超声波测距正确程序

超声波测距正确程序
超声波测距正确程序

51单片机超声波测距程序

//晶振:11.0592 //TRIG:P1.2 ECH0:P1.1 //波特率:9600 #include #include #include #define uchar unsigned char #define uint unsigned int sbit RX=P0^2; sbit TX=P0^3; unsigned int time=0; unsigned int timer=0; float S=0; bit flag =0; void Conut(void) { time=TH0*256+TL0; TH0=0; TL0=0; S=(time*1.87)/100; //算出来是CM if(flag==1) //超出测量 { flag=0; printf("-----\n"); } printf("S=%f\n",S); } void delayms(unsigned int ms) { unsigned char i=100,j; for(;ms;ms--) { while(--i)

{ j=10; while(--j); } } } void zd0() interrupt 1 //T0中断用来计数器溢出,超出测距范围{ flag=1; //中断溢出标志 } void StartModule() //T1中断用来扫描数码管和计800ms启动模块{ TX=1; //800MS启动一次模块 _nop_(); _nop_(); _nop_(); _nop_(); _nop_(); _nop_(); _nop_(); _nop_(); _nop_(); _nop_(); _nop_(); _nop_(); _nop_(); _nop_(); _nop_(); _nop_(); _nop_(); _nop_(); _nop_(); _nop_(); _nop_(); TX=0; } void main(void) { TMOD=0x21; //设T0为方式1,GATE=1; SCON=0x50; TH1=0xFD; TL1=0xFD; TH0=0; TL0=0;

基于单片机的超声波测距系统设计实验报告 - 重

指导教师评定成绩: 审定成绩: 自动化学院 计算机控制技术课程设计报告设计题目:基于单片机的超声波测距系统设计 单位(二级学院): 学生姓名: 专业: 班级: 学号: 指导教师: 负责项目: 设计时间:二〇一四年五月 自动化学院制

目录 一、设计题目 (1) 基于51单片机的超声波测距系统设计 (1) 设计要求 (1) 摘要 (2) 二、设计报告正文 (3) 2.1 超声波测距原理 (3) 2.2系统总体方案设计 (4) 2.3主要元件选型及其结构 (5) 2.4硬件实现及单元电路设计 (9) 2.5系统的软件设计 (13) 三、设计总结 (17) 四、参考文献 (17) 五、附录 (18) 附录一:总体电路图 (18) 附录二:系统源代码 (18)

一、设计题目 基于51单片机的超声波测距系统设计 设计要求 1、以51系列单片机为核心,控制超声波测距系统; 2、测量范围为:2cm~4m,测量精度:1cm; 3、通过键盘电路设置报警距离,测出的距离通过显示电路显示出来; 4、当所测距离小于报警距离时,声光报警装置报警加以提示; 5、设计出相应的电子电路和控制软件流程及源代码,并制作实物。

摘要 超声波具有传播距离远、能量耗散少、指向性强等特点,在实际应用中常利用这些特点进行距离测量。超声波测距具有非接触式、测量快速、计算简单、应用性强的特点,在汽车倒车雷达系统、液位测量等方面应用广泛。本次课设利用超声波传播中距离与时间的关系为基本原理,以STC89C52单片机为核心进行控制及数据处理,通过外围电源、显示、键盘、声光报警等电路实现系统供电、测距显示、报警值设置及报警提示的功能。软件部分采用了模块化的设计,由系统主程序及各功能部分的子程序组成。超声波回波信号输入单片机,经单片机综合分析处理后实现其预定功能。 关键词:STC89C52单片机; HC-SR04;超声波测距

超声波测距报告(带报警)

目录 一、超声波测距原理 二、超声波测距模块介绍 1.主控模块 2.电源模块 3.显示模块 4.超声波模块 5.扬声器模块 三、超声波测距功能介绍 四、超声波测距前景展望 五、心得 附:程序

超声波测距(可报警) 一、超声波测距原理 超声波发射器定期发送超声波,遇到被测物体时发生反射,反射波经超声波接收器接收并转化为电信号,只要测出发送和接收的时间差t,即可测出超声测距装置到被测物体之间的距离S: S=c*t/2 (式中c为超声波在空气中的传播速度,c=331.45*√(1+T/273.16)) 由此可见声速与温度的密切的关系。在应用中,如果温度变化不大或者对测量要求不太高(例如汽车泊车定位系统),则可认为声速是不变的,否则,必须进行温度补偿。 超声波传感器是超声测距核心部件,传感器按其工作介质可分气相、液相和固相传感器;按其发射波束宽度可分为宽波束和窄波束传感器;按其工作频率又可分为40kHz, 5OkHz等不同等级。超声波在空气传播过程中,由于空气吸收衰减和扩散损失,声强随着传播距离的增大而衰减,而超声波的衰减随频率增大而成指数增加。本设计选用气相、窄波束、40kHz的超声波传感器。 二、超声波测距模块介绍 该产品共有五个模块,其中主控模块、电源模块、显示模块、扬声器模块集成在开发板上,超声波模块是外接的。 1.主控模块 主要部分是51单片机。 51单片机是对目前所有兼容Intel 8031指令系统的单片机的统称。该系列单片机的始祖是Intel的8031单片机,后来随着Flash rom技术的发展,8031单片机取得了长足的进展,成为目前应用最广泛的8位单片机之一,其代表型号是ATLEM公司的AT89系列,它广泛应用于工业测控系统之中。目前很多公司都有51系列的兼容机型推出,在目前乃至今后很长的一段时间内将占有大量市场。51单片机是基础入门的一个单片机,还是应用最广泛的一种。需要注意的是52系列的单片机一般不具备自编程能力。 主要功能: ·8位CPU·4kbytes 程序存储器(ROM) (52为8K)

超声波测距程序(详细C语言数码管显示)

超声波测距程序(详细C语言数码管显示) #include //头文件 #include// _nop_() 函数延时1US用 #include #include #define uchar unsigned char #define uint unsigned int #define nop _nop_() sbit csb=P1^0;//超声波发送端口为P1.0 sbit bai=P2^2;//数码管百位 sbit shi=P2^1;//数码管十位 sbit ge=P2^0;//数码管个位 uchar flag;//超声波接收标志 float juli1;//距离变量,用来数码管显示用 int juli; uchar table[]={0xc0,0xf9,0xa4,0xb0,0x99,0x92,0x82,0xf8,0x80,0x90};//共阳数码管0到9的代码 int xianshi[3]; void delayshow(uint z) { uint x,y; for(x=z;x>0;x--) for(y=110;y>0;y--); } void ledshow(void) { xianshi[0]=juli/100; xianshi[1]=((juli%100)/10); xianshi[2]=juli%10; bai=0; P0=table[xianshi[0]]; delayshow(2); bai=1; delayshow(2); shi=0; P0=table[xianshi[1]]; delayshow(2); shi=1;

基于单片机的超声波测距系统实验报告

基于单片机的超声波测距系统实验报告

一、实验目的 1.了解超声波测距原理; 2.根据超声波测距原理,设计超声波测距器的硬件结构电路; 3.对设计的电路进行分析能够产生超声波,实现超声波的发送与接收,从而实现利用 超声波方法测量物体间的距离; 4.以数字的形式显示所测量的距离; 5.用蜂鸣器和发光二极管实现报警功能。 二、实验容 1.认真研究有关理论知识并大量查阅相关资料,确定系统的总体设计方案,设计出系 统框图; 2.决定各项参数所需要的硬件设施,完成电路的理论分析和电路模型构造。 3.对各单元模块进行调试与验证; 4.对单元模块进行整合,整体调试; 5.完成原理图设计和硬件制作; 6.编写程序和整体调试电路; 7.写出实验报告并交于老师验收。 三、实验原理 超声波测距是通过不断检测超声波发射后遇到障碍物所反射的回波,从而测出发射和接收回波的时间差t,然后求出距S=Ct/2,式中的C为超声波波速。由于超声波也是一种声波,其声速C与温度有关。在使用时,如果温度变化不大,则可认为声速是基本不变的。如果测距精度要求很高,则应通过温度补偿的方法加以校正。声速确定后,只要测得超声波往返的时间,即可求得距离。这就是超声波测距仪的机理,单片机(AT89C51)发出短暂的40kHz信号,经放大后通过超声波换能器输出;反射后的超声波经超声波换能器作为系统的输入,锁相环对此信号锁定,产生锁定信号启动单片机中断程序,得出时间t,再由系统软件对其进行计算、判别后,相应的计算结果被送至LED显示电路进行显示。 (一)超声波模块原理: 超声波模块采用现成的HC-SR04超声波模块,该模块可提供 2cm-400cm 的非接触式距离感测功能,测距精度可达高到 3mm。模块包括超声波发射器、接收器与控制电路。基本工作原理:采用 IO 口 TRIG 触发测距,给至少 10us 的高电平信号;模块自动发送 8 个 40khz 的方波,自动检测是否有信号返回;有信号返回,通过 IO 口 ECHO 输出一个高电平,高电平持续的时间就是超声波从发射到返回的时间。测试距离=(高电平时间*声速(340M/S))/2。实物如下图1。其中VCC 供5V 电源,GND 为地线,TRIG 触发控制信号输入,ECHO 回响信号输出等四支线。

超声波测距仪单片机课设实验资料报告材料

微机原理与单片机系统课程设计 业:专轨道交通信号与控制 级:班1305 交控

姓名:贺云鹏 学号: 201310104 指导教师:建国 交通大学自动化与电气工程学院 30 日 12 2015 年月 超声波测距仪设计设计说明1 设计目的1.1 测量声波在发超声波测距的原理是利用超声波在空气中的传播速度为已知,根据发射和接收的时间差计算出发射点到障碍射后遇到障碍物反射回来的时间,物的实际距离。超声波测距主要应用于倒车提醒、建筑工地、工业现场等的距离测量。 超声波在气体、液体及固体中以不同速度传播,定向性好、能量集中、传输过程中衰减较小、反射能力较强。超声波能以一定速度定向传播、遇障碍物后形成反射,利用这一特性,通过测定超声波往返所用时间就可计算出实际距离,从而实现无接触测量物体距离。超声波测距迅速、方便,且不受光线等因素影响,广泛应用于水文液位测量、建筑施工工地的测量、现场的位置监控、振动仪车辆倒车障碍物的检测、移动机器入探测定位等领域。 1.2 设计方法 本课题包括数据测距模块、显示模块。测距模块包括一个HC-SR04超声波测距模块和一片AT89C51单片机,该设计选用HC-SR04超声波测距模块,通过单片机对超声波进行计时并根据超AT89C51发射和接受超声波,使用HC-SR04.声波在空气中速度为340米每秒的特性计算出距离。显示模块包括一个4位共阳极LED数码管和AT89C51单片机,由AT89C51单片机控制数码管动态显示距离。 1.3 设计要求 采用单片机为核心部件,选用超声波模组,实现对距离的测量,测量距离能够通过显示输出(LED,LCD)。 2 设计方案及原理 2.1超声波测距模块设计

单片机应用_超声波测距器

单片机课程设计 一、需求分析: 超声波测距器,可以应用于汽车倒车、建筑施工工地以及一些工业现场的位置监控,也可用于如液位、井深、管道长度的测量等场合。要求测量围在1m,测量精度1cm,测量时与被测物体无直接接触,能够清晰稳定地显示测量结果。由于超声波指向性强,能量消耗缓慢,在介质中传播的距离较远,因而超声波经常用于距离的测量,如测距仪和物位测量仪等都可以通过超声波来实现。利用超声波检测往往比较迅速、方便、计算简单、易于做到实时控制,并且在测量精度方面能达到工业实用的要求,因此在移动机器人的研制上也得到了广泛的应用。 本文旨在设计一种能对中近距离障碍物进行实时测量的测距装置,它能对障碍物进行适时、适量的测量,起到智能操作,实时监控的作用。 关键词单片机AT82S51 超声波传感器测量距离 二、硬件设计方案 设计思路 超声波传感器及其测距原理 超声波是指频率高于20KHz的机械波。为了以超声波作为检测手段,必须产生超生波和接收超声波。完成这种功能的装置就是超声波传感器,习惯上称为超声波换能器或超声波探头。超声波传感器有发送器和接收器,但一个超声波传感器也可具有发送和接收声波的双重作用。超声波传感器是利用压电效应的原理将电能和超声波相互转化,即在发射超声波的时候,将电能转换,发射超声波;而在收到回波的时候,则将超声振动转换成电信号。

超声波测距的原理一般采用渡越时间法TOF(time of flight)。首先测出超声波从发射到遇到障碍物返回所经历的时间,再乘以超声波的速度就得到二倍的声源与障碍物之间的距离 测量距离的方法有很多种,短距离的可以用尺,远距离的有激光测距等,超声波测距适用于高精度的中长距离测量。因为超声波在标准空气中的传播速度为340米/秒,由单片机负责计时,单片机使用12.0M晶振,所以此系统的测量精度理论上可以达到毫米级。 由于超声波指向性强,能量消耗缓慢,在介质中传播距离远,因而超声波可以用于距离的测量。利用超声波检测距离,设计比较方便,计算处理也较简单,并且在测量精度方面也能达到要求。 超声波发生器可以分为两类:一类是用电气方式产生超声波,一类是用机械方式产生超声波。本课题属于近距离测量,可以采用常用的压电式超声波换能器来实现。 根据设计要求并综合各方面因素,可以采用AT89S51单片机作为主控制器,用动态扫描法实现LED数字显示,超声波驱动信号用单片机的定时器完成,超声波测距器的系统框图如下图所示: 超声波测距器系统设计框图 主要由单片机系统及显示电路、超声波发射电路和超声波检测接收电路三部分组成。采用AT89S51来实现对CX20106A红外接收芯片和TCT40-10系列超声波转换模块的控制。单片机通过P1.0引脚经反相器来控制超声波的发送,然后单片机不停的检测INT0引脚,当INT0引脚的电平由高电平变为低电平时就认为超声波已经返回。计数器所计的数据就是超声波所经历的时间,通过换算就可以得到传感器与障碍物之间的距离。

超声波测距报告

项目:超声波测距仪的设计 时间:2011/7/09-2011/7/21 一、超声波测距的基本原理 谐振频率高于20kHz的声波被称为超声波。超声波为直线传播方式,频率越高,绕射能力越弱,但反射能力越强。利用超声波的这种性能就可制成超声传感

器,或称为超声换能器,它是一种既可以把电能转化为机械能、又可以把机械能转化为电能的器件或装置。换能器在电脉冲激励下可将电能转换为机械能,向外发送超声波;反之,当换能器处在接收状态时,它可将声能(机械能)转换为电能。 1.1 超声波发生器 为了利用超研究和利用声波,人们已经设计和制成了许多超声波发生器。总体上讲,超声波发生器可以分为两大类:一类是用电气方式产生超声波,一类是用机械方式产生超声波。电气方式包括压电型、磁致伸缩型和电动型等;机械方式有加尔统笛、液哨和气流旋笛等。它们所产生的超声波的频率、功率和声波特性各不相同,因而用途也各不相同。目前较为常用的是压电式超声波发生器。 1.2 压电式超声波发生器原理 压电式超声波发生器实际上是利用压电晶体的谐振来工作的。它有两个压电晶片和一个共振板。当它的两极外加脉冲信号,其频率等于压电晶片的固有振荡频率时,压电晶片将会发生共振,并带动共振板振动,便产生超声波。反之,如果两电极间未外加电压,当共振板接收到超声波时,将压迫压电晶片作振动,将机械能转换为电信号,这时它就成为超声波接收器了。 1.3 超声波测距原理 超声波发射器向某一方向发射超声波,在发射时刻的同时开始计时,超声波在空气中传播,途中碰到障碍物就立即返回来,超声波接收器收到反射波就立即停止计时。超声波在空气中的传播速度为340m/s,根据计时器记录的时间t,就可以计算出发射点距障碍物的距离(s),即:s=340t/2 最常用的超声测距的方法是回声探测法,超声波发射器向某一方向发射超声波,在发射时刻的同时计数器开始计时,超声波在空气中传播,途中碰到障碍物面阻挡就立即反射回来,超声波接收器收到反射回的超声波就立即停止计时。 由于超声波也是一种声波,其声速V与温度有关。在使用时,如果传播介质温度变化不大,则可近似认为超声波速度在传播的过程中是基本不变的。如果对测距精度要求很高,则应通过温度补偿的方法对测量结果加以数值校正。声速确定后,只要测得超声波往返的时间,即可求得距离。这就是超声波测距仪的基本原理。如图1-1所示。 超声波发射障碍物

基于51单片机的超声波测距系统

基于51单片机的超声波测距系统 贾源 完成日期:2011年2月22日

目录 一、设计任务和性能指标 (3) 1.1设计任务 (3) 1.2性能指标 (3) 二、超声波测距原理概述 (4) 2.1超声波传感器 (5) 2.1.1超声波发生器 (5) 2.1.2压电式超声波发生器原理 (5) 2.1.3单片机超声波测距系统构成 (5) 三、设计方案 (6) 3.1AT89C2051单片机 (7) 3.2超声波测距系统构成 (8) 3.2.1超声波测距单片机系统 (9) 图3-1:超声波测距单片机系统 (9) 3.2.2超声波发射、接收电路 (9) 图3-1:超声波测距发送接收单元 (10) 3.2.3显示电路 (10) 四.系统软件设计 (11) 4.1主程序设计 (11) 4.2超声波测距子程序 (12) 4.3超声波测距程序流程图 (13) 4.4超声波测距程子序流程图 (14) 五.调试及性能分析 (14) 5.1调试步骤 (14) 5.2性能分析 (15) 六.心得体会 (15) 参考文献 (16) 附录一超声波测系统原理图 (18) 附录二超声波测系统原理图安装图 (19) 附录三超声波测系统原理图PCB图 (20) 附录四超声波测系统原理图C语言原程序 (21) 参考文献 (26)

一、设计任务和性能指标 1.1设计任务 利用单片机及外围接口电路(键盘接口和显示接口电路)设计制作一个超声波测距仪器,用LED数码管把测距仪距测出的距离显示出来。 要求用Protel 画出系统的电路原理图,印刷电路板,绘出程序流程图,并给出程序清单。 1.2性能指标 距离显示:用三位LED数码管进行显示(单位是CM)。 测距范围:25CM到 250CM之间。误差:1%。

超声波测距仪的设计说明

题目:超声波测距仪的设计 超声波测距仪的设计 一、设计目的: 以51单片机为主控制器,利用超声波模块HC-SR04,设计出一套可在数码管上实时显示障碍物距离的超声波测距仪。 通过该设计的制作,更为深入的了解51的工作原理,特别是51的中断系统及定时器/计数器的应用;掌握数码管动态扫描显示的方法和超声波传感器测距的原理及方法,学会搭建51的最小系统及一些简单外围电路(LED显示电路)。从中提高电路的实际设计、焊接、检错、排错能力,并学会仿真及软件调试的基本方法。 二、设计要求: 设计一个超声波测距仪。要求: 1.能在数码管上实时显示障碍物的实际距离; 2.所测距离大于2cm小于300cm,精度2mm。 三、设计器材: STC89C52RC单片机 HC-SR04超声波模块 SM410561D3B四位的共阳数码管 9014三极管(4) 按键(1) 电容(30PF2,10UF1) 排阻(10K),万用板,电烙铁,万用表,5V直流稳压电源,镊子,钳子,

导线及焊锡若干,电阻(200欧5)。 四、设计原理及设计方案: (一)超声波测距原理 超声测距仪是根据超声波遇到障碍物反射回来的特性进行测量的。超声波发射器向某一方向发射超声波,在发射同时开始计时,超声波在空气中传播,途中碰到障碍物就立即返回来,超声波接收器收到反射波就立即中断停止计时。通过不断检测产生波发射后遇到障碍物所反射的回波,从而测出发射超声波和接收到回波的时间差T,然后求出距离L。基本的测距公式为:L=(△t/2)*C 式中 L——要测的距离 T——发射波和反射波之间的时间间隔 C——超声波在空气中的声速,常温下取为344m/s 声速确定后,只要测出超声波往返的时间,即可求得L。 根据本次设计所要求的测量距离的围及测量精度,我们选用的是HC-SR04超声波测距模块。(如下图所示)。此模块已将发射电路和接收电路集成好了,硬件上不必再自行设计繁复的发射及接收电路,软件上也无需再通过定时器产生40Khz的方波引起压电陶瓷共振从而产生超声波。在使用时,只要在控制端‘Trig’发一个大于15us宽度的高电平,就可以在接收端‘Echo’等待高电平输出。单片机一旦检测到有输出就打开定时器开始计时。 当此口变为低电平时就停止计时并读出定时器的值,此值就为此次测距的时间,再根据传播速度方可算出障碍物的距离。 (二)超声波测距模块HC-SR04简要介绍 HC-SR04超声波测距模块的主要技术参数使用方法如下所述: 1. 主要技术参数: ①使用电压:DC5V ②静态电流:小于2mA ③电平输出:高5V

超声波测距实验报告

电子信息系统综合设计报告 超声波测距仪

目录 摘要 (3) 第一章绪论 (3) 1.1 设计要求 (3) 1.2 理论基础 (3) 1.3 系统概述 (4) 第二章方案论证 (4) 2.1 系统控制模块 (5) 2.2距离测量模块 (5) 2.3 温度测量模块 (5) 2.4 实时显示模块 (5) 2.5 蜂鸣报警模块 (6) 第三章硬件电路设计 (6) 3.1 超声波收发电路 (6) 3.2 温度测量电路 (7) 3.3 显示电路 (8) 3.4 蜂鸣器报警电路 (9) 第四章软件设计 (10) 第五章调试过程中遇到的问题及解决 (11) 5.1 画PCB及制作 (11) 5.2 焊接问题及解决 (11) 5.3 软件调试 (11) 实验总结 (13) 附件 (14) 元器件清单 (14) HC-SR04超声波测距模块说明书 (15) 电路原理图 (17) PCB图 (17) 程序 (18)

摘要 该系统是一个以单片机技术为核心,实现实时测量并显示距离的超声波测距系统。系统主要由超声波收发模块、温度补偿电路、LED显示电路、CPU处理电路、蜂鸣器报警电路等5部分组成。系统测量距离的原理是先通过单片机发出40KHz 方波串,然后检测超声波接收端是否接收到遇到障碍物反射的回波,同时测温装置检测环境温度。单片机利用收到回波所用的时间和温度补偿得到的声速计算出距离,显示当前距离与温度,按照不同阈值进行蜂鸣报警。由于超声波检测具有迅速、方便、计算简单、易于做到实时控制的特点,并且在测量精度方面能达到工业实用的要求,因此在生产生活中得到广泛的应用,例如超声波探伤、液位测量、汽车倒车雷达等。 关键词:超声波测距温度测量单片机 LED数码管显示蜂鸣报警 第一章绪论 1.1设计要求 设计一个超声波测距仪,实现以下功能: (1)测量距离要求不低于2米; (2)测量精度±1cm; (3)超限蜂鸣器或语音报警。 1.2理论基础 一、超声波传感器基础知识 超声波传感器是利用晶体的压电效应和电致伸缩效应,将机械能与电能相互转换,并利用波的特性,实现对各种参量的测量。 超声波的传播速度与介质的密度和弹性特性有关,与环境条件也有关: 在气体中,超声波的传播速度与气体种类、压力及温度有关,在空气中传播速度为C=331.5+0.607t/0C (m/s) 式中,t为环境温度,单位为0C. 二、压电式超声波发生器原理 压电式超声波发生器实际上是利用压电晶体的谐振来工作的。它有两个压电晶片和一个共振板。当它的两极外加脉冲信号,其频率等于压电晶片的固有振荡频率时,压电晶片将会发生共振,并带动共振板振动,便产生超声波。反之,如果两电极间未外加电压,当共振板接收到超声波时,将压迫压电晶片作振动,将机械能转换为电信号,这时它就成为超声波接收器了。 三、超声波测距原理 由于超声波指向性强,能量消耗缓慢,在空气中传播的距离较远,因而超声波

超声波测距C语言源程序代码

超声波测距C语言源程 序代码 文档编制序号:[KKIDT-LLE0828-LLETD298-POI08]

/*{HZ即单位s的倒数}本晶振为12MHZ,因此外部的时钟频率为12MHZ,所以内部的时钟频率为(12M H Z)/12=1M H 即1000000HZ,而机械频率为1/(1MHZ),即每完成一次计算(即定时器的值加一)用时, 即1us(微秒).*/ /*************************************************************************** ********/ #include<> #define UC unsigned char #define UI unsigned int void delay(UI); sbit BX = P3^0;void TimeConfiguration(); a = 0; b = 0; c = 0; P2 =~ 0x00; goto loop; } time = TL0 + TH0*256; juli = ( int )( (time*/2 ); BAI = ( (juli%1000)/100 ); SHI = ( (juli%100)/10 ); GE = ( juli%10 ); /******************************************两种模式的距离显示 ********************************************/ if(juli > MAX) { Hong = 0; Lv = 1; while( t1-- ) { a = 0; b = 1; c = 1; P2 =~ CharacterCode[BAI]; delay(400); a = 1; b = 0; c = 1; P2 =~ CharacterCode[SHI]; delay(400); a = 1; b = 1; c = 0; P2 =~ CharacterCode[GE]; delay(390);

超声波测距实验报告

目录 1、课题设计的目的和意义 (3) 2、课题要求 (3) 2.1、基本功能要求 (3) 2.2、提高要求 (4) 3、重要器件功能介绍 (4) 3.1、CX20106A红外线发射接收专用芯片 (4) 3.2、AT89C51系列单片机的功能特点 (5) 3.3、ISD1700优质语音录放电路 (6) 4、超声波测距原理 (8) 4.1、超声波测距原理图 (8) 4.2、超声波测距的基本原理 (9) 5、硬件系统设计 (10) 5.1、超声波发射单元 (10) 5.2、超声波接收单元 (11)

5.3、显示单元 (11) 5.4、语音单元 (12) 5.5、硬件设计中遇到的难题: (12) 6、系统软件设计 (14) 7、调试与分析 (15) 7.1调试 (15) 7.2误差分析 (15) 8、总结 (16) 9、附件 (17) 9.1、总电路 (17) 9.2、主要程序 (18) 10、参考文献 (22)

1课题设计的目的及意义 随着科学技术的快速发展,超声波在测距仪中的应用越来越广,但就目前技术水平而言,人们可以利用的测距技术还十分有限,因此,这是一个正在蓬勃发展而又有无限前景的技术及产业领域。展望未来,超声波测距作为一种新型的非常重要有用的工具在各方面都有很大的发展空间,它将朝着更加高定位高精度的方向发展,以满足日益发展的社会需求。如声纳的发展趋势:研究具体的高定位精度的被动测距声纳,以满足军事和渔业等的发展需求,实现远程的被动探测和识别。毋庸置疑,未来的超声波测距仪将与自动化智能化接轨,与其他的测距仪集成和融合,形成多测距仪。 超声波测距在某些场合有着显著的优点,因为这种方法是利用计算超声波在被测物体和超声波探头之间的传输来测量距离的,因此它是一种非接触式的测量,所以他就能够在某些场合或环境比较恶劣的环境下使用。比如测有毒或者有腐蚀性化学物质的液面高度或者高速公路上快速行驶汽车之间的距离。 随着测距仪的技术进步,测距仪将从具有单纯判断功能发展到具有学习功能,最注重发展到具有创造力。在新的时代,测距仪将发挥更大的作用。 2课题要求 以单片机AT89C51为中心控制单元,配以超声波发射、接收装置,实现超声波发射及接收其遇到障碍物发生反射形成的回波信号,并根据超声波在介质中的传播速度及超声波从发射到接收到回波的时间,计算出发射点距障碍物的距离,设计出一套基于单片机的脉冲反射式超声波测距系统,利用单片机进行操作控制,用数码管作输出显示,设计发射、接收、检测、显示硬件电路和测距系统软件。

用51单片机实现HC-SR04超声波测距程序

#include //包括一个52标准内核的头文件 #define uchar unsigned char //定义一下方便使用 #define uint unsigned int #define ulong unsigned long sbit Trig = P1^0; //产生脉冲引脚 sbit Echo = P3^2; //回波引脚 sbit test = P1^1; //测试用引脚 uchar code SEG7[10]={~0xC0,~0xF9,~0xA4,~0xB0,~0x99,~0x92,~0x82,~0xF8,~0x80,~0x90};//数码管0-9 uint distance[4]; //测距接收缓冲区 uchar ge,shi,bai,temp,flag,outcomeH,outcomeL,i; //自定义寄存器 bit succeed_flag; //测量成功标志 //********函数声明 void conversion(uint temp_data); void delay_20us(); void main(void) // 主程序 { uint distance_data,a,b; uchar CONT_1; i=0; flag=0; test =0; Trig=0; //首先拉低脉冲输入引脚 TMOD=0x11; //定时器0,定时器1,16位工作方式 TR0=1; //启动定时器0 IT0=0; //由高电平变低电平,触发外部中断 ET0=1; //打开定时器0中断 EX0=0; //关闭外部中断 EA=1; //打开总中断0 while(1) //程序循环 { EA=0; Trig=1; delay_20us(); Trig=0; //产生一个20us的脉冲,在Trig引脚 while(Echo==0); //等待Echo回波引脚变高电平 succeed_flag=0; //清测量成功标志 EX0=1; //打开外部中断 TH1=0; //定时器1清零 TL1=0; //定时器1清零 TF1=0; //

超声波测距C语言源程序代码

/*{HZ即单位s的倒数}本晶振为12MHZ,因此外部的时钟频率为12MHZ,所以内部的时钟频率为(12MHZ)/12=1MH 即1000000HZ,而机械频率为1/(1MHZ),即每完成一次计算(即定时器的值加一)用时0.000001s, 即1us(微秒).*/ /****************************************************************************** *****/ //具有模式选择. #include #define UC unsigned char #define UI unsigned int void delay(UI); //延时9.56us程序 sbit beep = P1^3; //用于声音报警 sbit Lv = P1^7; //用于光报警 sbit Hong = P1^6; sbit QD = P3^7;//K8 //P3^7口(K8)为确定键, sbit GX = P3^1;//K7 //P3^3口(K2)为修改键, sbit SX = P3^6;//K6 //P3^2(K3)为测量键. sbit BX = P3^0;//K5 //个(K7),十(K6),百(K5),三位修改键 sbit a = P1^2;//百位//数码管位选 sbit b = P1^1;//十位 sbit c = P1^0;//个位 sbit trig = P1^4; //方波发射端 sbit echo = P1^5; //超声波接收端 void IntConfiguration(); //用来"设置中断"的函数,P3^3口(K2)为修改键,P3^2(K3)为测量键. void TimeConfiguration(); //用来"设置定时器"的函数 sbit K1 = P3^4;//动态 sbit K4 = P3^5;//静态//用于进行模式切换(K1、K4键) void xiaxian(); //修改函数,用来修改下限 void shangxian(); //修改函数,用来修改上限 UI min[3]={0,5,0}; //报警极限,拆分为"百十个"三位 UI max[3]={3,0,0}; //MIN,MAX 用来存储最大和最小值 void MINxianshi(UI); //最小范围和最大范围的显示 void MAXxianshi(UI); UC code CharacterCode[10] = {0x3f,0x06,0x5b,0x4f,0x66,0x6d,0x7d,0x07,0x7f,0x6f}; //数码管数字字符(P2口) /********************************主函数*********************************************/ void main() { TimeConfiguration(); //设置定时器0 IntConfiguration(); //设置中断允许,K4键为修改键,K8键为确定键 while(1) {

毕业设计开题报告—超声波测距

毕业设计(论文)开题报告学生姓名:学号: 所在学院: 专业:通信工程 设计(论文)题目:基于STM32的超声波测距仪 指导教师: 2014年2月25日

开题报告填写要求 1.开题报告(含“文献综述”)作为毕业设计(论文)答辩委员会对学生答辩资格审查的依据材料之一。此报告应在指导教师指导下,由学生在毕业设计(论文)工作前期内完成,经指导教师签署意见及所在专业审查后生效; 2.开题报告内容必须用黑墨水笔工整书写或按教务处统一设计的电子文档标准格式(可从教务处网页上下载)打印,禁止打印在其它纸上后剪贴,完成后应及时交给指导教师签署意见; 3.“文献综述”应按论文的格式成文,并直接书写(或打印)在本开题报告第一栏目内,学生写文献综述的参考文献应不少于15篇(不包括辞典、手册); 4.有关年月日等日期的填写,应当按照国标GB/T 7408—94《数据元和交换格式、信息交换、日期和时间表示法》规定的要求,一律用阿拉伯数字书写。如“2004年4月26日”或“2004-04-26”。

毕业设计(论文)开题报告 1.结合毕业设计(论文)课题情况,根据所查阅的文献资料,每人撰写2000字左右的文献综述: 文献综述 一、课题研究背景、目的和意义 传感器技术是现代信息技术的主要内容之一,信息技术主要包括计算机技术、通信技术和传感器技术,计算机技术相当于人的大脑,通信相当于人的神经,而传感器就相当于人的感官。比如温度传感器、光电传感器、湿度传感器、超声波传感器、红外线传感器、压力传感器等等,其中超声波传感器在测量方面有着广泛、普遍的应用。利用单片机控制超声波检测往往比较迅速、方便、计算简单、易于做到实时控制,并且测量精度较高。 超声波测距是一种典型的非接触测量方式。超声波在气体、液体及固体中以不同速度传播,定向性好、能量集中、传输过程中衰减较小、反射能力较强。且超声波测距系统结构简单、电路易实现、成本低、速度快,所以在工业自动控制、建筑工程测量和机器人视觉识别等领域应用非常广泛。 超声波作为一种特殊的声波,同样具有声波传输的基本物理特性、反射、折射、干涉、衍射、散射与物理紧密联系,应用灵活。它是一种指向性强,能量消耗慢的波。它在介质中传播的距离较远,因而超声波经常用于距离的测量,可解决超长度的测量。二、超声波测距仪的整体设计思路 超声波测距一般采用渡越时间法。超声波测距的实质是时间的测量,即:用超声脉冲激励超声探头向外发射超声波,同时接收从被测物体反射回来的超声波(简称回波),通过精确测量从发射超声波至接收回波所经历的射程时间t(渡越时间),按下式计算超声波探头与被测物体之间的距离S,即 S=12ct 其中,c 为空气介质中声波的传播速度。在常温下,超声波的传播速度为340 m/s,

带温度补偿的超声波测距程序

/**程序:基于HC-SR04得超声波测距系统 *单片机型号:STC90C51612MHz *说明:开始连续进行7次超声波测距,每次测距间隔80ms, *完成后对7次结果排序并将最大得2个数值与最小得2个数值去除,对剩余得 *3个数值取平均值。完成后指示灯灭,输出结果到LCD1602上。测量超出范围则发出报警声、 *使用两个IO端口控制HC-SR04触发信号输入与回响信号输出, *以及一个T0定时器用于时间计数。 * 使用DS18B20测量环境温度,声速公式:V=334。1m/s+Temperature*0、61, *单片机晶振为12Mhz(11、953M),计数时为T=1us *计算公式:S=(334。1m/s+Temperature*0。61)*N*T/2,N为计数值=TH0*256+TL0*/ /*包含头文件*/ #include 〈reg51。h> #include 〈intrins。h> #define Delay4us(){_nop_();_nop_();_nop_();_nop_();} /*宏定义*/ #define uchar unsignedchar?//无符号8位 #define uint?unsigned int//无符号16位 #define ulongunsigned long ?//无符号32位 /*全局变量定义*/ sbit BEEP=P1^5;??//报警测量超出范围 sbit Trig=P3^4; //HC-SR04触发信号输入 sbitEcho=P3^2;?//HC—SR04回响信号输出 float xdataDistanceValue=0。0;?//测量得距离值 float xdata SPEEDSOUND; ??//声速 float xdataXTALTIME; ?//单片机计数周期 uchar xdata stringBuf[6];??//数值转字符串缓冲 //LCD1602提示信息 uchar codePrompts[][16]= { ?{"Measure Distance"}, //测量距离 {"-Out of Range -"}, //超出测量范围 ?{"MAX range400cm "}, //测距最大值400cm {”MIN range 2cm"},?//测距最小值2cm {”"},?//清屏 }; uchar xdata DistanceText[]="Range: ";//测量结果字符串 uchar xdata TemperatureText[]="Temperature:";//测量温度值 /*外部函数声明*/ extern voidLCD_Initialize(); //LCD初始化 extern void LCD_Display_String(uchar*, uchar); externvoid ReadTemperatureFromDS18B20(); extern int xdataCurTempInteger; void DelayMS(uint ms);?//毫秒延时函数 voidDelay20us(); //20微秒延时函数 voidHCSR04_Initialize();//HCSR04初始化 float MeasuringDistance();?//测量距离

超声波测距报告含程序汇总

《单片机原理及应用》 单片机课程设计报告超声波测距报告

目录 第1 章课程设计概述 (2) 1.1 课程设计选题及原理 (2) 1.2课程设计选题调研 (2) 1.2.1 选题目的与意义 (2) 1.2.2 国内外研究综述 (3) 第2 章方案设计 (4) 2.1 主要任务 (4) 2.2 设计框图 (4) 2.3 设计所需元器件及简介 (4) 2.4 设计程序流程简图 (5) 2.5 编程语言的选择 第3 章电路及部分代码设计 (6) 3.1 Stc12c5a60s2最小系统 (6) 3.2 超声波测距模块 (7) 3.3 数码管显示模块 (8) 3.4 蜂鸣器报警模块 (9) 3.5 总仿真结果及实物测量结果 (10) 第4 章课程设计心得体会和总结 (11) 4.1 心得体会 (11) 4.2 总结 (11) 附1 课程设计仿真图………………………………………………………… 附2 课程设计实物图………………………………………………………… 附3 课程设计程序设计代码……………………………………………………………

第1 章课程设计概述 1.1 课程设计选题及原理 课程设计题目 超声波测距仪 设计原理 通过超声波发射装置发出超声波,根据接收器接到超声波时的时间差就可以知道距离了。这与雷达测距原理相似。超声波发射器向某一方向发射超声波,在发射时刻的同时开始计时,超声波在空气中传播,途中碰到障碍物就立即返回来,超声波接收器收到反射波就立即停止计时。 最常用的超声测距的方法是回声探测法,超声波发射器向某一方向发射超声波,在发射时刻的同时计数器开始计时,超声波在空气中传播,途中碰到障碍物面阻挡就立即反射回来,超声波接收器收到反射回的超声波就立即停止计时。超声波在空气中的传播速度为340m/s,根据计时器记录的时间t,就可以计算出发射点距障碍物面的距离s,即:s=340t/2。 由于超声波也是一种声波,其声速V与温度有关。在使用时,如果传播介质温度变化不大,则可近似认为超声波速度在传播的过程中是基本不变的。如果对测距精度要求很高,则应通过温度补偿的方法对测量结果加以数值校正。声速确定后, 只要测得超声波往返的时间,即可求得距离。这就是超声波测距仪的基本原理。 1.2课程设计选题调研 1.2.1 选题目的与意义 超声波是指频率在20KHz以上的声波,它属于机械波的范畴,可用于非接触测量,具有不受光、电磁波以及粉尘等外界因素的干扰的优点,利用计算超声波在发送端和接收端之间的传输时间和声速来测量距离,对被测目标无损害。而且超声波传播速度在很大范围内与频率无关。超声波的这些独特优点越来越受到人们的重视。 目前对于超声波精确测距的需求也越来越大,比如油库和水箱液面的精确测量和控制,汽车辅助泊位系统的应用,物体内气孔大小的检测和机械内部损伤的检测等。在机械制造,电子冶金,航海,宇航,石油化工,等工业领域也有广泛地应用。此外,在材料科学,医学,生物科学等领域中也占具重要地位。

相关文档
最新文档