20052017年浙江高考理科数学历年真题之解析几何大题(教师版)

20052017年浙江高考理科数学历年真题之解析几何大题(教师版)
20052017年浙江高考理科数学历年真题之解析几何大题(教师版)

浙江高考历年真题之解析几何大题

(教师版)

1、(2005年)如图,已知椭圆的中心在坐标原点,焦点12,F F 在x 轴上,长轴12A A 的长为4,左准线l 与x 轴的交点为M ,|MA 1|∶|A 1F 1|=2∶1. (Ⅰ)求椭圆的方程;

(Ⅱ)若直线1l :x =m (|m |>1),P 为1l 上的动点,使12F PF ∠ 最大的点P 记为Q ,求点Q 的坐标(用m 表示).

解析:(Ⅰ)设椭圆方程为()22

2210x y a b a b

+=>>,半焦距为c ,

则2111,a MA a A F a c c =-=- ,()2

222

224

a a a c c a a

b

c ?-=-???

=??=+???由题意,得

2,1a b c ∴=== ,22

1.43

x y +=故椭圆方程为

(Ⅱ) 设()0,,||1P m y m >,当00y >时,120F PF ∠=; 当00y ≠时,22102

F PF PF M π

<∠<∠<,∴只需求22tan F PF ∠的最大值即可

设直线1PF 的斜率011y k m =

+,直线2PF 的斜率0

21

y k m =-,

021********||tan 11y k k F PF k k m y -∴∠=

=≤=+-+

0||y =时,12F PF ∠

最大,(,,||1Q m m ∴>

2、(2006年)如图,椭圆b

y a x 222+=1(a >b >0)与过点A (2,0)、B(0,1)的直线有且只有一个公共点T ,

且椭圆的离心率e=

2

3。 (Ⅰ)求椭圆方程;

(Ⅱ)设F 1、F 2分别为椭圆的左、右焦点,M 为线段AF 2的中点,求证:∠ATM=∠AF 1T 。

解析:(Ⅰ)过 A 、B 的直线方程为

12

x

y += 因为由题意得???

????+-==+1211

2222x y b y a x 有惟一解,

即0)4

1(22222

22

=-+-+

b a a x a x a b 有惟一解, 所以2222(44)0(0),a b a b ab ?=+-=≠故442

2

-+b a =0

又因为

e 2c =即222

34a b a -= , 所以22

4a b = 从而得2

2

12,,2a b == 故所求的椭圆方程为

2

2212

x y +=

(Ⅱ)由(Ⅰ)得2c =

, 所以

12(,0),(22F F -,从而M (1+4

6

,0) 由 ??

???+-==+1

211222

2x y y x ,解得 121,x x == 因此1

(1,)2T =

因为126

tan 1-=

∠T AF ,又21tan =∠TAM ,6

2tan =

∠2TMF ,得 12

6

6

1

121

62

tan -=

+

-=

∠ATM ,因此,T AF ATM 1∠=∠ 3、(2007年)如图,直线y kx b =+与椭圆2

214

x y +=交于A B ,两点,记AOB △的面积为S . (I )求在0k =,01b <<的条件下,S 的最大值; (II )当2AB =,1S =时,求直线AB 的方程.

解析:(I )设点A 的坐标为1()x b ,,点B 的坐标为2()x b ,.

由2

214

x y +=

,解得1,2x =±

所以22121||2112S b x x b b =

-=≤+-=

,当且仅当2

b =时,.S 取到最大值1. (Ⅱ)解:由22

14

y kx b x y =+???+=??得222

(41)8440k x kbx b +++-= 2216(41)k b ?=-+ ①

|AB

12|2x x -== ②

又因为O 到AB

的距离21||

S

d AB =

=

= 所以221b k =+ ③ ③代入②并整理,得42

4410k k -+=,解得,2

213,22

k b =

=, 代入①式检验,△>0,故直线AB 的方程是

22y x =

+

或22

y x =-

或22y x =-+

或22y x =--. 4、(2008年)已知曲线C 是到点P (83,21-

)和到直线8

5

-=y 距离相等的点的轨迹。 是过点Q (-1,0)的直线,M 是C 上(不在l 上)的动点;A 、B 在l 上,,MA l MB x ⊥⊥ 轴(如图)。

(Ⅰ)求曲线C 的方程; (Ⅱ)求出直线l 的方程,使得

QA

QB

2

为常数。

解析:(Ⅰ)设()N x y ,为C

上的点,则||NP =,

N 到直线58y =-的距离为5

8

y +.

58y =+.化简,得曲线C 的方程为21()2y x x =+.

(Ⅱ)解法一:

设22x x M x ??+ ??

?,,直线:l y kx k =+,则()B x kx k +,

,从而||1|QB x =+.

在Rt QMA △中,因为222||(1)14x QM x ??=++ ???

,2

2

||MA

=所以2

2

2

2

22

(1)||||||(2)4(1)

x QA QM MA kx k +=-=++ . ||QA =

22||2(112||||QB k x QA k x k

++=

+. 当2k =时,2

||||

QB QA =

从而所求直线l 方程为220x y -+=.

解法二:设22x x M x ??

+ ???

,,直线:l y kx k =+,则()B x kx k +,,从而

||1|QB x =+.过(10)-,垂直于l 的直线11

:(1)l y x k

=-+.

因为||||QA MH =,所以||QA =

2||1

2||QB x QA x k

+=+. 当2k =时,2

||||

QB QA =

从而所求直线l 方程为220x y -+=.

5、(2009年)已知椭圆1C :22

221(0)y x a b a b

+=>>的右顶点为(1,0)A ,过1C 的

焦点且垂直长轴的弦长为1. (I )求椭圆1C 的方程;

(II )设点P 在抛物线2C :2

()y x h h =+∈R 上,2C 在点P 处的切线与1C 交于 点,M N .当线段AP 的中点与MN 的中点的横坐标相等时,求h 的最小值.

x

l

l

解析:(Ⅰ)解:由题意,得2121b b a

=??

?=??,

·.从而21a b =??=?,.

因此,所求的椭圆方程为2

214

y x +=. (Ⅱ)解:如图,设21122()()()M x y N x y P t t h +,,,,,, 则抛物线2C 在点P 处的切线斜率为|2x t y t ='=. 直线MN 的方程为:22y tx t h =-+.

将上式代入椭圆1C 的方程中,得2

2

2

4(2)40x tx t h +-+-=. 即222224(1)4()()40t x t t h x t h +--+--=. ① 因为直线MN 与椭圆1C 有两个不同的交点,

所以①式中的422116[2(2)4]0t h t h ?=-++-+>. ②

设线段MN 的中点的横坐标是3x ,则21232

()

22(1)

x x t t h x t +-==+. 设线段PA 的中点的横坐标是4x ,则412

t x +=

. 由题意,得34x x =,即2

(1)10t h t +++=. ③ 由③式中的22(1)40h ?=+-≥,得1h ≥,或3h -≤.

当3h -≤时,2

2040h h +<-<,

. 则不等式②不成立,所以1h ≥. 当1h =时,代入方程③得1t =-,

将1

1h t ==-,代入不等式②,检验成立. 所以,h 的最小值为1.

6、(2010年)已知1>m ,直线,02:2

=--m m y x l 椭圆 21222

,,1:F F y m

x C =+ 分别为椭圆C 的左、右焦点.

(I )当直线l 过右焦点F 2时,求直线l 的方程;

(II )设直线l 与椭圆C 交于A ,B 两点,21F AF ?,21F BF ?的重心分 别为G ,H.若原点O 在以线段GH 为直径的圆内,求实数m 的取值范围.

解析:(Ⅰ)解:因为直线2:02m l x my --=

经过2F

22,22

m m ==得

又因为 1.m >

所以m =

故直线l

的方程为10.x -=

(Ⅱ)解:设1122(,),(,)A x y B x y ,

由2

222

,21

m x my x y m ?=+????+=??消去x 得:22

2104m y my +++=

则由2

2

28(1)804

m m m ?=--=-+>,知28m < 且有212121

,.282

m m y y y y +=-=

-

由于12(,0),(,0)F c F c -故O 为F 1F 2的中点,

由2,2AG GO BH HO ==,可知2112

(,),(,)3333

x y y x G H

22

2

1212()()||.99

x x y y GH --=+

设M 是GH 的中点,则1212

(

,)66

x x y y M ++

由题意可知,2||||MO GH <

好22

2212121212()()4[()()]6699

x x y y x x y y ++--+<+

即12120.x x y y +<

而2212121212()()22

m m x x y y my my y y +=+

++22

1(1)(),82m m =+-

所以

21

0.82

m -<即2 4.m <

又因为10.m >?>且所以1 2.m <<所以m 的取值范围是(1,2)。

7、(2011年)已知抛物线1:C 2

x =y ,圆2:C 22(4)1x y +-=的圆心为点M 。

(Ⅰ)求点M 到抛物线1C 的准线的距离;

(Ⅱ)已知点P 是抛物线1C 上一点(异于原点),过点P 作圆2C 的两条切线,交抛物线1C 于A ,B 两

点,若过M ,P 两点的直线l 垂足于AB ,求直线l 的方程.

解析:

8、(2012年)如图,椭圆22

22:1(0)x y C a b a b

+=>>的离心率为12,其左焦点到点P(2,1)不过原点....

O的直线l 与C相交于A,B两点,且线段AB被直线OP平分。 (Ⅰ)求椭圆C 的方程;

(Ⅱ)求△ABP 面积取最大值时直线l 的方程。

解析:

9、(2013年)如图,点(0,1)P -是椭圆22

122

:

1(0)x y

C a b a b +=>> 的一个顶点,1C 的长轴是圆222:4C x y +=的直径,12,l l 是过点P 且互相垂直的两条直线,其中1l 交2C 于,A B 两点,2l 交1C 于另一点

D .

(Ⅰ)求椭圆1C 的方程;

ⅠⅠ()求ABD ?面积取最大值时直线1l 的方程.

1)由题意得

∴椭圆的方程为

(2)设

由题意知直线的斜率存在,不妨设其为,则直线的方程为

故点到直线的距离为

,又圆:,

,∴直线的方程为

由,消去,整理得,

故,代入的方程得

设△

的面积为

,则

(第21题图)

当且仅当,即时上式取等号。

∴当时,△的面积取得最大值,

此时直线的方程为

10、(2014年)如图,设椭圆(),01:22

22>>=+b a b

y a x C 动直线l 与椭圆C 只有一个公共点P ,且点P 在第

一象限.

(Ⅰ)已知直线l 的斜率为k ,用k b a ,,表示点P 的坐标;

ⅠⅠ()若过原点O 的直线1l 与l 垂直,证明:点P 到直线1l 的距离的最大值为b a -.

(1)方法1:设直线l 的方程为

,由 ,消去y 得

由于直线l 与椭圆C 只有一个公共点P ,故△=0,即,解得点P 的坐标为

又点P 在第一象限,故点P 的坐标为

方法2:作变换

,则椭圆C :变为圆 :

切点变为点,切线(变为。在圆中设直线的方程为(),

由解得

即,由于,

所以,得,

即代入得即,

利用逆变换代入即得:

(2)由于直线l1过原点O且与直线l垂直,故直线l1的方程为x+ky=0,所以点P到直线l1的距离

整理得:

因为,所以

当且仅当时等号成立。

所以,点P到直线的距离的最大值为

11、(2015年)已知椭圆222y x =1上两个不同的点A , B 关于直线y =mx +2

1

对称. (Ⅰ)求实数m 的取值范围;

ⅠⅠ()求△AOB 面积的最大值(O 为坐标原点)

解:(1)由题意,可设直线AB 的方程为x=-my+n ,代入椭圆方程,可得(m 2+2

y 2-2mny+n 2-2=0,

设A (x 1,y 1),B (x 2,y 2).由题意,△=4m 2n 2-4(m 2+2)(n 2-2)=8(m 2-n 2+2)>0,

设线段AB 的中点P (x 0,y 0),则.x 0=-m ×+n=,

由于点P 在直线y=mx+上,∴=+,

∴,代入△>0,可得3m 4+4m 2-4>0,

解得m 2,∴或m .

(2)直线AB 与x 轴交点横坐标为n ,

∴S △OAB ==|n|?=,

由均值不等式可得:n 2(m 2-n 2+2)=,

∴S △AOB =,当且仅当n 2=m 2-n 2+2,即2n 2=m 2+2,又∵,解得m=,

当且仅当m=时,S △AOB 取得最大值为.

12、(2016年)如图,设椭圆

2

2

2

1

x

y

a

+=()1

a>.

(1)求直线1

y kx

=+被椭圆截得的线段长(用a、k表示);

(2)若任意以点(0,1)

A为圆心的圆与椭圆至多有3个公共点,求椭圆离心率的取值范围.

)设直线被椭圆截得的线段为,由得

,.

)假设圆与椭圆的公共点有个,由对称性可设轴左侧的椭圆上有两个不同的点,,满足.

记直线,的斜率分别为,,且,,.

,,

所以.

由于,,得

因此

, ①

因为①式关于

,的方程有解的充要条件是

所以

因此,任意以点

为圆心的圆与椭圆至多有个公共点的充要条件为

由得,所求离心率的取值范围为.

13、 (2017年)如图,已知抛物线x 2=y ,点A (-12,14),B (32,94),抛物线上的点p(x,y)(-12<x <3

2).过点

B 作直线AP 的垂线,垂足为Q .

(1)求直线AP 斜率的取值范围; (2)求|PA|·|PQ|的最大值.

解:(1)设直线AP 的斜率为k , k=x 2-1

4x+12

=x-12,

因为-12<x <3

2,所以直线AP 斜率的取值范围是(-1,1).

(2)联立直线AP 与BQ 的方程?

??kx-y+12k+1

4

=0,

x+ky-94k-3

2

=0,

解得点Q 的横坐标是x Q =-k 2+4k+3

2(k 2+1)

因为|P A |=1+k 2(x+1

2)=1+k 2(k+1),

|PQ |=1+k 2

(x Q -x)=-(k-1)(k+1)2

k 2+1

, 所以|PA|·|PQ|=-(k-1)(k+1)3. 令f(k)=-(k-1)(k+1)3, 因为f′(k)=-(4k-2)(k+1)2,

所以f (k )在区间(-1,12)上单调递增,(1

2,1)上单调递减,

因此当k =12时,|PA|·|PQ|取得最大值27

16

(完整word版)高中数学解析几何大题精选

解析几何大量精选 1.在直角坐标系xOy 中,点M 到点()1,0F ,) 2 ,0F 的距离之和是4,点M 的轨迹 是C 与x 轴的负半轴交于点A ,不过点A 的直线:l y kx b =+与轨迹C 交于不同的两点P 和Q . ⑴求轨迹C 的方程; ⑴当0AP AQ ?=u u u r u u u r 时,求k 与b 的关系,并证明直线l 过定点. 【解析】 ⑴ 2 214 x y +=. ⑴将y kx b =+代入曲线C 的方程, 整理得2 2 2 (14)8440k x kbx b +++-=, 因为直线l 与曲线C 交于不同的两点P 和Q , 所以222222644(14)(44)16(41)0k b k b k b ?=-+-=-+> ① 设()11,P x y ,()22,Q x y ,则122 814kb x x k +=-+,21224414b x x k -= + ② 且2222 121212122 4()()()14b k y y kx b kx b k x x kb x x b k -?=++=+++=+, 显然,曲线C 与x 轴的负半轴交于点()2,0A -, 所以()112,AP x y =+u u u r ,()222,AQ x y =+u u u r . 由0AP AQ ?=u u u r u u u r ,得1212(2)(2)0x x y y +++=. 将②、③代入上式,整理得22121650k kb b -+=. 所以(2)(65)0k b k b -?-=,即2b k =或6 5 b k =.经检验,都符合条件① 当2b k =时,直线l 的方程为2y kx k =+.显然,此时直线l 经过定点()2,0-点. 即直线l 经过点A ,与题意不符. 当65b k =时,直线l 的方程为6655y kx k k x ? ?=+=+ ?? ?. 显然,此时直线l 经过定点6,05?? - ??? 点,满足题意. 综上,k 与b 的关系是65b k =,且直线l 经过定点6,05?? - ??? 2. 已知椭圆2222:1x y C a b +=(0)a b >>的离心率为1 2 ,以原点为圆心,椭圆的短半轴为半径的 圆与直线0x y -=相切. ⑴ 求椭圆C 的方程; ⑴ 设(4,0)P ,A ,B 是椭圆C 上关于x 轴对称的任意两个不同的点,连结PB 交椭圆C 于另一点E ,证明直线AE 与x 轴相交于定点Q ; ⑴ 在⑴的条件下,过点Q 的直线与椭圆C 交于M ,N 两点,求OM ON ?u u u u r u u u r 的取值范围. 【解析】 ⑴22 143 x y +=. ⑴ 由题意知直线PB 的斜率存在,设直线PB 的方程为(4)y k x =-.

高三数学解析几何专题

专题四 解析几何专题 【命题趋向】解析几何是高中数学的一个重要内容,其核心内容是直线和圆以及圆锥曲线.由于平面向量可以用坐标表示,因此以坐标为桥梁,可以使向量的有关运算与解析几何中的坐标运算产生联系,平面向量的引入为高考中解析几何试题的命制开拓了新的思路,为实现在知识网络交汇处设计试题提供了良好的素材.解析几何问题着重考查解析几何的基本思想,利用代数的方法研究几何问题的基本特点和性质.解析几何试题对运算求解能力有较高的要求.解析几何试题的基本特点是淡化对图形性质的技巧性处理,关注解题方向的选择及计算方法的合理性,适当关注与向量、解三角形、函数等知识的交汇,关注对数形结合、函数与方程、化归与转化、特殊与一般思想的考查,关注对整体处理问题的策略以及待定系数法、换元法等的考查.在高考试卷中该部分一般有1至2道小题有针对性地考查直线与圆、圆锥曲线中的重要知识和方法;一道综合解答题,以圆或圆锥曲线为依托,综合平面向量、解三角形、函数等综合考查解析几何的基础知识、基本方法和基本的数学思想方法在解题中的应用,这道解答题往往是试卷的把关题之一. 【考点透析】解析几何的主要考点是:(1)直线与方程,重点是直线的斜率、直线方程的各种形式、两直线的交点坐标、两点间的距离公式、点到直线的距离公式等;(2)圆与方程,重点是确定圆的几何要素、圆的标准方程与一般方程、直线与圆和圆与圆的位置关系,以及坐标法思想的初步应用;(3)圆锥曲线与方程,重点是椭圆、双曲线、抛物线的定义、标准方程和简单几何性质,圆锥曲线的简单应用,曲线与方程的关系,以及数形结合的思想方法等. 【例题解析】 题型1 直线与方程 例1 (2008高考安徽理8)若过点(4,0)A 的直线l 与曲线22(2)1x y -+=有公共点,则直线l 的斜率的取值范围为( ) A .[ B .( C .[33 D .(33 - 分析:利用圆心到直线的距离不大于其半径布列关于直线的斜率k 的不等式,通过解不等式解决. 解析:C 设直线方程为(4)y k x =-,即40kx y k --=,直线l 与曲线22(2)1 x y -+= 有公共点,圆心到直线的距离小于等于半径 1d =≤,得222141,3 k k k ≤+≤,选择C 点评:本题利用直线和圆的位置关系考查运算能力和数形结合的思想意识.高考试卷中一般不单独考查直线与方程,而是把直线与方程与圆、圆锥曲线或其他知识交汇考查. 例2.(2009江苏泰州期末第10题)已知04,k <<直线1:2280l kx y k --+=和直线

2005-2017年浙江高考理科数学历年真题之解析几何大题 教师版

2005-2017年浙江高考理科数学历年真题之解析几何大题 (教师版) 1、(2005年)如图,已知椭圆的中心在坐标原点,焦点12,F F 在x 轴上,长轴12A A 的长为4,左准线l 与x 轴的交点为M ,|MA 1|∶|A 1F 1|=2∶1. (Ⅰ)求椭圆的方程; (Ⅱ)若直线1l :x =m (|m |>1),P 为1l 上的动点,使12F PF ∠ 最大的点P 记为Q ,求点Q 的坐标(用m 表示). 解析:(Ⅰ)设椭圆方程为()22 2210x y a b a b +=>>,半焦距为c , 则2111,a MA a A F a c c =-=- ,()2 222 224 a a a c c a a b c ?-=-??? =??=+???由题意,得 2,1a b c ∴=== ,22 1.43 x y +=故椭圆方程为 (Ⅱ) 设()0,,||1P m y m >,当00y >时,120F PF ∠=; 当00y ≠时,22102 F PF PF M π <∠<∠<,∴只需求22tan F PF ∠的最大值即可 设直线1PF 的斜率011y k m = +,直线2PF 的斜率0 21 y k m =-, 021********||tan 11y k k F PF k k m y -∴∠= =≤=+-+ 0||y =时,12F PF ∠ 最大,(,,||1Q m m ∴> 2、(2006年)如图,椭圆b y a x 222+=1(a >b >0)与过点A (2,0)、B(0,1)的直线有且只有一个公共点T , 且椭圆的离心率e= 2 3。 (Ⅰ)求椭圆方程; (Ⅱ)设F 1、F 2分别为椭圆的左、右焦点,M 为线段AF 2的中点,求证:∠ATM=∠AF 1T 。

高考数学解析几何专题练习及答案解析版

高考数学解析几何专题练习解析版82页 1.一个顶点的坐标()2,0 ,焦距的一半为3的椭圆的标准方程是( ) A. 19422=+y x B. 14922=+y x C. 113422=+y x D. 14132 2=+y x 2.已知双曲线的方程为22 221(0,0)x y a b a b -=>>,过左焦点F 1的直线交 双曲线的右支于点P ,且y 轴平分线段F 1P ,则双曲线的离心率是( ) A . 3 B .32+ C . 31+ D . 32 3.已知过抛物线y 2 =2px (p>0)的焦点F 的直线x -my+m=0与抛物线交于A ,B 两点, 且△OAB (O 为坐标原点)的面积为,则m 6+ m 4的值为( ) A .1 B . 2 C .3 D .4 4.若直线经过(0,1),(3,4)A B 两点,则直线AB 的倾斜角为 A .30o B . 45o C .60o D .120o 5.已知曲线C 的极坐标方程ρ=2θ2cos ,给定两点P(0,π/2),Q (-2,π),则有 ( ) (A)P 在曲线C 上,Q 不在曲线C 上 (B)P 、Q 都不在曲线C 上 (C)P 不在曲线C 上,Q 在曲线C 上 (D)P 、Q 都在曲线C 上 6.点M 的直角坐标为)1,3(--化为极坐标为( ) A .)65, 2(π B .)6 ,2(π C .)611,2(π D .)67,2(π 7.曲线的参数方程为???-=+=1 232 2t y t x (t 是参数),则曲线是( ) A 、线段 B 、直线 C 、圆 D 、射线 8.点(2,1)到直线3x-4y+2=0的距离是( ) A . 54 B .4 5 C . 254 D .4 25 9. 圆0642 2 =+-+y x y x 的圆心坐标和半径分别为( ) A.)3,2(-、13 B.)3,2(-、13 C.)3,2(--、13 D.)3,2(-、13 10.椭圆 122 2 2=+b y x 的焦点为21,F F ,两条准线与x 轴的交点分别为M 、N ,若212F F MN ≤,则该椭圆离心率取得最小值时的椭圆方程为 ( )

2020高考数学专题复习-解析几何专题

《曲线的方程和性质》专题 一、《考试大纲》要求 ⒈直线和圆的方程 (1)理解直线的倾斜角和斜率的概念,掌握过两点的直线的斜率公式.掌握直线方 程的点斜式、两点式、一般式,并能根据条件熟练地求出直线方程. (2)掌握两条直线平行与垂直的条件,两条直线所成的角和点到直线的距离公式.能够根据直线的方程判断两条直线的位置关系. (3)了解二元一次不等式表示平面区域. (4)了解线性规划的意义,并会简单的应用. (5)了解解析几何的基本思想,了解坐标法. (6)掌握圆的标准方程和一般方程,了解参数方程的概念,理解圆的参数方程. ⒉圆锥曲线方程 (1)掌握椭圆的定义、标准方程和椭圆的简单几何性质,理解椭圆的参数方程. (2)掌握双曲线的定义、标准方程和双曲线的简单几何性质. (3)掌握抛物线的定义、标准方程和抛物线的简单几何性质. (4)了解圆锥曲线的初步应用. 二、高考试题回放 1.(福建)已知F 1、F 2是椭圆的两个焦点,过F 1且与椭圆长轴垂直 的直线交椭圆于A 、B 两点,若△ABF 2是正三角形,则这个椭圆的离心率是 ( ) A . 33 B .32 C .2 2 D .23

2.(福建)直线x +2y=0被曲线x 2+y 2-6x -2y -15=0所截得的弦长等于 . 3.(福建)如图,P 是抛物线C :y=2 1x 2上一点,直线l 过点P 且与抛物线C 交于另一点Q.(Ⅰ)若直线l 与过点P 的切线垂直,求线段PQ 中点M 的轨迹方程; (Ⅱ)若直线l 不过原点且与x 轴交于点S ,与y 轴交于点T ,试求 | || |||||SQ ST SP ST +的取值范围. 4.(湖北)已知点M (6,2)和M 2(1,7).直线y=mx —7与线段M 1M 2的交点M 分有向线段M 1M 2的比为3:2,则m 的值为 ( ) A .2 3 - B .3 2- C .4 1 D .4 5.(湖北)两个圆0124:0222:222221=+--+=-+++y x y x C y x y x C 与的 公切线有且仅有 ( ) A .1条 B .2条 C .3条 D .4条 6.(湖北)直线12:1:22=-+=y x C kx y l 与双曲线的右支交于不同的两 点A 、B. (Ⅰ)求实数k 的取值范围; (Ⅱ)是否存在实数k ,使得以线段AB 为直径的圆经过双曲线C 的右焦点F ?若存在,求出k 的值;若不存在,说明理由. 7.(湖南)如果双曲线112 132 2 =-y x 上一点P 到右焦点的距离为13, 那么 点 P 到右准线 的 距 离 是 ( )

高考中解析几何的常考题型分析总结

高考中解析几何的常考题型分析 一、高考定位 回顾2008,2012年的江苏高考题,解析几何是重要内容之一,所占分值在25 分左右,在高考中一般有2,3条填空题,一条解答题.填空题有针对性地考查椭圆、双曲线、抛物线的定义、标准方程和简单几何性质及其应用,主要针对圆锥曲线本身,综合性较小,试题的难度一般不大;解答题主要是以圆或椭圆为基本依托,考查椭圆方程的求解、考查直线与曲线的位置关系,除了本身知识的综合,还会与其它知识如向量、函数、不等式等知识构成综合题,多年高考压轴题是解析几何题. 二、应对策略 复习中,一要熟练掌握椭圆、双曲线、抛物线的基础知识、基本方法,在抓住通性通法的同时,要训练利用代数方法解决几何问题的运算技巧. 二要熟悉圆锥曲线的几何性质,重点掌握直线与圆锥曲线相关问题的基本求解方法与策略,提高运用函数与方程思想、向量与导数的方法来解决问题的能力. 三在第二轮复习中要熟练掌握圆锥曲线的通性通法和基本知识. 预测在2013年的高考题中: 1.填空题依然是直线和圆的方程问题以及考查圆锥曲线的几何性质为主,三种圆锥曲线都有可能涉及. 2.在解答题中可能会出现圆、直线、椭圆的综合问题,难度较高,还 有可能涉及简单的轨迹方程和解析几何中的开放题、探索题、证明题,重点关注定值问题. 三、常见题型

1.直线与圆的位置关系问题 直线与圆的位置关系是高考考查的热点,常常将直线与圆和函数、三角、向量、数列、圆锥曲线等相互交汇,求解参数、函数最值、圆的方程等,主要考查直线与圆的相交、相切、相离的判定与应用,以及弦长、面积的求法等,并常与圆的几何性质交汇,要求学生有较强的运算求解能力. 求解策略:首先,要注意理解直线和圆等基础知识及它们之间的深入联系;其次,要对问题的条件进行全方位的审视,特别是题中各个条件之间的相互关系及隐含条件的挖掘;再次,要掌握解决问题常常使用的思想方法,如数形结合、化归转化、待定系数、分类讨论等思想方法;最后,要对求解问题的过程清晰书写,准确到位. 点评:(1)直线和圆的位置关系常用几何法,即利用圆的半径r,圆心到直线的距离d及半弦长l2构成直角三角形关系来处理. (2)要注意分类讨论,即对直线l分为斜率存在和斜率不存在两种情况分别研究,以防漏解或推理不严谨. 2.圆锥曲线中的证明问题 圆锥曲线中的证明问题,主要有两类:一类是证明点、直线、曲线等几何元素中的位置关系,如:某点在某直线上、某直线经过某个点、某两条直线平行或垂直等;另一类是证明直线与圆锥曲线中的一些数量关系(相等或不等). 求解策略:主要根据直线、圆锥曲线的性质、直线与圆锥曲线的位置关系等,通过相关的性质应用、代数式的恒等变形以及必要的数值计算等进行证明. 常用的一些证明方法: 点评:本题主要考查双曲线的概念、标准方程、几何性质及其直线与双曲线的关系.特别要注意直线与双曲线的关系问题,在双曲线当中,最特殊的为等轴双曲

2019年浙江省数学高考模拟精彩题选 解析几何解答题 含答案

2016浙江精彩题选——解析几何解答题 1.(2016名校联盟第一次)19.(本题满分15分) 已知椭圆C :22 a x +y 2b 2=1(a >b >0)的左右焦点为F 1,F 2 ,离心率为e .直线l :y =ex +a 与x 轴、y 轴分别交于点A ,B 两点,M 是直线l 与椭圆C 的一个公共点,P 是点F 1关于直线 l 的对称点,设. (Ⅰ)若l = 3 4 ,求椭圆C 的离心率; (Ⅱ)若D PF 1F 2 为等腰三角形,求l 的值.

2.(2016温州一模19).(本题满分15分)如图,已知椭圆C: 22 22 1(0) x y a b a b +=>> 经过点 ,A B分别为椭圆C的左、右顶点,N M,是椭圆C上非顶点的两点,且OMN ?的面积等于2.(Ⅰ)求椭圆C的方程; (Ⅱ)过点A作OM AP//交椭圆C于点P,求证:ON BP//. 解:(Ⅰ)由题意得: ? ? ? ? ? ? ? ? ? ? ? + = = = = + 2 2 2 2 2 2 2 2 1 ) 2 6 ( 1 c b a a c e b a ,解得: ?? ? ? ? = = 2 4 2 2 b a 故椭圆C的方程为:1 2 4 2 2 = + y x ……………………………………5分 (Ⅱ)解法一:如图所示,设直线OM,ON的方程为 OM y k x =, ON y k x = 联立方程组22 1 42 OM y k x x y = ? ? ? += ?? ,解得M, 同理可得( N,……………………………………7分作' MM x ⊥轴, ' NN x ⊥轴,',' M N是垂足, OMN S ? = '' ''OMM ONN MM N N S S S ?? -- 梯形 1 [()()] 2M N M N M M N N y y x x x y x y =+--+ 1 () 2M N N M x y x y =- 1 2 = =9分 已知 OMN S ? 2 =,化简可得 2 - = ON OM k k.……………………………………11分 设(,) P P P x y,则22 42 P P x y -=,

最新名校2020高考解析几何大题二(定值定点)(4.2日)

解析几何大题二 1.椭圆M 的中心在坐标原点O ,左、右焦点F 1,F 2在x 轴上,抛物线N 的顶点也在原点O ,焦点为F 2,椭圆M 与抛物线N 的一个交点为A (3,2). (Ⅰ)求椭圆M 与抛物线N 的方程; (Ⅱ)在抛物线M 位于椭圆内(不含边界)的一段曲线上,是否存在点B ,使得△AF 1B 的外接圆圆心在x 轴上?若存在,求出B 点坐标;若不存在,请说明理由. 2.已知椭圆22 22:1(0)x y C a b a b +=>>的右焦点F 到直线30x y -+=的距离为22,231,P ?? ? ? ?? 在椭圆C 上. (1)求椭圆C 的方程; (2)若过F 作两条互相垂直的直线12,l l ,,A B 是1l 与椭圆C 的两个交点,,C D 是2l 与椭圆C 的两个交点,,M N 分别是线段,AB CD 的中点试,判断直线MN 是否过定点?若过定点求出该定点的坐标;若不过定点,请说明理由. 3.已知抛物线C:y 2 =2px(p>0)的焦点F 和椭圆22 143 x y +=的右焦点重合,直线过点F 交抛物线于A 、 B 两点. (1)求抛物线C 的方程; (2)若直线交y 轴于点M,且,MA mAF MB nBF ==u u u r u u u r u u u r u u u r ,m 、n 是实数,对于直线,m+n 是否为定值? 若是,求出m+n 的值;否则,说明理由. 4.已知椭圆22 22:1(0)x y E a b a b +=>>的上顶点为B ,点(0,2)D b -,P 是E 上且不在y 轴上的点, 直线DP 与E 交于另一点Q .若E 的离心率为2 2,PBD ?的最大面积等于 322 . (1)求E 的方程; (2)若直线,BP BQ 分别与x 轴交于点,M N ,判断OM ON ?是否为定值.

历年浙江解析几何高考题

历年浙江解析几何高考题 1、(042)直线y=2与直线x+y—2=0的夹角是() (A)(B)(C)(D) 2、(046文理)曲线y2=4x关于直线x=2对称的曲线方程是() (A)y2=8--4x (B)y2=4x—8 (C)y2=16--4x (D)y2=4x—16 3、(0411文理)椭圆的左、右焦点分别为F1、F2,线段F1F2被点(,0) 分成5:3两段,则此椭圆的离心率为() (A)(B)(C)(D) 4、(0422文理)(本题满分14分)已知双曲线的中心在原点,右顶点为A(1,0).点P、Q 在双曲线的右支上,点M(m,0)到直线AP的距离为1. (Ⅰ)若直线AP的斜率为k ,且,求实数m的取值范围; (Ⅱ)当时,ΔAPQ的内心恰好是点M,求此双曲线的方程. 5、(053文理).点(1,-1)到直线x-y+1=0的距离是( ) (A) (B) (C) (D) 6、(059).函数y=ax2+1的图象与直线y=x相切,则a=( ) (A)1/8 (B)1/4 (C) 1/2 (D)1 7、(0513文理).过双曲线(a>0,b>0)的左焦点且垂直于x轴的直线与双曲线 相交于M、N两点,以MN为直径的圆恰好过双曲线的右顶点,则双曲线的离心率等于_________.

8、(0519).如图,已知椭圆的中心在坐标原点,焦点F 1,F 2 在x轴上,长轴A 1 A 2 的长为4, 左准线l与x轴的交点为M,|MA 1|∶|A 1 F 1 |=2∶1. (Ⅰ)求椭圆的方程; (Ⅱ)若点P为l上的动点,求∠F 1PF 2 最大值. (理)(Ⅱ)若直线l1:x=m(|m|>1),P为l1上的动点,使∠F1PF2最大的点P记为Q,求点Q的坐标(用m表示). 9、(063)抛物线的准线方程是() (A) (B) (C) (D) 10、(0613)双曲线上的离心率是3,则等于 11、(0619)如图,椭圆=1(a>b>0)与过点A(2,0)B(0,1)的直线有且只有一个公共点T,且椭圆的离心率e=(Ⅰ)求椭圆方程; (Ⅱ)设F、F分别为椭圆的左、右焦点,求证:。 (理Ⅱ)设、分别是椭圆的左、右焦点,为线段的中点,求证;

人教版高考数学专题复习:解析几何专题

高考数学专题复习:解析几何专题 【命题趋向】 1.注意考查直线的基本概念,求在不同条件下的直线方程,直线的位置关系,此类题大多都属中、低档题,以选择、填空题的形式出现,每年必考 2.考查直线与二次曲线的普通方程,属低档题,对称问题常以选择题、填空题出现 3.考查圆锥曲线的基础知识和基本方法的题多以选择题和填空题的形式出现,与求轨迹有关、与向量结合、与求最值结合的往往是一个灵活性、综合性较强的大题,属中、高档题, 4.解析几何的才查,分值一般在17---22分之间,题型一般为1个选择题,1个填空题,1个解答题. 【考题解析与考点分析】 考点1.求参数的值 求参数的值是高考题中的常见题型之一,其解法为从曲线的性质入手,构造方程解之. 例1.若抛物线22y px =的焦点与椭圆22162 x y +=的右焦点重合,则p 的值为( ) A .2- B .2 C .4- D .4 考查意图: 本题主要考查抛物线、椭圆的标准方程和抛物线、椭圆的基本几何性质. 解答过程:椭圆22162 x y +=的右焦点为(2,0),所以抛物线22y px =的焦点为(2,0),则4p =,故选D. 考点2. 求线段的长 求线段的长也是高考题中的常见题型之一,其解法为从曲线的性质入手,找出点的坐标,利用距离公式解之. 例2.已知抛物线y-x 2+3上存在关于直线x+y=0对称的相异两点A 、B ,则|AB|等于 A.3 B.4 C.32 D.42 考查意图: 本题主要考查直线与圆锥曲线的位置关系和距离公式的应用. 解:设直线AB 的方程为y x b =+,由22123301y x x x b x x y x b ?=-+?++-=?+=-?=+?,进而可求出AB 的中点1 1(,)22M b --+,又由11(,)22 M b --+在直线0x y +=上可求出1b =, ∴220x x +-=,由弦长公式可求出AB ==. 故选C 例3.如图,把椭圆2212516x y +=的长轴 AB 分成8等份,过每个分点作x 轴的垂线交椭圆的上半部 分于1234567 ,,,,,,P P P P P P P 七个点,F 是椭圆的一个焦点, 则1234567PF P F P F P F P F P F P F ++++++= ____________. 考查意图: 本题主要考查椭圆的性质和距离公式的灵活应用.

2019高考大题之解析几何

高考大题之解析几何 1.如图,椭圆C :22221x y a b +=(a >b >0)的离心率e =3 5 ,左焦点为F ,A ,B ,C 为其三个顶 点,直线CF 与AB 交于点D ,若△ADC 的面积为15. (Ⅰ)求椭圆C 的方程; (Ⅱ)是否存在分别以AD ,AC 为弦的两个相外切的等圆? 若存在,求出这两个圆的圆心坐标;若不存在,请说明理由. 解:(Ⅰ)设左焦点F 的坐标为(-c ,0),其中c =22a b -, ∵e = 35c a =,∴a =5 3 c ,b =43c . ∴A (0,43c ),B (-5 3c ,0),C (0,-43c ), ∴AB :33154x y c c -+=,CF :314x y c c --=, 联立解得D 点的坐标为(-54c ,1 3c ). ∵△ADC 的面积为15,∴12|x D |·|AC |=15,即12·54c ·2·4 3 c =15, 解得c =3,∴a =5,b =4,∴椭圆C 的方程为22 12516 x y +=. (Ⅱ)由(Ⅰ)知,A 点的坐标为(0,4),D 点的坐标为(-15 4 ,1). 假设存在这样的两个圆M 与圆N ,其中AD 是圆M 的弦,AC 是圆N 的弦, 则点M 在线段AD 的垂直平分线上,点N 在线段AC 的垂直平分线y =0上. 当圆M 和圆N 是两个相外切的等圆时,一定有A ,M ,N 在一条直线上,且AM =AN . ∴M 、N 关于点A 对称,设M (x 1,y 1),则N (-x 1,8-y 1), 根据点N 在直线y =0上,∴y 1=8.∴M (x 1,8),N (-x 1,0), 而点M 在线段AD 的垂直平分线y -52=-54(x +158)上,可求得x 1=-251 40 . 故存在这样的两个圆,且这两个圆的圆心坐标分别为 M (-25140,8),N (25140 ,0). 2.如图,椭圆22 221(0)x y a b a b +=>>的左焦点为F ,过点F 的直线交椭圆于B A ,两点, AF 的最大值为M ,BF 的最小值为m ,满足2 34 M m a ?= 。 (Ⅰ)若线段AB 垂直于x 轴时,3 2 AB = ,求椭圆的方程; (Ⅱ) 设线段AB 的中点为G ,AB 的垂直平分线与x 轴和y 轴分别交于E D ,两

浙江高考解析几何大题

浙江高考历年真题之解析几何大题 1、(2005年)如图,已知椭圆的中心在坐标原点,焦点12,F F 在x 轴上,长轴12A A 的长为4,左准线l 与x 轴的交点为M ,|MA 1|∶|A 1F 1|=2∶1. (Ⅰ)求椭圆的方程; (Ⅱ)若直线1l :x =m (|m |>1),P 为1l 上的动点,使12F PF ∠ 最大的点P 记为Q ,求点Q 的坐标(用m 表示). 解析:(Ⅰ)设椭圆方程为()22 2210x y a b a b +=>>,半焦距为c , 则2111,a MA a A F a c c =-=- ,()2 222 224 a a a c c a a b c ?-=-??? =??=+??? 由题意,得 2,3,1a b c ∴=== ,22 1.43 x y +=故椭圆方程为 (Ⅱ) 设()0,,||1P m y m >,当00y >时,120F PF ∠=; 当00y ≠时,22102 F PF PF M π <∠<∠<,∴只需求22tan F PF ∠的最大值即可设直线1PF 的斜率011y k m = +,直线2PF 的斜率0 21 y k m =-, 002122222212002||tan 1121||1 y k k F PF k k m y m y m -∴∠= =≤= +-+-?- 2 01||m y -=时,12F PF ∠最大,(2,1,||1Q m m m ∴±->

2、(2006年)如图,椭圆b y a x 2 22+=1(a >b >0)与过点A (2,0)、B(0,1)的直线有且只有一个公共点T ,且椭圆的 离心率e= 2 3 。 (Ⅰ)求椭圆方程; (Ⅱ)设F 1、F 2分别为椭圆的左、右焦点,M 为线段AF 2的中点,求证:∠ATM=∠AF 1T 。 解析:(Ⅰ)过 A 、B 的直线方程为 12 x y += 因为由题意得??? ????+-==+1211 2222x y b y a x 有惟一解, 即0)4 1(22222 22 =-+-+ b a a x a x a b 有惟一解, 所以22 2 2 (44)0(0),a b a b ab ?=+-=≠故442 2 -+b a =0; 又因为e 3 c =即 22234 a b a -= , 所以2 2 4a b = ;从而得22 1 2,,2 a b == 故所求的椭圆方程为22212x y += (Ⅱ)由(Ⅰ)得6c = , 所以 1266((F F ,从而M (1+4 6 ,0) 由 ?? ???+-==+1 211222 2x y y x ,解得 121,x x == 因此1(1,)2T = 因为126tan 1-= ∠T AF ,又21 tan =∠TAM ,6 2tan =∠2TMF ,得 12 6 6 1 121 62 tan -= + -= ∠ATM ,因此,T AF ATM 1∠=∠ 3、(2007年)如图,直线y kx b =+与椭圆2 214 x y +=交于A B ,两点,记AOB △的面积为S .

最新高中数学解析几何大题精选

解析几何大量精选 1 2 1.在直角坐标系xOy 中,点M 到点()1,0F ,)2,0F 的距离之和是4,点M 3 的轨迹是C 与x 轴的负半轴交于点A ,不过点A 的直线:l y kx b =+与轨迹C 交于4 不同的两点P 和Q . 5 ⑴求轨迹C 的方程; 6 ⑵当0AP AQ ?=时,求k 与b 的关系,并证明直线l 过定点. 7 【解析】 ⑴ 2214 x y +=. 8 ⑵将y kx b =+代入曲线C 的方程, 9 整理得222(14)8440k x kbx b +++-=, 10 因为直线l 与曲线C 交于不同的两点P 和Q , 11 所以222222644(14)(44)16(41)0k b k b k b ?=-+-=-+> ① 12 设()11,P x y ,()22,Q x y ,则122814kb x x k +=-+,21224414b x x k -=+ ② 13 且22 2 2 121212122 4()()()14b k y y kx b kx b k x x kb x x b k -?=++=+++=+, 14 显然,曲线C 与x 轴的负半轴交于点()2,0A -, 15 所以()112,AP x y =+,()222,AQ x y =+. 16 由0AP AQ ?=,得1212(2)(2)0x x y y +++=. 17

将②、③代入上式,整理得22121650k kb b -+=. 18 所以(2)(65)0k b k b -?-=,即2b k =或65 b k =.经检验,都符合条件① 19 当2b k =时,直线l 的方程为2y kx k =+.显然,此时直线l 经过定点()2,0-20 点. 21 即直线l 经过点A ,与题意不符. 22 当6 5b k =时,直线l 的方程为665 5y kx k k x ??=+=+ ?? ? . 23 显然,此时直线l 经过定点6 ,05 ??- ?? ? 点,满足题意. 24 综上,k 与b 的关系是65 b k =,且直线l 经过定点6 ,05?? - ??? 25 26 2. 已知椭圆2222:1x y C a b +=(0)a b >>的离心率为1 2 ,以原点为圆心,椭圆的短半 27 轴为半径的圆与直线0x y -+相切. 28 ⑴ 求椭圆C 的方程; 29 ⑵ 设(4,0)P ,A ,B 是椭圆C 上关于x 轴对称的任意两个不同的点,连结PB 30 交椭圆C 于另一点E ,证明直线AE 与x 轴相交于定点Q ; 31 ⑶ 在⑵的条件下,过点Q 的直线与椭圆C 交于M ,N 两点,求OM ON ?的取32 值范围. 33 【解析】 ⑴22 143 x y +=. 34

2020年浙江高考解析几何题

2020年浙江高考解析几何题 作者:题海降龙 【真题回放】 (2017浙江—抛物线与圆) 如图,已知抛物线x 2=y ,点A (﹣,),B (,),抛物线上的点P (x ,y )(﹣<x <),过点B 作直线AP 的垂线,垂足为Q .(1)求直线AP 斜率的取值范围;(2)求|PA |?|PQ |的最大值. 【原创解法】 (2018浙江—抛物线与半椭圆) 如图,已知点P 是y 轴左侧(不含y 轴)一点,抛物线C :y 2=4x 上存在不同的两点A ,B 满足PA ,PB 的中点均在C 上. (1)设AB 中点为M ,证明:PM 垂直于y 轴; (2)若P 是半椭圆x 2 +2 4 y =1(x <0)上的动点,求△P AB 面积的取值范围. 【解析】 (Ⅰ)设00(,)P x y ,2111(,)4A y y ,2 221(,)4 B y y .因为PA ,PB 的中点在抛物线上,所以1y ,2y 为方程2 2014()422 y x y y ++=? 即22 000280y y y x y -+-=的两个不同的实数根所以1202y y y +=因此,PM 垂直于y 轴.

(Ⅱ)由(Ⅰ)可知1202 12002,8, y y y y y x y +=???=-??所以2221200013||()384PM y y x y x =+-=- ,12||y y -=.因此,PAB △ 的面积3 2212001||||(4)24 PAB S PM y y y x =?-=-△.因为2 200 01(0)4y x x +=<,所以22 00004444[4,5]y x x x -=--+∈.PAB △ 面积的取值范围是15104 . 【原创解法】2018年属于简单题,关键处理好第一小题的韦达定理。(2019浙江—抛物线与三角形) (2019浙江)过焦点F (1,0)的直线与抛物线 y 2 =2px 交于A,B 两点,C 在抛物线,△ABC 的 重心P 在x 轴上,AC 交x 轴于点Q (点Q 在点P 的右侧)。(1)求抛物线方程及准线方程; (2)记△AFP ,△CQP 的面积分别为 S 1, S 2,求 S 1 S 2 的最小值及此时点P 的坐标 【原创解法】 2020年浙江高考解几预测 近三年浙江高考解析几何都是以抛物线为大背景即抛物线与圆、椭圆、三角形的组合图形呈现。2020年在维稳的大环境下,抛物线出现的可能性最大,但平时也需要练一下椭圆问题。毕竟我们无法猜测高考出卷老师刹那间的灵感(想法),猜中的可能性比买彩票中奖更难。希望在临近高考时,下面几题能激发您灵感,悟出真谛!

高中数学解析几何大题专项练习

解析几何解答题 1、椭圆G :)0(122 22>>=+b a b y a x 的两个焦点为F 1、F 2,短轴两端点B 1、B 2,已知 F 1、F 2、B 1、B 2四点共圆,且点N (0,3)到椭圆上的点最远距离为.25 (1)求此时椭圆G 的方程; (2)设斜率为k (k ≠0)的直线m 与椭圆G 相交于不同的两点E 、F ,Q 为EF 的中点,问E 、F 两点能否关于 过点P (0, 3 3)、Q 的直线对称若能,求出k 的取值范围;若不能,请说明理由. ; 2、已知双曲线221x y -=的左、右顶点分别为12A A 、,动直线:l y kx m =+与圆22 1x y +=相切,且与双曲线左、右两支的交点分别为111222(,),(,)P x y P x y . (Ⅰ)求k 的取值范围,并求21x x -的最小值; (Ⅱ)记直线11P A 的斜率为1k ,直线22P A 的斜率为2k ,那么,12k k ?是定值吗证明你的结论. @ [

3、已知抛物线2 :C y ax =的焦点为F ,点(1,0)K -为直线l 与抛物线C 准线的交点,直线l 与抛物线C 相交于A 、 B 两点,点A 关于x 轴的对称点为D . (1)求抛物线 C 的方程。 ~ (2)证明:点F 在直线BD 上; (3)设8 9 FA FB ?=,求BDK ?的面积。. { — 4、已知椭圆的中心在坐标原点O ,焦点在x 轴上,离心率为1 2 ,点P (2,3)、A B 、在该椭圆上,线段AB 的中点T 在直线OP 上,且A O B 、、三点不共线. (I)求椭圆的方程及直线AB 的斜率; (Ⅱ)求PAB ?面积的最大值. - 、

高考数学专题训练解析几何

解析几何(4) 23.(本大题满分18分,第1小题满分4分,第二小题满分6分,第3小题满分8分) 已知平面上的线段l 及点P ,任取l 上一点Q ,线段PQ 长度的最小值称为点P 到线段 l 的距离,记作(,)d P l (1)求点(1,1)P 到线段:30(35)l x y x --=≤≤的距离(,)d P l ; (2)设l 是长为2的线段,求点的集合{(,)1}D P d P l =≤所表示的图形面积; (3)写出到两条线段12,l l 距离相等的点的集合12{(,)(,)}P d P l d P l Ω==,其中 12,l AB l CD ==,,,,A B C D 是下列三组点中的一组. 对于下列三种情形,只需选做一种,满分分别是①2分,②6分,③8分;若选择了多于一种情形,则按照序号较小的解答计分. ①(1,3),(1,0),(1,3),(1,0)A B C D --. ②(1,3),(1,0),(1,3),(1,2)A B C D ---. ③(0,1),(0,0),(0,0),(2,0)A B C D . 23、解:⑴ 设(,3)Q x x -是线段:30(35)l x y x --=≤≤上一点,则 ||5) PQ x ==≤≤,当 3 x =时 , min (,)||d P l PQ == ⑵ 设线段l 的端点分别为,A B ,以直线AB 为x 轴,AB 的中点为原点建立直角坐标系, 则(1,0),(1,0)A B -,点集D 由如下曲线围成 12:1(||1),:1(||1) l y x l y x =≤=-≤, 222212:(1)1(1),:(1)1(1)C x y x C x y x ++=≤--+=≥ 其面积为4S π=+。 ⑶① 选择(1,3),(1,0),(1,3),(1,0)A B C D --,{(,)|0}x y x Ω== ② 选择(1,3),(1,0),(1,3),(1,2)A B C D ---。 2{(,)|0,0}{(,)|4,20}{(,)|10,1}x y x y x y y x y x y x y x Ω==≥=-≤<++=> ③ 选择(0,1),(0,0),(0,0),(2,0)A B C D 。

04-14浙江历年高考题解析几何大题

浙江高考历年真题之解析几何大题 2004年(22)(本题满分14分) 已知双曲线的中心在原点,右顶点为A (1,0).点P 、Q 在双曲线的右支上,点M (m ,0)到直线AP 的距离为1. (Ⅰ)若直线AP 的斜率为k ,且]3,3 3[∈k ,求实数m 的取值范围; (Ⅱ)当12+= m 时,ΔAPQ 的内心恰好是点M ,求此双曲线的方程. (2005年)如图,已知椭圆的中心在坐标原点,焦点12,F F 在x 轴上,长轴A 1A 2的长为4,左准线l 与x 轴的交点为M ,|MA 1|∶|A 1F 1|=2∶1. (Ⅰ)求椭圆的方程; (Ⅱ)若点P 在直线l 上运动,求∠F 1PF 2的最大值.

(2006年)如图,椭圆b y a x 2 22+=1(a >b >0)与过点A (2,0)B(0,1)的直线有且只有一个公共点T 且椭圆的离心率e= 23. (Ⅰ)求椭圆方程; (Ⅱ)设F 1、F 2分别为椭圆的左、右焦点,求证:2121||||||2 AT AF AF = 。 (2007年)如图,直线y kx b =+与椭圆2 214 x y +=交于A B ,两点,记AOB △的面积为S . (I )求在0k =,01b <<的条件下,S 的最大值; (II )当2AB =,1S =时,求直线AB 的方程.

(2008年)已知曲线C 是到点P (83,21-)和到直线8 5-=y 距离相等的点的轨迹。 是过点Q (-1,0)的直线,M 是C 上(不在l 上)的动点;A 、B 在l 上,,MA l MB x ⊥⊥ 轴(如图)。 (Ⅰ)求曲线C 的方程; (Ⅱ)求出直线l 的方程,使得 QA QB 2为常数。 (2009年)已知抛物线C :x 2=2py (p >0)上一点A (m ,4)到焦点的距离为 174 . (I )求p 于m 的值; (Ⅱ)设抛物线C 上一点p 的横坐标为t (t >0),过p 的直线交C 于另一点Q ,交x 轴于M 点,过点Q 作PQ 的垂线交C 于另一点N.若MN 是C 的切线,求t 的最小值;

解析几何-2020年高考数学十年真题精解(全国Ⅰ卷)抛物线(含解析)

专题09 解析几何 第二十四讲 抛物线 2019年 1.(2019全国II 文9)若抛物线y 2 =2px (p >0)的焦点是椭圆 22 13x y p p +=的一个焦点,则p = A .2 B .3 C .4 D .8 2.(2019浙江21)如图,已知点(10)F ,为抛物线2 2(0)y px p =>的焦点,过点F 的直线交抛物线于A 、B 两点,点C 在抛物线上,使得ABC △的重心G 在x 轴上,直线AC 交x 轴于点Q ,且Q 在点F 右侧.记,AFG CQG △△的面积为12,S S . (1)求p 的值及抛物线的准线方程; (2)求 1 2 S S 的最小值及此时点G 的坐标. 3.(2019全国III 文21)已知曲线C :y =2 2 x ,D 为直线y =12-上的动点,过D 作C 的两条 切线,切点分别为A ,B . (1)证明:直线AB 过定点: (2)若以E (0,5 2 )为圆心的圆与直线AB 相切,且切点为线段AB 的中点,求该圆的方程. 2015-2018年 一、选择题 1.(2017新课标Ⅱ)过抛物线C :2 4y x =的焦点F ,3的直线交C 于点M (M

在x 轴上方),l 为C 的准线,点N 在l 上且MN ⊥l ,则M 到直线NF 的距离为 A B . C . D .2.(2016年全国II 卷)设F 为抛物线C :y 2=4x 的焦点,曲线y = k x (k >0)与C 交于点P ,PF ⊥x 轴,则k = A . 12 B .1 C .3 2 D .2 3.(2015陕西)已知抛物线2 2y px =(0p >)的准线经过点(1,1)-,则该抛物线的焦点坐 标为 A .(-1,0) B .(1,0) C .(0,-1) D .(0,1) 4.(2015四川)设直线l 与抛物线2 4y x =相交于,A B 两点,与圆2 2 2 (5)(0)x y r r -+=>相切于点M ,且M 为线段AB 的中点.若这样的直线l 恰有4条,则r 的取值范围是 A .()13, B .()14, C .()23, D .()24, 二、填空题 5.(2018北京)已知直线l 过点(1,0)且垂直于x 轴,若l 被抛物线2 4y ax =截得的线段长为 4,则抛物线的焦点坐标为_________. 6.(2015陕西)若抛物线2 2(0)y px p =>的准线经过双曲线2 2 1x y -=的一个焦点,则p = 三、解答题 7.(2018全国卷Ⅱ)设抛物线2 4=:C y x 的焦点为F ,过F 且斜率为(0)>k k 的直线l 与 C 交于A ,B 两点,||8=AB . (1)求l 的方程; (2)求过点A ,B 且与C 的准线相切的圆的方程. 8.(2018浙江)如图,已知点P 是y 轴左侧(不含y 轴)一点,抛物线C :2 4y x =上存在 不同的两点A ,B 满足PA ,PB 的中点均在C 上.

相关文档
最新文档