人教版-高中数学必修1 2.1函数的概念第2课时 教案

人教版-高中数学必修1 2.1函数的概念第2课时 教案
人教版-高中数学必修1 2.1函数的概念第2课时 教案

第2课时 函数相等

复 习

1.函数的概念.

2.函数的定义域的求法.

导入新课

思路1.当实数a 、b 的符号相同,绝对值相等时,实数a=b;当集合A 、B 中元素完全相同时,集合A=B;那么两个函数满足什么条件才相等呢?引出课题:函数相等.

思路2.我们学习了函数的概念,y=x 与y=x

x 2

是同一个函数吗?这就是本节课学习的内容,引出课题:函数相等.

推进新课

新知探究

提出问题

①指出函数y=x+1的构成要素有几部分?

②一个函数的构成要素有几部分?

③分别写出函数y=x+1和函数y=t+1的定义域和对应关系,并比较异同.

④函数y=x+1和函数y=t+1的值域相同吗?由此可见两个函数的定义域和对应关系分别相同,值域相同吗?

⑤由此你对函数的三要素有什么新的认识?

讨论结果:①函数y=x+1的构成要素为:定义域R ,对应关系x→x+1,值域是R.

②一个函数的构成要素为:定义域、对应关系和值域,简称为函数的三要素.其中定义域是函数的灵魂,对应关系是函数的核心.当且仅当两个函数的三要素都相同时,这两个函数才相同. ③定义域和对应关系分别相同.

④值域相同.

⑤如果两个函数的定义域和对应关系分别相同,那么它们的值域一定相等.因此只要两个函数的定义域和对应关系分别相同,那么这两个函数就相等.

应用示例

思路1

1.下列函数中哪个与函数y=x 相等?

(1)y=(x )2;(2)y=33x ;(3)y=2

x ;(4)y=x x 2

. 活动:

让学生思考两个函数相等的条件后,引导学生求出各个函数的定义域,化简函数关系式为最简形式.只要它们定义域和对应关系分别相同,那么这两个函数就相等.

解:函数y=x 的定义域是R ,对应关系是x→x.

(1)∵函数y=(x )2的定义域是[0,+∞),

∴函数y=(x )2与函数y=x 的定义域R 不相同.

∴函数y=(x )2与函数y=x 不相等.

(2)∵函数y=

33x 的定义域是R , ∴函数y=

33x 与函数y=x 的定义域R 相同. 又∵y=33x =x,

∴函数y=

33x 与函数y=x 的对应关系也相同. ∴函数y=33x 与函数y=x 相等.

(3)∵函数y=2x 的定义域是R ,

∴函数y=2

x 与函数y=x 的定义域R 相同.

又∵y=2x =|x|,

∴函数y=2x 与函数y=x 的对应关系不相同.

∴函数y=2x 与函数y=x 不相等. (4)∵函数y=x

x 2

的定义域是(-∞,0)∪(0,+∞), ∴函数y=x

x 2

与函数y=x 的定义域R 不相同, ∴函数y=(x )2与函数y=x 不相等.

点评:本题主要考查函数相等的含义.讨论函数问题时,要保持定义域优先的原则.对于判断两个函数是否是同一个函数,要先求定义域,若定义域不同,则不是同一个函数;若定义域相同,再化简函数的解析式,若解析式相同(即对应关系相同),则是同一个函数,否则不是同一个函数. 变式训练

判断下列各组的两个函数是否相同,并说明理由.

①y=x-1,x ∈R 与y=x-1,x ∈N ;

②y=4-x 2与y=2-x ·2x +;

③y=1+x 1与u=1+x

1; ④y=x 2与y=x 2x ;

⑤y=2|x|与y=?

??<-≥;0,2,0,2x x x x ⑥y=f(x)与y=f(u).

是同一个函数的是________(把是同一个函数的序号填上即可).

解:只需判断函数的定义域和对应法则是否均相同即可.

①前者的定义域是R ,后者的定义域是N ,由于它们的定义域不同,故不是同一个函数;

②前者的定义域是{x|x≥2或x≤-2},后者的定义域是{x|x≥2},它们的定义域不同,故不是同一个函数;

③定义域相同均为非零实数,对应法则相同都是自变量取倒数后加1,那么值域必相同,故是同一个函数;

④定义域是相同的,但对应法则不同,故不是同一个函数;

⑤函数y=2|x|=???<-≥,

0,2,0,2x x x x 则定义域和对应法则均相同,那么值域必相同,故是同一个函数;

⑥定义域相同,对应法则相同,那么值域必相同,故是同一个函数.

故填③⑤⑥.

思路2

1.判断下列函数f(x)与g(x)是否表示同一个函数,说明理由.

(1)f(x)=(x-1)0,g(x)=1. (2)f(x)=x-1,g(x)=12x -x 2

+.

(3)f(x)=x 2,g(x)=(x+1)2.

(4)f(x)=x 2-1,g(u)=u 2-1.

活动:学生思考函数的概念及其三要素,教师引导学生先判断定义域是否相同,当定义域相同时,再判断它们的对应关系是否相同.

解:(1)∵f(x)=(x-1)0的定义域是{x|x≠1},函数g(x)=1的定义域是R ,

∴函数f(x)=(x-1)0与函数g(x)=1的定义域不同.

∴函数f(x)=(x-1)0与函数g(x)=1不表示同一个函数.

(2)∵f(x)=x-1的定义域是R ,g(x)=12x -x 2+=21)-(x 的定义域是R ,

∴函数f(x)=x-1与函数g(x)=12x -x 2

+的定义域相同.

又∵g(x)=12x -x 2+=21)-(x =|x-1|, ∴函数f(x)=x-1与函数g(x)=12x -x 2

+的对应关系不同.

∴函数f(x)=x-1与函数g(x)=12x -x 2+不表示同一个函数.

(3)很明显f(x)=x 2和g(x)=(x+1)2的定义域都是R ,

又∵f(x)=x 2和g(x)=(x+1)2的对应关系不同,

∴函数f(x)=x 2和g(x)=(x+1)2不表示同一个函数.

(4)很明显f(x)=x 2-1与g(u)=u 2-1的定义域都是R ,

又∵f(x)=x 2-1与g(u)=u 2-1的对应关系也相同,

∴函数f(x)=x 2-1与g(u)=u 2-1表示同一个函数.

变式训练

1.2007湖北黄冈模拟,理13已知函数f(x)满足f(ab)=f(a)+f(b)且f(2)=p,f(3)=q,则f(36)=_______. 解:由题意得f(36)=f(6×6)=f(6)+f(6)=2f(6)=2f(2×3)=2[f(2)+f(3)]=2p+2q.

答案:2p+2q

2.函数y=f(x)的图象与直线x=2的公共点共有( )

A.0个

B.1个

C.0个或1个

D.不确定

答案:C

2.设y 是u 的函数y=f(u),而u 又是x 的函数u=g(x),设M 表示u=g(x)的定义域,N 是函数y=f(u)的值域,当M∩N≠?时,则y 成为x 的函数,记为y=f[g(x)].这个函数叫做由y=f(u)及u=g(x)复

合而成的复合函数,它的定义域为M∩N,u 叫做中间变量,f 称为外层函数,g 称为内层函数.指出下列复合函数外层函数和内层函数,并且使外层函数和内层函数均为基本初等函数. (1)y=11+x ;(2)y=(x 2-2x+3)2;(3)y=x x

112+-1. 活动:让学生思考有哪些基本初等函数,它们的解析式是什么. 解:(1)设y=

u 1,u=x+1, 即y=11+x 的外层函数是反比例函数y=u

1,内层函数是一次函数u=x+1. (2)设y=u 2,u=x 2-2x+3,

即y=(x 2-2x+3)2的外层函数是二次函数y=u 2,内层函数是二次函数u=x 2-2x+3.

(3)设y=u 2+u-1,u=

x 1, 即y=x

x 112+-1的外层函数是二次函数y=u 2+u-1,内层函数是反比例函数u=x 1. 点评:到目前为止,我们所遇到的函数大部分是复合函数,并且是由正、反比例函数和一、二次函数复合而成的,随着学习的深入,我们还会学习其他复合函数.复合函数是高考重点考查的内容之一,应引起我们的重视.

变式训练

1.2004重庆高考,文2设f(x)=1122+-x x ,则)2

()2(f f =_______. 答案:-1

2.2006安徽高考,理15函数f(x)对任意实数x 满足条件f(x+2)=)

(1x f ,若f(1)=-5,则f [f(5)]= . 分析:∵函数f(x)对任意实数x 满足条件f(x+2)=

)(1x f ,∴f(x+4)=f [(x+2)+1]=)

2(1+x f =f(x). ∴f(1)=f(1+4)=f(5).

又∵f(1)=-5,∴f(5)=-5. ∴f [f(5)]=f(-5)=f(-5+4)=f(-1)=f(-1+4)=f(3)=f(1+2)=)1(1f =5

1-. 答案:5

1-

知能训练

1.下列给出的四个图形中,是函数图象的是( )

A.①

B.①③④

C.①②③

D.③④

图1-2-1-2

答案:B

2.函数y=f(x)的定义域是R ,值域是[1,2],则函数y=f(2x-1)的值域是_______.

答案:[1,2]

3.下列各组函数是同一个函数的有________.

①f(x)=

3x ,g(x)=x x ;②f(x)=x 0,g(x)=01x ; ③f(x)=u 2-,g(u)=u

2-;④f(x)=-x 2+2x,g(u)=-u 2+2u. 答案:②③④

拓展提升

问题:函数y=f(x)的图象与直线x=m 有几个交点?

探究:设函数y=f(x)定义域是D,

当m ∈D 时,根据函数的定义知f(m)唯一,

则函数y=f(x)的图象上横坐标为m 的点仅有一个(m,f(m)),

即此时函数y=f(x)的图象与直线x=m 仅有一个交点;

当m D 时,根据函数的定义知f(m)不存在,

则函数y=f(x)的图象上横坐标为m 的点不存在,

即此时函数y=f(x)的图象与直线x=m 没有交点.

综上所得,函数y=f(x)的图象与直线x=m 有交点时仅有一个,或没有交点.

课堂小结

(1)复习了函数的概念,总结了函数的三要素;

(2)学习了复合函数的概念;

(3)判断两个函数是否是同一个函数.

作业

1.设M={x|-2≤x≤2},N={y|0≤y≤2},给出下列4个图形,其中能表示以集合M为定义域,N为值域的函数关系是( )

图1-2-1-3

分析:A中,当0

答案:B

2.某公司生产某种产品的成本为1000元,以1100元的价格批发出去,随生产产品数量的增加,公司收入_______,它们之间是关系________.

分析:由题意,多生产一单位产品则多收入100元.生产产品数量看成是自变量,公司收入看成是因变量,容易得出对于自变量的每一个确定值,因变量都有唯一确定值与之对应,从而判断两者是函数关系.

答案:增加函数

3.函数y=x2与S=t2是同一函数吗?

答:函数的确定只与定义域与对应关系有关,而与所表示的字母无关,因此y=x2与S=t2表示的是同一个函数.因此并非字母不同便是不同的函数,这是由函数的本质决定的.

设计感想

本节教学内容主要是依据高考说明,对课本内容适当拓展,重点对函数的相等问题进行了引申,设计时对拓展的内容采取渐进式,设计时本着逐步提高、拓展,不能急于求成,否则事倍功半.

幂函数及其性质专题 一、幂函数的定义 一般地,形如y x α=(x ∈R )的函数称为幂孙函数,其中x 是自变量,α是常数.如 112 3 4 ,,y x y x y x - ===等都是幂函数,幂函数与指数函数,对数函数一样,都是基本初等函数. 二、函数的图像和性质 (1)y x = (2)12 y x = (3)2y x = (4)1y x -= (5)3y x = 用描点法在同一坐标系内画出以上五个函数图像,通过观察图像,可以看出: 3.幂函数性质 (1)所有的幂函数在(0,+∞)都有定义,并且图象都过点(1,1); (2)x >0时,幂函数的图象都通过原点,并且在[0,+∞]上,是增函数 (3)α<0时,幂函数的图象在区间(0,+∞)上是减函数. 三.两类基本函数的归纳比较: ① 定义 对数函数的定义:一般地,我们把函数log a y x =(a >0且a ≠1)叫做对数函数,其中x 是自变量,函数的定义域是(0,+∞). 幂函数的定义:一般地,形如y x α=(x ∈R )的函数称为幂孙函数,其中x 是自变量,α是常数. ②性质 对数函数的性质:定义域:(0,+∞);值域:R ;

过点(1,0),即当x =1,y =0; 在(0,+∞)上是增函数;在(0,+∞)是上减函数 幂函数的性质:所有的幂函数在(0,+∞)都有定义, 图象都过点(1,1)x >0时,幂函数的图象都通过原点, 在[0,+∞]上,y x =、2y x =、3 y x =、1 2 y x =是增函数, 在(0,+∞)上, 1y x -=是减函数。 【例题选讲】 例1.已知函数()() 2 53 1m f x m m x --=--,当 m 为何值时,()f x : (1)是幂函数;(2)是幂函数,且是()0,+∞上的增函数;(3)是正比例函数;(4)是反比例函数;(5)是二次函数; 简解:(1)2m =或1m =-(2)1m =-(3)45m =- (4)2 5 m =-(5)1m =- 变式训练:已知函数()()2 223 m m f x m m x --=+,当 m 为何值时,()f x 在第一象限内它的图像是上升曲 线。 简解:2 20230 m m m m ?+>??-->??解得:()(),13,m ∈-∞-+∞ 例2.比较大小: (1)1122 ,1.7 (2)33 ( 1.2),( 1.25)--(3)1125.25,5.26,5.26---(4)30.5 30.5,3,log 0.5 例3.已知幂函数223 m m y x --=(m Z ∈)的图象与x 轴、y 轴都无交点,且关于原点对称,求m 的值. 解:∵幂函数223 m m y x --=(m Z ∈)的图象与x 轴、y 轴都无交点, ∴2 230m m --≤,∴13m -≤≤; ∵m Z ∈,∴2 (23)m m Z --∈,又函数图象关于原点对称, ∴2 23m m --是奇数,∴0m =或2m =. 例4、设函数f (x )=x 3, (1)求它的反函数; (2)分别求出f - 1(x )=f (x ),f - 1(x )>f (x ),f - 1(x )<f (x )的实数x 的范围. 解析:(1)由y =x 3两边同时开三次方得x =3y ,∴f - 1(x )=x 3 1 . (2)∵函数f (x )=x 3和f -1 (x )=x 3 1 的图象都经过点(0,0)和(1,1).

3. 函数值域的求法: ①配方法:转化为二次函数,利用二次函数的特征来求值;常转化为型),(,)(2n m x c bx ax x f ∈++=的形式; ②逆求法(反求法):通过反解,用y 来表示x ,再由x 的取值范围,通过解不等式,得出y 的取值范围;常用来解,型 如: ),(,n m x d cx b ax y ∈++= ; ④换元法:通过变量代换转化为能求值域的函数,化归思想; 常针对根号,举例: 令 ,原式转化为: ,再利用配方法。 ⑤利用函数有界法:转化为只含正弦、余弦的函数,运用三角函数有界性来求值域; ⑥基本不等式法:转化成型如: )0(>+ =k x k x y ,利用平均值不等式公式来求值域; ⑦单调性法:函数为单调函数,可根据函数的单调性求值域。 ⑧数形结合:根据函数的几何图形,利用数型结合的方法来求值域。 二.函数的性质 1.函数的单调性(局部性质) (1)增函数 设函数y=f(x)的定义域为I ,如果对于定义域I 内的某个区间D 内的任意两个自变量x 1,x 2,当x 1?<∈对任意的 注:① 函数上的区间I 且x 1,x 2∈I.若2 121)()(x x x f x f -->0(x 1≠x 2),则函数f(x)在区间I 上是增函数; 若2121)()(x x x f x f --<0(x 1≠x 2),则函数f(x)是在区间I 上是减函数。 ② 用定义证明单调性的步骤: <1>设x1,x2∈M ,且21x x <;则 <2> )()(21x f x f -作差整理; <3>判断差的符号; <4>下结论; ③ 增+增=增 减+减=减 ④ 复合函数y=f[g(x)]单调性:同增异减 [](内层) (外层)) (,则)(,)((x f y x u u f y ??===

高中数学必修基本初等 函数常考题型幂函数 Company number【1089WT-1898YT-1W8CB-9UUT-92108】

幂函数 【知识梳理】 1.幂函数的概念 一般地,函数y =x 叫做幂函数.其中x是自变量,α是常数.2.常见幂函数的图象与性质 解析式y=x y=x2y=x3y=1 x y= 1 2 x 图象 定义域R R R{x|x≠0}[0,+∞)值域R[0,+∞)R{y|y≠0}[0,+∞) 奇偶性奇函数偶函数奇函数奇函数非奇非偶函 数 单调性在(-∞, +∞)上单 调递增 在(-∞, 0]上单调递 减,在(0, +∞)上单 调递增 在(-∞, +∞)上单 调递增 在(-∞, 0)上单调递 减,在(0, +∞)上单 调递减 在[0,+ ∞)上单调 递增 定点(1,1) (1)所有的幂函数在区间(0,+∞)上都有定义,并且图象都过点(1,1). (2)α>0时,幂函数的图象通过原点,并且在区间[0,+∞)上是增函数.

特别地,当α>1时,幂函数的图象下凸; 当0<α<1时,幂函数的图象上凸. (3)α<0时,幂函数的图象在区间(0,+∞)上是减函数.在第一象限内,当x 从右边趋向原点时,图象在y 轴右方无限地逼近y 轴正半轴;当x 趋于+∞时,图象在x 轴上方无限地逼近x 轴正半轴. 【常考题型】 题型一、幂函数的概念 【例1】 (1)下列函数:①y=x 3 ;②y=12x ?? ? ?? ;③y=4x 2;④y=x 5 +1;⑤y=(x -1)2;⑥y=x ;⑦y=a x (a>1).其中幂函数的个数为( ) A .1 B .2 C .3 D .4 (2)已知幂函数y =()2 2231m m m m x ----,求此幂函数的解析式,并指出定义域. (1)[解析] ②⑦为指数函数,③中系数不是1,④中解析式为多项式,⑤中底数不是自变量本身,所以只有①⑥是幂函数,故选B. [答案] B (2)[解] ∵y=()2 2231m m m m x ----为幂函数, ∴m 2-m -1=1,解得m =2或m =-1. 当m =2时,m 2-2m -3=-3,则y =x -3,且有x≠0; 当m =-1时,m 2-2m -3=0,则y =x 0,且有x≠0. 故所求幂函数的解析式为y =x -3,{x|x≠0}或y =x 0,{x|x≠0}. 【类题通法】 判断一个函数是否为幂函数的方法

高中函数大题专练 2、对定义在[0,1]上,并且同时满足以下两个条件的函数()f x 称为G 函数。 ① 对任意的[0,1]x ∈,总有()0f x ≥; ② 当12120,0,1x x x x ≥≥+≤时,总有1212()()()f x x f x f x +≥+成立。 已知函数2()g x x =与()21x h x a =?-是定义在[0,1]上的函数。 (1)试问函数()g x 是否为G 函数?并说明理由; (2)若函数()h x 是G 函数,求实数a 的值; (3)在(2)的条件下,讨论方程(21)()x g h x m -+=()m R ∈解的个数情况。 3.已知函数| |212)(x x x f - =. (1)若2)(=x f ,求x 的值; (2)若0)()2(2≥+t mf t f t 对于[2,3]t ∈恒成立,求实数m 的取值范围. 4.设函数)(x f 是定义在R 上的偶函数.若当0x ≥时,11,()0,f x x ?-?=??? 0;0.x x >= (1)求)(x f 在(,0)-∞上的解析式. (2)请你作出函数)(x f 的大致图像. (3)当0a b <<时,若()()f a f b =,求ab 的取值范围. (4)若关于x 的方程0)()(2=++c x bf x f 有7个不同实数解,求,b c 满足的条件. 5.已知函数()(0)|| b f x a x x =-≠。 (1)若函数()f x 是(0,)+∞上的增函数,求实数b 的取值范围; (2)当2b =时,若不等式()f x x <在区间(1,)+∞上恒成立,求实数a 的取值范围; (3)对于函数()g x 若存在区间[,]()m n m n <,使[,]x m n ∈时,函数()g x 的值域也是 [,]m n ,则称()g x 是[,]m n 上的闭函数。若函数()f x 是某区间上的闭函数,试探求,a b 应满足的条件。 6、设bx ax x f += 2)(,求满足下列条件的实数a 的值:至少有一个正实数b ,使函数)(x f 的定义域和值域相同。 7.对于函数)(x f ,若存在R x ∈0 ,使00)(x x f =成立,则称点00(,)x x 为函数的不动点。

高中数学必修1知识点 第一章集合与函数概念 〖〗集合 【】集合的含义与表示 (1) 集合的概念 集合中的元素具有确定性、互异性和无序性 (2) 常用数集及其记法 N表示自然数集,N 或N表示正整数集,Z表示整数集,Q表示有理数集,R表 示实数集? (3) 集合与元素间的关系 对象a与集合M的关系是a M,或者a M,两者必居其一. (4) 集合的表示法 ①自然语言法:用文字叙述的形式来描述集合 ②列举法:把集合中的元素一一列举出来,写在大括号内表示集合 ③描述法:{X| x具有的性质},其中x为集合的代表元素? ④图示法:用数轴或韦恩图来表示集合? (5) 集合的分类 ①含有有限个元素的集合叫做有限集?②含有无限个元素的集合叫做 无限集?③不含有 任何元素的集合叫做空集()? 【】集合间的基本关系

)已知集合有个元素,则它有个子集,它有个真子集,它有个 非空子集,它有2n2非空真子集. 【】集合的基本运算 (1)

(2)—元二次不等式的解法 〖〗函数及其表示 【】函数的概念 (1) 函数的概念 ① 设A 、B 是两个非空的数集,如果按照某种对应法则 f ,对于集合A 中任何一个数x , 在集合B 中都有唯一确定的数 f(x)和它对应,那么这样的对应(包括集合 A ,B 以及 A 到B 的对应法则f )叫做集合 A 到B 的一个函数,记作 f : A B . ② 函数的三要素:定义域、值域和对应法则. ③ 只有定义域相同,且对应法则也相同的两个函数才是同一函数.

(2)区间的概念及表示法 ①设a,b是两个实数,且a b,满足a x b的实数x的集合叫做闭区间,记做[a,b]; 满足a x b的实数x的集合叫做开区间,记做(a,b);满足a x b,或a x b 的实数x的集合叫做半开半闭区间,分别记做[a,b) , (a,b];满足x a, x a,x b,x b 的实数x 的集合分别记做[a, ),(a, ),( , b],( , b). 注意:对于集合{x|a x b}与区间(a,b),前者a可以大于或等于b,而后者必须 a b. (3)求函数的定义域时,一般遵循以下原则: ①f(x)是整式时,定义域是全体实数. ②f(x)是分式函数时,定义域是使分母不为零的一切实数. ③f(x)是偶次根式时,定义域是使被开方式为非负值时的实数的集合. ④对数函数的真数大于零,当对数或指数函数的底数中含变量时,底数须大于零且不等 于1. ⑤y tanx中,x k (k Z). 2 ⑥零(负)指数幕的底数不能为零. ⑦若f(x)是由有限个基本初等函数的四则运算而合成的函数时,则其定义域一般是各 基本初等函数的定义域的交集. ⑧对于求复合函数定义域问题,一般步骤是:若已知 f (x)的定义域为[a,b],其复合函 数f[g(x)]的定义域应由不等式a g(x) b解出. ⑨对于含字母参数的函数,求其定义域,根据问题具体情况需对字母参数进行分类讨论. ⑩由实际问题确定的函数,其定义域除使函数有意义外,还要符合问题的实际意义. (4)求函数的值域或最值 求函数最值的常用方法和求函数值域的方法基本上是相同的?事实上,如果在函数的值 域中存在一个最小(大)数,这个数就是函数的最小(大)值.因此求函数的最值与值

高中数学必修1《函数的应用》知识点(总7页) -CAL-FENGHAI.-(YICAI)-Company One1 -CAL-本页仅作为文档封面,使用请直接删除

第4章 函数的应用 第1讲 函数与方程 一、连续函数 连续函数: 非连续函数: 二、方程的根与函数的零点 ()()()0001f x x f x x f x ?、零点:对于函数,若使=0,则称为函数的零点. ()()()=0y f x f x y f x x ??2、函数=的零点方程的实根函数=图像与交点的横坐标. 3、零点存在性定理: ()[]()()()(),::,. 0.y f x a b p q y f x a b f a f b ?????

()f x 三、用二分法求=0的近似解 步骤: ()()()()()()( )1 2121233131323231,,0; 2,;2 30,20,2.i i x x f x f x x x x f x f x f x x x f x f x x x x x d +?<+= ?

高一数学必修1各章知识点总结 第一章集合与函数概念 一、集合有关概念 1.集合的含义 2.集合的中元素的三个特性: (1)元素的确定性如:世界上最高的山 (2)元素的互异性如:由HAPPY的字母组成的集合{H,A,P,Y} (3)元素的无序性: 如:{a,b,c}和{a,c,b}是表示同一个集合3.集合的表示:{ … } 如:{我校的篮球队员},{太平洋,大西 洋,印度洋,北冰洋} (1)用拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5} (2)集合的表示方法:列举法与描述法。 ◆注意:常用数集及其记法: 非负整数集(即自然数集)记作:N 正整数集 N*或 N+ 整数集Z 有理数集Q 实数集R 1)列举法:{a,b,c……} 2)描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法。{x∈R| x-3>2} ,{x| x-3>2} 3)语言描述法:例:{不是直角三角形的三角形} 4)Venn图: 4、集合的分类: (1)有限集含有有限个元素的集合 (2)无限集含有无限个元素的集合 (3)空集不含任何元素的集合例:{x|x2=-5} 二、集合间的基本关系 1.“包含”关系—子集 A?有两种可能(1)A是B的一部分,;(2)A与B是注意:B 同一集合。 ?/B 反之: 集合A不包含于集合B,或集合B不包含集合A,记作A ?/A 或B 2.“相等”关系:A=B (5≥5,且5≤5,则5=5) 实例:设 A={x|x2-1=0} B={-1,1} “元素相同则两集合相等” 即:①任何一个集合是它本身的子集。A?A ②真子集:如果A?B,且A≠ B那就说集合A是集合B的真子集,记作A B(或B A) ③如果 A?B, B?C ,那么 A?C ④如果A?B 同时 B?A 那么A=B 3. 不含任何元素的集合叫做空集,记为Φ 规定: 空集是任何集合的子集,空集是任何非空集合的真子集。 ◆有n个元素的集合,含有2n个子集,2n-1个真子集

高中数学必修一幂函数 教案 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

高中数学必修一幂函数教案 教学目标: 知识与技能通过具体实例了解幂函数的图象和性质,并能进行简单的应用. 过程与方法能够类比研究一般函数、指数函数、对数函数的过程与方法,来研究幂函数的图象和性质. 情感、态度、价值观体会幂函数的变化规律及蕴含其中的对称性.教学重点: 重点从五个具体幂函数中认识幂函数的一些性质. 难点画五个具体幂函数的图象并由图象概括其性质,体会图象的变化规律. 教学程序与环节设计: 问题引入. 索一般幂函数的图象规律.

教学过程与操作设计:

环节教学内容设计师生双边互动 组织探究 材料二:幂函数性质归纳. (1)所有的幂函数在(0,+∞)都有定 义,并且图象都过点(1,1); (2)0 > α时,幂函数的图象通过原 点,并且在区间) ,0[+∞上是增函数.特别 地,当1 > α时,幂函数的图象下凸;当 1 0< <α时,幂函数的图象上凸; (3)0 < α时,幂函数的图象在区间 ) ,0(+∞上是减函数.在第一象限内,当x从 右边趋向原点时,图象在y轴右方无限地逼 近y轴正半轴,当x趋于∞ +时,图象在x轴 上方无限地逼近x轴正半轴. 师:引导学生 观察图象,归纳概 括幂函数的的性质 及图象变化规律. 生:观察图 象,分组讨论,探 究幂函数的性质和 图象的变化规律, 并展示各自的结论 进行交流评析,并 填表.

探究与发现 1.如图所示,曲线 是幂函数αx y=在第一象 限内的图象,已知α分别 取2, 2 1 ,1,1 -四个值,则相 应图象依次 为:. 2.在同一坐标系内,作出下列函数的图 象,你能发现什么规律? (1)3- =x y和3 1 - =x y; (2)4 5 x y=和5 4 x y=. 规律1:在第 一象限,作直线 )1 (> =a a x,它同 各幂函数图象相 交,按交点从下到 上的顺序,幂指数 按从小到大的顺序 排列. 规律2:幂指 数互为倒数的幂函 数在第一象限内的 图象关于直线x y= 对称. 作业回馈 1.在函数 1 , , 2 , 1 2 2 2 = + = = =y x x y x y x y中,幂函数的个数为: A.0 B.1 C.2 D.3 环节呈现教学材料师生互动设计2.已知幂函数) (x f y=的图象过点 )2 ,2(,试求出这个函数的解析式. 3.在固定压力差(压力差为常数)下, 当气体通过圆形管道时,其流量速率R与管 道半径r的四次方成正比. (1)写出函数解析式; (2)若气体在半径为3cm的管道中,流 量速率为400cm3/s,求该气体通过半径为r 的管道时,其流量速率R的表达式; (3)已知(2)中的气体通过的管道半 径为5cm,计算该气体的流量速率. 4.1992年底世界人口达到54.8亿, 若人口的平均增长率为x%,2008年底世界人 口数为y(亿),写出: (1)1993年底、1994年底、2000年底 的世界人口数; (2)2008年底的世界人口数y与x的 函数解析式.

必修一第一章 集合与函数概念 二、函数 知识点8:函数的概念以及区间 1》函数概念 设A 、B 是非空的数集,如果按某个确定的对应关系f ,使对于集合A 中的任意一个数x ,在集合B 中都有唯一确定的数y 和它对应,那么就称f :A →B 为从集合A 到集合B 的一个函数,记作y =()f x 注意:①x A ∈.其中,x 叫自变量,x 的取值范围A 叫作定义域 ②与x 的值对应的y 值叫函数值,函数值的集合{()|}f x x A ∈叫值域. 2》区间和无穷大 ①设a 、b 是两个实数,且a=+∞,{|}[,)x x a a ≥=+∞,{|}(,)x x b b <=-∞,{|}(,]x x b b ≤=-∞,(,)R =-∞+∞. 3》决定函数的三个要素是定义域、值域和对应法则. 当且仅当函数定义域、对应法则分别相同时,函数才是同一函数. 典例分析 题型1:函数定义的考察 例1:集合A=}{40≤≤x x ,B=}{20≤≤y y ,下列不表示从A 到B 的函数是( ) A 、x y x f 21)(= → B 、x y x f 31 )(=→ C 、 x y x f 32 )(=→ D 、x y x f =→)( 例2:下列对应关系是否是从A 到B 的函数: ① }{;:,0,x x f x x B R A →>== ②,:,,B A f N B Z A →==求平方; ③B A f Z B Z A →==:,,,求算术平方根; ④B A f Z B N A →==:,,,求平方; ⑤A=[-2,2],B=[-3,3],B A f →:,求立方。 是函数的是_________________。 题型2:区间的表示 例1:用区间表示下列集合 (1) }{1≥x x =_____________。 (2)}{42≤x x x 且=_____________。 (4)}{3-≤x x =______________。 题型3:求函数的定义域和值域 例1:求函数的定义域 (1)32+=x y (2)1 21 y x =+- (3)2 1-= x y (4)y = (5) 0)1(3 1 4++++ +=x x x y

第一章集合与函数 建议用时实际用时满分实际得分120分钟150分 1.集合{1,2,3}的所有真子集的个数为() A.3B.6 C.7 D.8 2.下列五个写法,其中错误 ..写法的个数为() ①{0}∈{0,2,3};②?{0};③{0,1,2}?{1,2,0};④0∈?;⑤0∩?=?. A.1 B.2 C.3 D.4 3.使根式x-1与x-2分别有意义的x的允许值集合依次为M、F,则使根式x-1+x-2有意义的x的允许值的集合可以表示为() A.M∪F B.M∩F C.?M F D.?F M 4.已知M={x|y=x2-2},N={y|y=x2-2},则M∩N等于() A.N B.M C.R D.? 5.已知f(x)是定义在R上的奇函数,当x≥0时,f(x)=x2-2x,则f(x)在R上的表达式是() A.y=x(x-2) B.y=x(|x|-1) C.y=|x|(x-2) D.y=x(|x|-2) 6.等腰三角形的周长是20,底边长y是一腰的长x的函数,则y等于() A.20-2x(0

8.已知y=f(x)是定义在R上的奇函数,则下列函数中为奇函数的是() ①y=f(|x|); ②y=f(-x); ③y=xf(x); ④y=f(x)+x. A.①③B.②③ C.①④D.②④ 9.已知0≤x≤3 2,则函数f(x)=x 2+x+1() A.有最小值-3 4,无最大值 B.有最小值3 4,最大值1 C.有最小值1,最大值19 4 D.无最小值和最大值 10.已知函数f(x)的定义域为[a,b],函数y=f(x)的图象如图所示,则函数f(|x|)的图象是() c

高中数学必修1函数的基本性质 1.奇偶性 (1)定义:如果对于函数f (x )定义域内的任意x 都有f (-x )=-f (x ),则称f (x )为奇函数;如果对于函数f (x )定义域内的任意x 都有f (-x )=f (x ),则称f (x )为偶函数。 如果函数f (x )不具有上述性质,则f (x )不具有奇偶性.如果函数同时具有上述两条性质,则f (x )既是奇函数,又是偶函数。 注意: ○ 1 函数是奇函数或是偶函数称为函数的奇偶性,函数的奇偶性是函数的整体性质; ○ 2 由函数的奇偶性定义可知,函数具有奇偶性的一个必要条件是,对于定义域内的任意一个x ,则-x 也一定是定义域内的一个自变量(即定义域关于原点对称)。 (2)利用定义判断函数奇偶性的格式步骤: ○ 1 首先确定函数的定义域,并判断其定义域是否关于原点对称; ○ 2 确定f (-x )与f (x )的关系; ○ 3 作出相应结论: 若f (-x ) = f (x ) 或 f (-x )-f (x ) = 0,则f (x )是偶函数; 若f (-x ) =-f (x ) 或 f (-x )+f (x ) = 0,则f (x )是奇函数。 (3)简单性质: ①图象的对称性质:一个函数是奇函数的充要条件是它的图象关于原点对称;一个函数是偶函数的充要条件是它的图象关于y 轴对称; ②设()f x ,()g x 的定义域分别是12,D D ,那么在它们的公共定义域上: 奇+奇=奇,奇?奇=偶,偶+偶=偶,偶?偶=偶,奇?偶=奇 2.单调性 (1)定义:一般地,设函数y =f (x )的定义域为I , 如果对于定义域I 内的某个区间D 内的任意两个自变量x 1,x 2,当x 1f (x 2)),那么就说f (x )在区间D 上是增函数(减函数); 注意: ○ 1 函数的单调性是在定义域内的某个区间上的性质,是函数的局部性质; ○ 2 必须是对于区间D 内的任意两个自变量x 1,x 2;当x 1

必修一数学第一章集合与函数概念知识点总结 一、集合有关概念 1. 集合的含义 2. 集合的中元素的三个特性: (1) 元素的确定性如:世界上最高的山 (2) 元素的互异性如:由HAPPY 的字母组成的集合{H,A,P ,Y} (3) 元素的无序性: 如:{a,b,c}和{a,c,b}是表示同一个集合 3.集合的表示:{ … } 如:{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋} (1) 用拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5} (2) 集合的表示方法:列举法与描述法。 ◆ 注意:常用数集及其记法: 非负整数集(即自然数集) 记作:N 正整数集 N*或 N+ 整数集Z 有理数集Q 实数集R 1) 列举法:{a,b,c ……} 2) 描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法。{x ∈R| x-3>2} ,{x| x-3>2} 3) 语言描述法:例:{不是直角三角形的三角形} 4) Venn 图: 4、集合的分类: (1) 有限集 含有有限个元素的集合 (2) 无限集 含有无限个元素的集合 (3) 空集 不含任何元素的集合 例:{x|x 2=-5} 二、集合间的基本关系 1.“包含”关系—子集 注意:有两种可能(1)A 是B 的一部分,;(2)A 与B 是同一集合。 反之: 集合A 不包含于集合B,或集合B 不包含集合A,记作A B 或B A 2.“相等”关系:A=B (5≥5,且5≤5,则5=5) 实例:设 A={x|x 2-1=0} B={-1,1} “元素相同则两集合相等” 即:① 任何一个集合是它本身的子集。A ?A ②真子集:如果A ?B,且A ≠ B 那就说集合A 是集合B 的真子集,记作A B(或B A) ③如果 A ?B, B ?C ,那么 A ?C ④ 如果A ?B 同时 B ?A 那么A=B 3. 不含任何元素的集合叫做空集,记为Φ 规定: 空集是任何集合的子集, 空集是任何非空集合的真子集。 ◆ 有n 个元素的集合,含有2n 个子集,2n-1个真子集 B A ?? /?/

高中数学学科测试试卷 学校:___________姓名:___________班级:___________考号:___________ 一.单选题(共__小题) 1.已知幂函数f(x)过点,则f(4)的值为() A.B.1C.2D.8 答案:A 解析: 解:设幂函数f(x)=x a,x>0, ∵幂函数f(x)过点, ∴,x>0, ∴,∴, ∴f(4)==. 故选A. 2.幂函数y=(m2+2m-2)的图象过(0,0),则m的取值应是()A.-3或1B.1C.-3D.0<m<4 答案:B 解析: 解:由幂函数的定义得:m2+2m-2=1,且-m2+4m>0, 解得:m=1,

3.函数y= 的图象是( ) A . B . C . D . 答案:C 解析: 解:∵函数y=的定义域是[0,+∞), ∴排除选项A 和B , 又∵,∴曲线应该是下凸型递增抛物线. 故选:C . 幂函数y=x -1及直线y=x ,y=1,x=1将平面直角坐标系的第一 象限分成八个“卦限”:①,②,③,④,⑤,⑥,⑦,⑧(如图所示),那么幂函数的图象经过的“卦限”是( ) A .④⑦ B .④⑧ C .③⑧ D .①⑤ 答案:D 解析: 解:取x=得∈(0,1),故在第⑤卦限; 再取x=2得∈(1,2),故在第①卦限

5.幂函数f(x)=xα的图象经过点,则的值为() A.4B.3C.2D.1 答案:C 解析: 解:幂函数f(x)=xα的图象经过点,所以,∴ ∴ 故选C. 二.填空题(共__小题) 6.若f(x)=x a是幂函数,且满足=3,则f()=______. 答案: 解析: 解析:设f(x)=xα,则有=3,解得2α=3,α=log23, ∴f()= = = = =. 故答案为: 7.设,则使函数y=xα的定义域为R且为偶函数的所有的α值为______.答案:,2

第4章 函数的应用 第1讲 函数与方程 一、连续函数 连续函数: 非连续函数: 二、方程的根与函数的零点 ()()()0001f x x f x x f x ?、零点:对于函数,若使=0,则称为函数的零点. ()()()=0y f x f x y f x x ??2、函数=的零点方程的实根函数=图像与交点的横坐标. 3、零点存在性定理: ()[]()()()(),::,.0.y f x a b p q y f x a b f a f b ?????

()f x 三、用二分法求=0的近似解 步骤: ()()()()()()()12121233131323231,,0; 2,;2 30,20,2.i i x x f x f x x x x f x f x f x x x f x f x x x x x d +?<+= ?

第一章 集合与函数概念 一、选择题. 1. 设 A ={a },则下列各式中正确的是( ) A. 0∈A B. a ∈A C. a ∈A D. a = A 2. 设集合 A ={x |x = a 2 +1,a ∈N +},B ={y |y = b 2 - 4b + 5,b ∈N +},则下述关系中正确的是( ) A . A = B B. A B C. A ?B D. A ∩B =? 3. 如图,阴影部分可用集合 M ,P 表示为( ) A. M ∩ P B. M ∪P C.(UM )∩(UP ) D.(UM )∪(UP ) 4. 若集合 A ,B ,C 满足 A ∩B = A ,B ∪C = C ,则 A 与 C 之间的关系必定是( ) A. A C B. C A C. A ?C D. C ?A 5. 下列四组函数中,表示同一个函数的是( ) A. )(x f = |x |,2)(t t g = B. 2)(x x f =,2)()(x x g = C. 1 1)(2--=x x x f ,1)(+=x x g D. 11)(-?+=x x x f ,1)(2-=x x g 6. 若函数 )(x f 的定义域为 [1,2],则函数 )(2x f y = 的定义域为( ) A. [1,4] B. [1,2] C. [2-,2] D. [2-,-1]∪[1,2] 7. 函数 1 1 1-- =x y 的图象是( ) A B 第 3 题

C D 8. 若二次函数y = x 2 + bx + c 的图象的对称轴是 x = 2,则有( ) A. f (1)<f (2)<f (4) B. f (2)<f (1)<f (4) C. f (2)<f (4)<f (1) D. f (4)<f (2)<f (1) 9. 如果奇函数 f (x )在区间[3,7]上是增函数且最小值是 5,那么函数 f (x )在区间 [-7,-3]上( ) A. 是增函数且最小值为 -5 B. 是增函数且最大值是 -5 C. 是减函数且最小值为 -5 D. 是减函数且最大值是 -5 10. 已知函数f (x )= x 5 + ax 3 + bx - 3,且 f (2) = 2,则 f (-2) =( ) A. -6 B. -8 C. -2 D. 6 二、填空题. 1. 若B ={a ,b ,c ,d ,e },C = {a ,c ,e ,f },且集合 A 满足 A ?B ,A ?C ,则集合 A 的个数是______. 2. 设 f (x )= 2x - 1,g (x )= x + 1,则 f [g (x )] = . 3. 已知f (2x + 1)= x 2 - 2x ,则=)2(f . 4. 已知一次函数 y = f (x )中,f (8)= 16,f (2)+ f (3)= f (5),则 f (1)+ f (2)+ f (3)+ ··· + f (100) = . 5. 若函数 a x bx x f ++= 2)( 为奇函数,则 a = ,b = . 6. 若函数 f (x )= x 2 + px + 3在(-∞,1]上单调递减,则 p 的取值范围是 . 三、解答题. 1. 已知非空集合 A ={x |2a + 1≤x ≤3a - 5},B ={x |3≤x ≤22},能使 A ?(A ∩B )成立的所有 a 值的集合是什么?

1.2函数及其表示 §1.2.1函数的概念 【教学目的】 1、使学生理解函数的概念,明确决定函数的定义域、值域和对应法则三个要素; 2、理解函数符号的含义,能根据函数表达式求出定义域、值域; 3、使学生能够正确使用“区间”、“无穷大”的记号; 4、使学生明白静与动的辩证关系,激发学生学习数学的兴趣和积极性。 【教学重点】 在对应的基础上理解函数的概念 【教学难点】 函数概念的理解 【教学过程】 一、复习引入 〖提问〗初中学习的(传统)的函数的定义是什么?初中学过哪些函数? 〖回答〗设在一个变化过程中有两个变量x 和y ,如果对于x 的每一个值,y 都有唯一的值与它对应,那么就说x 是自变量,y 是x 的函数,并将自变量x 取值的集合叫做函数的定义域,和自变量x 的值对应的y 值叫做函数值,函数值的集合叫做函数的值域,这种用变量叙述的函数定义我们称之为函 数的传统定义。 〖讲述〗初中已经学过:正比例函数、反比例函数、一次函数、二次函数等。 〖提问〗问题1:y =1(x ∈R )是函数吗? 问题2:y =x 与y = x x 2 是同一函数吗? 〖投影〗观察对应: 〖分析〗观察分析集合A 与B 之间的元素有什么对应关系? 二、讲授新课 函数的概念 (一)函数与映射 〖投影〗函数:设A ,B 是非空的数集,如果按某个确定的对应关系f ,使对于集合A 中的任意一个

数x ,在集合B 中都有唯一确定的数)(x f 和它对应,那么就称f :A →B 为从集合A 到集合B 的一个函数,记作y =)(x f ,x ∈A 。其中x 叫自变量,x 的取值范围A 叫做函数y =)(x f 的定义域;与x 的值相对应的y 的值叫做函数值,函数值的集合{)(x f |x ∈A},叫做函数y =)(x f 的值域。 函数符号y =)(x f 表示“y 是x 的函数”,有时简记作函数)(x f 。 函数的三要素:对应法则f 、定义域A 、值域{)(x f |x ∈A} 注:只有当这三要素完全相同时,两个函数才能称为同一函数。 映射:设,A B 是两个非空的集合,如果按某一个确定的对应关系f ,使对于集合A 中的任意一个元素x ,在集合B 中都有唯一确定的元素y 与之对应,那么就称对应:f A B →为从集合A 到集合B 的一个映射. 如果集合A 中的元素x 对应集合B 中元素y ,那么集合A 中的元素x 叫集合B 中元素y 的原象,集合B 中元素y 叫合A 中的元素x 的象. 映射概念的理解 (1)映射B A f →:包含三个要素:原像集合A ,像集合B(或B 的子集)以及从集合A 到集合B 的对应法则f .两个集合A,B 可以是数集,也可以是点集或其他集合.对应法则f 可用文字表述,也可以用符号表示.映射是一种特殊的对应关系,它具有: (1)方向性:映射是有次序的,一般地从A 到B 的映射与从B 到A 的映射是不同的; (2)任意性:集合A 中的任意一个元素都有像,但不要求B 中的每一个元素都有原像; (3)唯一性:集合A 中元素的像是唯一的,即不允许“一对多”,但可以“多对一”. 函数与映射的关系 函数是一种特殊的映射.映射与函数概念间的关系可由下表给出. 映射B A f →: 函数B y A x x f y ∈∈=,),( 集合A,B 可为任何集合,其元素可以是物,人,数等 函数的定义域和值域均为非空的数集 对于集合A 中任一元素a ,在集合B 中都有唯一确定的像 对函数的定义域中每一个x ,值域中都有唯一确定的值与之对应 对集合B 中任一元素b ,在集合A 中不一定有原像 对值域中每一个函数值,在定义域中都有确定的自变量的值与之对应 函数是特殊的映射,映射是函数的推广. 〖注意〗(1)函数实际上就是集合A 到集合B 的一个特殊对应f :A →B 。这里A ,B 为非空的数集。 (2)A :定义域,原象的集合;{)(x f |x ∈A}:值域,象的集合,其中{)(x f |x ∈A}?B ;f :对应法则,x ∈A ,y ∈B (3)函数符号:y =)(x f ,y 是x 的函数,简记) (x f 〖回顾〗(二)已学函数的定义域和值域: 1、一次函数)(x f =ax +b (a ≠0):定义域R ,值域R 2、反比例函数)(x f = x k (k ≠0):定义域{x |x ≠0},值域{y | y ≠0} 3、二次函数)(x f =ax 2 +bx +c (a ≠0):定义域R ,值域:当a >0时,{y |y ≥a b a c 442 -};

相关文档
最新文档