P釜过小,漏液将出现。若液沫夹带量和漏液量各超过10%,被称为严重的不正常现象。所以正常

的精馏塔,操作压力P釜应有合适的范围即操作压力区间。

(iii)溢流液泛

由于降液管通过能力的限制,当气液负荷增大,降液管通道截面积

太小,或塔内某塔板的降液管有堵塞现象时降液管内清液层高度

增加,当降液管液面升至堰板上缘时(见图5所示)的液体流量为其极限通过能力,若液体流量超过此极限值,常操作。

6.3.2.2操作因素

⑴适宜回流比的确定

回流比是精馏的核心因素。在设计时,存在着一个最小回流比,低于该回流比即使塔板数再多,也达不到分离要求。

在精馏塔的设计时存在一个经济上合理的回流比,使设备费用和能耗得到兼顾。在精馏塔操作时,存在一个回流比的允许操作范围。处理量恒定时,若汽液负荷(回流比)超出塔的通量极限时,会发生一系列不正常的操作现象,同样会使塔顶产品不合格。加热量过大,会发生严重的雾沫夹带

和液泛;加热量过小,会发生漏液,液层过薄,塔板效率降低。⑵物料平衡

F=D+W (3)

Fxf=DxD+WxW(4)

(i)总物料的平衡:F=D+W

若F>D+W,塔釜液位将会上升,从而发生淹塔;若 F (ii) 轻组分的物料平衡:Fxf=DxD+WxW

在回流比R一定的条件下,若Fxf>DxD+WxW,塔内轻组分大量累积,即表现为每块塔板上液体中的轻组分增加,塔顶能达到指定温度和浓度,此时塔内各板的温度所对应塔板的温度分布曲线如图6所示,但塔釜质量不合格,表明加料速度过大或塔釜加热量不够;若Fxf<DxD+WxW,塔内轻组分大量流失,此时各板上液体中的重组分增加,塔内温度分布曲线如图7所示,这时塔顶质量不合格,塔底质量合格。表示塔顶采出率过大,应减小或停止出料,增加进料和塔釜出料。

6 Fxf>DxD+WxW时温度分布曲线图

7 Fxf<DxD+WxW 时温度分布曲线图

6.3.2.3灵敏点温度T灵

(1)灵敏板温度是指一个正常操作的精馏塔当受到某一外界因素的干扰(如R,xf,采

出率等发生波动时),全塔各板的组成将发生变动,全塔的温度分布也将发生相应

的变化,其中有一些板的温度对外界干扰因素的反映最灵敏,故称它们为灵敏板。

(2)按塔顶和塔釜温度进行操作控制的不可靠性

不可靠性来源于二个原因:一是温度与组成虽然有一一对应关系,但温度变化较

小,仪表难以准确显示,特别是高纯度分离时;另一是过程的迟后性,当温度达

到指定温度后由于过程的惯性,温度在一定时间内还会继续变化,造成出料不合

格。

(3)塔内温度剧变的区域

塔内沿塔高温度的变化如图7所示。显然,在塔的顶部和底部附近的塔段内温度

变化较小,中部温度变化较大。因此,在精馏段和提馏段适当的位置各设置一个

测温点,在操作变动时,该点的温度会呈现较灵敏的反应,因而称为灵敏点温度。

(4)按灵敏点温度进行操作控制

操作一段时间后能得知当灵敏点温度处于何值时塔顶产品和塔底产品能确保合

格。以后即按该灵敏点温度进行调节。例如,当精馏段灵敏点温度上升达到规定

值后即减小出料量,反之,则加大出料量。

因此能用测量温度的方法预示塔内组成尤其

是塔顶馏出液组成的变化。图6和图7是物料不

平衡时,全塔温度分布的变化情况;图8是分离

能力不够时,全塔温度分布的变化情况,此时塔

顶和塔底的产品质量均不合格。从比较图7和图8

可以看出,采出率增加和回流比减小时,灵敏板

的温度均上升,但前者温度上升是突跃式的,而

后者则是缓慢式的,据此可判断产品不合格的原

因,并作相应的调整。

6.4实验设计

6.4.1实验方案设计

⑴采用乙醇~水物系,全回流操作测全塔效率根据??NT?1,在一定加热量下,全回流操作 N

稳定后塔顶塔底同时取样分析,得xD、xW,用作图法求理论板数。

⑵部分回流时回流比的估算

操作回流比的估算有

二种方法:

(i) 通过如图所示,作一切线交纵坐标,截距为

xD,即可求得Rmin,由R=(1.2~2)Rmin,Rmin?1

xD初估操作回流比。Rmin?1

(ii) 根据现有塔设备操作摸索回流比,方法如下:

(1)选择加料速度为4~6l/h,根据物料衡算塔顶

出料流量及调至适当值,塔釜暂时不出料。(2)将加热电压关小,观察塔节视镜内的气液

接触状况,当开始出现漏液时,记录P釜读数,此时P 釜作为操作压力下限,对应的加热电压即为最小加热量,读

取的回流比即为操作回流比下限。

(3)将加热电压开大,观察塔节视镜内的气液接触状况,当开始出现液泛时,记录P釜读数,此时P釜作为操作压力上限,对应的加热电压即为最大加热量,读取的回流比即为操作回流比上限。

(4)在漏液点和液泛点之间选择一合适的塔釜加热量。

⑶部分回流时,塔顶塔底质量同时合格D的估算

根据轻组份物料衡算,得D的大小,应考虑全回流时塔底轻组分的含量。

6.4.2实验流程设计

⑴需要1个带再沸器和冷凝器的筛板精馏塔。

⑵需要3个温度计,以测定T顶、T灵、T釜。

⑶需要1个塔釜压力表,以确定操作压力P釜。

⑷需要1个加料泵,供连续精馏之用。

⑸需要3个流量计,以计量回流量、塔顶出料量、加料量。

将以上仪表和主要塔设备配上贮槽、阀门、管件等组建如下实验装置图。

6.6实验塔性能评定时的操作要点

(1)最大分离能力——全回流操作

在塔釜内置入10~30v%的乙醇水溶液,釜位近液位计2处,开启加热电源使电压为220 3

V,打开塔顶冷凝器进水阀。塔釜加热,塔顶冷凝,不加料,不出产品。待塔内建立起稳定的浓度分布后,(回流流量计浮子浮起来达10min之久后),同时取样分析塔顶xD 与塔釜xW。由该二组成可作图得到该塔的理论板数并与实际板数相除得到全塔效率。

(2)最大的处理能力——液泛点

全回流条件下,加大塔釜的加热量,塔内上升蒸汽量和下降液体量将随之增大,塔板上液层厚度和塔釜压力也相应增大,当塔釜压力急剧上升时即出现液泛现象,读取该时刻的回流量和加热电流量,即为该塔操作的上限——液泛点。

(3)最小的处理能力——漏液点

全回流条件下,逐次减小塔釜加热量,测定塔效率,塔效率剧降时,读取该时刻的回流量和加热电流量,即为该塔操作的下限——漏液点。

(4)部分回流时,将加料流量计开至4 L/h,按照上

述提及的回流比确定方法操作。

(5)若发生T灵急剧上升,应采取D=0,F?,W?的措施。

6.7 原始数据记录

实验体系:酒精水溶液

篇三:筛板精馏塔化工实验报告

筛板塔精馏过程实验

一、实验目的

1、了解筛板精馏塔及其附属设备的基本结构,掌握精馏过程的基本操作方法。

2、学会判断系统达到稳定的方法,掌握测定塔顶、塔釜溶液浓度的实验方法。

3、学习测定精馏塔全塔效率和单板效率的实验方法,研究回流比对精馏塔分离效率的影响。二、实验原理 2.1 全塔效率 TE 全塔效率又称总板效率,是指达到指定分离效果所需理论板数与实际板数的比值于塔内所需理论塔板数,可由已知的双组分物系平衡关系,以及实验中测得的塔顶、塔釜出液的组成,回流比R和热状况q等,用图解法求得TN 2.2 图解法求理论塔板数 TN

图解法又称麦卡勃-蒂列(McCabe-Thiele)法,简称M-T法,其原理与逐板计算法完全相同,只是将逐板计算

过程在y-x图上直观地表示出来。 2.3 全回流操作在精馏全回流操作时,操作线在y-x图上为对角线,如图8-3所示,根据塔顶、塔釜的组成在操作线和平衡线间作梯级,即可得到理论塔板部分回流操作。部分回流操作时,图解法的主要步骤为: (1)根据物系和操作压力在y -x图上作出相平衡曲线,并画出对角线作为辅助线; (2)在x轴上定出x=xD、xF、xW三点,依次通过这三点作垂线分别交对角线于点a、f、b;

(3)在y轴上定出yC=xD/(R+1)的点c,连接a、c作出精馏段操作线; (4)由进料热状况求出q线的斜率q/(q-1),过点f作出q线交精馏段操作线于点d; (5)连接点d、b作出提馏段操作线;

(6)从点a开始在平衡线和精馏段操作线之间画阶梯,当梯级跨过点d时,就改在平衡线和提馏

段操作线之间画阶梯,直至梯级跨过点b为止;

(7) 所画的总阶梯数就是全塔所需的理论踏板数(包含再沸器),跨过点d的那块板就是加料板,

其上的阶梯数为精馏段的理论塔板数。 2.4 实验装置和流程

本实验装置的主体设备是筛板精馏塔,配套的有加料系

筛板精馏塔实验报告

筛板精馏塔实验报告 学院:化学化工学院 姓名: 学号: 指导老师: 实验时间:2016年6月3日

摘要本文对筛板精馏塔的性能进行测试,主要对乙醇正丙醇的精馏过程中的不同实验条件进行探讨;得出了进料流量、回流比与全塔效率的关系,确定了该筛板精馏塔的最佳操作条件。 关键词精馏;回流比;全回流;部分回流;全塔效率 Abstract the performance of the test sieve distillation column, mainly ethanol, n-propanol in the distillation process in different experimental conditions were discussed; obtained feed rate, reflux ratio with the whole tower efficiency is determined that the screen optimum operating conditions plate rectification column. Key words Distillation;Reflux ratio;Total reflux;partial reflux;The tower efficiency 前言精馏过程的节能措施一直是人们普遍关注的问题。精馏操作是化工生产中应用非常广泛的一种单元操作,也是化工原理课程的重要章节。分析运行中的精馏塔,当某一操作条件改变时的分离效果变化,属于精馏的操作型问题。这类问题取材于工程实践,是培养工程观念、提高学生解决实际问题能力的好方法,但同时也成为学习的难点。在工业生产中,充分掌握操作条件各类因素的影响,对提高产品的质量稳定生产,提高效益有重要的意义。本研究从进料流量、回流比、全回流和部分回流等操作因素对数字型筛板精馏塔进行全面考察得出一系列可靠直观的结果,加深对精馏操作中一些工程概念的理解,对工业生产有一定的指导意义。通过本实验,我们得出了大量的实验数据,由计算机绘图找出最优一组实验参数,在这组参数下进行提纯将会节约大量能源,同时为今后开出的设计型、综合型、研究型的实验项目,为学生的创新性科研项目具有重要的教改意义。 1.实验部分 1.1实验目的 1.1.1了解板式精馏塔的结构及精馏流程。

精馏习题及答案

精馏习题 概念题 一、填空题 1.精馏操作的依据是___________________________________。利用_____________、_____________的方法,将各组分得以分离的过程。实现精馏操作的必要条件____________和___________________。 2. 汽液两相呈平衡状态时,气液两相温度_____,液相组成__________汽相组成。 3.用相对挥发度α表达的气液平衡方程可写为______________。根据α的大小,可用来_ __________________,若α=1,则表示_______________。 4. 某两组分物系,相对挥发度α=3,在全回流条件下进行精馏操作,对第n,n+1两层理论板(从塔顶往下计),若已知y n=0.4, y n+1=_________。全回流操作通常适用于_______________或_______________。 5.精馏和蒸馏的区别在于_精馏必须引入回流___________________________________;平衡蒸馏和简单蒸馏主要区别在于____________________________________。 6. 精馏塔的塔顶温度总是低于塔底温度,其原因是________________________________和________________________________。 7. 在总压为101.33kPa、温度为85℃下,苯和甲苯的饱和蒸汽压分别为P A°=116.9kPa、 P B°=46kPa,则相对挥发度α=______,平衡时液相组成x A=_______,汽相组成y A=______。 8. 某精馏塔的精馏段操作线方程为y=0.72x+0.275,则该塔的操作回流比为____________,馏出液组成为_______________。 9. 最小回流比的定义是_______________________,适宜回流比通常取为____________R min。 10. 精馏塔进料可能有______ 种不同的热状况,当进料为汽液混合物且气液摩尔比为2:3时,则进料热状态参数q值为__________________。 11. 在精馏塔设计中,若F、x F、q D保持不变,若回流比R增大,则x D_______,x W _______,V______,L/V_____。 12. 在精馏塔设计中,若F、x F、x D、x W及R一定,进料由原来的饱和蒸汽改为饱和液体,则所需理论板数N T____。精馏段上升蒸汽量V_____、下降液体量L_____;提馏段上升蒸汽量V′_____,下降液体量L′_____。 13. 某理想混合液, 其中一组平衡数据为x=0.823,y=0.923,此时平均相对挥发度为α=___________.

化工原理精馏实验报告

北京化工大学 实验报告 精馏实验 一、摘要 精馏是实现液相混合物液液分离的重要方法,而精馏塔是化工生产中进行分离过程的主要单元,板式精馏塔为其主要形式。本实验用工程模拟的方法模拟精馏塔在全回流的状态下及部分回流状态下的操作情况,从而计算单板效率和总板效率,并分析影响单板效率的主要因素,最终得以提高塔板效率。 关键词:精馏、板式塔、理论板数、总板效率、单板效率 二、实验目的 1、熟悉精馏的工艺流程,掌握精馏实验的操作方法。 2、了解板式塔的结构,观察塔板上气- 液接触状况。 3、测测定全回流时的全塔效率及单板效率。 4、测定部分回流时的全塔效率。 5、测定全塔的浓度或温度分布。 6、测定塔釜再沸器的沸腾给热系数。 三、实验原理 在板式精馏塔中,由塔釜产生的蒸汽沿塔逐板上升与来自塔顶逐板下降的回流液,在塔 板上实现多次接触,进行传热和传质,使混合液达到一定程度的分离。 回流是精馏操作得以实现的基础。塔顶的回流量和采出量之比,称为回流比。回流比是精馏操作的重要参数之一,其大小影响着精馏操作的分离效果和能耗。 回流比存在两种极限情况:最小回流比和全回流。若塔在最小回流比下操作,要完成分离任务,则

需要有无穷多块塔板的精馏塔。当然,这不符合工业实际,所以最小回流比只是 一个操作限度。若操作处于全回流时,既无任何产品采出,也无原料加入,塔顶的冷凝液全部返回塔中,这在生产中无实验意义。但是,由于此时所需理论板数最少,又易于达到稳定,故常在工业装置开停车、排除故障及科学研究时采用。 实际回流比常取用最小回流比的倍。在精馏操作中,若回流系统出现故障,操作情况会急剧恶化,分离效果也将变坏。 板效率是体现塔板性能及操作状况的主要参数,有以下两种定义方法。 (1)总板效率E N e 式中E —总板效率;N—理论板数(不包括塔釜);Ne —实际板数。 2)单板效率E ml E x n 1 x n E ml * x n 1 x n* 式中E ml—以液相浓度表示的单板效率; x n,x n-1—第n 块板的和第(n-1 )块板得液相浓度; x n*—与第n 块板气相浓度相平衡的液相浓度。 总板效率与单板效率的数值通常由实验测定。单板效率是评价塔板性能优劣的重要数据。物系性质、板型及操作负荷是影响单板效率的重要因素。当物系与板型确定后,可通过改变气液负荷达到最高的板效率;对于不同的板型,可以在保持相同的物系及操作条件下,测定其单板效率,已评价其性能的优劣。总板效率反映全塔各塔板的平均分离效果,常用于板式塔设计中。 若改变塔釜再沸器中电加热器的电压,塔板上升蒸汽量将会改变,同时,塔釜再沸器电加热器表面的温度将发生变化,其沸腾给热系数也将发生变化,从而可以得到沸腾给热系数也加热量的关系。由牛顿冷却定律,可知 Q A t m

筛板精馏塔实验

实验8 筛板精馏塔实验 一、实验目的 1.了解筛板式精馏塔的结构流程及操作方法。 2.测取部分回流或全回流条件下的总板效率。 3.观察及操作状况。 二、实验原理 在板式精馏塔中,混合液的蒸汽逐板上升,回流液逐板下降,汽液两相在塔板上接触,实现传质,传热过程而达到两相一定程度的分离。如果在每层塔板上,液体与其上升的蒸汽到平衡状态,则该塔板称为理论板,然而在实际操作中、汽、液接触时间有限,汽液两相一般不可能达到平衡,即实际塔板的分离效果,达不到一块理论板的作用,因此精馏塔的所需实际板数一般比理论板要多,为了表示这种差异而引入了“板效率”这一概念,板效率有多 种表示方法,本实验主要测取二元物系的总板效率E p : E N N P T D 板式塔内各层塔板的传质效果并相同,总板效率只是反映了整个塔板的平均效率,概括地讲总板效率与塔的结构,操作条件,物质性质、组成等有关是无法用计算方法得出可靠值,而在设计中需主它,因此常常通过实验测取。实验中实验板数是已知的,只要测取有关数据而得到需要的理论板数即可得总板效率,本实验可测取部分回流和全回流两种情况下的板效,当测取塔顶浓度,塔底浓度进料浓度以及回流比并找出进料状态、即可通过作图法画出平衡线、精馏段操作线、提馏段操作线,并在平衡线与操作线之间画梯级即可得出理论板数。如果在全回流情况下,操作线与对角线重合,此时用作图法求取理论板数更为简单。 三、实验装置与流程 实验装置分两种: (1)用于全回流实验装置 精馏塔为一小型筛板塔,蒸馏釜为卧直径229m长3000mm内有加热器。塔内径50mm共有匕块塔板,每块塔板上开有直径2mm筛孔12个板间距100mm,塔体上中下各装有一玻璃段用以观察塔内的操作情况。塔顶装有蛇管式冷凝器蛇管为φ10×1紫铜管长3.25m,以水作冷凝剂,无提馏段,塔傍设有仪表控制台,采用1kw调压变压器控制釜内电加热器。在仪表控制台上设有温度指示表。压强表、流量计以及有关的操作控制等内容。 (2)用于部分回流实验装置 装置由塔、供料系统、产品贮槽和仪表控制柜等部份组成。蒸馏釜为φ250×340×3mm 不锈钢罐体,内设有2支1kw电热器,其中一支恒加热,另一支用可调变压器控制。控制电源,电压以及有关温,压力等内容均有相应仪表指示, 塔身采用φ57×3.5mm不锈钢管制成,设有二个加料口,共十五段塔节,法兰连接,塔身主要参数有塔板十五块,板厚1mm不锈钢板,孔径2mm,每板21孔三形排列,板间距100mm,溢流管为φ14×2不锈钢管堰高10mm。 在塔顶和灵敏板塔段中装有WEG—001微型铜阻感温计各一支由仪表柜上的XCE—102温度指示仪显示,以监测相组成变化。 塔顶上装有不锈钢蛇管冷凝器,蛇管为φ14×2长250mm以水作冷凝剂以LZB10型转子流量计计量,冷凝器装有排气旋塞。

化工原理实验思考题与答案

化工原理实验思考题(填空与简答) 一、填空题: 1.孔板流量计的Re ~C 关系曲线应在 单对数 坐标纸上标绘。 2.孔板流量计的R V S ~关系曲线在双对数坐标上应为 直线 。 3.直管摩擦阻力测定实验是测定 λ 与 Re_的关系,在双对数坐标纸上标绘。 4.单相流动阻力测定实验是测定 直管阻力 和 局部阻力 。 5.启动离心泵时应 关闭出口阀和功率开关 。 6.流量增大时离心泵入口真空度 增大_出口压强将 减小 。 7.在精馏塔实验中,开始升温操作时的第一项工作应该是 开循环冷却水 。 8.在精馏实验中,判断精馏塔的操作是否稳定的方法是 塔顶温度稳定 9.在传热实验中随着空气流量增加其进出口温度差的变化趋势:_进出口温差随空气流量增加而减小 。 10.在传热实验中将热电偶冷端放在冰水中的理由是 减小测量误差 。 11.萃取实验中_水_为连续相, 煤油 为分散相。 12.萃取实验中水的出口浓度的计算公式为 E R R R E V C C V C /)(211-= 。 13.干燥过程可分为 等速干燥 和 降速干燥 。 14.干燥实验的主要目的之一是 掌握干燥曲线和干燥速率曲线的测定方法 。 15.过滤实验采用悬浮液的浓度为 5% , 其过滤介质为 帆布 。 16.过滤实验的主要内容 测定某一压强下的过滤常数 。 17.在双对数坐标系上求取斜率的方法为: 需用对数值来求算,或者直接用尺子在坐标纸上量取线段长度求取 。

18.在实验结束后,关闭手动电气调节仪表的顺序一般为:先将手动旋钮旋至零位,再关闭电源。 19.实验结束后应清扫现场卫生,合格后方可离开。 20.在做实验报告时,对于实验数据处理有一个特别要求就是: 要有一组数据处理的计算示例。 21.在阻力实验中,两截面上静压强的差采用倒U 形压差计测定。 22.实验数据中各变量的关系可表示为表格,图形和公式. 23.影响流体流动型态的因素有流体的流速、粘度、温度、尺寸、形状等. 24.用饱和水蒸汽加热冷空气的传热实验,试提出三个强化传热的方案(1)增加空气流速(2)在空气一侧加装翅片(3)定期排放不凝气体。 25.在精馏实验数据处理中需要确定进料的热状况参数q 值,实验中需要测定进料量、进料温度、进料浓度等。 26.干燥实验操作过程中要先开鼓风机送风后再开电热器,以防烧坏加热丝。 27.在本实验室中的精馏实验中应密切注意釜压,正常操作维持在0.005mPa,如果达到0.008~0.01mPa,可能出现液泛,应减少加热电流(或停止加热),将进料、回流和产品阀关闭,并作放空处理,重新开始实验。 28.流体在流动时具有三种机械能:即①位能,②动能,③压力能。这三种能量可以互相转换。 29.在柏努利方程实验中,当测压管上的小孔(即测压孔的中心线)与水流方向垂直时,测压管内液柱高度(从测压孔算起)为静压头,它反映测压点处液体的压强大小;当测压孔由上述方位转为正对水流方向时,测压管内液位将因此上升,所增加的液位高度,即为测压孔处液体的动压头,它反映出该点水流动

化工原理实验指导书

化工原理实验指导书

目录 实验一流体流动阻力的测定 (1) 实验二离心泵特性曲线的测定 (5) 实验三传热系数测定实验 (7) 实验四筛板式精馏塔的操作及塔板效率测定 (9) 实验五填料塔吸收实验 (12) 演示实验柏努利方程实验 (14)

雷诺实验 (16)

实验一流体流动阻力的测定 、实验目的 1、 了解流体在管道内摩擦阻力的测定方法; 2、 确定摩擦系数入与雷诺数 Re 的关系。 二、基本原理 由于流体具有粘性, 在管内流动时必须克服内摩擦力。 当流体呈湍流流动时, 质点间不 断相互碰撞,弓I 起质点间动量交换,从而产生了湍动阻力,消耗了流体能量。流体的粘性和 流体 的涡流产生了流体流动的阻力。 在被侧直管段的两取压口之间列出柏努力方程式, 可得: △ P f = △ P ’ P f L u 2 h f d 2 L —两侧压点间直管长度(m ) 2d P f d —直管内径(m ) 入一摩擦阻力系数 u —流体流速(m/s ) △ P f —直管阻力引起的压降(N/m 2 ) 厂流体粘度(Pa.s ) p — 流体密度(kg/m 3 ) 本实验在管壁粗糙度、管长、管径、一定的条件下用水做实验,改变水流量,测得一系 列流量下的△ P f 值,将已知尺寸和所测数据代入各式,分别求出入和 Re ,在双对数坐标纸 上绘出入?Re 曲线。 三、实验装置简要说明 水泵将储水糟中的水抽出, 送入实验系统,首先经玻璃转子流量计测量流量, 然后送入 被测直管段测量流体流动的阻力,经回流管流回储水槽,水循环使用。 被测直管段流体流 动阻力△ P 可根据其数值大小分别采用变压器或空气一水倒置 U 型管来测量。 四、实验步骤: 1、 向储水槽内注蒸馏水,直到水满为止。 2、 大流量状态下的压差测量系统 ,应先接电预热10-15分钟,观擦数字仪表的初始值并 记 录后方可启动泵做实验。 3、 检查导压系统内有无气泡存在 .当流量为0时打开B1、B2两阀门,若空气一水倒置 U 型管内两液柱的高度差不为 0,则说明系统内有气泡存在,需要排净气泡方可测取数据。 排气方法:将流量调至较大,排除导压管内的气泡,直至排净为止。 4、 测取数据的顺序可从大流量至小流量,反之也可,一般测 15?20组数,建议当流量 读数 小于300L/h 时,用空气一水倒置 U 型管测压差△ P 。 5、待数据测量完毕,关闭流量调节阀,切断电源。 Re du

筛板精馏塔化工实验报告

筛板精馏塔化工实验报告

作者: 日期:

筛板塔精馏过程实验 一、实验目的 1、了解筛板精馏塔及其附属设备的基本结构,掌握精馏过程的基本操作方法。 2、学会判断系统达到稳定的方法,掌握测定塔顶、塔釜溶液浓度的实验方法。 3、学习测定精馏塔全塔效率和单板效率的实验方法,研究回流比对精馏塔分离效率的影响。 二、实验原理 2.1全塔效率TE 全塔效率又称总板效率,是指达到指定分离效果所需理论板数与实际板数的比值于塔内所需理论塔板数,可由已知的双组分物系平衡关系,以及实验中测得的塔顶、塔釜出液的组成,回流比F和热状况q等,用图解法求得TN 2.2图解法求理论塔板数TN 图解法又称麦卡勃—蒂列(McCab e Thiele )法,简称Ml- T法,其原理与逐板计算法完全相同,只是将逐板计算过程在y-x图上直观地表示出来。 2.3全回流操作 在精馏全回流操作时,操作线在y-x图上为对角线,如图8 —3所示,根据塔顶、塔釜的组成在操作线和平衡线间作梯级,即可得到理论塔板部分回流操作。部分回流操作时,图解法的主要步骤为: (1 )根据物系和操作压力在y —x图上作出相平衡曲线,并画出对角线作为辅助线; (2 )在乂轴上定出x = xD xF、xW E点,依次通过这三点作垂线分别交对角线于点 a、f、b; (3 )在y轴上定出yC= xD/(R+1)的点c,连接a、c作出精馏段操作线; ⑷由进料热状况求出q线的斜率q/ (q-1 ),过点f作出q线交精馏段操作线于点d; (5) 连接点d、b作出提馏段操作线; (6) 从点a开始在平衡线和精馏段操作线之间画阶梯,当梯级跨过点d时,就改在 平衡线和提馏 段操作线之间画阶梯,直至梯级跨过点b为止; (7) 所画的总阶梯数就是全塔所需的理论踏板数 (包含再沸器),跨过点d的那块板就是加料板, 其上的阶梯数为精馏段的理论塔板数。 2.4实验装置和流程 本实验装置的主体设备是筛板精馏塔,配套的有加料系统、回流系统、产品出料管路、残液出料管路、进料泵和一些测量、控制仪表。 筛板塔主要结构参数:塔内径D= 68mm厚度洌?4mm塔板数N= 10块,板间距HT 二100mm加料位置由下向上起数第4块和第6块。降液管采用弓形,齿形堰,堰 长56mm堰高7.3mm齿深4.6mm齿数9个。降液管底隙4.5mm筛孔直径d0= 1.5mm 正三角形排列,孔间距t = 5mm开孔数为77个。塔釜为内电加热式,加热功率2.5kW,有效容积为10L。塔顶冷凝器、塔釜换热器均为盘管式。单板取样为自下而上第1块和第10块,斜向上为液相取样口,水平管为气相取样口。 本实验料液为乙醇水溶液,釜内液体由电加热器产生蒸汽逐板上升,经与各板上的液体传质后,进入盘管式换热器壳程,冷凝成液体后再从集液器流出,一部分作为回流液从塔顶流入塔内,另一部分作为产品馏出,进入产品贮罐;残液经釜液转子流量计流入釜液贮罐。

化工实验思考题答案

化工基础实验思考题答案 实验一流体流动过程中的能量变化 1、实验为什么要使高位水槽的水保持溢流? 答:保持溢流可使流体稳定流动,便于读数,同时伯努利方程只在流体稳定流动时才适用。 2、操作本实验装置应主意什么? 答:1)开启电源之前,向泵中灌水 2)高位水槽水箱的水要保持溢流 3)赶尽玻璃管中气泡 4)读数时多取几组值,取平均值 实验二流体流动形态的观察与测定 1、在实验中测定的雷诺数与流动形态的关系如何?如果出现理论与实际的偏差,请分析理由 答:1)层流时,理论与实际符合 2)过渡流测量值与理论值稍有偏差 偏差分析:(1)孔板流量计的影响 (2)未能连续保持溢流 (3)示踪管未在管中心 (4)示踪剂流速与水的流速不一致 2、本实验中的主意事项有那些? 答:(1)保持溢流 (2)玻璃管不宜过长 (3)示踪管在中心

实验三节流式流量计性能测定实验 1、你的实验结果可以得到什么结论? 答:流速较大或较小时,流量系数C并不稳定,所以性能并不很好 2、实验中为什么适用倒置U型管? 答:倒置的U形管作压差计,采用空气作指示液,无需重新装入指示液,使用方便 实验四连续流动反应器实验流程图 1、测定停留时间分布函数的方法有哪几种?本实验采用的是哪种方法? 答:脉冲法、阶跃法、周期示踪法和随机输入示踪法。本实验采用脉冲示踪法。 2、模型参数与实验中反应釜的个数有何不同,为什么? 答:模型参数N的数值可检验理想流动反应器和度量非理想流动反应器的返混程度。当实验测得模型参数N值与实际反应器的釜数相近时,则该反应器达到了理想的全混流模型。若实际反应器的流动状况偏离了理想流动模型,则可用多级全混流模型来模拟其返混情况,用其模型参数N值来定量表征返混程度。 3、实验中可测得反应器出口示踪剂浓度和时间的关系曲线图,此曲线下的面积有何意义? 答:一定时间内示踪剂的总浓度。 4、在多釜串联实验中,为什么要在流体流量和转速稳定一段时间后才能开始实验? 答:为使三个反应釜均能达到平衡。 实验五换热器传热系数的测定 1、实验误差主要来源那几个方面? 答:1)读数不稳定

化工原理实验指导书

化工原理实验指导书 目录

实验一流体流淌阻力的测定 (1) 实验二离心泵特性曲线的测定 (5) 实验三传热系数测定实验 (7) 实验四筛板式精馏塔的操作及塔板效率测定 (9) 实验五填料塔吸取实验 (12) 演示实验柏努利方程实验 (14) 雷诺实验 (16) 实验一流体流淌阻力的测定 一、实验目的

1、了解流体在管道内摩擦阻力的测定方法; 2、确定摩擦系数λ与雷诺数Re 的关系。 二、差不多原理 由于流体具有粘性,在管内流淌时必须克服内摩擦力。当流体呈湍流流淌时,质点间不断相互碰撞,引起质点间动量交换,从而产生了湍动阻力,消耗了流体能量。流体的粘性和流体的涡流产生了流体流淌的阻力。在被侧直管段的两取压口之间列出柏努力方程式,可得: ΔP f =ΔP L —两侧压点间直管长度(m) d —直管内径(m) λ—摩擦阻力系数 u —流体流速(m/s ) ΔP f —直管阻力引起的压降(N/m 2 ) μ—流体粘度(Pa.s ) ρ—流体密度(kg/m 3 ) 本实验在管壁粗糙度、管长、管径、一定的条件下用水做实验,改变水流量,测得一系列流量下的ΔP f 值,将已知尺寸和所测数据代入各式,分不求出λ和Re ,在双对数坐标纸上绘出λ~Re 曲线 。 三、实验装置简要讲明 水泵将储水糟中的水抽出,送入实验系统,第一经玻璃转子流量计测量流量,然后送入被测直管段测量流体流淌的阻力,经回流管流回储水槽,水循环使用。 被测直管段流体流淌阻力△P 可依照其数值大小分不采纳变压器或空气—水倒置U 型管来测量。 四、实验步骤: 1、向储水槽内注蒸馏水,直到水满为止。 2、大流量状态下的压差测量系统,应先接电预热10-15分钟,观擦数字外表的初始值并记录后方可启动泵做实验。 3、检查导压系统内有无气泡存在.当流量为0时打开B1、B2两阀门,若空气-水倒置U 型管内两液柱的高度差不为0,则讲明系统内有气泡存在,需要排净气泡方可测取数据。 排气方法:将流量调至较大,排除导压管内的气泡,直至排净为止。 4、测取数据的顺序可从大流量至小流量,反之也可,一样测15~20组数,建议当流量读数小于300L/h 时,用空气—水倒置U 型管测压差ΔP 。 5、待数据测量完毕,关闭流量调剂阀,切断电源。 五、使用实验设备应注意的事项: 2 2u d L P h f f ?=?= λ ρ 2 2u P L d f ??= ρλμ ρ du = Re

筛板精馏塔精馏实验报告样本

筛板精馏塔精馏实验报告样本 6.1实验目的 1.了解板式塔的结构及精馏流程 2.理论联系实际,掌握精馏塔的操作 3.掌握精馏塔全塔效率的测定方法。 6.2实验内容 ⑴采用乙醇~水系统测定精馏塔全塔效率、液泛点、漏液点 ⑵在规定时间内,完成D=500ml、同时达到xD≥93v%、xW≤3v%分离任务 6.3实验原理 塔釜加热,液体沸腾,在塔内产生上升蒸汽,上升蒸汽与沸腾液 体有着不同的组成,这种不同组成来自轻重组份间有不同的挥发度, 由此塔顶冷凝,只需要部分回流即可达到塔顶轻组份增浓和塔底重 组份提浓的目的。部分凝液作为轻组份较浓的塔顶产品,部分凝液 作为回流,形成塔内下降液流,下降液流的浓度自塔顶而下逐步下 降,至塔底浓度合格后,连续或间歇地自塔釜排出部分釜液作为重 组份较浓的塔底产品。 在塔中部适当位置加入待分离料液,加料液中轻组份浓度与塔截 面下降液流浓度最接近,该处即为加料的适当位置。所以,加料液 中轻组分浓度愈高,加料位置也愈高,加料位置将塔分成上下二个 塔段,上段为精馏段,下段为提馏段。

在精馏段中上升蒸汽与回流之间实行物质传递,使上升蒸汽中轻 组份持续增浓,至塔顶达到要求浓度。在提馏段中,下降液流与上 升蒸汽间的物质传递使下降液流中的轻组份转入汽相,重组份则转 入液相,下降液流中重组份浓度持续增浓,至塔底达到要求浓度。 6.3.1评价精馏的指标—全塔效率η 全回流下测全塔效率有二个目的。一是在尽可能短的时间内在塔 内各塔板,至上而下建立浓度分布,从而使未达平衡的不合格产品 全部回入塔内直至塔顶塔底产品浓度合格,并维持若干时间后为部 分回流提供质量保证。二是因为全回流下的全塔效率和部分回流下 的全塔效率相差不大,在工程处理时,能够用全回流下的全塔效率 代替部分回流下的全塔效率,全回流时精馏段和提馏段操作线重合, 气液两相间的传质具有的推动力,操作变量只有1个,即塔釜 加热量,所测定的全塔效率比较准确地反映了该精馏塔的性 能,对应的塔顶或塔底浓度即为该塔的极限浓度。全塔效率的定 义式如下: ??NT?1 (1) N NT:全回流下的理论板数; N:精馏塔实际板数。 6.3.2维持正常精馏的设备因素和操作因素 精馏塔的结构应能提供所需的塔板数和塔板上充足的相间传递面积。 塔底加热(产生上升蒸汽)、塔顶冷凝(形成回流)是精馏操作的主 要能量消耗;回流比愈大,塔顶冷凝量愈大,塔底加热量也必须愈大。回流比愈大,相间物质传递的推动力也愈大。

化工原理实验思考题答案

本文档如对你有帮助,请帮忙下载支持! 实验5 精馏塔的操作和塔效率的测定 ⑴ 在求理论板数时,本实验为何用图解法,而不用逐板计算法? 答:相对挥发度未知,而两相的平衡组成已知。 ⑵求解q 线方程时,G, m ,Y m 需用何温度? 答:需用定性温度求解,即: t (t F t b )/2 ⑶在实验过程中,发生瀑沸的原因是什么?如何防止溶液瀑沸?如何处理? 答;①初始加热速度过快,出现过冷液体和过热液体交汇,釜内料液受热不均匀。 ②在开始阶段要缓慢加热,直到料液沸腾,再缓慢加大加热电压。 ③出现瀑沸后,先关闭加热电压,让料液回到釜内,续满所需料液,在重新开始加热。 ⑷取样分析时,应注意什么? 答:取样时,塔顶、塔底同步进行。分析时,要先分析塔顶,后分析塔底,避免塔顶乙醇大量挥发,带来偶然误 差。 ⑸写出本实验开始时的操作步骤。 答:①预热开始后,要及时开启塔顶冷凝器的冷却水,冷却水量要足够大。 ② 记下室温值,接上电源,按下装置上总电压开关,开始加热。 ③ 缓慢加热,开始升温电压约为 40?50伏,加热至釜内料液沸腾,此后每隔 5?lOmin 升电压5V 左 右,待每块塔板上均建立液层后,转入正常操作。当塔身出现壁流或塔顶冷凝器出现第一滴液滴时, 开启塔身保温电压,开至 150 V ,整个实验过程保持保温电压不变。 ④ 等各块塔板上鼓泡均匀,保持加热电压不变,在全回流情况下稳定操作 20min 左右,用注射器在塔顶,塔底同 时取样,分别取两到三次样,分析结果。 ⑹ 实验过程中,如何判断操作已经稳定,可以取样分析? 答:判断操作稳定的条件是:塔顶温度恒定。温度恒定,则塔顶组成恒定。 ⑺分析样品时,进料、塔顶、塔底的折光率由高到底如何排列? 答:折光率由高到底的顺序是:塔底,进料,塔顶。 ⑻ 在操作过程中,如果塔釜分析时取不到样品,是何原因? 可能的原因是:釜内料液高度不够,没有对取样口形成液封。 ⑼ 若分析塔顶馏出液时,折光率持续下降,试分析原因? 可能的原因是:塔顶没有产品馏出,造成全回流操作。 ⑽ 操作过程中,若发生淹塔现象,是什么原因?怎样处理? (11) 实验过程中,预热速度为什么不能升高的太快? 釜内料液受热不均匀,发生瀑沸现象。 (12) 在观察实验现象时,为什么塔板上的液层不是同时建立? 精馏时,塔内的蒸汽从塔底上升,下层塔板有上升蒸汽但无暇将液体;塔顶出现回流液体,从塔定下降,塔 顶先建立液层,随下降液体通过各层塔板,板上液层液逐渐建立。 (13) 如果操作过程中,进料浓度发生改变,其它操作条件不变,塔顶、塔底产品的 浓度如何改变? 答:塔顶 x D 下降,x W 上升 (14) 如果加大回流比,其它操作条件不变,塔顶、塔底产品的浓度如何改变? (15) 如果操作时,直接开始部分回流,会有何后果? 塔顶产品不合格。 (16) 为什么取样分析时,塔顶、塔底要同步进行? 打开进料转子流量计,开启回流比控制器,塔顶出料,打开塔底自动溢流口,塔底出料。 答: 答: 答: 答: 答: 塔顶 x D 上升,x W 下降。 答: 答:

北京化工大学精馏实验报告

北 京 化 工 大 学 化 工 原 理 实 验 告 : : : : : : 实验名称 班级 姓名 学 号 同组成员 实验日期 精馏实验 2015.5.13 实验 日 期

精馏实验 一、实验目的 1、熟悉填料塔的构造与操作; 2、熟悉精馏的工艺流程,掌握精馏实验的操作方法; 3、了解板式精馏塔的结构,观察塔板上汽液接触状况; 4、掌握液相体积总传质系数K a的测定方法并分析影响因素 x 5、测定全回流时的全塔效率及单板效率; 6、测量部分回流时的全塔效率和单板效率 二、实验原理 在板式精馏塔中,混合液的蒸汽逐板上升,回流液逐板下降,气液两相在塔板上接触,实现传质、传热过程而达到分离的目的。如果在每层塔板上,上升的蒸汽与下降的液体处于平衡状态,则该塔板称之为理论塔板。然而在实际操做过程中由于接触时间有限,气液两相不可能达到平衡,即实际塔板的分离效果达不到一块理论塔板的作用。因此,完成一定的分离任务,精馏塔所需的实际塔板数总是比理论塔板数多。 回流是精馏操作得以实现的基础。塔顶的回流量与采出量之比,称为回流比。回流比是精馏操作的重要参数之一,其大小影响着精馏操作的分离效果和能耗。 回流比存在两种极限情况:最小回流比和全回流。若塔在最小回流比下操作,要完成分离任务,则需要有无穷多块板的精馏塔。这在工业上是不可行的,所以最小回流比只是一个操作限度。若在全回流下操作,既无任何产品采出,也无原料加入,塔顶的冷凝液全部返回塔中,这在生产中无实验意义。实际回流比常取最小回流比的1.2~2.0倍。 本实验处于全回流情况下,既无任何产品采出,又无原料加入,此时所需理论板最少,又易于达到稳定,可以很好的分析精馏塔的性能。影响塔板效率的因素很多,大致可归结为:流体的物理性质(如粘度、密度、相对挥发度和表面张力等)、塔板结构以及塔的操作

筛板精馏塔化工实验报告

筛板塔精馏过程实验 一、实验目的 1、了解筛板精馏塔及其附属设备的基本结构,掌握精馏过程的基本操作方法。 2、学会判断系统达到稳定的方法,掌握测定塔顶、塔釜溶液浓度的实验方法。 3、学习测定精馏塔全塔效率和单板效率的实验方法,研究回流比对精馏塔分离效率的影响。 二、实验原理 2.1 全塔效率 TE 全塔效率又称总板效率,是指达到指定分离效果所需理论板数与实际板数的比值于塔内所需理论塔板数,可由已知的双组分物系平衡关系,以及实验中测得的塔顶、塔釜出液的组成,回流比R和热状况q等,用图解法求得TN 2.2 图解法求理论塔板数 TN 图解法又称麦卡勃-蒂列(McCabe-Thiele)法,简称M-T法,其原理与逐板计算法完全相同,只是将逐板计算过程在y-x图上直观地表示出来。 2.3 全回流操作 在精馏全回流操作时,操作线在y-x图上为对角线,如图8-3所示,根据塔顶、塔釜的组成在操作线和平衡线间作梯级,即可得到理论塔板部分回流操作。部分回流操作时,图解法的主要步骤为: (1)根据物系和操作压力在y-x图上作出相平衡曲线,并画出对角线作为辅助线;(2)在x轴上定出x=xD、xF、xW三点,依次通过这三点作垂线分别交对角线于点a、f、b; (3)在y轴上定出yC=xD/(R+1)的点c,连接a、c作出精馏段操作线; (4)由进料热状况求出q线的斜率q/(q-1),过点f作出q线交精馏段操作线于点d; (5)连接点d、b作出提馏段操作线; (6)从点a开始在平衡线和精馏段操作线之间画阶梯,当梯级跨过点d时,就改在平衡线和提馏 段操作线之间画阶梯,直至梯级跨过点b为止; (7) 所画的总阶梯数就是全塔所需的理论踏板数(包含再沸器),跨过点d的那块板就是加料板, 其上的阶梯数为精馏段的理论塔板数。 2.4 实验装置和流程 本实验装置的主体设备是筛板精馏塔,配套的有加料系统、回流系统、产品出料管路、残液出料管路、进料泵和一些测量、控制仪表。 筛板塔主要结构参数:塔内径D=68mm,厚度洌?4mm,塔板数N=10块,板间距HT =100mm。加料位置由下向上起数第4块和第6块。降液管采用弓形,齿形堰,堰长56mm,堰高7.3mm,齿深4.6mm,齿数9个。降液管底隙4.5mm。筛孔直径d0=1.5mm,正三角形排列,孔间距t=5mm,开孔数为77个。塔釜为内电加热式,加热功率2.5kW,有效容积为10L。塔顶冷凝器、塔釜换热器均为盘管式。单板取样为自下而上第1块和第10块,斜向上为液相取样口,水平管为气相取样口。 本实验料液为乙醇水溶液,釜内液体由电加热器产生蒸汽逐板上升,经与各板上的液体传质后,进入盘管式换热器壳程,冷凝成液体后再从集液器流出,一部分作为回流液从塔顶流入塔内,另一部分作为产品馏出,进入产品贮罐;残液经釜液转子流量计流入釜液贮罐。

化工原理实验思考题答案

实验一流体流动阻力测定 1.在对装置做排气工作时,是否一定要关闭流程尾部的出口阀?为什么? 答:是的。理由是:由离心泵特性曲线可知,流量为零时,轴功率最小,电机负荷最小,起到保护电机的作用。2.如何检测管路中的空气已经被排除干净? 答:启动离心泵用大流量水循环把残留在系统内的空气带走。关闭出口阀后,打开U 形管顶部的阀门,利用空气 压强使U 形管两支管水往下降,当两支管液柱水平,证明系统中空气已被排除干净。3.以水做介质所测得的 -Re 关系能否适用于其它流体?如何应用? 答:(1)适用其他种类的牛顿型流体。理由:从)/(Re,d 可以看出,阻力系数与流体具体流动形态无 关,只与管径、粗糙度等有关。(2)那是一组接近平行的曲线,鉴于Re 本身并不十分准确,建议选取中间段曲线,不宜用两边端数据。Re 与 流速、黏度和管径一次相关,黏度可查表。 4.在不同设备上(包括不同管径),不同水温下测定的-Re 数据能否关联在同一条曲线上? 答:只要 /d 相同, -Re 的数据点就能关联在一条直线上。 5.如果测压口、孔边缘有毛刺或安装不垂直,对静压的测量有何影响?答:没有影响.静压是流体内部分子运动造成的 .表现的形式是流体的位能 .是上液面和下液面的垂直高度差 .只要静 压一定.高度差就一定.如果用弹簧压力表测量压力是一样的 .所以没有影响。 实验二 离心泵特性曲线测定 1.试从所测实验数据分析,离心泵在启动时为什么要关闭出口阀门? 答:由离心泵特性曲线可知,流量为零时,轴功率最小,电机负荷最小,起到保护电机的作用。2.启动离心泵之前为什么要引水灌泵?如果灌泵后依然启动不起来,你认为可能的原因是什么?答:(1)离心泵不灌水很难排掉泵内的空气,导致泵空转却不排水;(2)泵不启动可能是电路问题或泵本身已 经损坏,即使电机的三相电接反,仍可启动。 3.为什么用泵的出口阀门调节流量?这种方法有什么优缺点?是否还有其他方法调节流量? 答:(1)调节出口阀门开度,实际上是改变管路特性曲线,改变泵的工作点,从而起到调节流量的作用;(2) 这种方法的优点时方便、快捷,流量可以连续变化;缺点是当阀门关小时,会增大流动阻力,多消耗能量,不经济;(3)还可以改变泵的转速、减小叶轮直径或用双泵并联操作。4.泵启动后,出口阀如果不开,压力表读数是否会逐渐上升?为什么? 答:(1)压力表读数会随着叶轮转速的变大而增大,到叶轮转速正常时,读数趋于稳定;(2)这是因为出口阀 关闭时,出口压力与泵内流体所受到的离心力有关。 5.正常工作的离心泵,在其进口管路上安装阀门是否合理?为什么? 答:(1)不合理;(2)因为水从水池或水箱输送到泵靠的是液面上的大气压和泵入口处真空度产生的压强差,将水从水箱压入泵体,若在进口管上安装阀门,会增大这一段管路的阻力,可能导致流体没有足够的压强差实现流动过程。 6.试分析,用清水泵输送密度为 1200Kg/m3的盐水,在相同流量下你认为泵的压力是否会变化?轴功率是否变化? 答:(1)泵的压力增大。因为扬程H 与密度无关,但 g H p ,故密度增大压力增大;( 2)轴功率增大。因 为 gQh N ,Q 与密度无关,N 正比于密度。 实验三 流量计的校正 1.孔流系数与哪些因素有关? 答:孔流系数由孔板锐口的形状、测压口的位置、孔径与管径之比和雷诺准数有关。具体数值由实验测定。2.孔板、文丘里流量计安装时各应注意什么问题?

精馏习题课答案

第十章精馏 [一] 填空题 1、精馏过程是利用部分汽化和部分冷凝的原理而进行的。精馏设计中,回流比越大,所需理论板越少,操作能耗高,随着回流比的逐渐增大,操作费和设备费的总和将呈现先变小再变大_的变化过程。 2、分离任务要求一定,当回流比一定时,在5种进料状况中, 过冷液体进料的q值最大,提馏段操作线与平衡线之间的距离越大, 分离所需的总理论板数越少。 3、相对挥发度α=1,表示不能用普通精馏方式分离,但能用(萃取和恒沸)分离。 4、某二元混合物,进料量为100kmol/h,xF=0.6,要求得到塔顶xD不小于0.9,则塔顶最大产量为FXf》DXd 。 5、精馏操作的依据是各组分挥发度不同,实现精馏操作的必要条件包括液相回流和气相回流。 6、写出相对挥发度的几种表达式α书上。 7、等板高度是指书上。 二、选择 1 、已知q=1.1,则加料中液体量与总加料量之比为 C 。 A 1.1:1 B 1:1.1 C 1:1 D 0.1:1 2、精馏中引入回流,下降的液相与上升的汽相发生传质使上升的汽相易挥发组分浓度提高,最恰当的说法是 D 。 A 液相中易挥发组分进入汽相; B 汽相中难挥发组分进入液相; C 液相中易挥发组分和难挥发组分同时进入汽相,但其中易挥发组分较多; D 液相中易挥发组分进入汽相和汽相中难挥发组分进入液相必定同时发生。 3 、某二元混合物,其中A为易挥发组分,液相组成xA=0.6,相应的泡点为t1,与之相平衡的汽相组成yA=0.7,相应的露点为t2,则?A???? A t1=t2 B t1t2 D 不确定 4 、精馏操作时,若F、D、xF、q、R、加料板位置都不变,而将塔顶泡点回流改为冷回流,则塔顶产品组成xD变化为??B???? A 变小 B 变大 C 不变 D 不确定 5、在一二元连续精馏塔的操作中,进料量及组成不变,再沸器热负荷恒定,若回流比减少,则塔顶温度 A ,塔顶低沸点组分浓度 A ,塔底温度 C ,塔底低沸点组分浓度 B 。 A 升高 B 下降 C 不变 D 不确定 6、某二元混合物,α=3,全回流条件下xn=0.3,则yn-1= 。 A 0.9 B 0.3 C 0.854 D 0.794 7、某二元混合物,其中A为易挥发组分,液相组成xA=0.4,相应的泡点为t1,气相组成为yA=0.4,相应的露点组成为t2,则 B 。 A t1=t2 B t1t2 D 不能判断 8、精馏的操作线是直线,主要基于以下原因 B 。 A 理论板假定 B 理想物系

精馏综合实验

实验六 精馏塔实验 一、实验目的 1.了解板式精馏塔的结构和操作。 2.学习精馏塔总板效率的测量方法。 3.学习识别精馏塔内出现的几种操作状态及对塔性能的影响; 4.观测塔板上气─液传质过程的情况。 二、实验内容 1.测定全回流条件下精馏塔的总板效率。 2.测定部分回流条件下精馏塔的总板效率。 3.测定不同进料位置对精馏过程的影响。 三、实验原理 1.板式塔的总板效率 总板效率E 又称全塔效率,是指塔体本身的理论板数N T 与实际板数N p 的比值。 (6—1) 2.理论板数N T 的求法 对于二元物系(乙醇—正丙醇)系统,若已知其气—液平衡数据,则根据精馏塔的原料液组成、进料状态、操作回流比及塔顶流出液组成和塔底釜液组成可以求得该塔的理论板数N T 。 ⑴ 全回流条件下(R=∞) 此条件下,在y —x 图上,对角线即为精馏段操作线。根据已测出的塔顶、塔釜的浓度x D 和x W ,用求理论塔板的图解法,在平衡与操作线之间绘阶梯,即可求得塔系统内x D 和x W 两取样口之间的理论塔板数N T 。 ⑵ 部分回流条件下 进料热状况参数q 的计算: 进料为冷液体时,q 值的计算式可写成 (6—2) 式中:t F —冷液体进料的温度,℃。 t BP —进料的泡点温度,℃。 C PM —进料液体在平均温度(t F +t BP )/2下的比热,kJ/(kmol ·℃)。 r m —进料液体在其组成和泡点温度下的汽化潜热,kJ/kmol 。 kJ/(kmol ·℃) (6—3) kJ/kmol (6—4) 式中:C p1、C p2—分别为纯组分1和纯组分2在平均温度(t F +t BP )/2下的比热,kJ/(kmol ·℃)。 100%T p N E N = ?m m F BP PM r r t t C q +-= )(2 22111x M C x M C C P P PM +=2 22111x M r x M r r m +=

筛板精馏实验知识讲解

筛板精馏实验装置 使用说明书 华中师范大学化学学院2016年12月

筛板精馏实验装置 一、实验目的 1、熟悉板式精馏塔的结构、流程及各部件的结构作用; 2、了解精馏塔的正确操作,学会正确处理各种异常情况; 3、用作图法确定精馏塔全回流与部分回流时理论板数,并计算出全塔效率。 二、实验流程、装置描述 筛板精馏实验流程图 阀门:V1塔釜加料阀,V2塔釜放净阀,V3塔釜出料阀,V4塔底产品罐放净阀,V5塔顶产品罐放净阀,V6冷却正丙醇流量调节阀,V7采出电磁阀,V8回流电磁阀,V9采样阀,V10、

V11压差计连通阀。 温度:TI1塔釜温度,TI2塔顶温度,TI3回流温度,TI4进料温度,TI5~ TI12塔板温度。 压力:PI1塔釜压力。 差压:DPI1全塔压降。 流量:FI1冷却正丙醇流量。 液位:LI1塔釜液位。 流程说明: 进料:进料泵从原料罐内抽出原料液,经过塔釜换热器,原料液走管程,塔釜溢流液走壳程,热交换后原料液由塔体中间进料口进入塔体 塔顶出料:塔内蒸汽上升至冷凝器,蒸汽走壳程,冷却正丙醇走管程,蒸汽冷凝成液体,流入馏分器,一路经回流电磁阀回流至塔内,另一路经采出电磁阀流入塔顶产品罐塔釜出料:塔釜溢流液经塔釜出料阀V3溢流至塔釜换热器,塔釜溢流液走壳程,原料液走管程,热交换后塔釜溢流液流入塔釜产品罐 冷却正丙醇:冷却正丙醇来自实验室自来正丙醇,经冷却正丙醇流量调节阀V6控制,转子流量计计量,流入冷凝器,冷却正丙醇走管程,蒸汽走壳程,热交换后冷却正丙醇排入地沟 设备仪表参数: 精馏塔:塔内径D=50mm,塔内采用筛板及圆形降液管,共有8块板,板间距HT=55mm,塔板:筛板上孔径d=1.5mm,筛孔数N=127个,开孔率11%。 进料泵:蠕动泵,25#进料管,流量1.6ml/r,转速0-100.0rpm 冷却正丙醇流量计16~160 l/h 总加热功率为3.3Kw 压力传感器0—10KPa 温度传感器:PT100,直径3mm 差压传感器0-5 KPa 三、实验操作(以乙醇-正丙醇为例): 1、开车 ⑴、一般是在塔釜先加入10~20v%(体积)的乙醇正丙醇溶液,釜液位与塔釜出料口持平。 ⑵、开启软件和装置电源,软件与设备建立连接(软件操作见附1-软件说明)。 ⑶、开启电加热电源,选择加热方式,维持塔釜压力在约1000Pa为合适。 ⑷、打开塔顶冷凝器进正丙醇阀V5,流量约80 l/h。 ⑸、回流比操作切换至手动状态,关闭采出电磁阀,开启回流电磁阀,使塔处于全回流状态;

相关文档
最新文档