仪表测量系统中误差分析及解决方法.

仪表测量系统中误差分析及解决方法.
仪表测量系统中误差分析及解决方法.

《电信交换》2009年第4期

●测试与测量

测量系统中的误差分析及解决方法

吴卫民叶瑞芳

(电信科学技术第十研究所陕西西安 710061)

摘要:本文从通信产品生产的实际出发,对仪表测量系统中影响测量结果精确度的原因进行了分析,并对接地、屏蔽、保护等减少测量误差的解决方案作了较

为详细的介绍。

关键词:接地屏蔽保护

在系统参数的测量过程中,测量结果与被测量值之间常常存在着误差。如在仪表和电缆相互连接的测量系统中,仪表和电缆连接处的接触电阻、热电势与载电流之间存在着一些干扰源,它们会影响高质量测量的可靠性。对引起误差的各种因素进行研究和分析,合理地选择仪表的接地、屏蔽、保护和使用不同类型的电缆,可减少误差、提高测量精度。测量精确的程度取决于对这些重要因素的控制。

一、测量系统中的接地

1.理想“地”与实际“地”

一个理想“地”对电流没有电阻,因而沿着地线的不同的点没有电压降。如图1所示,两个环路使用共“地”,沿E1、R3和R1构成的环路,在分压器V1的输出电压不受E2和R2所构成的环路电流的影响,分压输出V1= E1*R1/(R1+R3)。

如图2所示,在实际中,“地”有一个限制电阻。当电流流经“地”时,沿地线不同的点有一个电位差,如果不控制流过的电流,将引起系统测量的误差。通常的处理方法是改变连接“地”,使I2不通过r1;环路I2的分离接“地”不会影响其它环路。

2.供电“地”系统

在典型的实验室环境中,电源分配是沿着一条线路连接每一台设备,于是从电源的火、地线到仪表机壳之间便形成了杂散泄漏电容C1、C2、…C n。仪表1、2、…n的电源初级线圈到铁芯之间形成的泄漏电容所引起的电流流过系统保护“地”,由地线的分配电阻沿地线在每个仪表机壳上产生不同的电位差。在仪表测试系统中,如果信号低端不对地线进行隔离,那么,地电流将引起测量误差。

如图3所示,在系统保护“地”上的电流分两路,其中一路通过信号L0端,形成的电压降加到源信号仪表输出线路上引起测量误差。

3.解决方案

在仪表测试系统中,对地线的隔离使得地电流引起的测量误差降至最低是解决问题的关键。

以射频万用表测量过程为例的一个典型的解决方案:使用射频万用表对通过分压器的射频信号进行测量时,分压器输入的电流在分压器中分离,其中一部分电流通过输出电缆到射频万用表端接系统保护“地”,在此之间的电缆存在电阻和电感,信号在其上引起电压降加到分压器上,使信号的测量结果产生误差。为了解决这个问题,如图4所示,在分压器输出端接共模阻流圈(T),T的两个线圈互相耦合,使影响分压器输出的电流不受其影响,并对存在的地环电流因大量感应阻抗的存在而大大减少。

为了进一步提高测试的准确度,还可以采用其他的辅助措施。如:将测量系统中的仪表插在同一个电源插盒上,以减小通过图4 中r g和图3中r Lo、I Lo的地环电流值;选用优质的同轴电缆以减少电阻(尤其是对射频信号);在电源和分压器间使用尽可能短的电缆以减少电压降;此外,还可以在系统保护“地”上接一个电流指示器供测量参考。

二、辐射的屏蔽

电磁辐射是由随时间变化的电场和磁场产生的,这个场强在不断地变化。高压低电流电路倾向于辐射电场,低压高电流电路倾向于辐射磁场。传输线、电机、通信设备、移动电话、计算机中的高速数字逻辑电路及变压器等电子设备都会产生辐射电磁场,要解决因辐射而引起的测量误差,“屏蔽”是比较有效的方法。

1.电场屏蔽

来自于电场干扰信号的公共源常称为噪声。在自然界中,电场是随机的,最简单、最常见的电场干扰噪声是通过杂散电容耦合到信号源的输出端和交流电压表的输入端,由此而产生的电流会带来测量误差。

减少由于电容耦合造成误差的最好方法是使用屏蔽罩进行屏蔽。屏蔽罩通常是由接地金属片组成,放在噪声源和接收电路之间以减少测量误差。图5为屏蔽等效电路的改进电路,C12是从噪声源到屏蔽罩的电容;C23是屏蔽罩到信号源以及交流电压表的电容;C13是噪声源和接收电路之间的电容(C13值一般比原杂散电容C s小几个数量级);C12和C23之间是屏

蔽罩。屏蔽罩必须由低阻材料制成,以保证干扰电流通过屏蔽罩回到噪声源,并对其它电路没有任何损伤,否则干扰电流通过C12后,在屏蔽罩上形成电压降,又通过C23进入接收电路①点。

此外,要求在屏蔽地和接收电路之间的E g2没有电位差,否则会使更多的电流通过C23而进入①点。其解决方法是:以②点代替屏蔽“地”③点。在实际中,还可以根据情况对噪声源和被测系统分别屏蔽,并且使每个屏蔽装置分别接“地”。

2.磁场屏蔽

磁场是最常见、最简单的干扰信号。对于存在的磁场,当敏感电路接近时会将其吸收,使得产生测量误差。

变压器、电动机、通信设备等均可产生磁场信号。例如,变压器由于在初级线圈和次级线圈之间松弛耦合所产生的磁场干扰信号,在多数情况下可以在没有磁场的电路里被恢复出来。如图6所示,变压器所产生的磁场被信号源和交流电压表所形成的环路所吸收,感应电流通过交流电压表引起测量误差,感应电流的大小与磁通密度和环路电感成正比。

可以通过减少吸收环面积和磁场强度的方法来降低电路对磁场的吸收。在设计精密仪表期间,必须考虑低电平的封闭面积,即敏感区环路。同时,在设计印刷电路板的线路时,应尽量减少磁耦合的磁化系数。

电源变压器和其它干扰源应尽可能远离敏感电路,因为干扰源的磁通密度随距离的增加而迅速下降。有时转动变压器的位置也能减少电路对磁场的吸收,这是由于磁场垂直于环路限制了吸收域。

在测量系统中,仪表尽量不要迭式堆放,因为一台仪表的干扰磁场可能影响到其它仪表的敏感电路。当使用试验负载时,减少磁场吸收的最好方法是使得环绕这个负载磁场的环路面积减小,达到磁通互相抵消的目的。

为了屏蔽磁场干扰,还可以在磁场源端或干扰点使用磁化饱和材料,如铁合金高导材料,最好的材料是镍铁合金(称为锰金属);仪表之间的连接线应使用同轴电缆,因为由外屏蔽层包裹着的电缆中心的导体也能抑制电磁场的干扰。

三、保护装置

在测量系统中连接两个或多个仪表时,最大的测量问题是在连接的电缆上存在额外的信号,因此而生的地环电流将引起测量误差。如图7所示,被测交流源电势相对于“地”升高

了,即由于地环电流引起的共模信号加到了交流源上,在r Lo中便产生了电压降。如果交流源L o和交流电压表L o端都直接接“地”,地环电流将引起测量误差。因此,在交流电压表L o端与“地”之间加一个阻抗Z1,,可以减少流过r Lo的电流,降低测量误差,采用增加接地阻抗的方式,虽然可以减少因地环电流引起的测量误差,但不能完全消除其影响。因此在减少地环电流的同时应使用保护装置。

仪表的保护装置是采用法拉第电场屏蔽罩。屏蔽罩将仪表的模拟输入或输出电路完全包裹,使仪表输入或输出端的共模信号与“地”之间绝缘。它除了起到电场屏蔽作用外,也提供了共模信号所产生电流的接“地”路径,起到减少测量误差的作用。如图8所示,共模信号的地环电流通过负载r2到保护装置(Guard ),然后通过Z2接地,从而避免了共模信号进入L o端。与没有保护装置的仪表相比较,带有保护装置的仪表能减少由于共模信号源引起的误差80dB。这个保护装置接到信号源L o端或接收仪表L o端所起的作用不同,如果连到信号源L o端,仅降低了由于地环电流引起的误差。因此,实际中要根据具体情况来选择保护装置的接线位置。

四、结束语

接地、屏蔽和保护等是防止干扰信号的不同手段,在实际应用中,它们是相互交叉组合使用的。只有充分了解仪表测试系统的内外关系,才能正确使用仪表,降低测量误差。■

施工测量方法及精度评定

施工测量方法及精度评定 1、设站方法 根据现场情况,主要选择以下两种方式设站。 1.1 全站仪坐标法设站 (1)在施工控制点上架设全站仪并对中整平,初始化后检查仪器的设置:气温、气压、棱镜常、在输入(或调出)测站点的三维坐标,量取并输入仪器高,输入(或调出)后视点坐标,照准后视点进行后视。 (2)如果后视点上有棱镜,输入棱镜高,可以测量后视点的坐标和高程并与已知数据检核。 (3)瞄准另一控制点,检查方位角或坐标;在另一后视点上竖棱镜或尺子检查仪器的视线高。 (4)利用仪器自身的计算功能进行计算时,记录员也应该进行相应的计算,以检查输入数据的正确性。 (5)在各待测站点上架设脚架和棱镜,量取、记录并输入棱镜高,测量、记录待定点的坐标和高程。 1.2 全站仪边角交会法设站 (1)在未知点P上架设、整平全站仪;在已知的基本控制点A上安置棱镜,量测棱镜高;在已知点B、C上安置照准点标志。 (2)量测PA间平距D、高差DH和PA至PB方向间的水平角α、β。 (3)用D、α及A、B点的坐标计算P点的一组坐标;用D、β及A、C点的坐标计算P点的另一组坐标;两组坐标的差值不超过规定限差,取中数即为P点的最后坐标。

(4)根据A点的高程HA和高差DH计算仪器的视线高:H视=HA-DH。 (5)如果需要可以将P点投影到地面上,并作好记录。量取仪器高,求出地面P 点的高程。 2、施工测量方法 2.1 放样方法 (1)用以上方法把测站设置好了后,就可以用测站极坐标法开始放样。 (2)使用全站仪测量测点的三维坐标,用计算器计算测点距设计棱镜的距离,再指挥司镜员移动棱镜,直至到位。 (3)若使用免棱镜全站仪时,可由观测员移动激光斑点再进行测量,直至到位。 (4)在直线较长的边坡、洞室、混凝土工程放样时,建立以边坡平行线、洞室轴线、混凝土边线、为坐标轴的独立坐标系,以便加快测量放样的速度和减少现场测量计算的错误。 2.2 验收断面测量方法 (1)验收断面测量采用免棱镜全站仪。 (2)边坡断面测量时,采用相对坐标设站,任意架设仪器,直接测量符合断面要求的点位,保证断面桩号差小于10cm,数据直接保存在仪器内。 (3)洞室断面测量时也可以用边坡断面测量方法,而现场通常是先把每个断面的中桩放出来,然后将仪器架设于中桩上,将方向置于断面方向上,用独立坐标进行断面测量,数据直接保存在仪器内。 (4)内业资料处理前,把仪器内存储的数据传到计算机内,用专用软件进行数据格式转换,网上也可下载。

激光测量系统误差分析

激光测量系统误差分析 1. 激光测量系统误差源的分析 激光测量系统会受到多种误差的影响,有系统误差和偶然误差,系统误差会给激光测量点云坐标带来系统偏差。激光测量系统的误差按照其产生的来源可分为四类: (1) 定位误差:GPS 定位误差; (2) 姿态误差:GPS/INS 姿态误差; (3) 测距误差:激光扫描仪测距误差; (4) 集成误差:系统集成误差; (1) 定位误差 GPS 动态定位误差主要包括卫星轨道误差、卫星钟钟差、接收机钟钟差、多路径效应、 相位中心不稳定,还有卫星星座、观测噪声等。[1]GPS 定位误差不容易消除或者模型化,通 常为了削弱GPS 定位误差的影响,采用的方法是在测区内建立多个分布均匀的基准站,保证GPS 动态定位解算时离基准站不会太远。 (2) 姿态误差 姿态误差是影响定位精度的最主要原因。主要包括设备的安置误差、加速度计误差、陀螺仪漂移、测量噪声等,对于INS 姿态测量误差,可以适当降低飞行高度,以削弱其对定位的影响。 (3) 测距误差 激光扫描仪的每一个工作过程都会带来一定的误差,但起主要作用的是电子光学电路对经过地面散射和空间传播后的不规则激光回波信号进行处理来确定时间延迟带来的误差,分别为时延估计误差和时间测量误差两类。此外还有反光镜的旋转、震动误差、脉冲零点误差等。 激光脉冲信号照射地面物体时,由于地表物理特征的不同而产生不同的反射,当信号发生漫反射时,出现大量反射信号被接收,会形成较大的接收噪声;当信号照射到光滑物体表面,便形成镜面反射,可能会造成激光测距信号丢失。另外,有的信号可能经过计策反射后反射回去,这样测定的时间延迟不能代表真正的时间延迟。激光测距的精度还与地面粗糙程度、地面坡度、地面物体的干扰等有关。另外,被水域覆盖的地方,红外激光大部分被吸收,只有少量被反射,如果碰到静止的水面,就形成镜面反射,信号反射不回去;地表不连续以及移动物体,如行人、车辆、动物等都会影响激光测距精度。 (4) 系统集成误差 系统集成误差主要包括激光扫描仪脉冲感应参考中心与GPS 天线相位中心偏心向量的测定误差、系统安置误差、位置内插误差(线性内插)、时间同步误差、地面参考站间位置误差、坐标系间的转换误差、GPS/INS 组合滤波模型误差等。 由于GPS 数据采样频率一般为1~20Hz ,INS 数据采样频率一般为20~几百Hz ,而激光测距的频率为几十~几千Hz (现有70Hz ),采样率不同,最后要根据采样率低的GPS/INS 数据内插出每个激光点的姿态和位置,内插过程中会产生内插误差。 2.激光测量系统误差的定性定量分析 (1)测距误差 测距误差同多种因素有关,包括系统和随机的两部分。这里只考虑系统误差部分ρ?,其大小取决于不同的系统、反射介质及地形条件等外界条件。相应测得的距离就是ρρ+?。即(0,0,)T r r ρρ+?=+?。其中r ?为测距误差引起的激光扫描点在瞬时激光束坐标系中

测量误差及数据处理.

第一章测量误差及数据处理 物理实验的任务不仅是定性地观察各种自然现象,更重要的是定量地测量相关物理量。而对事物定量地描述又离不开数学方法和进行实验数据的处理。因此,误差分析和数据处理是物理实验课的基础。本章将从测量及误差的定义开始,逐步介绍有关误差和实验数据处理的方法和基本知识。误差理论及数据处理是一切实验结果中不可缺少的内容,是不可分割的两部分。误差理论是一门独立的学科。随着科学技术事业的发展,近年来误差理论基本的概念和处理方法也有很大发展。误差理论以数理统计和概率论为其数学基础,研究误差性质、规律及如何消除误差。实验中的误差分析,其目的是对实验结果做出评定,最大限度的减小实验误差,或指出减小实验误差的方向,提高测量质量,提高测量结果的可信赖程度。对低年级大学生,这部分内容难度较大,本课程尽限于介绍误差分析的初步知识,着重点放在几个重要概念及最简单情况下的误差处理方法,不进行严密的数学论证,减小学生学习的难度,有利于学好物理实验这门基础课程。 第一节测量与误差 物理实验不仅要定性的观察物理现象,更重要的是找出有关物理量之间的定量关系。因此就需要进行定量的测量,以取得物理量数据的表征。对物理量进行测量,是物理实验中极其重要的一个组成部分。对某些物理量的大小进行测定,实验上就是将此物理量与规定的作为标准单位的同类量或可借以导出的异类物理量进行比较,得出结论,这个比较的过程就叫做测量。例如,物体的质量可通过与规定用千克作为标准单位的标准砝码进行比较而得出测量结果;物体运动速度的测定则必须通过与二个不同的物理量,即长度和时间的标准单位进行比较而获得。比较的结果记录下来就叫做实验数据。测量得到的实验数据应包含测量值的大小和单位,二者是缺一不可的。 国际上规定了七个物理量的单位为基本单位。其它物理量的单位则是由以上基本单位按一定的计算关系式导出的。因此,除基本单位之外的其余单位均称它们为导出单位。如以上提到的速度以及经常遇到的力、电压、电阻等物理量的单位都是导出单位。 一个被测物理量,除了用数值和单位来表征它外,还有一个很重要的表征它的参数,这便是对测量结果可靠性的定量估计。这个重要参数却往往容易为人们所忽视。设想如果得到一个测量结果的可靠性几乎为零,那么这种测量结果还有什么价值呢?因此,从表征被测量这个意义上来说,对测量结果可靠性的定量估计与其数值和单位至少具有同等的重要意义,三者是缺一不可的。 测量可以分为两类。按照测量结果获得的方法来分,可将测量分为直接测量和间接测量两类,而从测量条件是否相同来分,又有所谓等精度测量和不等精度测量。 根据测量方法可分为直接测量和间接测量。直接测量就是把待测量与标准量直接比较得出结果。如用米尺测量物体的长度,用天平称量物体的质量,用电流表测量电流等,

建筑施工测量技术要求及允许偏差

附录建筑施工测量技术要求及允许偏差 2.特殊要求的工程项目,应根据设计对限差的要求,确定其放样精度。

一等±0.3 ±0.1 ±1.5 变形特别敏感的高层建筑、工业建筑、高耸建筑物、重要古建筑、精密工程设施等 二等±0.5 ±0.3 ±3.0 变形特别敏感的高层建筑、高耸建筑物、古建筑、重要工程设施和重要建筑场地的滑坡监测等 三等±1.0 ±0.5 ±6.0 一般性的高层建筑、工业建筑、 高耸建筑物、、滑坡监测等 四等±2.0 ±1.0 ±12.0 观测精度要求较低的建筑物、构 筑物和滑坡监测等 注:1、变形点的高程中误差和点位中误差,系相对于最近基准点而言。 2、当水平位移变形测量用坐标向量表示时,向量中误差为表中响应等级点位中误差的1/√2。 3、垂直位移的测量,可视需要按变形点的高程中误差或相邻变形点高差中误差确定测量等级。 施工技术资料与施工测量记录作者 : huanghunqingyi06-2-23 序名称基本要求质量记录 1 工程定位 测量记录 施工单位应测定建筑物位置、主控轴线及尺寸、建筑物±0.00绝对高 程。 2 基槽 验线记录 根据主控轴线和基底平面图,检验建筑物基底外轮廓线、集水坑、电 梯井坑、垫层标高(高程)、基槽断面尺寸和坡度等 3 楼层平面 放线记录 包括:轴线竖向投测控制线、各层墙柱轴线、墙柱边线、门窗洞口位 置线、垂直度偏差等 4 楼层标高 抄测记录 包括:楼层+0.5m(或+1.0m)水平控制线、皮数杆等 5 建筑物垂直度、标 高测量记录 在结构工程完成和工程竣工时,对建筑物垂直度和全高进行实测。 6 沉降观测记录根据设计要求,需进行沉降观测的工程,有资质的测量单位进行施工工程中及竣工后的沉降观测。

位移实验

综合实验二位移实验 (一)电容式传感器的位移实验 一、实验目的 了解电容式传感器结构及其特点。 二、基本原理 利用电容C=εA/d和其它结构的关系式,通过相应的结构和测量电路可以选择ε、A、d三个参数中,保持二个参数不变,而只改变其中一个参数,则可以有测谷物干燥度(ε变)、测位移(d变)和测量液位(A变)等多种电容式传感器。本实验采用的传感器为圆筒式变面积差动结构的电容式位移传感器,如图2-9所示:它是有二个圆筒和一个圆柱组成的。设圆筒的半径为R;圆柱的半径为r;圆柱的长为x,则电容量为C=ε2πx/ln(R/r)。图中C1、C2是差动连接,当图中的圆柱产生?X位移时,电容量的变化量为?C=C1-C2=ε2π2?X/ ln(R/r),式中ε2π、ln(R/r)为常数,说明?C与位移?X成正比,配上配套测量电路就能测量位移。 图2-9 圆筒式变面积差动结构电容式位移传感器三、需用器件与单元 主机箱、电容传感器、电容传感器实验模板、测微头。 四、实验步骤 1.测微头的使用和安装参阅实验九。按图2-10将电容传感器装于电容传感 接主机箱电压表的Vi器实验模板上,并按图示意接线(实验模板的输出V O1 n)。 2.将实验模板上的Rw调节到中间位置(方法:逆时针转到底再顺时针转3圈)。 3.将主机箱上的电压表量程(显示选择)开关打到2v挡,合上主机箱电源开关,旋转测微头改变电容传感器的动极板位置使电压表显示0v,再转动测微头(同一个方向)5圈,记录此时的测微头读数和电压表显示值为实验起点值。以后,反方向每转动测微头1圈,即△X=0.5mm位移,读取电压表读数(这样转10圈读取相应的电压表读数),将数据填入表6,出X—V实验曲线(这样单行程位移方向做实验可以消除测微头的回差)。 迟滞误差4.根据表6据计算电容传感器的系统灵敏度S、非线性误差δ L 、

工程测量误差测量理论例题和习题(专题复习)

测量误差理论 一、中误差估值(也称中误差): Δi (i=1,2,…,n ) (6-8) 【例】 设有两组同精度观测值,其真误差分别为: 第一组 -3″、+3″、-1″、-3″、+4″、+2″、-1″、-4″; 第二组 +1″、-5″、-1″、+6″、-4″、0″、+3″、-1″。 试比较这两组观测值的精度,即求中误差。 解:"2 2222219.28 41243133±=+++++++±=m "222223.38 1 3046151±=+++++++±=m 由于m 1

实验一基本电工仪表的使用与测量误差的计算资料讲解

电工电子实验指导 理工组:张延鹏

实验一 基本电工仪表的使用与测量误差的计算 一、实验目的 1.熟悉实验台上仪表的使用和布局; 2.熟悉恒压源与恒流源的使用和布局; 3.掌握电压表、电流表内电阻的测量方法; 4.掌握电工仪表测量误差的计算方法。 二、实验原理 通常,用电压表和电流表测量电路中的电压和电流,而 电压表和电流表都具有一定的内阻,分别用R V 和R A 表示。 如图1-1所示,测量电阻R 2两端电压U 2时,电压表与R 2并联,只有电压表内阻R V 无穷大,才不会改变电路原来的状态。如果测量电路的电流I ,电流表串入电路,要想不改 变电路原来的状态,电流表的内阻R A 必须等于零。但实际 使用的电压表和电流表一般都不能满足上述要求,即它们的内阻不可能为无穷大或者为零,因此,当仪表接入电路时都会使原来的状态发生变化,使被测的读数值与电路原来的实际值之间产生误差,这种由于仪表内阻引入的测量误差,称之为方法误差。显然,方法误差值的大小与仪表本身内阻值的大小密切相关,我们总是希望电压表的内阻越接近无穷大越好,而电流表的内阻越接近零越好。 可见,仪表的内阻是一个十分关键的参数。通常用以下方法测量仪表的内阻。 1.用“分流法”测量电流表的内阻 设被测电流表的内阻为R A ,满量程电流为I m ,测试电 路如图1-2所示,首先断开开关S ,调节恒流源的输出电流I ,使电流表指针达到满偏转,即I =I A =I m 。然后和上开关S ,并保持I 值不变,调节电阻箱R 的阻值,使电流表的指针在1/2满量程位置,即I A = I S = I m / 2 则电流表的内阻R A =R 。 2.用“分压法”测量电压表的内阻 设被测电压表的内阻为R V ,满量程电压为 U m ,测试电路如图1-3所示,首先闭合开关S , 调节恒压源的输出电压U ,使电压表指针达到满 偏转,即U =U V =U m 。然后断开开关S ,并保持U 值不变,调节电阻箱R 的阻值,使电压表的指针 在1/2满量程位置,即U V = U m = U m / 2 可调恒压源 R V U m 图1-3 图1-2 可调恒流源 R 1

测量误差的分类以及解决方法

测量误差的分类以及解决方法 1、系统误差 能够保持恒定不变或按照一定规律变化的测量误差,称为系统误差。系统误差主要是由于测量设备、测量方法的不完善和测量条件的不稳定而引起的。由于系统误差表示了测量结果偏离其真实值的程度,即反映了测量结果的准确度,所以在误差理论中,经常用准确度来表示系统误差的大小。系统误差越小,测量结果的准确度就越高。 2、偶然误差 偶然误差又称随机误差,是一种大小和符号都不确定的误差,即在同一条件下对同一被测量重复测量时,各次测量结果服从某种统计分布;这种误差的处理依据概率统计方法。产生偶然误差的原因很多,如温度、磁场、电源频率等的偶然变化等都可能引起这种误差;另一方面观测者本身感官分辨能力的限制,也是偶然误差的一个来源。偶然误差反映了测量的精密度,偶然误差越小,精密度就越高,反之则精密度越低。 系统误差和偶然误差是两类性质完全不同的误差。系统误差反映在一定条件下误差出现的必然性;而偶然则反映在一定条件下误差出现的可能性。 3、疏失误差 疏失误差是测量过程中操作、读数、记录和计算等方面的错误所引起的误差。显然,凡是含有疏失误差的测量结果都是应该摈弃的。 解决方法: 仪表测量误差是不可能绝对消除的,但要尽可能减小误差对测量结果的影响,使其减小到允许的范围内。 消除测量误差,应根据误差的来源和性质,采取相应的措施和方法。必须指出,一个测量结果中既存在系统误差,又存在偶然误差,要截然区分两者是不容易的。所以应根据测量的要

求和两者对测量结果的影响程度,选择消除方法。一般情况下,在对精密度要求不高的工程测量中,主要考虑对系统误差的消除;而在科研、计量等对测量准确度和精密度要求较高的测量中,必须同时考虑消除上述两种误差。 1、系统误差的消除方法 (1)对测量仪表进行校正在准确度要求较高的测量结果中,引入校正值进行修正。 (2)消除产生误差的根源即正确选择测量方法和测量仪器,尽量使测量仪表在规定的使用条件下工作,消除各种外界因素造成的影响。 采用特殊的测量方法如正负误差补偿法、替代法等。例如,用电流表测量电流时,考虑到外磁场对读数的影响,可以把电流表转动180度,进行两次测量。在两次测量中,必然出现一次读数偏大,而另一次读数偏小,取两次读数的平均值作为测量结果,其正负误差抵消,可以有效地消除外磁场对测量的影响。 2、偶然误差的消除方法 消除偶然误差可采用在同一条件下,对被测量进行足够多次的重复测量,取其平均值作为测量结果的方法。根据统计学原理可知,在足够多次的重复测量中,正误差和负误差出现的可能性几乎相同,因此偶然误差的平均值几乎为零。所以,在测量仪器仪表选定以后,测量次数是保证测量精密度的前提。 . 容:

建筑工程测量教案

第一讲工程测量的基本理论知识㈠ 知识目标:熟悉工程测量的任务、内容 能力目标:掌握工程测量的一般程序与工作原则 一、本课程学习的目的与内容简介 通过设疑、答疑引入工程测量的目的,对照课程目录解说本课程学习的主要内容及能力要求。 二、工程测量的概念 1.工程测量学的任务和内容 工程测量学的含义——指的是研究工程建设在勘测设计阶段、施工准备阶段、施工阶段、竣工验收阶段以及交付使用后的服务管理阶段所进行的各种测量工作的一门科学。 工程测量学的任务——为工程建设服务 工程测量学的内容——测定和测设 工程测量学的实质——确定点的位置 测定——指的是用恰当的测量仪器、工具和测量方法对地球表面的地物和地貌的位置进行实地测量并按照一定的比例尺缩绘成图的过程。(包括图根控制测量、地形测量、竣工测量、变形测量等) 测设——指的是用恰当的测量仪器、工具和测量方法将规划、设计在图上的建筑物、构筑物标定到实地上,作为施工依据的过程。(包括建筑基线及建筑方格网的测设、施工放样、设备安装测量等) 2.建筑工程测量的内容

⑴工程规划设计阶段——测绘地形图 ⑵工程施工准备阶段——按图样要求实地标定建筑物、构筑物的平面位置和高程 ⑶施工阶段——对施工和安装工作进行检验、校核 ⑷管理阶段——定期进行变形观测(大型和重要建筑物) 工程建设的每一个阶段都离不开测量工作,测量的精度和速度直接影响到整个工程的质量和速度。 测量放线工——进行工程建设的施工测量 3. 测量工作的一般程序 ⑴从整体到局部 ⑵从高级到低级 ⑶先控制后细部 4. 测量放线工的工作原则 ⑴严格按建筑工程施工设计图样的要求进行施工测量 ⑵按建筑工程施工组织设计的安排及时进行有关测量工作 ⑶严格按测量规范和细则进行测量工作 ⑷边工作边检核 第二讲工程测量的基本理论知识㈡ 知识目标:掌握地面点位的确定方法及建筑工程施工图的识读方法

实验07(光纤传感器的位移测量及数值误差分析实验)实验报告

实验报告:实验07 (光纤传感器的位移测量及数值误差分析实验) 实验一:光纤传感器位移特性实验 一、实验目的:了解光纤位移传感器的工作原理和性能,测量其静态特性实验数据。学会 对实验测量数据进行误差分析。 二、基本原理:本实验采用的是传光型光纤,它由两束光纤混合后,组成Y 型光纤,半园 分布即双D 分布,一束光纤端部与光源相接发射光束,另一束端部与光电转换器相接接收光束。两光束混合后的端部是工作端亦称探头,它与被测体相距X,由光源发出的光纤传到端部出射后再经被测体反射回来,另一束光纤接收光信号由光电转换器转换成电量,而光电转换器转换的电量大小与间距X 有关,因此可用于测量位移。 三、器件与单元:主机箱、光纤传感器、光纤传感器实验模板、测微头、反射面。 四、实验数据: 实验数据记录如下所示: 表1光纤位移传感器输出电压与位移数据 实验二:随机误差的概率分布与数据处理 1.利用Matlab语句(或C语言),计算算术平均值和标准差(用贝塞尔公式) clc; clear; l=[20.42 20.43 20.40 20.43 20.42 20.43 20.39 20.30 20.40 20.43 20.42 20.41 20.39 20.39 20.40];%例2-22数据 v0=l-mean(l)%残差列 M1=mean(l)%算术平均值 M2=std(l)%标准差 计算结果

数据分布 2.利用Matlab语句(或C语言),用残余误差校核法判断测量列是否存在线性和周期性 系统误差 %残余误差校核法校核线性系统误差 N=length(l)%原数组长度 if(mod(N,2))%求数组半长 K=(N+1)/2 else K=(N)/2 end A1=0; delta=0;%delta=A1-A2 for i=1:K;%计算前半部分残差和 A1=A1+v0(i); end A2=0; for j=K+1:N;%计算后半部分残差和 A2=A2+v0(j); end A1; A2; fprintf('Delta校核结果\n'); delta=A1-A2%校核结果 %阿贝-赫梅特准则校核周期性系统误差 u=0 for i=1:N-1; u=u+v0(i)*v0(i+1); end u=abs(u) if((u-sqrt(N-1)*M30)>0)

测量误差与精度

5.5.1 测量误差与精度 1. 测量误差的含义及表示方法 测量误差是测量结果与被测量的真值之差。由于测量误差的存在,被测量的真值是不能准确得到的。实用中,一般是以约定真值或以无系统误差的多次重复测量值的平均值代替真值。 测量误差有绝对误差和相对误差之分。 上述定义的误差称为绝对误差。即 = - (5-3) 绝对误差可能是正值或负值。被测尺寸相同的情况下,绝对误差大小能够反映测量精度。被测尺寸不同时,绝对误差不能反映测量精度。这时,应用相对误差的概念。 相对误差是指绝对误差的绝对值与被测量真值之比,即 (5-4) 2. 测量的精确度 测量的精确度是测量的精密度和正确度的综合结果。测量的精密度是指相同条件下多次测量值的分布集中程度,测量的正确度是指测量值与真值一致的程度。下面用打靶来说明测量的精确度: 把相同条件下多次重复测量值看作是同一个人连续发射了若干发子弹,其结果可能是每次的击中点都偏离靶心且不集中,这相当于测量值与被测量真值相差较大且分散,即测量的精密度和正确度都低;也可能是每次的击中点虽然偏离靶心但比较集中,这相当于测量值与被测量真值虽然相差较大,但分布的范围小,即测量的正确度低但精密度高;还可能是每次的击中点虽然接近靶心但分散,这相当于测量值与被测量真值虽然相差不大但不集中,即测量的正确度高但精密度低;最后一种可能是每次的击中点都十分接近靶心且集中,这相当于测量值与被测量真值相差不大且集中,测量的正确度和精密度都高,即测量的精确度高。 5.5.2 测量误差的来源及减小测量误差的措施 测量误差直接影响测量精度,测量误差对于任何测量过程都是不可避免的。正确认识测量误差的来源和性质,采取适当的措施减小测量误差的影响,是提高测量精度的根本途径。测量误差主要来源于以下几个方面:

测量误差及数据处理的基本知识(精)

第一章测量误差及数据处理的基本知识 物理实验离不开对物理量的测量。由于测量仪器、测量方法、测量条件、测量人员等因素的限制,测量结果不可能绝对准确。所以需要对测量结果的可靠性做出评价,对其误差范围作出估计,并能正确地表达实验结果。 本章主要介绍误差和不确定度的基本概念,测量结果不确定度的计算,实验数据处理和实验结果表达等方面的基本知识。这些知识不仅在每个实验中都要用到,而且是今后从事科学实验工作所必须了解和掌握的。 1.1 测量与误差 1.1.1测量 物理实验不仅要定性的观察物理现象,更重要的是找出有关物理量之间的定量关系。因此就需要进行定量的测量。测量就是借助仪器用某一计量单位把待测量的大小表示出来。根据获得测量结果方法的不同,测量可分为直接测量和间接测量:由仪器或量具可以直接读出测量值的测量称为直接测量。如用米尺测量长度,用天平称质量;另一类需依据待测量和某几个直接测量值的函数关系通过数学运算获得测量结果,这种测量称为间接测量。如用伏安法测电阻,已知电阻两端的电压和流过电阻的电流,依据欧姆定律求出待测电阻的大小。 一个物理量能否直接测量不是绝对的。随着科学技术的发展,测量仪器的改进,很多原来只能间接测量的量,现在可以直接测量了。比如车速的测量,可以直接用测速仪进行直接测量。物理量的测量,大多数是间接测量,但直接测量是一切测量的基础。 一个被测物理量,除了用数值和单位来表征它外,还有一个很重要的表征它的参数,这便是对测量结果可靠性的定量估计。这个重要参数却往往容易为人们所忽视。设想如果得到一个测量结果的可靠性几乎为零,那么这种测量结果还有什么价值呢?因此,从表征被测量这个意义上来说,对测量结果可靠性的定量估计与其数值和单位至少具有同等的重要意义,三者是缺一不可的。 1.1.2 误差 绝对误差在一定条件下,某一物理量所具有的客观大小称为真值。测量的目的就 是力图得到真值。但由于受测量方法、测量仪器、测量条件以及观测者水平等多种因素的限制,测量结果与真值之间总有一定的差异,即总存在测量误差。设测量值为N,相应的真值为N0,测量值与真值之差ΔN ΔN=N-N0 称为测量误差,又称为绝对误差,简称误差。 误差存在于一切测量之中,测量与误差形影不离,分析测量过程中产生的误差,将

施工测量的目的和内容

测量地形图是以地面控制点为基础,测量出控制点至周围各地形特征点的距离、角度、高差以及测点与测点间的相互位置关系等数据,并按一定的比例将这些测点缩绘到图纸上,绘制成图。施工测量是以地面上的施工控制点为基础,根据图纸上的建、构筑物的设计尺寸,计算出各部分的特征点与控制点之间的距离、角度、高差等数据,将建、构筑物的特征点在实地标定出来,以便施工,这项工作又称“放样”。施工测量所采用的方法基本上与测图所用的方法一致,所用仪器基本相同。但施工测量也有其自身的特点和规律。 一、施工测量的目的和内容 施工测量的目的是按照设计和施工的要求将设计的建筑物、构筑物的平面位置和高程在地面上标定出来,作为施工的依据,并在施工过程中进行一系列的测量工作,以衔接和指导各工序之间的施工。 施工测量贯穿于整个施工过程中。从场地平整、建筑物定位、基础施工,到建筑物构件安装等,都需要进行施工测量,以能使建筑物、构筑物各部分的尺寸、位置符合设计要求。其主要内容有:(1)建立施工控制网。(2)建筑物、构筑物的详细测设。(3)检查、验收。每道施工工序完工之后,都要通过测量检查工程各部位的实际位置及高程是否与设计要求相符合。(4)变形观测。随着施工的进展,测定建筑物在平面和高程方面产生的位移和沉降,收集整理各种变形资料,作为鉴定工程质量和验证工程设计、施工是否合理的依据。 二、施工测量的特点 与测图工作相比,具有如下特点:(1)目的不同。测图工作是将地面上的地物、地貌测绘到图纸上,而施工测量是将图纸上设计的建筑物或构筑物测设到实地。(2)精度要求不同。施工测量的精度要求取决于工程的性质、规模、材料、施工方法等因素。一般高层建筑物的施工测量精度要求高于低层建筑物的施工测量精度,钢结构施工测量精度要求高于钢筋混凝土结构的施工测量精度,装配式建筑物的施工测量精度要求高于非装配式建筑物的施工测量精度。此外,由于建筑物、构筑物的各部位相对位置关系的精度要求较高,因而工程的细部放样精度要求往往高于整体放样精度。(3)施工测量工序与工程施工工序密切相关,某项工序还没有开工,就不能进行该项的施工测量。测量人员必须了解设计的内容、性质及其对测量工作的精度要求,熟悉图纸上的设计数据,了解施工的全过程,并掌握施工现场的变动情况,使施工测量工作能够与施工密切配合。(4)受施工干扰。施工场地上工种多、交叉作业频繁,并要填、挖大量土石方,地面变动很大,又有车辆等机械振动,因此各种测量标志必须埋设稳固且在不易破坏的位置。解决办法是采用二级布设方式,即设置基准网和定线网。基准网远离现场,定线网布设于现场,当定线网密度不够或者现场受到破坏时,可用基准网增设或恢复之。定线网的密度应尽可能满足一次安置仪器就可测设的要求。 三、施工测量的原则 为了保证施工能满足设计要求,施工测量也应遵循“由整体到局部,先控制后细部”的原则,即先在施工现场建立统一的施工控制网,然后以此为基础,测设出各个建筑物和构筑物的细部位置。这样可以减少误差累积,保证测设精度,免除因建筑物众多而引起测设工作的紊乱。 此外,施工测量责任重大,稍有差错,就会酿成工程事故,造成重大损失。因此,必须加强外业和内业的检核工作。检核是测量工作的灵魂。 四、施工测量的精度 施工测量的精度取决于工程的性质、规模、材料、施工方法等因素。因此,施工测量的精度应由工程设计人员提出的建筑限差或工程施工规范来确定。建筑限差一般是指工程竣工后的最低精度要求,它应理解为允许误差。设建筑限差为,工程竣工后的中误差应为建筑限差的一半,即= /2。 工程竣工后的中误差由测量中误差和施工中误差组成,而测量中误差又由控制测量中误差和细部放样中误差两部分组成,则 (5-1-1) 上述各种误差之间的相互匹配要根据施工现场条件来确定,并以每一项作业工序的“难易度、成本比”大致相等为准则,既要保证工程质量,又要节省人力、物力。 一般来说,测量精度要比施工精度高。它们之间的比例关系为:

测量误差及数据处理的基本知识

第一章 测量误差及数据处理的基本知识 物理实验离不开对物理量的测量。由于测量仪器、测量方法、测量条件、测量人员等因素的限制,测量结果不可能绝对准确。所以需要对测量结果的可靠性做出评价,对其误差范围作出估计,并能正确地表达实验结果。 本章主要介绍误差和不确定度的基本概念,测量结果不确定度的计算,实验数据处理和实验结果表达等方面的基本知识。这些知识不仅在每个实验中都要用到,而且是今后从事科学实验工作所必须了解和掌握的。 1.1 测量与误差 1.1.1测量 物理实验不仅要定性的观察物理现象,更重要的是找出有关物理量之间的定量关系。因此就需要进行定量的测量。测量就是借助仪器用某一计量单位把待测量的大小表示出来。根据获得测量结果方法的不同,测量可分为直接测量和间接测量:由仪器或量具可以直接读出测量值的测量称为直接测量。如用米尺测量长度,用天平称质量;另一类需依据待测量和某几个直接测量值的函数关系通过数学运算获得测量结果,这种测量称为间接测量。如用伏安法测电阻,已知电阻两端的电压和流过电阻的电流,依据欧姆定律求出待测电阻的大小。 一个物理量能否直接测量不是绝对的。随着科学技术的发展,测量仪器的改进,很多原来只能间接测量的量,现在可以直接测量了。比如车速的测量,可以直接用测速仪进行直接测量。物理量的测量,大多数是间接测量,但直接测量是一切测量的基础。 一个被测物理量,除了用数值和单位来表征它外,还有一个很重要的表征它的参数,这便是对测量结果可靠性的定量估计。这个重要参数却往往容易为人们所忽视。设想如果得到一个测量结果的可靠性几乎为零,那么这种测量结果还有什么价值呢?因此,从表征被测量这个意义上来说,对测量结果可靠性的定量估计与其数值和单位至少具有同等的重要意义,三者是缺一不可的。 1.1.2 误差 绝对误差 在一定条件下,某一物理量所具有的客观大小称为真值。测量的目的就是力图得到真值。但由于受测量方法、测量仪器、测量条件以及观测者水平等多种因素的限制,测量结果与真值之间总有一定的差异,即总存在测量误差。设测量值为N ,相应的真值为N 0,测量值与真值之差ΔN ΔN =N -N 0 称为测量误差,又称为绝对误差,简称误差。 误差存在于一切测量之中,测量与误差形影不离,分析测量过程中产生的误差,将影响降低到最低程度,并对测量结果中未能消除的误差做出估计,是实验测量中不可缺少的一项重要工作。 相对误差 绝对误差与真值之比的百分数叫做相对误差。用E表示: %1000 ??=N N E 由于真值无法知道,所以计算相对误差时常用N代替0N 。在这种情况下,N可能是公认 值,或高一级精密仪器的测量值,或测量值的平均值。相对误差用来表示测量的相对精确度,相对误差用百分数表示,保留两位有效数字。 1.1.3 误差的分类

工程测量测量误差练习题

测量误差(练习题) 一、选择题 1、对某一量进行观测后得到一组观测值,则该量的最或是值为这组观测值的( )。 A .最大值 B .最小值 C .算术平均值 D .中间值 2、观测三角形三个内角后,将它们求和并减去180°所得的三角形闭合差为( )。 A .中误差 B .真误差 C .相对误差 D .系统误差 3、系统误差具有的特点为( )。 A .偶然性 B .统计性 C .累积性 D .抵偿性 4、在相同的观测条件下测得同一水平角角值为:173°58′58"、173°59′02"、173°59′04"、173°59′06"、173°59′10",则观测值的中误差为( )。 A .±" B.±" C.±" D.±" 5、一组测量值的中误差越小,表明测量精度越( ) A .高 B .低 C .精度与中误差没有关系 D .无法确定 6、边长测量往返测差值的绝对值与边长平均值的比值称为( )。 A .系统误差 B .平均中误差 C .偶然误差 D .相对误差 7、对三角形三个内角等精度观测,已知测角中误差为10″,则三角形闭合差的中误差为( )。 A .10″ B .30″ C .″ D .″ 8、两段距离及其中误差为:D1=72.36m±0.025m, D2=50.17m±0.025m ,比较它们的测距精度为( )。 A .D1精度高 B .两者精度相同 C .D2精度高 D .无法比较 9、设某三角形三个内角中两个角的测角中误差为±4″和±3″,则求算的第三个角的中误差为( )。 A .±4″ B .±3″ C .±5″ D .±6″ 10、设函数X=L 1+2L 2,Y=X+L 3,Z=X+Y ,L 1,L 2,L 3的中误差均为m ,则X ,Y ,Z 的中误差分别为( )。 A .m 5,m 6,m 11 B .m 5,m 6,m 21 C .5m ,6m ,21m D .5m ,6m ,11m 11、某三角网由10个三角形构成,观测了各三角形的内角并算出各三角形闭合差,分别为:+9″、-4″、-2″、+5″、-4″、+3″、0″、+7″、+3″、+1″,则该三角网的测角中误差为( )。 A .±12″ B . ±″ C . ±″ D .±″ 12、测一正方形的周长,只测一边,其中误差为±0.02m,该正方形周长的中误差为( )。

GPS变形监测的位移显著性检验方法研究

第33卷第2期 2008年3月 测绘科学 Science of Surveying and M app ing Vol 133No 12 Mar 1 作者简介:陈刚(19712),男,湖北咸 宁人,副教授,博士生,现从事“3S ”技术在资源与环境监测中的应用研究。E 2mail:whcg@vi p 1sina 1com 收稿日期:2006211216 基金项目:中国地质大学出国留学人员科研基金项目资助(C UG LX0505082) GPS 变形监测的位移显著性检验方法研究 陈 刚① ,胡友健① ,赵 斌① ,Kefei Zhang ② ,梁新美 ① (①中国地质大学测绘工程系,武汉 430074; ②School of Mathe matical and Geos patial Sciences,R M I T University,Melbourne 3001,V ict oria,Australia ) 【摘 要】目前普遍采用的位移显著性检验方法,是人为地将客观上的空间位移问题转化为地方(局部)坐标系中的1维或2维位移问题来进行检验,既使位移检验在理论上的严密性受到损害,又使GPS 能够在协议地球坐标系(I TRF 或W GS 284)中同时精确测定空间3维位移的优越性得不到充分利用。由于在位移转换过程中会引入误差,可能导致位移显著性检验结果不可靠,尤其是当位移量小而坐标转换误差大时可靠性更低。为了避免由于位移转换存在误差而影响位移显著性检验结果的可靠性,本文提出了用GPS 进行变形监测时,直接在I TRF 或W GS 284空间坐标参考框架下进行位移显著性检验的新方法—“变形误差椭球检验法”,严密地推导了有关理论公式,给出了具体的检验方法,并进行了实例计算和分析。【关键词】GPS;变形监测;位移显著性检验;变形误差椭球【中图分类号】P258 【文献标识码】A 【文章编号】100922307(2008)022*******DO I:1013771/j 1issn 1100922307120081021032 1 位移显著性检验方法概述 变形监测点的两期监测数据经过处理后求得的坐标差,究竟是位移量还是观测误差的反映,需要经过严密的检验分析才能判定。目前广泛采用的位移显著性检验方法,可归纳为单点位移显著性检验、整体位移显著性检验和变形误差椭圆检验3种方法[1]。 单点位移显著性检验,目前广泛采用t 检验法。该法是作统计量t =Δx /m ∧Δx (Δx 为两期监测的坐标差;m ∧ Δx 为其中误差),选定显著性水平α,如果|t |>t α/2,认为位移显著,否则,认为点位稳定。用于整体位移显著性检验的平均间隙法,是首先利用两期平差的全部坐标差Δx 及其权 阵P Δx ,计算单位权中误差〗^m Δx 2=Δx T P Δx Δx /f Δx (f Δx 为Δx 中独立量的个数),作统计量F =^m Δx 2/^m 20(m ∧ 0为母体单位权中误差)。然后,选定显著性水平α,通过F 检验作出总体上位移是否显著的判断。如果总体位移显著,然后再逐个找出位移显著的点。变形误差椭圆法,是首先利用变形监测网两期平差后的坐标协因素和单位权中误差,作出每一个监测点的误差椭圆,取k 倍中误差作出极限误差椭圆。然后,根据点的位移向量是否落在极限误差椭圆之内来判断位移是否显著。 上述各种位移显著性检验方法用于GPS 变形监测分析,都存在不足之处:①t 检验法和平均间隙法的检验过程和结果都不直观,且不能用于两期监测精度不同的情况下,而实际上,严格说来,任意两期监测都不可能是完全等精度的;②需要将监测点在I T RF 或W GS 284中的3维坐标转换到地方平面直角坐标系和高程系统中,由于坐标转换过程中会引入 误差,这可能导致位移检验分析结果不可靠,尤其是当位移量小而坐标转换误差大时可靠性更低;③人为地将客观上的空间位移问题转化为1维或2维位移问题来进行检验,这就使位移检验的严密性受到损害,也使GPS 可以在I T RF 或W GS 284坐标框架下同时精确测定3维位移的优越性得不到充分利用。因此,在GPS 变形监测中,采用“变形误差椭球检验法”,直接在I T RF 或W GS 284空间坐标参考框架下进行位移显著性检验,有其合理性和必要性。 2 “变形误差椭球检验法” 211 变形误差椭球 设GPS 变形监测网的两期监测数据处理后,求得某监测点在I TRF 或W GS 284坐标系中的坐标分别为 X 1=X 1Y 1Z 1T X 2=X 2Y 2Z 2 T 坐标协方差阵分别为 D 1= D X 1X 1 D X 1Y 1D X 1Z 1 D X 1Y 1D Y 1Y 1D Y 1Z 1D X 1Z 1D Y 1Z 1 D Z 1Z D 2=D X 2X 2D X 2Y 2D X 2Z 2D X 2Y 2D Y 2Y 2D Y 2Z 2D X 2Z 2D Y 2Z 2 D Z 2Z 两期监测的坐标差及其协方差阵分别为 ΔX = x 2-x 1 y 2-y 1z 2-z 1  D ΔX ΔX =D Δx Δx D Δx Δy D Δx Δz D Δx Δy D Δy Δy D Δy Δz D Δx Δz D Δy Δz D Δz Δz =D 1+D 2 作协方差阵D ΔX ΔX 的特征方程: D ΔX ΔX -λI = D Δx Δx -λD Δx Δy D Δx Δz D Δx Δy D Δy Δy -λD Δy Δz D Δx Δz D Δy Δz D Δz Δz -λ =0(1) 由式(1)得: λ3-I 1λ2+I 2λ-I 3=0 (2) 式中 I 1=D Δx Δx +D Δy Δy +D Δz Δz ; I 2=D Δx Δx D Δx Δy D Δx Δy D Δy Δy +D Δx Δx D Δx Δz D Δx Δz D Δz Δz + D Δy Δy D Δy Δz D Δy Δz D Δz Δz ; I 3= D Δx Δx D Δx Δy D Δx Δz D Δx Δy D Δy Δy D Δy Δz D Δx Δz D Δy Δz D Δz Δz

实验一 仪表的使用与测量误差的计算

实验一 仪表的使用与测量误差的计算 一、实验目的 1.熟悉实验台上各类电源和测量仪表的布局及使用方法 2.掌握电压表、电流表的使用方法及其内电阻的测量方法 3.熟悉电工仪表测量误差的计算方法 二、原理说明 在电路分析测量中,由于有各种不可预见的情况(如元件值随温度而变化)或不可克服的问题(如测量仪表的精度限制)等原因,会出现实际测量值与理论计算值不完全符合的情况。测量电流量时,需将电流表串联在被测电路中,电流表的内阻会造成一定数值的电压降亦即引起电路工作电流的变化,造成测量误差;在测量电压时,应将电压表并接于被测电路的两端点,电压表的内阻越大,对被测电路的影响越小。为了准确地测量电路中实际的电压和电流,必须保证仪表接入电路后不会改变被测电路的工作状态。这就要求电压表的内阻为无穷大和电流表的内阻为零。而实际使用的电工仪表都不能满足上述要求,这就导致仪表的读数值与电路原有的实际值之间出现误差,这种误差值的大小与仪表本身内阻值的大小密切相关。 1、“分流法”测量电流表的内阻 分流法”测电流表内阻的电路如图1-1所示。 先将一内阻为R A 的直流电流表与一恒流源相连,调节恒流源的输出电流I S ,使电流表指针达到满偏;然后合上开关S ,将阻值较大的定值电阻R 1与可变电阻箱R B 并联接入电路,并保持I S 值不变,调节R B 的阻值,使电流表的指针指在1/2满偏转位置,此时有 I A =I R = 2 I S ∴R A =R B ∥R 1 R 1为定值电阻器之值,R B 由可调电阻箱的刻度盘上读取。选R 1与R B 并联,其阻值调节可比单只电阻箱更为细微、平滑。 2、“分压法”测量电压表的内阻 “分压法”测量电压表内阻的电路如图1-2所示。先将开关S 投向1,用一块内阻为Rv 的电压表测量直流稳压电源的输出电压U S ,调节电源的输出,使电压表V 的指 针为满偏值;然后将开关S 掷向2,将保护电阻R 1与可调电阻R BS 串入电路,并调节R B 的阻值使电压表V 的指示值减半。即 U = Us R R Rv Rv B ?++) (1 此时有Rv =R 1+R B 电压表的精度等级可以用灵敏度S 来表示 S =Rv /U(Ω/V)

相关文档
最新文档