加气混凝土配合比设计任务书

加气混凝土配合比设计任务书
加气混凝土配合比设计任务书

混凝土配比设计任务书

目录:1任务书内容

2概述

3加气混凝土的基本组成材料

⑴钙质材料

⑵硅质材料

⑶外加剂

4配合比设计

5生产控制要求

6施工要求

7搜集资料目录及摘要

8参考文献

混泥土配比设计任务书

⒈训练目的:掌握不同工程条件下混泥土配比设计与施工要求

⒉训练内容:高强混泥土、大体积混泥土、泵送混泥土、轻质混泥

土、加气混泥土、大孔混泥土、流态混泥土、防水混泥土、道路混泥土的配比设计

配比设计资料组成:

(1)概述、工作性能、要求

(2)所用原材料及选用要求(两种要求)

(3)配比设计

(4)生产控制要求

(5)施工要求

(6)搜集资料目录及摘要

⒊训练要求:

(1)选题

(2)自己选定各种需要的技术参数,但要说明依据

(3)有资料搜集说明和记录

选题:加气混泥土

一.概述:

加气混泥土又称发气混泥土,是含硅材料和钙质材料加水并加入适量的发气剂和其他的附加剂经混合搅拌、喷注发泡、胚体静停与切割后,再经蒸压或常压蒸气养护制成的多孔轻质混泥土,可制作砌块、屋面板、墙板和保温管等制品,

广泛应用于工业和民用建筑。

加气混泥土最早出现于1923年,1929年正式建厂生产,但在工程中大量应用是在20世纪40年代。主要生产和应用的国家有前苏联、德国、日本等。我国1931年开始生产应用加气混泥土,并以此材料建造了当时国内最高的大楼(20层)。1978年以后,由于高层建筑的发展和墙体材料改革的需要,加气混泥土在全国迅速发展,到2002年,国内生产能力已达1350万立方米。

按目前应用加气混泥土的情况来看,我国与先进国家相比仍有很大差距,与我国建筑事业的发展很不适应。因此,加快加气混泥土的发展步伐,并在建筑工程中大力推广应用,是建筑领域的一个非常重要的课题。

加气混凝土的发展历史

◆加气混凝土最先出现于捷克。

◆1929年在瑞典建成了第一座加气混凝土厂。

◆我国早在30年代有了生产和使用加气混凝土的记录,产品用于上海大厦、国际饭店等。

◆1958年,原建工部建筑科学研究院开始研究蒸养粉煤灰加气混凝土。

◆1965年建成我国第一家加气混凝土厂---北京加气混凝土厂。

◆目前,我国建成各类加气混凝土厂逾400家。总设计能力约2600万m3,实际产量约1200万立方米,折标准砖为78亿(折标准砖)。而我国墙体材料总产量为8500亿(折标准砖),其中新型墙体材料3500亿(折标准砖),加气混凝土占墙体材料不到1%,也仅占新型墙体材料的2.2%,与其节能、节地和利废的责任不相符。

二.加气混泥土的基本组成材料

基本组成材料是加气混泥土最主要的原材料,它必须满足在湿热条件下生成以硅酸盐为主体的水化矿物。加气混泥土组成材料包括两大类:一类是钙质材料,如水泥、石灰、高炉矿渣等;另一类是硅质材料,如砂、粉煤灰、煤渣、煤矸石、尾矿粉等。此外,加气混泥土还有一种很重要的材料,即外加剂。在选择原材料时一般应以优先使用

工业废渣和当地资源为原则。

钙质材料

水泥和石灰是加气混泥土中的钙质材料。水泥在加气混泥土中可以作为单一钙质材料,也可以与石灰一起作为混合钙质材料。

(1)水泥、石灰在加气混泥土中的作用

Ⅰ.为加气混泥土中的主要强度组分水化钙(C-S-H)的形成提供CaO。

Ⅱ.为一些发气剂的发气提供碱性条件。

Ⅲ.水泥、石灰在水化时放出热量,可以提高料浆温度,加速料浆的水化硬化。

Ⅳ.掺加水泥还可以保证浇筑稳定,加速料浆的稠化和硬化,缩短预养时间,改善胚体和制品的性能。

(2)对水泥的质量要求

对水泥的要求根据加气混泥土的品种、工艺不同而有所不同。如单独使用水泥做钙质原料是应采用强度等级较高的硅酸盐水泥或普通硅酸盐水泥。这些水泥水化是可产生较多的Ca(OH)2。如与石灰共同作为钙质材料,可使用强度等级为32.5MPa的矿渣水泥、粉煤灰水泥及火山灰水泥。对水泥中游离氧化钙含量可适当放宽,因为经蒸压养护,游离氧化钙将全部水

化,而且水泥的掺量不是很高,不会引起安定性不良。

不宜用高比表面积的早强型水泥作钙质材料,因为水泥水化硬化过快会影响铝粉的发气效果。

水泥熟料中CaO含量要大于60%,水泥中游离氧化钙不大于6%,MgO含量不大于6%。

水泥中铬酸盐含量不得超过30~40ppm,否则将影响浇注稳定性。一般普通硅酸盐水泥中酪酸盐含量通常不超过20ppm,符合生产加气混泥土的技术要求。此外,生产加气混泥土用的水泥其碱度必须大于55mg当量/L。

(3)对石灰的要求

一般采用回转窑煅烧(1100~1200℃)的中速消解生石灰(消解速度15~30min)。要求有效氧化钙含量为60%~70%;氧化镁含于2%~3%,过烧石灰含量小于2.5%;细度(以比表面积计)为5000~6000c㎡/g相当于0.088mm筛筛孔余量不大于10%,消解温度大于70℃。

在加气混泥土生产中,不宜采用消石灰,因消石灰蒸压后制品强度较低。

硅质原料

生产中一般采用全部磨细砂,故其天然级配无意义。国内要求砂中SiO2总量>70%(国外要求SiO2>80%),并要求石英含量>40%。Na2O<1.5%,K2O<3%,有机杂质(腐殖质)<3%。

砂中碳酸钙物质(如珊瑚、贝壳等)含量不能大于10%。一般要求砂的烧失量<0.02%。

符合上述要求的砂,例如河砂、海砂、风积砂、砂岩都可以使用。但在使用海砂时,为防止制品内钢筋锈蚀,要特别注意氯离子含量不能大于0.02%。否则应将海砂冲洗后在使用。

主要有石英砂、粉煤灰、烧煤矸石、矿渣等。硅质原料的主要作用是加气混泥土的主要强度组分水化硅酸钙提供SiO2。因此,对硅质原料的主要要如下:

ⅰ.SiO2含量较高。

ⅱ.SiO2在水热条件下有较高的反映活性。

ⅲ.原料中杂质含量较少,特别是对加气混泥土性能有不良影响的K2O.Na2O及一些有机物。

生产中一般采用全部磨细砂,故其天然级配无意义。国内要求砂中SiO2总量>70%(国外要求SiO2>80%),并要求石英含量>40%。Na2O<1.5%,K2O<3%,有机杂质(腐殖质)<3%。

砂中碳酸钙物质(如珊瑚、贝壳等)含量不能大于10%。一般要求砂的烧失量<0.02%。

符合上述要求的砂,例如河砂、海砂、风积砂、砂岩都可以使用。但在使用海砂时,为防止制品内钢筋锈蚀,要特别注意氯离子含量不能大于0.02%。否则应将海砂冲洗后在使用。

目前,对各种硅质原料的具体要求如下。

(1)石英砂

砂在加气混泥土中的主要作用是提供SiO2,在蒸压条件下与CaO化合生成水化硅酸钙;此外,部分尚未完全反映的砂核在加气混泥土中起到骨料的作用。

SiO2≥90%,Na2O<2%,K2O<3%,黏土含量小于10%,烧失量小于5%;175℃水热条件下溶解度大于或等于0﹒18g/L,并随着水温的提高而提高;干磨粉细

度要求4900孔筛余小于5%,湿磨粉细度为比表面积大于3000㎝2/g;有机酸含量小于3%。

在加气混泥土中不得含有石子,另外在配筋加气混泥土材料中应严格限制氯离子含量小于002%,以防止锈蚀钢筋。

(2)粉煤灰

在加气混泥土中,粉煤灰兼有骨料和生成胶凝材料的双重作用。粉煤灰不仅能提供SiO2,同时提供Al2O3。

粉煤灰应具有必要的细度(4900孔/㎝2)筛筛余小于20%,2000孔/㎝2筛筛余小于70%,细度不足时,应予磨细。

用于加气混泥土的粉煤灰质量标准应达到JC409G-9Ⅰ《硅酸盐制品用粉煤

加气混泥土用粉煤灰技术指标/%

烧煤矸石是煤矿的副产品,是一种含碳的岩土质物质。经自燃或人工燃烧后剩下的物质称为烧煤矸石,其他化学成分与粉煤灰接近。

作为加气混泥土硅质原料的烧煤矸石,其技术要求可参照粉煤灰的技术指标,其中关键是烧失量。因为烧失量高,意味着煤矸石中未燃碳含量高,将会严重影响混凝土的质量,所以要求燃烧后的煤矸石含碳量不大于6%,

(4)矿渣

粒化高炉矿渣在饱和的Ca(OH)2溶液中会产生显著的水化反应,有明显的胶凝性能。而在加气混凝土料浆中,生石灰水化后生成Ca(OH)2,水泥熟料中硅酸盐矿物水化时也析出Ca(OH)2,其液相呈碱性状态,可以激发矿渣的活性,因此用磨细矿渣可以代替部分水泥,作为加气混凝土中的钙质材料。

技术要求如下:

⒈矿渣的活性越高,胚体硬化越快,加气混凝土强度越高,因此要求矿渣水卒质量好,颗粒松散均匀,外观呈淡黄色或灰白色,有玻璃光泽,无铁渣及硬渣大块。

⒉化学成分:

CaO:含量大于40%;

Al2O3:9%~16%;

S:0.8~1.6%

CaO / SiO2(质量比):>1。

不符合上述要求的矿渣,还可以通过试验进一步鉴别它是否适宜使用。

外加剂

(1)发气剂

发气剂是生产加气混凝土的关键原料,它不仅能在料浆中发气形成大量细小而均匀的气泡,同时对混凝土性能不会产生不良影响。对加气混凝土发气材料曾进行很多研究,可以作为发气剂的材料主要有铝粉、双氧水、漂白粉等,但考虑生产成本、发气效果等种种因素,目前基本上都用铝粉作为发气材料。

铝粉是金属铝经磨细而成的银白色粉末,其发气原理是金属铝在碱性条件下与水发生置换反映产生氢气,化学反应式如下:

2Al+3Ca(OH)2+6H2O→C3A·6H2O+3H2↑

由于金属铝的活性很强,为防止在生产及存储、运输过程中铝粉与空气中的氧气发生化学反应形成三氧化二铝,因此要在磨细时加入一定量的硬脂酸,使铝酸表面吸附一层硬脂酸保护膜。在使用前,首先通过烘烤法或化学法进行脱脂。由于烘烤法易着火燃烧,影响安全,所以已较少使用。化学法脱脂是通过加入一些脱脂剂(这些溶剂是能溶解硬脂酸的有机溶剂或表面活性物质),是吸附在铝粉表面的硬脂酸溶解或乳化。常用的脱脂剂有平平加、合成洗涤剂、OP乳化剂、皂素粉,掺量一般为铝粉质量的1%~4%。

我国加气混凝土用铝粉的国家标准(GB 2054-89)见下表

加气混凝土用铝粉技术指标(GB 2054-89)

注:⒈活性铝含量为铝粉中能在碱性介质中反应放出氢气的录占铝粉总质量的百分比。

⒉盖水面积是用来反映铝粉细度和粒形的指标,是1g铝粉按单层颗粒无间隙排列

在水面上所能覆盖水面的面积。

发气量与时间的关系表示如下表所示:

发气量与时间的关系

(2)气泡稳定剂

在我国加气混凝土生产中,常用的气泡稳定剂有可溶油、拉开粉、含皂素植物、匀染剂与氧化石蜡皂等。根据生产经验,以采用碳原子说为12~16之间的表面活性物质作为加气混凝土的气泡稳定剂,其效果较好。

①氧化石蜡皂稳泡剂氧化石蜡皂是石油工业的副产品以石蜡为原料,

在一定温度通入空气进行氧化,再用苛性钠加以皂化后制得的一种饱

和脂肪酸皂。使用时用水溶解成8%~10%的溶液。

②可溶性油类稳泡剂是用花生油酸、三乙醇胺和水制成的稳泡剂。三

者的比例是花生油酸∶三乙醇胺∶水=1∶3∶36。

(3)调节剂

在加气混凝土料浆中,加入调节剂的目的,主要是为了使铝粉的发气速度与料浆的稠化速度相适应,以保证料浆具有良好的浇注稳定性。调节铝粉发气开始时间可采用水玻璃;提高液相碱度的采用,纯碱;抑制生石灰的消解速度可采用三乙醇胺和石膏;提高胚体强度可采用石膏和水泥;调节胚体的蒸压膨胀值以消除制品的垂直裂缝可采用菱苦土等。另外,随着加气混凝土品种及原材料性质的不同,在要调节的内容相同的情况下,所采用的调节剂亦不完全相同。

①纯碱和烧碱有以下两种作用。

ⅰ增加铝粉中活性铝含量,提高发气速度。因为铝粉在加工时虽然用硬脂酸脂化保护,但仍有部分铝粉被空气中的氧气氧化形成三氧化二铝,影响了铝粉的发气效率。加入氢氧化钠后,将产生如下反应:

Al2O3+2NaOH2→NaAlO2+H2O

Al2O3被溶解后,内部的Al暴露出来,与水反应产生氢气。

ⅱ激发矿渣、粉煤灰的活性。在料浆中掺有矿渣或粉煤灰时,Na2CO3和NaOH 可以对矿渣、粉煤灰中的Si—O体结构起破坏作用,从而激发矿渣、粉煤灰的水化活性,提高制品强度。

②掺加石膏有以下3个作用

ⅰ和水泥中掺加有石膏一样起缓凝作用

ⅱ参与水化反应,与C3A、Ca(OH)2反应生成对料浆硬化稠度及强度有重要作用的水化硫铝酸钙;

ⅲ对石灰的消化起抑制作用,控制料浆的碱度,从而调节发气速度。

③水玻璃和硼砂

水玻璃的主要作用是延缓铝粉发气速度,而硼砂的作用是延缓水化凝结速度,从而延缓料浆的稠化硬化速度。

掺加上述调节剂(纯碱、烧碱、石膏、水玻璃、硼砂)的主要目的是使料浆的稠化速度与发气速度同步,避免出现“憋气”或“感冒”、“塌模”等影响稳定性的现象。

④轻烧镁粉

轻烧镁粉是菱镁矿经800~850℃煅烧时形成以MgO为主要成分的淡黄色粉末,在水热条件下,发生如下化学反应:

MgO+H2O →Mg(OH)2

⑤上述反应固相体积增加近1.9倍。因此,在生产配筋加气混凝土时,

加入适量的轻烧氧化镁可以增加加气混凝土蒸压时的膨胀率,在一定程度上避免由于钢筋与混凝土的热膨胀率引起的应力破坏。但加气混凝土的配料、配筋量与蒸压热工制度不同,这种热膨胀应力也不同,因此轻烧镁粉的掺量应在计算和实验的基础上予以确定。

(4)钢筋防锈剂

由于加气混凝土空隙率高,抗渗性有效期短,碱度低,一些钢筋加气混凝土制品中的钢筋容易受到锈蚀。因此在生产过程中应对钢筋表面进行防锈处理,如在钢筋表面涂刷防锈剂。

钢筋防锈剂应满足下列要求:

ⅰ不透水,能有效的防止氧气和有害气体的扩散渗透,本身不含对钢筋有侵蚀性的物质;

ⅱ涂层必须能经受加气混凝土胚体和料浆高碱度以及长时间高温、高湿的作

用;

ⅲ涂层与钢筋及加气混凝土有良好的粘结力,制品发生破裂时,破坏不应产生在涂层与钢筋或加气混凝土的界面上;

ⅳ涂料应具有良好的工作性,在对钢筋处理期间保持涂料的均匀性,同时涂层要易于操作,有一定的强度,在加工和搬运过程中不易损坏,而涂层的弹性模量应远远大于加气混凝土。

目前国内常用的防锈剂有水泥-沥青-酚;醛树脂防腐剂(又称“727”防锈剂);聚合物水泥防锈剂;西北-Ⅰ型防腐剂(一种水性高分子涂料);沥青-乳胶防锈剂(LR型防锈剂);沥青-硅酸盐防锈剂等。这些防锈剂的共同点是:ⅰ对钢筋有良好的粘结力;ⅱ在蒸压过程中涂层不会被破坏;ⅲ价格较便宜。三.配合比设计:

选择石灰-水泥-砂加气混凝土

设石灰-水泥-砂加气混凝土的表观密度为700kg/m3,以下列资料选择配合比石灰:活性氧化钙含量56%,密度3.20g/cn3;

水泥:4.25普通水泥,密度3.10g/cm3;

沙子:磨细度3000~3500,密度2.65g/cm3;

铝粉:活性老年含量β为90%,40℃时的发气量(V)为1.40L/g,采用拉开粉作脱脂和气泡稳定剂。

当沙的磨细度为3000~5000cm3/g时,可选用0.24~0.5的CaO/SiO2比(SiO2/CaO比为4.2~2.0),细度大者为低直,细度小者为高值。考虑到料浆升温不能太快太高,一般常用的摩尔CaO/SiO2比在0.24~0.34之间换算成质量CaO/SiO2比则在0.22~0.32之间(质量SiO2/CaO比在4.55~3.13之间)。

该石灰的活性氧化钙含量为70%,为保证原料中所必须的SiO2/CaO比,砂和石灰的质量比K可在2.18~3.12间选取,或者说石灰-砂干混合料的活性氧化钙含量可在17%~22%范围内选用。若石灰活性氧化钙含量不为70%,砂和石灰的质量比K′为:

K′=K﹡а/70

式中а——石灰的实际活性氧化钙百分含量。

计算:

⒈确定原料钙硅比及石灰、水泥和砂用量取K﹦2.5

则K′=K﹡а/70=2.5﹡56/70﹦2.0

钙质材料用量:

m g钙=аpLs*(1+K)

式中:а——考虑到结合水的系数,对表观密度为400~600㎏/m3的加气混凝土取0.85,对表观密度700~900㎏/m3的取0.90。

m g钙=аpLs*(1+K)=0.9﹡700/(1+2.0)=210㎏考虑在钙质材料中掺入少量水泥以代替部分石灰,为了使石灰-砂加气混凝土的成本不致过分增高,水泥用量以占钙质材料总量的13%~17%为宜。取水泥掺量为14%,所以每立方米制品的水泥和石灰用量为:

m co=14%﹡210=30(㎏)

m lo=m g钙-m co=210-30=180(㎏)

每立方米制品砂的用量:

m so=K′m g钙=2.0﹡210=420(㎏)

石灰∶水泥∶砂=1∶0.17∶2.33

⒉水料比及用水量:

石灰-沙浆的流动度

(一般生产密度500㎏/m3的石灰-沙加气混凝土的水料比为0.58~0.63,生产700㎏/m3的石灰-沙加气混凝土的水料比为055060)。然后,用选用的初始流动度+/-2㎝的料浆(三组)进行发气试验,观察其发气膨胀情况(浇注在容积不小于500 cm3的容器中)。每组浇三个试件,在膨胀结束后1h测定料浆密度。将所测得的数值,按下式换算成加气混凝土绝干表观密度:

pLs=p料浆/а(1+W/T)

式中:pLs——加气混凝土的干表观密度(㎏/m3);

p料浆——发气后料浆表观密度(㎏/m3);

а——考虑到结合水的系数,对表观密度为400~600㎏/m3的加气混凝土取0.85,对表观密度700~900㎏/m3的取0.90。

W/T——水料比。

取料浆散开度为19㎝,设通过试验确定满足料浆散开度的水料比为0.57。通过发气试验测得料浆发气后的表观密度为1010 kg/L,算出蒸压后加气混凝土的干表观密度为:

pLs=p料浆/а(1+W/T)=1010/0.9(1+0.57)=715(㎏/m3)

计算所得混泥土表观密度能满足设计的要求,因此可认为所选用的料浆稠度度合适,水料比适宜。确定水料比为0.57。

加气混凝土所用料浆的用水量m s0

m w0=W/T(m lo+ m so)

式中:m lo——石灰用量(㎏);

m s0——砂用量(㎏);

W/T——砂料浆(无发气剂)

故用水量为:

m w0=W/T(mlo+ m so)=0.57﹡(210+420)=358(㎏)

⒊铝粉用量

铝粉发气反应所放出的氢气体积一般应等于加气混凝土空隙体积:

mаL=10000-(m lo/pL+ m s0/p′s+ m s0)/ZVt,p

式中:Vt,p——1g铝粉在38~40℃时的发气量(L);

Z——铝粉的活性系数(一般为0.9);

m lo、m so、 m w0——分别为1m3加气混凝土石灰、砂及水的用量(㎏)pL、p′s——分别为石灰和砂的视密度,石灰视密度pL=320а+270(1-а),式中а为活性氧化钙含量。

铝粉用量为:

mаL=10000-(m lo/pL+ m s0/p′s+ m s0)/ZVt,p

=10000-(30/3.10+180/3.20+420/2.65+358)/0.9﹡14

=320(g)

铝粉占干物料的百分数为:0.332/210+420﹡2%=0.052%

⒋石膏用量

取石膏用量为钙质材料的的2%,则每立方米加气混凝土中石膏用量为:

m lg= m g钙﹡2%=210﹡2%=4.2(㎏)

⒌废料浆用量

设拌制每立方米制品用的料浆中不掺入视密度为1.3的料浆m y0为40L,则废料浆中的固体物料量和水量分别为:

m′g固=[ps(p废料-1)/ps-1] m y0=[2.65(1.3-1)/2.65-1] ﹡40 =19.2(㎏)

m′w0=[ ps-p废料/ps-1] m y0=[2.65-1.3/2.65-1] ﹡40

=32.7(㎏)

因此,实际砂用量为:m′so=420-19.2=400.8(㎏)实际水用量为:m′w0=358-32.7=325.3(㎏)

在选择配合比时在选择配合比时,由于最初选用的钙硅比值不一定恰当,所以先用的配合比制备6个10㎝﹡10㎝﹡10㎝的试件,经蒸压处理后,测定其密度和强度。若试件强度偏低时,应增加石灰用量(或水泥用量),重复上述试验,直到强度和密度都满足为止。

实验室初步选定的配合比,往往不能直接用于生产上,特别是料浆的浇注稳定性不一定合乎生产实际要求。因为同工业生产用的模具比较,实验室用的试模很小,同时实验室试验时的浇注高度较低,材料用量甚少,料浆散热也较快。因此,必须通过中间性试验和生产性的大模试验,对配合比进行修正,最后才能得到料浆浇注稳定、制品性能良好的成本低廉的用于工业生产的配合比。

四.生产控制要求

蒸压加气混凝土砌块质量控制要点

1 对水泥的要求

水泥水化时, 除了能生成大量的水化硅酸钙、水化铝酸钙等水化物外, 还能析出大量的Ca(OH)2。在蒸压条件下, 这些游离的Ca(OH)2与含硅材料中的SiO2和Al2O3作用, 以水热合成方式生成水化硅酸钙和水化铝酸钙。两种方式所产生的水化矿物质同时提高制品的强度。由于水泥中CaO的含量约为60%, 而其中只有20%左右经过水化析出游离的Ca(OH)2。因此, 从提高蒸压加气混凝土的强度来看, 采用石灰- 水泥混合钙质体系更为有利。

2 对生石灰的要求

在生产蒸压加气混凝土砌块过程中, 通过生石灰提供有效的Ca与含硅材料中的SiO2和l2O3进行充分的水热反应, 生成水化硅酸盐和水化铝酸盐而获得强度, 同时参与铝粉的发气反应。反应过程中释放出大量的热能, 使坯体温度达到80℃~90℃, 使坯体在静停硬化阶段得到自然养护。在单位时间里释放出的热量过大, 又会影响养护的效果。因此, 生产蒸压加气混凝土砌块所使用的生石灰应当符合JC/T 621《硅酸盐建筑制品用生石灰》的标准。同时, 必须添加调节剂来控制石灰的水化放热速度。

3 对矿渣的要求

生产蒸压加气混凝土砌块的矿渣是经过水淬的粒状高炉矿渣, 要求其A级矿渣(CaO+MgO)的质量分数至少应大于或等于65%。这种矿渣所含的玻璃质成分中的SiO2和Al2O3具有活性, 储藏大量的化学内能, 因而可以提高浇注的稳

定性, 对坯体的硬化起到一定的促进作用。同时, 在蒸压条件下, 矿渣中的硅酸盐矿物质能够与SiO2作用生成低碱水化物, 从而提高蒸压加气混凝土砌块的强度。

4 对砂的要求

砂的化学成分和矿物质组成对蒸压加气混凝土砌块的质量影响甚大。因此, 对砂的选择要求很高, 应按照JC/T 622《硅酸盐建筑制品用砂》中规定的标准进行选用。一般来讲, 砂中的石英含量越高, 用其生产出来的蒸压加气混凝土砌块的质量就越好。

5 对粉煤灰的要求

在生产蒸压加气混凝土砌块的过程中, 粉煤灰兼有集料和生成胶凝材料的双重作用。粉煤灰同时提供SiO2和Al2O3与CaO进行水热反应, 生成水化硅酸盐和水化铝酸盐, 使砌块获得强度。因此, 用于生产蒸压加气混凝土砌块的粉煤灰应具有必要的细度, 细度不足时应通过二次加工进行磨细。

6 蒸压养护要求

蒸压加气混凝土砌块的蒸压养护是获得强度等性能的必要条件, 不仅关系到制品性能的好坏, 也关系到生产效率的高低和能源的消耗。最佳养护制度不仅对坯体进行充分和合理的养护, 使制品在较短时间内达到设计强度, 而且最大限度地避免了坯体和制品可能受到的损伤。因为托勃莫来石等产物只有在174.5℃以上时才会大量生成, 因此, 蒸压加气混凝土砌块只有在此温度和压力水平上, 并保持一定时间,才具有良好的综合物理性能。根据是否真空等情况,蒸压加气混凝土砌块的养护时间一般需要6h~12h。

加气混凝土的发展和产品特点:

加气混凝土制品在国外发展到现在已有近一百年的历史,加气混凝土已成为建筑行业支柱产业,我国引进该技术也近四十年的历史,我厂是加气混凝土行业最早生产和研发机构。加气混凝土生产工艺和设备装备等各方面技术均以达到领先水平。公司加气混凝土设备产销量及各类产品项综合指标均排在国内同行业之前列。由于具有容重轻、保温性能高、吸音效果好,有一定的强度和可加工等优点,且生产原料丰富,特别是使用粉煤灰为原料,即能综合利用工业废渣、治理环境污染、不破坏耕地,又能创造良好的社会效益和经济效益,是一种替代传统实心粘土砖理相的墙体材料。多年来受到国家墙改政策、税收政策和环保政策的大力支持,加气混凝土制品已成为新型建筑材料的一个重要组成部分,具有广阔的市场发展前景。

加气混凝土生产工艺:

可以根据原材料类别、品质、主要设备的工艺特性等,采取不同的工艺进行生产。但一般情况下,加气混凝土是由将粉煤灰或硅砂加水磨成浆料,加入粉状石灰,适量水泥、石膏和发泡剂,经搅拌后注入模框内,静氧发泡固化后,切割成各种规格砌块或板材,由蒸养车送入蒸压釜中,在高温饱和蒸气养护下即形成多孔轻质的加气混凝土制品。

加气混凝土产品和特性:

加气混凝土的发展和产品特点:

加气混凝土制品在国外发展到现在已有近一百年的历史,加气混凝土已成为建筑行业支柱产业,我国引进该技术也近四十年的历史,我厂是加气混凝土行业最早生产和研发机构。加气混凝土生产工艺和设备装备等各方面技术均以达到领先水平。公司加气混凝土设备产销量及各类产品项综合指标均排在国内同行业之

前列。由于具有容重轻、保温性能高、吸音效果好,有一定的强度和可加工等优点,且生产原料丰富,特别是使用粉煤灰为原料,即能综合利用工业废渣、治理环境污染、不破坏耕地,又能创造良好的社会效益和经济效益,是一种替代传统实心粘土砖理相的墙体材料。多年来受到国家墙改政策、税收政策和环保政策的大力支持,加气混凝土制品已成为新型建筑材料的一个重要组成部分,具有广阔的市场发展前景。

1.加气混凝土的优点:

加气混凝土之所以能得到快速的发展,主要是因为它有许多其它墙体材料不可比拟的优点。

(1)重量轻

加气混凝土的主要特点就是重量轻,以轻取胜。所以它的干体积密度一般只有400-700kg/m3,相当于粘土砖的1/3,普通混凝土的1/5,和一般轻骨料混凝土及空心砌块、空心粘土砖等制品相比也要低的多。

(2)优异的保温隔热性

加气混凝土具有极低热透过率,因而有良好的保温隔热性能。它的导热系数常为0.09-0.22w/(m.k),仅为粘土砖的1/4-1/5,普通混凝土的1/5-1/10.它的气孔和微孔率约70%,这是它具有保温隔热性的主要原因。

(3)可加工性良好

加气混凝土不用粗骨料,具有良好的可加工性,可锯、刨、钻、钉。在使用时可根据需要任意加工。并可用适当的粘结材料粘结。给建筑施工提供了有利的条件。

(4)吃灰量大、利废率高

粉煤灰等废渣占其总配比量的75%以上。可大量消化粉煤灰、煤矸石、废砖头、磷石膏、电石渣等工业废渣,有利于治理环境污染。

2.加气混凝土的种类:

加气混凝土产品品种可分为非承重砌块、承重砌块、保温块、墙板与屋面板五种。其中,非承重砌块生产和使用最为广泛,它的体积密度一般为500 kg/m3和600 kg/m3,主要使用在结构中的填充墙与隔墙,而不承担荷载;承重砌块的体积密度为700 kg/m3和800 kg/m3,建筑中经特殊结构处理后承担荷载;保温块的体积密度一般为300 kg/m3和400 kg/m3,主要用于建筑物保温隔热、屋面板和墙板都是加筋加气混凝土板,根据用途不同,其配筋不同。

3.加气混凝土在性能上的特点:

容重轻(400~800公斤/米3),保温性能好;可以锯、刨、钉、铣,易于加工;并有良好的防火性能。加气混凝土的特性

重量轻

加气混凝土的孔隙达70%~80%,体积密度一般为400~700kg/m3,相当于实心粘土砖的1/3,普通混凝土的1/5。

几种常用建筑材料的体积密度 (kg/m3)

加气混凝土实心粘土砖空心砌块陶粒混凝土普通混凝土

400-700 1600-1800 900-1700 1400-1800 2000-2400

保温性能好

加气混凝土内部具有大量的气孔和微孔,因而有良好的保温隔热性能。通常20cm厚的加气混凝土墙的保温隔热效果,相当于49cm厚的普通实心粘土砖墙。

几种常用建筑材料的导热系数 (W/m·K)

加气混凝土实心粘土砖空心砌块石膏板普通混凝土玻璃

0.09~0.22 0.43~0.81 1.0~1.046 0.30 1.50 0.75

良好的耐火性能与不散发有害气体

加气混凝土的主要原材料大多为无机材料,其本身又具有保温隔热性能,因而,还有良好的耐火性能,并且遇火不散发有害气体;由于对建筑物中的钢筋具有较好的隔热作用,当加气混凝土建筑遭遇火灾时,往往仅在表面造成损伤,对结构性能并不起根本的破坏。

加气混凝土的耐火性能

种类干密度(kg/m3) 厚度(㎜)耐火评定(min)

水泥·矿渣·砂 500 200 480

水泥·石灰·粉煤灰 600 200 480

水泥·石灰·砂 500 150 >240

具有可加工性

加气混凝土不用粗骨料、具有良好的可加工性,可锯、刨、钻、钉,并可用适当的粘结材料粘结,为建筑施工创造了有利的条件。

良好的吸声性能

加气混凝土由于特有的多孔结构,因而具有一定的吸声能力(吸声系数0.2~0.3);也和其它轻质材料一样,加气混凝土隔声性能不好,这是受“质量定律”支配,单位面积材料的重量越轻,隔声能力越差,但可以通过建筑措施来解决。

原料来源广、生产效率高、生产能耗低

加气混凝土可以用砂子、矿渣、粉煤灰、尾矿、煤矸石及生石灰、水泥等原料生产。年人均实物劳动效率可达600m3左右,少数自动化程度较高的企业则达900~1000m3。

单位制品的生产能耗56.8kg(标煤)。

几种外墙材料生产总能耗:

种类墙厚(cm) 每m2墙面生产能耗(kg标煤)

制品水泥.石灰钢筋合计

加气混凝土 20 37 4.6 3.5 21.28

混凝土砌块 37 14.58 4.6 3.5 22.68

陶粒混凝土 28 43.00 1.16 3.48 47.64

实心粘土砖 37 31.92 4.03 0.57 36.52

加气混凝土的各种性能随其容重和含水率不同而变化。中国制造的加气混凝土在干燥状态下的主要物理力学性能见表干燥状态下加气混凝土主要物理力学性能。

加气混凝土生产工艺:

可以根据原材料类别、品质、主要设备的工艺特性等,采取不同的工艺进行生产。但一般情况下,加气混凝土是由将粉煤灰或硅砂加水磨成浆料,加入粉状石灰,适量水泥、石膏和发泡剂,经搅拌后注入模框内,静氧发泡固化后,切割成各种规格砌块或板材,由蒸养车送入蒸压釜中,在高温饱和蒸气养护下即形成多孔轻质的加气混凝土制品。

加气混凝土产品和特性:

1)具有良好的隔热保温性能(1R=0.14)

2)轻质、容量范围400-700kg/m3

3)具有良好的隔音性能(RW=52dB-A)

4)具有高精度尺寸,外形尺寸误差±1.5mm

5)具有不可燃性能,安全

6)具有良好的加工性

加气混凝土使用原料:

粉煤灰、砂、石灰、石膏、水泥、水、铝粉及铝粉膏

五.施工要求

加气混凝土砌块施工须知

一、砌筑

1、为了便于配料和减少施工中的现场切锯工作量,在建筑施工中应进行排块设计;

2、墙体砌筑前,应向砌块喷淋适量的水,浇水量以水深入砌块深度8~10mm为宜;

3、砌筑砂浆采用M5标号的混合砂浆为宜,标号不要太高,灰缝要饱满。平灰缝要≦15mm,竖缝≦20mm。

4、砌筑时应上下错缝,搭接长度不宜小于被搭接砌块长度的1/3.

5、砌块建筑的内外墙交接处,外墙转角处均应错缝咬砌,砌体中每隔4皮放入2~3根∮6的钢筋,深入墙内不得小于1000mm,砌体与柱的连接同样按上述设置钢筋的方法处理。

6、施工时不得随意开洞留脚手眼,可留踏步搓。

7、墙体与混凝土梁、板底的缝隙,需要加砌块塞紧,砂浆要饱满,不得留有空隙,墙体砌筑时应严格按照《蒸压加气混凝土应用技术规程施工》,墙体必须在允许的高度比内施工,不能满足高度比时必须设置构造柱,当墙体高度大于4m,长度大于5m时,应在墙体中部设置与混凝土柱相联接的通常水平配筋带。

二、抹灰

1、待砌筑墙体干燥后才能抹灰,墙体饰面一定要进行基层处理。

2、基层处理前,必须对两种不同材料之间的界面缝隙进行处理以防开裂、空鼓,除采用的钢丝网加强外,以缝隙为中心每边100mm用抗裂砂浆固定。

3、基层处理可采用20%107胶水溶液,在掺以15%水泥配成浆体涂刷,也可采用甩浆处理。浇水是另一种处理办法,但水渗入砌体的深度以8~10mm为宜,抹灰前最后一遍水,应在抹灰前1小时进行为宜,浇水后立即刷素水泥浆。

4、基层处理完毕,应立即进行抹灰,底灰材料应选用与加气混凝土材料适应的抹灰材料,抹灰应分层过渡,每层砂浆的间隔时间应大于4小时。

5、外墙与屋面、柱之间,及卫生间墙与楼板之间应进行防水处理。

6、外墙抹灰后喷水进行养护。

7、墙体的饰面做法应按照《加气混凝土砌块建筑构造》(JSJ丁一78)的要求进行施工要求。

特别提醒:对底灰和墙体基层处理,未按应用技术规程的要求去做,是抹灰层开裂、空鼓的主要原因。

六.搜集资料及目录

搜集资料:《现代混凝土配合比设计手册》

目录:

第一章混凝土配合比设计基本原则与原理

第二章普通混凝土配合比设计

第三章特种材料混凝土配合比设计

第四章特种性能混凝土配合比设计

第五章特种施工方法混凝土配合比设计

第六章掺外加剂混凝土配合比设计

第七章沥青混凝土配合比设计

第八章沙浆配合比设计

第九章混凝土配合比设计中的新技术应用《混凝土材料技术》

目录:

1绪论

2普通混凝土

3混凝土外加剂

4混凝土材料生产与质量控制

5轻质混凝土

6特种混凝土

7混凝土试验

参考文献:

<现代混凝土配合比设计手册> 张应立主编

<混凝土材料技术> 葛新亚主编

<水泥混凝土组成性能应用> 汪澜编著

<混凝土外加剂>张冠伦,张云理编

混凝土配合比设计步骤分析报告

普通混凝土的配合比设计 普通混凝土的配合比是指混凝土的各组成材料数量之间的质量比例关系。确定比例关系的过程叫配合比设计。普通混凝土配合比,应根据原材料性能及对混凝土的技术要求进行计算,并经试验室试配、调整后确定。普通混凝土的组成材料主要包括水泥、粗集料、细集料和水,随着混凝土技术的发展,外加剂和掺和料的应用日益普遍,因此,其掺量也是配合比设计时需选定的。 混凝土配合比常用的表示方法有两种;一种以1m3混凝土中各项材料的质量表示,混凝土中的水泥、水、粗集料、细集料的实际用量按顺序表达,如水泥300Kg、水182 Kg、砂680 Kg、石子1310 Kg;另一种表示方法是以水泥、水、砂、石之间的相对质量比及水灰比表达,如前例可表示为1:2.26:4.37,W/C=0.61,我国目前采用的量质量比。 一、混凝土配合比设计的基本要求 配合比设计的任务,就是根据原材料的技术性能及施工条件,确定出能满足工程所要求的技术经济指标的各项组成材料的用量。其基本要; (1)达到混凝土结构设计要求的强度等级。 (2)满足混凝土施工所要求的和易性要求。 (3)满足工程所处环境和使用条件对混凝土耐久性的要求。 (4)符合经济原则,节约水泥,降低成本。 二、混凝土配合比设计的步骤 混凝土的配合比设计是一个计算、试配、调整的复杂过程,大致可分为初步计算配合比、基准配合比、实验室配合比、施工配合比设计4个设计阶段。首先按照已选择的原材料性能及对混凝土的技术要求进行初步计算,得出“初步计算配合比”。基准配合比是在初步计算配合比的基础上,通过试配、检测、进行工作性的调整、修正得到;实验室配合比是通过对水灰比的微量调整,在满足设计强度的前提下,进一步调整配合比以确定水泥用量最小的方案;而施工配合绋考虑砂、石的实际含水率对配合比的影响,对配合比做最后的修正,是实际应用的配合比,配合比设计的过程是逐一满足混凝土的强度、工作性、耐久性、节约水泥等要求的过程。 三、混凝土配合比设计的基本资料 在进行混凝土的配合比设计前,需确定和了解的基本资料。即设计的前提条件,主要有以下几个方面; (1)混凝土设计强度等级和强度的标准差。 (2)材料的基本情况;包括水泥品种、强度等级、实际强度、密度;砂的种类、表观密度、细度模数、含水率;石子种类、表观密度、含水率;是否掺外加剂,外加剂种类。 (3)混凝土的工作性要求,如坍落度指标。 (4)与耐久性有关的环境条件;如冻融状况、地下水情况等。 (5)工程特点及施工工艺;如构件几何尺寸、钢筋的疏密、浇筑振捣的方法等。 四、混凝土配合比设计中的三个基本参数的确定 混凝土的配合比设计,实质上就是确定单位体积混凝土拌和物中水、水泥。粗集料(石子)、细集料(砂)这4项组成材料之间的三个参数。即水和水泥之间的比例——水灰比;砂和石子间的比例——砂率;骨料与水泥浆之间的比例——单位用水量。在配合比设计中能正确确定这三个基本参数,就能使混凝土满足配合比设计的4项基本要求。

普通混凝土配合比设计方法及例题

普通混凝土配合比设计方法[1] 一、基本要求 1.普通混凝土要兼顾性能与经济成本,最主要的是要控制每立方米胶凝材料用量及水泥用量,走低水胶比、大掺合料用量、高砂率的设计路线; 2.普通塑性混凝土配合比设计时,主要参数参考下表 ; ②普通混凝土掺合料不宜使用多孔、含碳量、含泥量、泥块含量超标的掺合料; ③确保外加剂与水泥及掺合料相容性良好,其中重点关注缓凝剂、膨胀剂等与水泥及掺合料的相容性,相容性不良的外加剂,不得用于配制混凝土; 3 设计普通混凝土配合比时,应用excel编计算公式,计算过程中通过调整参数以符合表1给出的范围。

2 术语、符号 2.1 术语 2.1.1普通混凝土ordinary concrete 干表观密度为2000~2800kg/m3的水泥混凝土。 2.1.2 干硬性混凝土stiff concrete 拌合物坍落度小于10mm且须用维勃时间(s)表示其稠度的混凝土。 2.1.3塑性混凝土plastic concrete 拌合物坍落度为10mm~90mm的混凝土。 2.1.4流动性混凝土pasty concrete 拌合物坍落度为100mm~150mm的混凝土。 2.1.5大流动性混凝土flowing concrete 拌合物坍落度不小于160mm的混凝土。 2.1.6抗渗混凝土impermeable concrete 抗渗等级不低于P6的混凝土。 2.1.7抗冻混凝土frost-resistant concrete 抗冻等级不低于F50的混凝土。 2.1.8高强混凝土high-strength concrete 强度等级不小于C60的混凝土。 2.1.9泵送混凝土pumped concrete 可在施工现场通过压力泵及输送管道进行浇筑的混凝土。 2.1.10大体积混凝土mass concrete 体积较大的、可能由胶凝材料水化热引起的温度应力导致有害裂缝的结构混凝土。 2.1.11 胶凝材料binder 混凝土中水泥和矿物掺合料的总称。 2.1.12 胶凝材料用量binder content 混凝土中水泥用量和矿物掺合料用量之和。 2.1.13 水胶比water-binder ratio 混凝土中用水量与胶凝材料用量的质量比。 2.1.14 矿物掺合料掺量percentage of mineral admixture 矿物掺合料用量占胶凝材料用量的质量百分比。 2.1.15 外加剂掺量percentage of chemical admixture 外加剂用量相对于胶凝材料用量的质量百分比。

自密实混凝土配合比设计方案

自密实混凝土配合比设计方案 一.工程概况 二.设计依据 CECS 203-2006自密实混凝土应用技术规程 JGJT 283-2012 自密实混凝土应用技术规程 三.配合比设计 1.自密实砼性能要求: 自密实性能:二级强度等级:C40 (1)根据自密实性能等级选取单位体积粗骨料体积用量Vg=0.32m3=320L,则质量为 M g=ρg×V g=2.707?320=866.24kg (2)确定单位体积用水量V W、水粉比W/P和粉体体积V P 考虑到掺入粉煤灰配制C40等级的自密实砼,而且粗细骨料粒形级配良好,砂石表面比较粗糙,选择单位体积用水量175.0L和水粉比0.80(后根据砂率进行微调至0.814)。 V P=V W÷W P =175÷0.814=215L 粉体单位体积用量为0.215m3介于推荐值0.16~0.23m3。 浆体量为0.2150+0.1750=0.390m3介于推荐值0.32~0.40m3。 (3)确定含气量 根据经验以及所使用外加剂的性能设定自密实砼的含气量为1.5%,即15L。(4)计算单位体积细骨料量 因为细骨料中含有2%的粉体,所以根据下式可计算的出细骨料体积用量为281L,质量为731.837kg。 V g+V P+V W+V a+1?2%V S=1000L M s=ρs×V s=2.608?281=731.837kg (5)计算单位体积胶凝材料体积用量V ce

因为未使用惰性掺合料,所以可由下式计算 V ce=V P?2%V S=215?2%×281=209L (6)粉煤灰掺量30%(胶凝材料的质量比例)进行计算 M B×30% ρf + M B×70% ρc =V ce 即: M B×30% 2.3+ M B×70% 3.1 =209 得: M B=587.770kg,M C=M B×70%=411.739kg,M f=176.131kg V c=M C ρC =132.72L,V f= M f ρf =76.67L 水胶比W/B=0.298。 强度计算得到的水胶比如下: f cu,0=f cu,k +1.645σ=40+1.645×5.0=48.23Mpa f b=γf f ce=0.70×56=39.2Mpa W = σS×f b cu,0s b b = 0.53×39.2 =0.396>0.298 强度条件满足,固取自密实自密实性能计算所得水胶比W/B=0.298 (7)聚羧酸系高性能减水剂的用量取为胶凝材料质量的1.5%。

普通混凝土配合比设计规程《JGJ 55-2011》

普通混凝土配合比设计规程 《JGJ 55-2011》 3 基本规定 3.0.1 混凝土配合比设计应满足混凝土配制强度、拌合物性能、力学性能和耐久性能的设计要求。混凝土拌合物性能、力学性能和耐久性能的试验方法应分别符合现行国家标准《普通混凝土拌合物性能试验方法标准》GB/T50080、《普通混凝土力学性能试验方法标准》GB/T50081和《普通混凝土长期性能和耐久性能试验方法标准》GB/T50082的规定。 3.0.2 混凝土配合比设计应采用工程实际使用的原材料,并应满足国家现行标准的有关要求;配合比设计应以干燥状态骨料为基准,细骨料含水率应小于0.5%,粗骨料含水率应小于0.2%。 3.0.3 混凝土的最大水胶比应符合《混凝土结构设计规范》GB50010的规定。 3.0.4 混凝土的最小胶凝材料用量应符合表3.0.4的规定,配制C15及其以下强度等级的混凝土,可不受表3.0.4的限制。 表3.0.4 混凝土的最小胶凝材料用量 最大水胶比最小胶凝材料用量(kg/m3) 素混凝土钢筋混凝土预应力混凝土 0.60 250 280 300 0.55 280 300 300 0.50 320 ≤0.45330 3.0.5矿物掺合料在混凝土中的掺量应通过试验确定。钢筋混凝土中矿物掺合料最大掺量宜符合表3.0.5-1的规定;预应力钢筋混凝土中矿物掺合料最大掺量宜符合表3.0.5-2的规定。 表3.0.5-1 钢筋混凝土中矿物掺合料最大掺量 矿物掺合料种类水胶比最大掺量(%) 硅酸盐水泥普通硅酸盐水泥 粉煤灰≤0.40≤45≤35 >0.40 ≤40≤30 粒化高炉矿渣粉≤0.40≤65≤55 >0.40 ≤55≤45 钢渣粉-≤30≤20 磷渣粉-≤30≤20 硅灰-≤10≤10 复合掺合料≤0.40≤60≤50 >0.40 ≤50≤40 注:①采用硅酸盐水泥和普通硅酸盐水泥之外的通用硅酸盐水泥时,混凝土中水泥混合材和矿物掺合料用量之和应不大于按普通硅酸盐水泥用量20%计算混合材和矿物掺合料用量之和; ②对基础大体积混凝土,粉煤灰、粒化高炉矿渣粉和复合掺合料的最大掺量可增加5%; ③复合掺合料中各组分的掺量不宜超过任一组分单掺时的最大掺量。 表3.0.5-2 预应力钢筋混凝土中矿物掺合料最大掺量 矿物掺合料种类水胶比最大掺量(%) 硅酸盐水泥普通硅酸盐水泥 粉煤灰≤0.40≤35≤30 >0.40 ≤25≤20

高强混凝土配合比设计方法及例题

高强(C60)混凝土配合比设计方法[1] 基本特点: 1)每立方米混凝土胶凝材料质量480±20kg; 2)水泥用量不低于42.5级,每立方米水泥质量不超过400kg; 3)砂率0.38~0.40,砂率尽量选小些,以降低粘度; 4)使用掺合料取代部分水泥,宜矿渣(10%~20%)与粉煤灰(10%~15%)复掺; 5)优先选用聚羧酸减水剂,并复配有相容性良好缓凝剂与消泡剂; 6)粗骨料粒径不应大于31.5mm,如果强度等级大于C60,其最大粒径不应大于25mm;7)粗骨料的针片状含量不宜大于5.0%; 8)粗骨料的含泥量不应大于0.5%,泥块含量不宜大于0.2%; 9)细骨料的细度模数宜大于2.6; 10)细骨料含泥量不应大于2.0%,泥块含量不应大于0.5%。

3 基本规定 3.0.1混凝土配合比设计应满足混凝土配制强度、拌合物性能、力学性能和耐久性能的设计要求。混凝土拌合物性能、力学性能和耐久性能的试验方法应分别符合现行国家标准《普通混凝土拌合物性能试验方法标准》GB/T50080、《普通混凝土力学性能试验方法标准》GB/T50081和《普通混凝土长期性能和耐久性能试验方法标准》GB/T50082的规定。3.0.2 混凝土配合比设计应采用工程实际使用的原材料,并应满足国家现行标准的有关要求;配合比设计应以干燥状态骨料为基准,细骨料含水率应小于0.5%,粗骨料含水率应小于0.2%。 3.0.3 混凝土的最大水胶比应符合《混凝土结构设计规范》GB50010的规定。 3.0.4 混凝土的最小胶凝材料用量应符合表3.0.4的规定,配制C15及其以下强度等级的混凝土,可不受表3.0.4的限制。 表3.0.4 混凝土的最小胶凝材料用量 3.0.5矿物掺合料在混凝土中的掺量应通过试验确定。钢筋混凝土中矿物掺合料最大掺量宜符合表3.0.5-1的规定;预应力钢筋混凝土中矿物掺合料最大掺量宜符合表3.0.5-2的规定。 表3.0.5-1钢筋混凝土中矿物掺合料最大掺量 注:①采用硅酸盐水泥和普通硅酸盐水泥之外的通用硅酸盐水泥时,混凝土中水泥混合材和矿物掺合料用量之和应不大于按普通硅酸盐水泥用量20%计算混合材和矿物掺合料用量之和; ②对基础大体积混凝土,粉煤灰、粒化高炉矿渣粉和复合掺合料的最大掺量可增加5%; ③复合掺合料中各组分的掺量不宜超过任一组分单掺时的最大掺量。

普通混凝土配合比设计讲义

第七讲普通混凝土配合比设计 一、与混凝土有关的基本概念 1.混凝土—用水泥、砂、石、掺合料、水以及外加剂按设计比例配制,经搅拌、成型、养护而得的水泥混凝土称为普通混凝土,简称混凝土。它是一种原料易得、施工便利、具有较好耐久性和强度的建筑材料。 2.混凝土标号—是指混凝土按标准方法成型,标准立方体试件(200mm×200mm×200m)在标准养护条件下(温度20±3℃,相对湿度大于90%)养护28d所得的抗压强度值,单位为kgf/cm2(以三个试件测值的算术平均值作为该组试件的抗压强度值,三个测值中的最小值与较大值之差超过较大值20%时,舍去最小值,以剩余的两个测值的平均值作为该组试件的抗压强度值)。 3.混凝土强度等级—是指混凝土按标准方法成型、标准立方体试件(150mm×150mm×150mm)在标准养护条件下(温度20±2℃,相对湿度95%以上)养护28d所得的抗压强度总体分布中的一个值,强度低于该值的百分率不超过5%,以C与立方体抗压强度标准值MPa (N/mm2)表示。如:混凝土立方体抗压强度标准值fcu,k=20MPa,其强度等级表示为C20。(混凝土立方体抗压强度以三个试件测值的算术平均值作为该组试件的抗压强度值。当三个测值中的最大值或最小值与中间值的差值超过中间值的15%时,则取中间值做为该组试件的抗压强度测定值,当最大值或最小值与中间值的差值均超过中间值

的15%时,则该组试件的抗压强度测定值无效。) 4.混凝土强度等级与混凝土标号的换算。 混凝土强度等级=混凝土标号÷10-2 5.混凝土立方体试件抗压强度换算系数。 6.混凝土强度与齡期的关系 龄期—是指混凝土强度增长所需的时间。强度与龄期的关系,在标准养护时:R3→40%R28; R7→60~70%R28; R28达到设计强度。 7.砂率 砂率是指混凝土中砂在骨料(砂及石子)总量中所占的质量百分率。影响砂率的一般因素为: ⑴砂率随粗骨料的粒径增大而减小;随粒径减小砂率应增大。 ⑵细砂时砂率小,粗砂时砂率应增大。 ⑶卵石时砂率小,碎石时砂率应加大。 ⑷水灰比小时砂率小,水灰比增大时砂率应增大。

沥青混凝土配合比设计过程

热拌沥青混合料配合比设计方法 1.矿质混合料组成设计 (1)根据道路等级、路面结构层位及结构层厚度等方面要求,按照上述方法,选择适用的沥青混合料类型,并按照表8-22和表8-23(现行规范)或8-24和表8-25(新规范稿)的内容确定相应矿料级配范围,经技术经济论证后确定。 (2)矿质混合料配合比计算 1)组成材料的原始数据测定 按照规定方法对实际工程使用的材料进行取样,测试粗集料、细集料及矿粉的密度,并进行筛分试验,测定各种规格集料的粒径组成。 2)确定各档集料的用量比例 根据各档集料的筛分结果,采用计算法或图解法,确定各规格集料的用量比例,求得矿质混合料的合成级配。矿质混合料的合成级配曲线必须符合设计级配范围的要求,不得有过多的犬牙交错。当经过反复调整仍有两个以上的筛孔超出设计级配范围时,必须对原材料进行调整或更换原材料重新设计。 通常情况下,合成级配曲线宜尽量接近设计级配中限,尤其应使0.075mm、2.36mm、4.75mm等筛孔的通过量尽量接近设计级配范围的中限。对于交通量大、轴载重的道路,合成级配可以考虑偏向级配范围的下限,而对于中小交通量或人行道路等,合成级配宜偏向级配范围的上限。

2.沥青混合料马歇尔试验 沥青混合料马歇尔试验的主要目的是确定最佳沥青用量(以OAC表示)。沥青用量可以通过各种理论公式计算得到,但由于实际材料性质的差异,计算得到的最佳沥青用量,仍然要通过试验进行修正,所以采用马歇尔试验是沥青混合料配合比设计的基本方法。 (1)制备试样 1)马歇尔试件制备过程是针对选定混合料类型,根据经验确定沥青大致用量或依据表4-10推荐的沥青用量范围,在该用量范围内制备一批沥青用量不同、且沥青用量等差变化的若干组(通常为五组)马歇尔试件,并要求每组试件数量不少于4个。 2)按已确定的矿质混合料级配类型,计算某个沥青用量条件下一个马歇尔试件或一组试件中各种规格集料的用量(实践中大多是一个标准马歇尔试件矿料总量1200g左右)。 3)确定一个或一组马歇尔试件的沥青用量(通常采用油石比),按要求将沥青和矿料拌制成沥青混合料,并按上节表8-7(现行规范要求)或表8-9(新规范要求)规定的击实次数和操作方法成型马歇尔试件。 (2)测定试件的物理力学指标 首先,测定沥青混合料试件的密度,并计算试件的理论最大密度、空隙率、沥青饱和度、矿料间隙率等参数。在测试沥青混合料密度时,应根据沥青混合料类型及密实程度选择测试方法。在工程中,吸水率小于0.5%的密实型沥青混合料试件应采用水中重法测定;较密实的沥青混合料试件应采用表干法测定;吸水

混凝土配合比试验设计方案

混凝土配合比试验设计方案

混凝土配合比设计试验报告 一、配合比设计理论依据 1、《民航机场场道工程施工技术要求》1996—10 2、《广州白云国际机场迁建工程——场道道面工程补充施工技术要求》 3、《水泥胶砂强度检测方法(ISO)法》GBT17671—1999 4、《公路集料试验规程》JTJ058—2000 5、《水泥混凝土路面施工及验收规范》GB97—87 6、《公路工程水泥混凝土试验规程》JTJ053—94 7、《普通混凝土配合比设计规程》JGJ55—2000 J64—2000 8、《硅酸盐水泥、普通硅酸盐水泥》GB175 9、《混凝土外加剂一等品规定指标》(GB8076-1997) 10、《混凝土外加剂应用技术规范》(GBJ119-88) 二、道面混凝土设计要求如下: 2.1、强度:28天抗折强度5.0Mpa; 2.2、和易性要求:维勃稠度20-40s,或塌落度小于10mm; 2.3、耐久性要求:水泥用量不少于300Kg/m3,也不宜大于330Kg/m3; 水灰比不宜大于0.44; 2.4、水泥混凝土所用原材料应符合《民航机场场道工程施工技术要求》1996—10中的有关要求外,尚应符合以下规定: 2.4.1水泥道面及道肩面层混凝土可采用标号为525的硅酸盐水泥。水泥中氧化镁含量不宜大于3%,碱含量不大于0.6%。水泥的其他质量应符合《硅酸盐水泥、普通硅酸盐水泥》GB175的有关规定。

2.4.2砂宜采用细度模数为2.65~ 3.20的中粗河砂。砂的含泥量不得大于3%,含泥量超过规定时应冲洗。应委托有资格的试验单位,按《公路集料试验规程》JTJ058—2000中的岩相法对每种料源测定其碱活性,有碱活性的砂不得使用。 2.4.3碎石圆孔筛最大粒径为40mm。应委托有资格的试验单位,按《公路集料试验规程》JTJ058—2000中的岩相法对每种料源测定其碱活性,有碱活性的碎石不得使用。碎石应按圆孔筛5~20mm、20~40mm两级级配分别备料,两种碎石混合后的颗粒级配应符合下表要求: 项目技术要求 颗粒尺寸筛孔尺寸mm(圆孔筛)40 20 10 5 累积筛余(%)0~5 50~70 70~90 90~100 2.4.4水冲洗集料、拌和混凝土及混凝土养生可采用一般饮用水。使用河水、池水或其他水应符合下列要求:①水中不得含有影响水泥正常凝结和硬化的有害杂质,如油、糖、酸、碱、盐等;②硫酸盐含量(按SO2-1计)不超过2.7mg/cm3;③pH值大于4;含盐总量不得超过5mg/cm3。 2.4.5外加剂水泥混凝土中需要掺用外加剂时,必须根据工程要求,通过试验选定外加剂的种类和用量。外加剂的质量应符合《混凝土外加剂一等品规定指标》(GB8076-1997)的规定要求,其使用应符合《混凝土外加剂应用技术规范》(GBJ119-88)的规定要求。不得使用pH值大于8的碱性外加剂。施工过程中应严格控制外加剂剂量,现场有专人配制。 三、确定原材料 我们根据招标文件、投标书、与业主签订的施工合同及施工图纸的要求确定使用下列材料:

混凝土配合比设计的步骤

混凝土配合比设计的步骤 (1)初步配合比的计算 按照已选择的原材料性能及混凝土的技术要求进行初步计算,得出“初步配合比”; (2)基准配合比的确定 经过试验室试拌调整,得出“基准配合比”; (3)实验室配合比的确定 经过强度检验(如有抗渗、抗冻等其他性能要求,应当进行相应的检验),定出满足设计和施工要求并比较经济的“试验室配合比”(也叫设计配合比); (4)施工配合比 根据现场砂、石的实际含水率,对试验室配合比进行调整,求出“施工配合比”。 ㈠初步配合比的计算 1)确定配制强度 2)初步确定水灰比值(W/C ) 3)选择每1m3混凝土的用水量(W0) 4)计算混凝土的单位水泥用量(C0) 5)选取合理砂率Sp 6)计算1m3混凝土中砂、石骨料的用量 7)书写初步配合比 (1)确定配制强度(fcu,o) 配制强度按下式计算: σ 645.1..+=k cu v cu f f (2)初步确定水灰比(W/C) 采用碎石时: ,0.46( 0.07)cu v ce C f f W =- 采用卵石时: ,0.48( 0.33)cu v ce C f f W =- (3)选择单位用水量(mW0) ①干硬性和塑性混凝土用水量的确定 a. 水灰比在0.40~0.80范围时,根据粗骨料的品种、粒径及施工要求的混凝土拌合物稠度,其用水量可按表4-20(P104)选取。 b. 水灰比小于0.40的混凝土以及采用特殊成型工艺的混凝土用水量,应通过试验确定。 ②流动性和大流动性混凝土的用水量宜按下列步骤进行 a. 以表4-22中坍落度90mm 的用水量为基础,按坍落度每增大20mm 用水量增加5kg ,计算出未掺外加剂时的混凝土的用水量; b. 掺外加剂时的混凝土的用水量可按下式计算: (1) w wo m m αβ=-

碾压混凝土配合比设计试验

碾压混凝土实验室配合比设计试验 1 试验目的 测定碾压混凝土配合比设计试验所用原材料的物理力学性能指标,然后进行碾压混凝土实验室的配合比设计。 2 试验方案 本试验根据配合比设计所需的技术资料,首先对选定的材料进行物理力学性能指标的测定试验,再依据配合比设计规程及原则来进行配合比的设计,对于碾压混凝土,设计时主要考虑其三大参数的要求。本试验流程图如图2.1所示。

图2.1 试验流程图 3 试验方法 3.1 原材料的物理力学性能试验 本试验配合比设计所用的原材料主要有:水泥、粉煤灰、石灰、粗细集料、

水及外加剂等。 3.1.1水泥试验 水泥试验主要包括:水泥细度试验、水泥标准稠度用水量试验、水泥凝结时间试验、水泥体积安定性试验、水泥胶砂强度试验等。 水泥细度试验采用手工干筛法来检验水泥细度;水泥标准稠度用水量试验、水泥凝结时间试验及水泥体积安定性试验(雷氏夹法)按GB/T 1346-1989《水泥标准稠度用水量、凝结时间、安定性检验方法》,用沸煮法,对该水泥进行了安定性试验;水泥胶砂强度试验通过ISO法来测定水泥的强度等级。 通过试验,得到本试验所用水泥的物理性能见表1.1。 表1.1 水泥的物理性能表 水泥品种 初凝 (h:min) 终凝 (h:min) 安定性 (mm) 筛余量 (%) 标准稠 度(%) 抗压 (Mpa) 抗折 (Mpa) 3d 28d 3d 28d P.C32.5R 2.1 3.1.2 粉煤灰试验 根据《用于水泥和混凝土中的粉煤灰》GB1596—91以及国家标准GB175—1999,GB1344—1999,GB12958—1999中的规定,需对粉煤灰的细度、密度、凝结时间、体积安定性和强度及强度等级等主要技术性质经行测定。 通过试验,该粉煤灰的物理性能见表1.2。 表1.2 粉煤灰的物理性能表 粉煤灰等级 密度 (g/cm3) 堆积密度 (g/cm3) 细度 (%) 比表面积 (g/cm2) 需水量 (%) 28d抗压 强度比 (%) Ⅱ级 2.302 26 3.1.3集料试验 集料试验主要包括测定砂、石的近似密度试验、砂、石的堆积密度试验、砂、石的空隙率计算和砂、石的筛分析试验等。 通过试验,测得所用砂子、石子的物理性能见表1.3、表1.4。 表1.3 砂子的物理性能表

C25普通混凝土配合比设计说明

C25普通混凝土配合比设计说明 一、设计所依据的试验规程及规范: 《普通混凝土配合比设计规程》JGJ 55-2011 《公路工程水泥及水泥混凝土试验规程》JTG E30-2005 《公路工程集料试验规程》JTG E42-2005 《公路工程岩石试验规程》JTG E41-2005 《通用硅酸盐水泥》GB 175-2007 《混凝土外加剂》GB 8076-2008 《公路桥涵施工技术规范》JTG/T F50-2011 二、设计要求: C25普通混凝土的配合比设计应满足:施工要求的工作性、结构要求的力学性能; 体积稳定性能和混凝土结构在所处环境条件下要求的耐久性,设计坍落度120-160mm,能满足混凝土结构工程的要求,确保其施工要求的工作性,体积稳定性,耐久性和设计强度等级要求。主要应用桥涵工程墩台基础、台身、台帽、墙身基础、排水工程等。 三、原材料情况: 1.粗集料:采用接山镇前寨子砂石料厂生产的碎石、规格为5-10mm:10-20mm:16-31.5mm,比例为(30%:50%:20%)。 2.细集料:采用接山镇前寨子砂石料厂生产的河砂,规格为Ⅱ级中砂。 3.水泥:山东鲁珠集团有限公司生产的P.O 42.5水泥。 4. 外加剂:长春北华建材有限公司生产的聚羧酸高性能减水剂,掺量0.9%,减水率初 选15%。 5.水:饮用水。 四.初步配合比确定 1.确定混凝土配制强度: 已知设计强度等级为25Mpa,无历史统计资料,查《普通混凝土配合比设计规程》JGJ 55-2011表4.0.2查得:标准差σ=5.0 Mpa ?cu,0= ?cu,k+1.645σ= 25+1.645×5.0=33.225MPa 2.计算水泥实际强度(?ce) 已知采用P.O 42.5水泥,28d胶砂强度(?ce)无实测值时,可按下式计算: 水泥强度等级值的富余系数,可按实际统计资料确定;当缺乏实际统计资料时,也可按表

水泥混凝土配合比设计步骤

水泥混凝土配合比设计步骤 (1) 配制强度:f cu,k=25Mpa f cu,o= f cu,k+1.645* o=25+1.645*5=33.2Mpa (2) 初步确定水灰比:(用经验公式计算,各指标选取) W/C= a a*f ce/(f cu,0 + a a*a b*f ce) =(0.53*36.5) / (33.2+0.53*0.20*36.5) =0.52 (3) 选取单位体积水泥混凝土的用水量: 由水灰比为0.52,混凝土拌合物的坍落度为10-30mm,碎石最大粒径为31.5mm, 在满足混凝土施工要求的基础上选取混凝土的单位用水量为:m wo=175kg/m 3。(4) 计算1m3水泥混凝土水泥用量: 由W/C=0.52,m w0=185 (kg/m3),得m co=m wo/(W/C)=337(kg/m3) 查表符合耐久性要求的最小水泥用量为320kg/m 3,所以取按强度计算的单位水 泥用量m co=337 ( kg/m 3) (5) 选取合理砂率,计算粗细集料用量:最大粒径31.5mm,水灰比0.52,查表 取混凝土砂率B s =35%o (6) 计算一组(3块试件)水泥混凝土各材料用量 3水用量175kg/ m '水泥用量337kg/m 砂用量680 kg/m 碎石用量1263 kg/m

(7) 配合比确定: 个人认为,单位用水量可取180(kg/m3) ,为保证混凝土强度,水灰比取0.5,单 位水泥用量360(kg/m3) ,根据密度法计算配合比,假定表观密度为2400 (kg/m3 ),单位粗集料用量与单位细集料用量为未知量,可设方程求解 M c0+ M g0+ M s0+ M w0=2400 M s0/ (M s0+ M g0 )*100=35 解得M g0=1560(kg/m3) ,M s0=840 (kg/m3) 通过计算得到个人的配合比为:单位用水量:单位水泥用量:单位细集料用量:单位粗集料用量=180:360: 840:1560

混凝土配合比设计的基本原则

混凝土配合比设计的基本原则 1. 1 坚固性 坚固性是指混凝土的强度指标,因为混凝土的质量在目前是以抗压强度指标为主要依据的。影响混凝土抗压强度的因素很多,主要有水泥强度等级及水灰比、骨料种类及级配、施工条件等。 1) 水泥强度等级:水泥强度等级大致代表了水泥的活性,即在相同配合比的情况下,水泥强度等级越高,混凝土的强度等级也越高。在混凝土配合比设计中,主要从经济合理的角度来选择水泥强度等级,如果对水泥强度等级和品种没有选择的余地,那只能靠在配合比设计中调整比例,掺加外加剂等综合性措施加以解决。 2) 水灰比:混凝土单位体积中所用水的重量和水泥的重量比被称为水灰比。水灰比越大,混凝土的强度越低,为此,在满足和易性的前提下,混凝土用水量越少越好,这是混凝土配合比设计中的一条基本原则。 3) 骨料的种类及级配:砂子、石子在混凝土中起骨架作用,因此统称骨料。砂石由石材的品种、颗粒级配、含泥量、坚固性、有害物质等指标来表示它的质量。砂石质量越好,配制的混凝土质量越好。当骨料级配良好,砂率适中时,由于组成了密实骨架,可使混凝土获得较高的强度。 4) 施工条件:如果施工条件较好,并有一定的管理措施时,可适当降低混凝土的坍落度;反之,如现场施工条件较差时,应适当提高混凝土的坍落度。

1. 2 和易性 混凝土的和易性是指在一定施工条件下,确保混凝土拌合物成分均匀,在成型过程中满足振动密实的混凝土性能。常用坍落度和维勃稠度来表示。 不同类型的构件,对和易性的要求在施工验收规范中已有规定,但还要结合施工现场的设备条件和管理水平来确定。影响混凝土和易性的因素很多,但主要一条就是用水量。增加用水量,混凝土的坍落度是增加了,但是混凝土的强度也下降了。因此,采用使用减水剂的方法成了改善混凝土和易性最经济合理和最有效的方法。 1. 3 耐久性 混凝土的耐久性是它抵抗外来及内部被侵蚀破坏的能力,新疆(北疆) 地处严寒地带,夏季炎热干燥,冬季严寒多雪,混凝土受大气的侵蚀很严重,所以,施工验收规范对最大水灰比和最小泥用量都作了规定,但是仅仅执行这些规定还不能完全满足耐久性的要求。为了提高混凝土的耐久性,就必须在配合比设计中考虑采取相应的措施,如水泥品种和强度等级的选择,砂石级配和砂率的调整,但最主要的是用混凝土外加剂和掺合料来提高混凝土的耐久性。 1. 4 经济性 混凝土配合比的设计应在保证质量的前提下,省工省料才是最经济的。水泥是混凝土中价值最高的材料,节约水泥用量是混凝土配合比设计中的一个主要目标,但必须是采用合理的措施达到综合性的经济指标才是行之有效的。首先,使用混凝土外加剂和掺合料,使用减水剂既可以改善混凝土的和易性,也可以达到节约水泥的目的,掺加粉煤灰可以代替部分水泥,并改善混凝土的性能。其次,加强技术管理,提高混凝土的匀质性。最后,根据当地的砂石质量情况采用合理砂率和骨料级配。 2 混凝土配合比设计的步骤 2. 1 熟悉现行的规范和技术标准 普通混凝土配合比设计的方法和步骤,应该遵守国家建设部发布的行业标准J GJ 5522000 普混凝土配合比设计规程。该标准规定了配合比设计应分三个步骤。 1) 配合比的设计计算;2) 试配;3) 配合比的调整与确定。该标准给出了许多全国性统一用的技术参数,如混凝土试配强度计算公式、混凝土用水量选用表、混凝土砂率选用表等。此外,配合比设计还必须掌握GB 5020422002 混凝土结构工程施工及验收规范和GB J107287 混凝土强度检验评定标准。 2. 2 原材料的准备和检验混凝土由四种材料组成:水泥、砂子、石子和水。目

《普通混凝土配合比设计规程》配合比计算案例-C30

《普通混凝土配合比设计规程》 配合比计算案例 某高层办公楼的基础底板设计使用C30等级混凝土,采用泵送施工工艺。根据《普通混凝土配合比设计规程》(以下简称《规程》)JGJ 55的规定,其配合比计算步骤如下: 1、原材料选择 结合设计和施工要求,选择原材料并检测其主要性能指标如下: (1)水泥 选用P.O 42.5级水泥,28d胶砂抗压强度48.6MPa,安定性合格。 (2)矿物掺合料 选用F类II级粉煤灰,细度18.2%,需水量比101%,烧失量7.2%。 选用S95级矿粉,比表面积428m2/kg,流动度比98%,28d活性指数99%。 (3)粗骨料 选用最大公称粒径为25mm的粗骨料,连续级配,含泥量 1.2%,泥块含量0.5%,针片状颗粒含量8.9%。 (4)细骨料 采用当地产天然河砂,细度模数 2.70,级配II区,含泥量 2.0%,泥块含量0.6%。 (5)外加剂 选用北京某公司生产A型聚羧酸减水剂,减水率为25%,含固量为20%。 (6)水 选用自来水。 2、计算配制强度 由于缺乏强度标准差统计资料,因此根据《规程》表4.0.2选择强度标准差σ为5.0MPa。 表4.0.2 标准差σ值(MPa) 混凝土强度标准值≤C20C25~C45 C50~ C55 Σ 4.0 5.0 6.0 采用《规程》中公式4.0.1-1计算配制强度如下: (4.0.1- 1)式中:f cu,0——混凝土配制强度(MPa);

f cu,k——混凝土立方体抗压强度标准值,这里取混凝土的设计强度等级值(MPa); σ——混凝土强度标准差(MPa)。 计算结果:C30混凝土配制强度不小于38.3MPa。 3、确定水胶比 (1)矿物掺合料掺量选择(可确定3种情况,比较技术经济) 应根据《规程》中表3.0.5-1的规定,并考虑混凝土原材料、应用部位和施工工艺等因素来确定粉煤灰掺量。 表3.0.5-1 钢筋混凝土中矿物掺合料最大掺量 注:1 采用其它通用硅酸盐水泥时,宜将水泥混合材掺量20%以上的混合材量计入矿物掺合料; 2 复合掺合料各组分的掺量不宜超过单掺时的最大掺量; 3 在混合使用两种或两种以上矿物掺合料时,矿物掺合料总掺量应符合 表中复合掺合料的规定。 综合考虑:方案1为C30混凝土的粉煤灰掺量30%。 方案2为C30混凝土的粉煤灰掺量30%,矿粉掺量10%。 方案3为C30混凝土的粉煤灰掺量25%,矿粉掺量20%。 (2)胶凝材料胶砂强度 胶凝材料胶砂强度试验应按现行国家标准《水泥胶砂强度检验方法(ISO 法)》GB/T 17671规定执行,对3个胶凝材料进行胶砂强度试验。也可从《规程》中表5.1.3选取所选3个方案的粉煤灰或矿粉的影响系数,计算f b。

普通混凝土配合比设计

普通混凝土配合比设计例题 设计C20泵送混凝土,材料:水泥P.O42.5,中砂(筛余量25-0%),碎石(5-30mm)连续级配,减水剂YAN(参量0.8%,减水率14%)。 普通混凝土配合比设计,一般应根据混凝土强度等级及施工所要求的混凝土拌合物坍落度(或工作度——维勃稠度)指标进行。如果混凝土还有其他技术性能要求,除在计算和试配过程中予以考虑外,尚应增添相应的试验项目,进行试验确认。 普通混凝土配合比设计应满足设计需要的强度和耐久性。水灰比的最大允许值,可参见表1 混凝土的最大水灰比和最小水泥用量表1 注:1.当采用活性掺合料取代部分水泥时,表中最大水灰比和最小水泥用量即为替代前的水灰比和水泥用量。 2.配制C15级及其以下等级的混凝土,可不受本表限制。 混凝土拌合料应具有良好的施工和易性和适宜的坍落度。混凝土的配合比要求有较适宜的技术经济性。 普通混凝土配合比设计步骤 普通混凝土配合比计算步骤如下: (1)计算出要求的试配强度f cu,0,并计算出所要求的水灰比值; (2)选取每立米混凝土的用水量,并由此计算出每立米混凝土的水泥用量;

(3)选取合理的砂率值,计算出粗、细骨料的用量,提出供试配用的计算配合比。 以下依次列出计算公式: 1.计算混凝土试配强度f cu,0,并计算出所要求的水灰比值(W/C) (1)混凝土配制强度 混凝土的施工配制强度按下式计算: f cu,0≥f cu,k+1.645σ 式中f cu,0——混凝土的施工配制强度(MPa); f cu,k——设计的混凝土立方体抗压强度标准值(MPa); σ——施工单位的混凝土强度标准差(MPa)。 σ的取值,如施工单位具有近期混凝土强度的统计资料时,可按下式求得: 式中f cu,i——统计周期内同一品种混凝土第i组试件强度值(MPa); μfcu——统计周期内同一品种混凝土N组试件强度的平均值(MPa); N——统计周期内同一品种混凝土试件总组数,N≥250 当混凝土强度等级为C20或C25时,如计算得到的σ<2.5MPa,取σ=2.5MPa;当混凝土强度等级等于或高于C30时,如计算得到的σ<3.0MPa,取σ=3.0MPa。 对预拌混凝土厂和预制混凝土构件厂,其统计周期可取为一个月;对现场拌制混凝土的施工单位,其统计周期可根据实际情况确定,但不宜超过三个月。 施工单位如无近期混凝土强度统计资料时,可按表2取值。 σ取值表表2 查表取σ=5N/mm则f cuo≥20 N/mm+1.645×5 N/mm≈28 N/mm (2)计算出所要求的水灰比值(混凝土强度等级小于C60时)

《普通混凝土配合比设计规程》(JGJ55-)简介

《普通混凝土配合比设计规程》(JGJ 55-2011)简介 配合比设计是混凝土设计、生产和应用中的最重要环节之一,配合比设计成功与否,决定了混凝土的技术先进性、成本可控性和发展可持续性等问题。早在上世纪70年代末、针对原建设部下达的“使用新标准水泥配制混凝土”研究 课题,中国建筑科学研究院组织有关单位进行了混凝土配制技术研究,该研究成果经建设部组织全国性验证,对科学合理地在全国范围内解决水泥新标准使用起到重要作用。为统一我国混凝土配制的方法和步骤,并为混凝土配合比设计者提供基础技术参数,在上述研究成果基础上,中国建筑科学研究院主编了《普通混凝土配合比设计规程》(JGJ55)(以下简称《规程》)。为配合比设计者提供了易于操作、程序简单的快捷配制技术。自《规程》颁布实施以来,被广泛用于基础建设、轨道交通、市政环卫、工业与民用建筑、海港工程、铁路工程等领域。对我国混凝土的推广、应用和发展起到基础性作用。随着现代混凝土技术的快速发展,配合比设计面临新的挑战,例如:以耐久性能为设计指标、矿物掺合料的种类和掺量不断增多、普遍应用外加剂、特殊性能要求增多等。因此,《普通混凝土配合比设计规程》(JGJ55)需修订完善。经中国建筑科学研究院申请,《规程》被列入原建设部《2005年度工程建设标准规范制订、修订计划(第一

批)》,并于2010年11月完成编制和通过审查。住房和城乡建设部于2011年4月22日发布公告,批准本《规程》为行业标准,编号为JGJ55-2011,自2011年12月1日起实施。其中,第6.2.5条为强制性条文。原《普通混凝土配合比设计规程》(JGJ55-2000)同时废止。2 主要修订内容《规程》共分7章,主要内容如下:(1)总则提出《规程》的编制目的和适用范围。《规程》适用于工业与民用建筑及一般构筑 物所采用的普通混凝土配合比设计。(2)术语、符号增加了胶凝材料、胶凝材料用量、水胶比、矿物掺合料掺量和外加剂掺量等5个术语,上述术语在混凝土工程技术领域已被普遍接受。修订了相关符号,使计算过程更加清晰。(3)基本规定依据我国混凝土实际应用情况与技术条件,本《规程》新增“基本规定”一章,详细规定了混凝土配合比设计原则、原材料要求、最大水胶比、矿物掺合料限值、氯离子最大含量、最小含气量和最大碱含量等技术指标。本章重点强调混凝土配合比设计应满足耐久性能要求,即混凝土配合比设计不仅应满足配制强度要求,还应满足施工性能、其他力学性能、长期性能和耐久性能的要求,并规定配合比设计所用原材料应采用工程实际使用的原材料。宜采用干燥状态骨料进行配合比设计,也可选用饱和面干状态骨料,两者均为过程控制的一种手段。混凝土的最大水胶比应符合现行国家标准《混凝土结构设计规范》(GB 50010)的规定。水胶比和最

普通混凝土配合比设计(最新规范)

6.1.5 普通混凝土配合比设计 混凝土配合比设计就是根据工程要求、结构形式和施工条件来确定各组成材料数量之间的比例关系。常用的表示方法有两种: 一种是以1m3混凝土中各项材料的质量表示,如某配合比:水泥240kg,水180kg,砂630kg,石子1280kg,矿物掺合料160kg,该混凝土1m3总质量为2490kg; 另一种是以各项材料相互间的质量比来表示(以水泥质量为1),将上例换算成质量比为:水泥∶砂∶石∶掺合料=1∶2.63∶5.33∶0.67,水胶比=0.45。 1.混凝土配合比的设计基本要求 市政工程中所使用的混凝土须满足以下五项基本要求: (1)满足施工规定所需的和易性要求; (2)满足设计的强度要求; (3)满足与使用环境相适应的耐久性要求; (4)满足业主或施工单位渴望的经济性要求; (5)满足可持续发展所必需的生态性要求。 2.混凝土配合比设计的三个参数 混凝土配合比设计,实质上就是确定胶凝材料、水、砂和石子这四种组成材料用量之间的三个比例关

系: (1)水与胶凝材料之间的比例关系,常用水胶比表示; (2)砂与石子之间的比例关系,常用砂率表示; (3)胶凝材料与集料之间的比例关系,常用单位用水量(1m3混凝土的用水量)来表示。 3.混凝土配合比设计步骤 混凝土配合比设计步骤包括配合比计算、试配和调整、施工配合比的确定等。 (1)初步配合比计算 1)计算配制强度(f cu,o)。根据《普通混凝土配合比设计规程》(JGJ 55—2011)规定,混凝土配制强度应按下列规定确定: ①当混凝土的设计强度小于C60时,配制强度应按下式确定: f cu,o≥f cu,k+1.645σ 式中f cu,o——混凝土配制强度,MPa; f cu,k——混凝土立方体抗压强度标准值,这里取混凝土的设计强度等级值,MPa; σ——混凝土强度标准差,MPa。 ②当混凝土的设计强度不小于C60时,配制强度应按下式确定:

混凝土配合比设计的详细步骤教学文案

混凝土配合比设计的步骤 1.计算配合比的确定 (1)计算配制强度 当具有近期同一品种混凝土资料时,σ可计算获得。并且当混凝土强度等级为C20或C25,计算值<2.5 MPa 时,应取σ=2.5 MPa ;当强度等级≥ C30,计算值低于<3.0 MPa 时,应取用σ=3.0 MPa 。否则,按规定取值。 (2)初步确定水灰比(W/C) (混凝土强度等级小于C60) a α、 b α回归系数,应由试验确定或根据规定选取: ce f 水泥28d 抗压强度实测值,若无实测值,则 ce f ,g 为水泥强度等级值,c γ为水泥强度等级值的富余系数。 若水灰比计算值大于表4 - 24中规定的最大水灰比值时,应取表中规定的最大水灰比值 (3)选取1 m3混凝土的用水量(0w m ) 干硬性和塑性混凝土用水量: ①根据施工条件按表4-25选用适宜的坍落度。 σ6451.,,+=k cu t cu f f ce b a cu ce a f f f C W ααα+=0,g ce c ce f f ,γ=

②水灰比在0.40~0. 80时,根据坍落度值及骨料种类、粒径,按表4-26选定1 m3混凝土用水量。 流动性和大流动性混凝土的用水量: 以表4- 26中坍落度90 mm 的用水量为基础,按坍落度每增大20 mm 用水量增加5 kg 计算出未掺外加剂时的混凝土的用水量; 掺外加剂时的混凝土用水量: wa m 是掺外加剂混凝土每立方米混凝土的用水量;0w m 未掺外加剂混凝土每立方米混凝土的用水量;β外加剂的减水率。 (4)计算混凝土的单位水泥用量() 如水泥用量计算值小于表4- 24中规定量,则应取规定的最小水泥用量。 (5)选用合理的砂率值(βs) 坍落度为10~60 mm 的混凝土:如无使用经验,砂率可按骨料种类、粒径及水灰比,参照表4- 27选用 坍落度大于60 mm 的混凝土:在表4- 27的基础上,按坍落度每增大20 mm ,砂率增大1%的幅度予以调整; 坍落度小于10 mm 的混凝土:砂率应经试验确定。 6)计算粗、细骨料的用量(mg0,ms0) A.重量法: 0c m 、0g m 、0s m 、0w m 为1m3混凝土的水泥用量、粗骨料用量、细骨料用量和用水量。cp m 为1m3混凝土拌合物的假定重量,取2350~2450 kg/m3。 ()β-=10w wa m m 0c m C W m m w c 0 0=cp w s g c m m m m m =+++0000%100000?+=g s s s m m m β

相关文档
最新文档