Nonequilibrium Green's function theory for transport and gain properties of quantum cascade

Nonequilibrium Green's function theory for transport and gain properties of quantum cascade
Nonequilibrium Green's function theory for transport and gain properties of quantum cascade

a r X i v :c o n d -m a t /0212059v 1 [c o n d -m a t .m e s -h a l l ] 3 D e c 2002

In press,PRB.

Nonequilibrium Green’s function theory for transport and gain

properties of quantum cascade structures

S.-C.Lee and A.Wacker

Institut f¨u r Theoretische Physik,Technische Universit¨a t Berlin,

Hardenbergstra?e 36,10623Berlin,Germany

(Dated:February 1,2008)

Abstract

The transport and gain properties of quantum cascade (QC)structures are investigated using a nonequilibrium Green’s function (NGF)theory which includes quantum e?ects beyond a Boltz-mann transport description.In the NGF theory,we include interface roughness,impurity,and electron-phonon scattering processes within a self-consistent Born approximation,and electron-electron scattering in a mean-?eld approximation.With this theory we obtain a description of the nonequilibrium stationary state of QC structures under an applied bias,and hence we determine transport properties,such as the current-voltage characteristic of these structures.We de?ne two contributions to the current,one contribution driven by the scattering-free part of the Hamilto-nian,and the other driven by the scattering Hamiltonian.We ?nd that the dominant part of the current in these structures,in contrast to simple superlattice structures,is governed mainly by the scattering Hamiltonian.In addition,by considering the linear response of the stationary state of the structure to an applied optical ?eld,we determine the linear susceptibility,and hence the gain or absorption spectra of the structure.A comparison of the spectra obtained from the more rigorous NGF theory with simpler models shows that the spectra tend to be o?set to higher values in the simpler theories.

PACS numbers:05.60.Gg,73.63.-b,78.67.-n

Keywords:quantum cascade laser,quantum transport,gain

I.INTRODUCTION

Quantum cascade(QC)structures are semiconductor heterostructures grown with a com-plicated sequence of alternating layers of di?erent semiconductor materials and with varying thicknesses.This sequence of layers is repeated many times,up to tens or even over a hun-dred periods.Figure1shows an example of the conduction-band line-up in a QC structure. These structures form the basis of a new type of semiconductor laser,1in which the laser light emission occurs through intersubband or interminiband transitions(in most cases within the conduction band)rather than interband transitions.These lasers have a great variety of de-signs,and a recent review is given in Ref.2.Until recently,3all quantum cascade laser(QCL) structures were designed so that each period in the structure contains an active region in which the lasing transition occurs,and a separate injector region.The injector acts as a reservoir of electrons for injection into the active region of the next stage.It also acts as a collector of electrons from the preceding active region.The direction of the electron?ow is indicated in Fig.1,and the electron?ow is seen to resemble a cascade as the electrons move from one stage to the next when a bias is applied.Hence,the electron transport through a QCL structure is a complicated interplay between relaxation through light emission and scattering in the active region,and transmission through tunneling and scattering in the injector region.4

Initially,most theoretical investigations4,5,6of transport in QC structures have focused on the role played by scattering processes in determining transport properties and the dynamics of the electron distributions in these structures.Very recently,however,the?rst theoretical investigations of quantum transport in these structures which have considered or incor-porated quantum e?ects beyond a Boltzmann equation approach have been reported.7,8A theoretical study of quantum transport may be treated using the density matrix formalism,9 or with a nonequilibrium Green’s function(NGF)approach.10,11,12,13

In the work reported here,we extend the NGF theory described in Ref.13to the study of quantum transport in QC structures.Very early results from this investigation have been reported in Refs.7and14.In this paper,we present further and more detailed results from this study.In addition,we have extended the work further to the problem of evaluating the gain or absorption spectra of these structures,15and we also report and discuss results of this work here.

In the following section,we describe the theoretical formulation that we use to derive the transport properties,and then the linear optical response of QC structures.In Sec.III,we apply this theory to example QC structures,and describe the results obtained.The last section contains a summary and conclusion.

II.THEORETICAL FORMULATION

A.Basis states and Hamiltonian

We model the QC structure as a periodic superlattice structure,in which each period contains N s semiconductor layers with varying thicknesses.The Hamiltonian?H which we use to model this system may be separated into two parts:?H=?H o+?H scatt.?H o contains the superlattice potential and a static electric?eld E applied in the growth direction,i.e.,

?H o =?H SL+?H E.The Hamiltonian?H scatt describes the scattering processes included in the

theory.

√The Hamiltonian is expressed in a set of basis states,Ψk,α(r,z)=(e i k.r/

consider only couplings between adjacent periods.The next-nearest-neighbor couplings Tν2 are two or more orders of magnitude smaller.The Hamiltonian H E,due to the electric?eld E,is written as

?H

E

= n,ν,μ k,s{?e E Rμν0?aμ?n,k,s?aνn,k,s?ne E dδμν?aμ?n,k,s?aμn,k,s

?e E Rμν1[?aμ?n+1,k,s?aνn,k,s+?aν?n,k,s?aμn+1,k,s]},(2) where Rμνl= dzψ?μ(z?ld)zψν(z).d is the length of one period and e<0is the electron charge.

In the scattering Hamiltonian?H scatt,we include interface roughness,impurity,and electron-phonon scattering processes.Both acoustic phonons and longitudinal optical(LO) phonons are considered.The electron–acoustic-phonon scattering rates are far smaller than those of the other scattering processes(Table I),but we include these to provide a channel for small energy transfers between the electrons and lattice.This opens up a route for the carrier-lattice system to move towards thermal equilibrium,particularly at low bias when the electrons may have insu?cient energy to emit LO-phonons.

In the NGF theory,the scattering processes expressed in?H scatt are treated in the form of self-energies which are described below.We have also included electron-electron scattering in a mean-?eld approximation so that the interaction between electrons appears as an ad-ditional single-particle potential in?H scatt,i.e.,we replace?H scatt with?H′scatt=?H scatt+?H MF.

?H MF is written as

?H

MF

= mμ,nν k,s[V MF]mμ,nν?aμ?m,k,s?aνn,k,s,(3)

where[V MF]mμ,nν= dzψ?mμ(z)V MF(z)ψnν(z).The evaluation of the mean-?eld potential V MF(z)is described in the following subsection.

B.Quantum transport equations and self-energies

To determine the transport properties of a QC structure under applied bias,we need?rst to obtain a description of the nonequilibrium stationary state of the system.This information is contained in the nonequilibrium Green’s functions:the retarded Green’s function G ret(E) and the correlation function G<(E)(bold type G,andΣbelow,indicates a matrix in,e.g., the Wannier basis).The quantum transport equations,which these functions obey,can be derived11,13from the Hamiltonian?H and have the following form.The Dyson equation for the matrix element G retα

1α2,k

(E)is written as

E G retα

1α2,k

(E)? β (?H o+?H MF)α1β,k+Σretα1β,k(E) G retβα2,k(E)=δα1α2,(4)

whereα1,α2,andβare general indices that include both the period and Wannier level indices,e.g.α1≡(m,μ).The correlation function G<α1α2,k(E)is obtained from the Keldysh relation:

G<α

1α2,k

(E)= ββ′G retα1β,k(E)Σ<ββ′,k(E)G advβ′α2,k(E),(5) where G adv(E)=[G ret(E)]?.

The self-energiesΣret(E)andΣ<(E)originate from the scattering processes contained in

?H scatt (i.e.,excluding?H MF),and are evaluated within the self-consistent Born approximation.

Assuming that the diagonal parts of the Green’s functions and the self-energies dominate (because the basis states are spatially localized),the self-energy for interface roughness or impurity scattering has the form

Σ<,rough/imp α1α1,k (E)= β,k′ |V rough/imp

α1β

(k?k′)|2 G<ββ,k′(E).(6)

V rough α1β(k′?k)and V impα1β(k′?k)are matrix elements for interface roughness and impurity

scattering.In the former case,the angle brackets denote an average over all possible distribu-tions of variations in the interface thickness,and in the latter case these brackets denote an average over all possible impurity distributions.The equation forΣret,rough/imp(E)is obtained by making the replacements:Σ<,rough/imp(E)→Σret,rough/imp(E),and G<(E)→G ret(E).

For optical or acoustic phonon scattering,the self-energies are

Σret,phon

α1α1,k

(E)= β,k′|V phonα1β(k,k′)|2

× [f B(E phon)+1]G retββ,k′(E?E phon)

+f B(E phon)G retββ,k′(E+E phon)

+

1

G<ββ,k′(E?E1) P 1E1+E phon ,(7) and

Σ<,phon

α1α1,k

(E)= β,k′|V phonα1β(k,k′)|2

× f B(E phon)G<ββ,k′(E?E phon)

+[f B(E phon)+1]G<ββ,k′(E+E phon) ,(8)

where V phon represents the interaction with optical or acoustic phonons,and E phon rep-resents the energy of the optical or acoustic phonon.f B(E)=1/[exp(E/k B T)?1]is the equilibrium phonon distribution at a temperature T.This is the only place where the lattice temperature appears in this theory.Further detail about the evaluation of the scattering matrix elements and the self-energies is given in Appendix B.For simplicity in the nu-merical evaluation,we neglect the last line containing the principle value terms in Eq.(7). To further expedite the numerical computation,we use momentum-independent scattering

matrix elements V phon/rough/imp

αβ(k typ,k′typ),employing a representative momentum k typ(see

Appendix B).

As mentioned in the previous section,we include also electron-electron scattering in the form of a mean-?eld potential which we determine by solving Poisson’s equation

d2V MF(z)

?s

[ρdope(z)+ρe(z)],(9)

with periodic boundary conditions V MF(z+d)=V MF(z).?s is the absolute static background permittivity.ρdope(z)is the dopant density pro?le in the structure,and the electron density pro?le

ρe(z)=2e αβ k dE

V d?z

V

i

V i

ˉh V

Tr{[?H o,?z]G<(t,t)},(12)

which we evaluate in the energy representation

J o=2e

[?H o,?z]αβG<βα,k(E).(13)

The second contribution is from?H′scatt,

J′scatt(t)=J scatt(t)+J MF(t)

=e

ˉh [

?H

scatt

+?H MF,?z] ,(14)

where we evaluate J MF similarly to J o,i.e.,Ref.18

J MF=2e

[?H MF,?z]αβG<βα,k(E).(15)

The current contribution driven by H scatt is written in the energy representation as(see Appendix C)

J scatt=2e

[G<βγ,k(E)Σadv(α)

γγ,k

(E)+G retβγ,k(E)Σ<(α)

γγ,k

(E)]zγβ

?zαγ[Σ<(β)γγ,k(E)G advγα,k(E)+Σret(β)

γγ,k

(E)G<γα,k(E)].(16)

The superscript notation(α)in,for example,the self-energyΣ<(α)

γγ,k (E)indicates that we

take only the part of the self-energy which depends on Gαα(E).The factor of2in Eqs.(13), (15),and(16)is from the spin index summation.

We note here,that although we have divided the current into separate contributions driven by?H o,?H MF,and?H scatt,this should not be taken to mean that the scattering processes play no role in driving,for example,the current J o.Although,?H scatt does not appear explicitly in Eq.(12),it is instrumental in determining G<,and,hence,implicitly in?uences the current J o.The scattering processes provide channels for energy dissipation from the electronic system,so that as the electrons descend downwards through the electric potential their kinetic energy does not increase but remains constant,and a steady current?ow is maintained through the structure.

D.Gain and absorption spectra

We can also use the information contained in G ret(E)and G<(E)as a starting point to evaluate the gain or absorption spectra of the structure.To do this,we consider the linear response of the stationary state described by G ret(E)and G<(E)to a small perturbation from an optical?eld.From this response we determine the susceptibilityχ(ω),and from Maxwell’s equations19we obtain the gain coe?cient

g(ω)??ω

n B

,(17)

where n B~√

2πE(ω)e ik(ω)y?iωt,(18) which propagates in the y direction is included as a small time-dependent perturbation to the Hamiltonian:?H→?H+δ?V(t),where the perturbation

δ?V(r,t)=?

e

with the momentum operator?p,and m e(z)is the spatially dependent e?ective mass.The vector potential A(r,t)and scalar potentialφ(r,t)are related to the optical?eld through

A(r,t)= dωiωe ik(ω)y?iωt e z,

φ(r,t)=0,(20) in the Coulomb gauge.A discussion of the use of di?erent gauges in this problem is given in Ref.20.For the results presented here,we apply the long-wavelength approximation,in which we neglect the spatial variation of the optical?eld across the structure.Hence,in this gauge,the perturbation is written in the energy representation as

δVαβ(ω)=i e E(ω)

m e(z) αβ=?e E(ω)

ˉh V αβ k

dE

ˉh V αβ k

dE

and

δJ scatt(ω)=2e

2π αβγ k

δG<βγ,k(ω,E)Σadv(α)γγ,k(E)+δG retβγ,k(ω,E)Σ<(α)γγ,k(E)

+G<βγ,k(E+ˉhω)δΣadv(α)

γγ,k

(ω,E)+G retβγ,k(E+ˉhω)δΣ<(α)

γγ,k

(ω,E) zγβ? αβγ k zαγ δΣ<(β)γγ,k(ω,E)G advγα,k(E)+δΣret(β)γγ,k(ω,E)G<γα,k(E)

+Σ<(β)

γγ,k

(E+ˉhω)δG adv

γα,k

(ω,E)+Σret(β)

γγ,k

(E+ˉhω)δG<γα,k(ω,E) ,(28)

where the factor2is again from the spin index summation.From the change in current densityδJ(ω),we obtain the polarizationδP(ω)=iδJ(ω)/ωinduced in the material,and hence the complex susceptibility

χ(ω)=δP(ω)

?0

δJ(ω)

It is possible also to express the Green’s functions in the Wannier-Stark basis.From the

diagonalization of the Hamiltonian?H o expressed in the Wannier basis we obtain the trans-

formation matrix between the Wannier and Wannier-Stark basis.23Applying this transfor-mation matrix to G ret(E)we obtain the example curves shown in Fig.2(b).Each of these

curves(diagonal elements of Im[G ret(E)]for k=0in the Wannier-Stark basis)represents

a Wannier-Stark state.In contrast to the curves shown in Fig.2(a)with their complicated

structure of peaks,each curve in the Wannier-Stark basis consists of a single,broadened peak.This indicates that at this bias,the Wannier-Stark states approximate closely the true

energy eigenstates of the system.The positions of these peaks E i are shifted downwards by

around10to15meV in comparison to the eigenenergies obtained from the diagonalization

of?H o.This shift represents the renormalization of the Wannier-Stark energy levels due to the scattering processes described in?H′scatt.The broadening of the peaks also originates

from these scattering processes,and the width of the peaks gives a measure of the decay

rateΓi of these levels due to scattering.In particular,we takeΓi=?E fwhm,where?E fwhm

is the full width at half maximum of the single peak in the function Im[G ret ii,k=0(E)],in the

Wannier-Stark basis.In Sec.III C,we will use this information to analyze the gain spectra obtained from the NGF theory.

The curves in Fig.2were evaluated for k=0.If instead we integrate over the in-

plane wave vector k,we obtain the curves shown in Fig.3(a).These staircaselike curves

are the density of states(DOS)in two example Wannier subbands(the two Wannier states considered in Fig.2(a)are the k=0states in these subbands).The onset of each step in the

staircase corresponds to the position of each peak in the corresponding curve in Fig.2(a).

If we carried out the k integral in the Wannier-Stark basis,we would obtain a single step

instead of a staircaselike structure,corresponding to the single peak(for a given curve)seen in Fig.2(b).If we sum the DOS curves for all Wannier subbands within a period,we obtain

Fig.3(b),which is the total DOS per period of the structure.The result in Fig.3(b)is

basis independent if we sum over contributions from all basis states within the energy range

shown.

We consider now the lesser correlation function G<(E).At equal times,G<νν,k(t)= i ?a?νk(t)?aνk(t) =i ?nνk(t) ,where ?nνk(t) is the occupation of a state k in subbandν.If

we move into the energy representation,and sum over the contributions from all states in all subbands in a period,we obtain the population n(E)=2 νk G<νν,k(E)as a function of energy within the period.Figure4(a)shows the normalised population per period per unit

energy for several applied voltages.Dividing these curves by the total DOS curves for the

corresponding bias gives the distribution function as a function of energy,i.e.,

f(E)= νk G<νν,k(E)

current density for structure B is reduced below structure A because of the higher barrier heights in B.The separate current contributions J o and J scatt+J MF from Eqs.(13)–(16) are also shown.In both the structures,the main contribution is from J scatt(J MF is negligible in comparison with J scatt).This?nding is in contrast to the behavior in simple superlattice structures where the dominant contribution to the current is from J o.This di?erence could perhaps be explained by the far greater number of subbands within one period of a QC structure(in comparison to one period of a simple symmetric superlattice structure),in which the envelope functionsψα(z)are spatially displaced across the period.This opens up the possibility for many more scattering transitions which facilitates the transport of carriers across the structure through scattering https://www.360docs.net/doc/e512979519.html,paring A and B,we see that J o is almost identical for both structures.The current J scatt in B is around half that in A so that the reduction in total current in B compared to A arises from a decrease in the transport driven by the scattering Hamiltonian?H scatt.

To compare the theoretical results with experimental data reported in the literature,we show in Fig.6the results for A and B plotted against similar scales as the experimental plots shown in Fig.3in Ref.21,and Fig.4in https://www.360docs.net/doc/e512979519.html,paring the results for structure A with the data given in Ref.21,we see the voltage trend in both curves agree well.In the theory,the voltage tends to be lower for a given current than in the experiment,but this may be accounted for by an additional series resistance in the cladding layers.For structure B,we see again that the voltage trends agree well with the data shown in Ref.22. In particular,when comparing the trends at di?erent temperatures,we?nd that in both the theory and experiment the current is higher for a given voltage at the higher temperature.In both theory and experiment,the curves at both temperatures converge at a certain current density.Unlike the experiment,the two curves do not cross at the point of convergence in the theory,but diverge beyond this point.The theoretical curves reproduce the sharp break in the voltage trend at around23kA/cm2as seen in the experiment,and the theory shows that this break corresponds to the onset of a region of negative di?erential resistivity(NDR). NDR is not seen explicitly in the experimental data in Ref.22because of an artefact of the measurement system.24

The break in the voltage trend is attributed22by Page et al.to the breaking of the level alignment in the injector region and the active region causing an interruption in the current ?ow.To verify this,we show the wave functions and alignment of the injector level i and upper laser level u(in the Wannier-Stark basis23)at77K,for di?erent applied voltages,in Fig.7.Figures7(a)–(c)correspond to the voltages marked a,b,and c in Fig.6(b).Figure 6(b)shows that as the voltage increases from10V,the current-voltage characteristic passes through a peak at13V,and then beyond this point the current decreases to a minimum at https://www.360docs.net/doc/e512979519.html,paring this behavior with Fig.7,we see that the change in voltage, and the behavior of the I-V characteristic,is accompanied by a shift in the position of level i from below to above level u.Level i passes through the resonance with level u which causes the peak in the I-V characteristic seen at13V.The population percentage in these levels is also shown in Fig.7,and we see that away from the resonance position,~50%of the population is in the injector level,with only~10%in the upper laser level.Close to resonance,however,we see that the population is more evenly distributed between the two levels,with~30%in the injector level,and20%in the upper laser level.The wave functions in the near-resonance case(b)are less well-localized than in the o?-resonance cases(a)and (c),and tend to spread across both the injector and active region.This increases the overlap of the two wave functions and facilitates the transfer of carriers between the injector and

active region.

In the experimental data at233K,the break in the voltage trend is less pronounced,and this was attributed22to the presence of electrons with higher energy leaking into continuum states,and maintaining the current?ow.In the theoretical results,shown in Fig.6(b),there is a small increase in current at233K,but it is di?cult to make a quantitative comparison with the experimental data because of the uncertainty in the experimental data in the NDR region.24Figure8shows the electron distribution functions f(E)at77K and233K,in one period of the structure at14.4V,i.e.,just beyond the peak in the I-V characteristic in Fig.6(b).The thin horizontal line marks the conduction-band o?set or barrier height.The peak in the distributions at around0.2eV corresponds to the population inversion in the upper laser level.The population inversion at233K is about a third less than that at77 K.In the high-energy tails,the distribution is slightly larger at233K than at77K.The di?erence in the distribution functions is not large,however,and although this di?erence may result in more electron leakage into the continuum at233K,it is not clear at this point if this is a su?ciently large e?ect to elucidate the experimental results.

C.Gain and absorption spectra

In this section,we apply the theory described in Sec.II D to structure A.We distinguish here between the gain coe?cient g(ω)evaluated usingδJ(ω)from Eq.(25),and the gain coe?cient g o(ω)which is evaluated neglectingδJ scatt(ω)in Eq.(25),and neglecting terms containingδΣ

In Fig.9,we show the gain coe?cient g(ω)calculated with the NGF theory for di?erent applied voltages,between0to0.2V/period.With zero applied bias,there is a broad absorption ranging from around120to140meV.As the applied voltage increases,the absorption gradually decreases in this range.There is a corresponding slow increase in absorption between around80to100meV.At around0.18V/period,a positive gain begins to appear in the range120to140meV,and this gain increases further as the voltage is further increased.These results were obtained in the Wannier basis and as stated in Sec.II A,there is a problem in interpreting the origin of the di?erent features in the spectra because these cannot be related to transitions between Wannier https://www.360docs.net/doc/e512979519.html,ter in this section,we discuss a way round this problem by considering a transformation to Wannier-Stark states.

Before this we compare the results obtained for g(ω)from the more rigorous NGF theory, with the gain g o(ω)which is calculated neglecting terms fromδJ scatt.This comparison is shown in Fig.10.We see that the simpler theory gives rise to gain curves which are o?set to higher values(i.e.,absorption is reduced and gain is increased)in comparison to the more rigorous theory.

To determine the origin of the di?erent features in the spectra,we consider a di?erent approach for evaluating the gain coe?cient.In this approach,we transform the Green’s func-

tions G

WS )as described

earlier in Sec.III A.From the diagonal elements of G

the optical response due to subbands i and j is given by,19

Im[χij(ω)]=

?0d ij(E j>E i)|d ij|2(n i?n j)L ij(ω),(32)

with the Lorentzian L ij(ω)=(Γij/2π)/[(ˉhω??E ji)2+(Γij/2)2],whereΓij=Γi+Γj, and?E ji=E j?E i(these parameters are de?ned in Sec.III A).n i(n j)is the2D carrier density in subband i(j).In Eq.(32),the contributions from all transitions with E j>E i are https://www.360docs.net/doc/e512979519.html,ing Eq.(32)with Eq.(17)gives us an estimate of the gain coe?cient g W S(ω) within the Wannier-Stark picture.

Disadvantages of this simpler approach,compared to the approach described in Sec.II D, are,?rstly,that the Wannier-Stark levels become increasingly delocalized at low bias and an increasingly large number of basis states must be used to obtain a good approximation to the energy eigenstates as the applied voltage decreases.Thus,this approach becomes impracticable to apply at low bias.In addition,the function Im[G ret(E)]is not always a simple Lorentzian as seen in Fig.2(b)for each Wannier-Stark level,but may,for some levels, have additional peaks or shoulders indicating that these levels do not approximate well a single eigenstate of the system but are superpositions of the eigenstates.This behavior occurs mainly at low bias,but can also occur when two Wannier-Stark levels are very close in energy which gives a double-peaked structure to Im[G ret(E)],e.g.,for the two levels in panel(b)in Fig.7.In these cases,it is not possible to use this simple model to estimate the gain.Another drawback of this model is that by only making use of the diagonal elements of the Green’s functions,G

In Fig.11,we compare the gain coe?cient g(ω)from the NGF theory with the gain coe?cient g W S(ω)from the simple model in the Wannier-Stark basis.Spectra are shown for a bias of0.12–0.2V/period.We?nd that the simpler model reproduces well the main features of the NGF theory.As in the previous?gure,we see that for the simpler theory in Fig.11,the gain curves are again o?set to higher values compared to the more rigorous theory.

We consider now the origin of the di?erent features in the spectra.This can be most simply understood if we look at the gain spectra obtained in the Wannier-Stark basis.For clarity,only these spectra are shown again in Fig.12,and for a wider bias range,0.1to 0.22V/period,than seen in Fig.11.These spectra contain transitions between all possible pairs of levels with energy separation?E ji in the energy range shown on the x axis.At the lowest bias shown,i.e.,0.1V/period,we see that the structure is almost transparent with only a very small absorption for the energy range shown.As the applied voltage increases, absorption increases in the range0.08to0.11eV.Simultaneously,gain appears and increases in the range0.11to0.16eV.The gain peak shifts to higher energies as the voltage increases.

To explain these features,we consider the curve at0.2V/period in Fig.12.In Fig.13, we show the main Wannier-Stark energy levels involved in the transitions which give rise to the absorption and gain features seen at this bias.From an inspection of the transitions contributing to the sum in Eq.(32),we?nd as expected that the gain feature originates mainly from the transition(marked B in the?gure)between the upper laser level(labeled 2)and the lower laser level(1).There is also some contribution to the gain from transitions between an injector level(2’)and the lower laser level(1),and between other injector levels and the upper or lower laser level(not shown).The absorption feature below0.1eV is due mainly to transitions(marked A in the?gure)from the upper laser level(2)to levels in the continuum(3and3’),with additional contributions also from transitions between injector levels.The relative population in each level is also shown in the?gure,and levels2and 2’have a greater fraction of the population compared to levels1,3,and3’.This supports the attribution of gain to transition B,and absorption to transition A.The largest fraction of the population~70%is in the lowest injector level(not shown in the?gure).Level0 contains around2%of the population.

When we consider the relative populations in these levels for di?erent applied voltages (in the range0.1–0.22V/period as shown in Fig.12),we?nd that the population in the lower laser level remains at around1%at all voltages.The population in the upper laser level,however,changes from around0.2%at0.1V/period to over10%at0.22V/period. Hence,there is a transition to a population inversion between the two levels as the bias increases.The population in level0ranges from around20%at0.1V/period to around2to 3%above0.16V/period.The largest proportion of the population remains in the injector region,particularly in the lowest injector level which forms a reservoir of around60to70% of the carriers at all applied voltages.

We also note here that the broad gain or absorption features seen in Fig.12are not due to transitions between a single pair of levels but contain contributions from many transitions. For example,in Fig.14,we show the di?erent Lorentzian contributions(thin lines)to the gain curve(thick line)at0.22V/period.Although the main contribution to the absorption feature(thin line labeled A)originates from the upper laser level–continuum transition, and the main contribution to the gain feature(thin line labeled B)arises from the upper–lower laser level transition,there is also a substantial contribution from other(energetically) neighboring transitions.The?gure also shows that the inhomogeneous broadening due to the contributions from di?erent transitions,and the broadening due to scattering,observed in the linewidth of each individual Lorentzian,are comparable in size.At higher applied bias the number of contributing transitions decreases,e.g,at0.3V/period,the contributions to the gain feature come mainly from only two transitions.

Finally,in the last set of results,we consider structure B.Experimental data showing the light output vs.current density is shown in Fig.4of Ref.22.At77K,the light output is seen to increase with increasing current density until it reaches a maximum at around22 kAcm?2,corresponding to the peak in the I-V characteristic seen in Fig.6(b).The light output goes to zero for higher current densities.A similar behavior is seen at233K but with a much reduced light output.Figure15shows the gain coe?cient g W S(ω)calculated at77K for structure B at di?erent applied voltages around the peak of the I-V characteristic shown in Fig.6(b).The gain feature increases as the applied voltage or current density increases, reaching a maximum around the peak of the I-V characteristic,and then decreases beyond this point.A similar behavior is also seen at233K except that the gain is reduced at the higher temperature.For comparison,a gain curve calculated at233K,at the peak

current density22kAcm?2,is also shown in Fig.15.The gain feature in this curve is much smaller than the gain feature in the corresponding curve(at22kAcm?2)at77K.Hence, the behavior of the calculated gain curves correlate well with the light output vs.current density curves measured in the experiment.

IV.CONCLUSION

We have applied an NGF theory to obtain a description of the nonequilibrium stationary state of QC structures under an applied https://www.360docs.net/doc/e512979519.html,ing this information,we evaluate the current-voltage characteristic of example QC structures reported in the literature.The theoretical results are quantitatively close to experimental I-V data,and reproduce well the trends seen in the data.In addition,we determine two contributions to the current density. The?rst contribution J o is driven by?H o which is the Hamiltonian for the superlattice potential with applied bias.The other contribution J′scatt is driven by?H scatt+?H MF which describes the scattering processes in the structure.We?nd that,in contrast to simple superlattice structures,J′scatt is the main contribution to the current in the QC structures we consider.

In addition,we have extended the theory to determine the linear response of the nonequi-librium stationary state of these structures to a small applied optical perturbation.This enables us to evaluate the linear susceptibility and hence the gain or absorption spectra of the structure.We compare the spectra obtained using a more rigorous NGF theory in which the changesδG,δΣ,andδJ scatt due to the optical perturbation are considered,to simpler models in which(i)onlyδG is considered,or(ii)by summing over transitions in a simple two-band model(summing over di?erent pairs of bands)with Lorentzian broadened levels. We?nd that the simpler models result in spectra which are o?set to higher values than in the more rigorous theory.We have also made a detailed analysis of the origin of the di?erent gain and absorption features in the spectra,and of the redistribution of population within the Wannier-Stark levels as the applied voltage changes.The gain and absorption features correlate well with the distribution of population within these levels,which is determined from the NGF theory.

Acknowledgments

The authors thank the Deutsche Forschungsgemeinschaft for?nancial support through Grant No.FOR394.Discussions with A.Amann,H.Page,J.Schlesner,and M.Woerner are gratefully acknowledged.

APPENDIX A

The construction of the Wannier function basis used in the calculations is described in this appendix.As the?rst step,we solve the one-dimensional Schr¨o dinger equation

?ˉh2dz2+V(z) ψ(z)=Eψ(z),(A1) for the envelope functionsψ(z).The spatially dependent superlattice potential V(z)and the e?ective mass m e(z)are assumed constant in each semiconductor layer,i.e.,V(z)=V o

and m e(z)=m b in the barriers,and V(z)=0and m e(z)=m w in the wells.Equation(A1) can be solved with a transfer matrix method(for a textbook discussion see,e.g.,Ref.25). In this approach,the envelope function in a semiconductor layer j is written as

ψj(z)=A j e ik j(E)(z?z j)+B j e?ik j(E)(z?z j),(A2) where z j labels the position of interface j,and k j(E)=

m j dψj

m j+1

dψj+1

2 (1+m j+1k j

m j k j+1

)e?ik j(z j+1?z j)

(1?m j+1k j

m j k j+1

)e?ik j(z j+1?z j) .(A6) If a single period d of the structure contains M semiconductor layers,the Bloch condition ψq(z+d)=e iqdψq(z)implies

A M+1B

M+1 =M

j=1

M j(E) A1B1 =e iqd A1B1 .(A7)

For a given value of q,only certain values of E allow the solution of Eq.(A7),and this de?nes the miniband structure Eν(q).For each q value,we determine Eν(q)numerically by

looking for the zeroes of the determinant of the matrix product M j=1M j(E).These zeroes were found by stepping through the energy E,and comparing the signs of the determinant

for two consecutive values of E(separated by?E).When these signs are opposite this sets the?rst coarse bracketing of the zero position.This position is then further re?ned by halving this interval and successive intervals up to a hundred times,while comparing the determinant signs of the interval endpoints at each iteration.Once Eν(q)is determined,we can also obtain Aν(q)=A1and Bν(q)=B1,and the Bloch functionsψνq(z),from Eqs.(A2), (A5),and(A7).In the calculations reported here,Eν(q)was evaluated for500q points for each miniband,and?E was set to5meV.The Bloch functions were evaluated on a position grid with1500points per period.In structure A(B),there are eight(nine)minibands below the conduction-band o?set.For the calculations here,we included one miniband above the continuum,so the band indexνruns from1to9(10)for structure A(B).

In the next step,we construct the Wannier functions(associated with minibandν)

ψWν(z?nd)= 2π π/d?π/d dq e?inqdψνq(z)(A8)

from a superposition of the Bloch functions in minibandν.The Wannier functions con-structed by this superposition are not unique,and can be very di?erent depending on the phase of the Bloch functions which can be chosen arbitrarily for each value of q.Ideally,we

would like the Wannier functions to be as spatially localized as possible to reduce the in-teraction matrix elements between Wannier functions in di?erent periods.As a ?rst step to construct Wannier functions with this property,we ?rst ?x the phase of the Bloch functions such that these functions are real at some arbitrary position x s .Di?erent values of x s can be tested,and the resulting Wannier functions checked to see if they are fairly well-localized,e.g.,within one period of the structure.We then express the position operator ?z in the basis made up of this initial set of Wannier functions.Finally,we diagonalize the resulting matrix representation of ?z ,and the resulting eigenfunctions give us the required set of Wannier functions associated with a given miniband.This process is repeated for each miniband.The Wannier states associated with a given miniband are degenerate,and their energy expectation values lie at the center of the miniband.Their wave functions are spatially displaced from each other,with a separation given by the period of the structure,i.e,there is one Wannier state in each period of the structure.To set up the matrix representation of ?z for a given miniband,we use Wannier states in 11neighboring periods.The large number of periods used in this construction is necessary to improve the numerical accuracy of the result.

In the transport and gain calculations,however,we consider only couplings and ma-trix elements between Wannier functions in the same period,and nearest-neighbor periods.Hence,the matrices representing the Green’s functions and self-energies are constructed with 27basis states (for structure A)from three periods.

APPENDIX B

This appendix describes in more detail the evaluation of the self-energies and scattering matrix elements in Eqs.(6)–(8).The self-energies contain summations over k ′of the form

k ′

|V αβ(k ,k ′)|2{G.F.}where V αβis a generic matrix element representing interface rough-ness,impurity,or phonon scattering,and {G.F.}represents a Green’s function G ββ,k ′(E ′),with E ′=E or E ′=E ±E phon ,and including,for the case of phonon scattering,a phonon distribution factor.Taking the summation to the continuous limit leads to

k ′

|V αβ(k ,k ′)|2{G.F.}=

A

(2π)2

dk ′k ′

|V αβ(k,k ′)|

2

θ

{G.F.}

=A ˉh 2

dE k ′

|V αβ(k,k ′

)|

2

θ

{G.F.}

=

1

2

|V αβ(k typ ,k ′

typ )|2

θ

dE k ′{G.F.}.

(B2)

The integral over momentum k ′has been transformed to an integral over energy E k ′,and the

density of states ρo =m e /(πˉh 2).In the last line of Eq.(B2)we assume the matrix element V αβ(k,k ′)is slowly varying compared to the Green’s function term and can be taken out of

the integral.It is evaluated at?xed momenta k typ and k′typ,and the choice of these momenta is described below.

From a comparison of the factors outside the integral,in the last line of Eq.(B2),with a scattering or transition probability rate derived from Fermi’s golden rule we can de?ne26 a?ctitious scattering rate(in energy units)

γαβ=Aρo

2π dE k′{G.F.}.(B4) Estimates ofγfor di?erent scattering processes are given in Table I.

As stated after Eq.(8),and earlier in this appendix,we evaluate the scattering matrix

elements V phon/rough/imp

αβ(k,k′)using?xed momenta k typ and k′typ(with the corresponding

energies E typ and E′typ)to accelerate the numerical computation.To?x E typ,we consider the energy dependence of the scattering matrix elements.For LO-phonon scattering,there is an energy threshold for phonon emission because of energy conservation and the?xed phonon energy E LO.The scattering matrix element is maximum at the emission threshold,and decreases monotonically with increasing energy above this threshold.To obtain an estimate of the scattering matrix element,which lies between the higher values near threshold,and the lower values far above threshold,we set E typ one LO-phonon energy above the LO-phonon threshold.We then?x E′typ=E typ+?Eαβ?E LO,where?Eαβ=[?H o]αα?[?H o]ββ(see Fig.16).To test the sensitivity of the results to the value chosen for E typ,we have carried out runs with other values of E typ,e.g.,at threshold,1

give more detail concerning the evaluation of the matrix elements for the di?erent scattering processes(see,also,Refs.12,27,28).

1.Interface roughness and impurity scattering

To derive matrix elements for interface roughness scattering we consider an interface j located at z=z j with thickness?uctuationsξj(r)of the order of one monolayer.We assume correlation functions for the?uctuations given by

ξj(r) =0(B7)

ξj(r)ξj′(r′) =δj,j′?f(|r?r′|)with?f(r)=η2exp ?r

A d2r e?i p·rξj(r)?E cψ?μ(z j?md)ψν(z j?nd),(B10) where?E c is the band o?set.

Within the self-consistent Born approximation,the self-energy contribution from interface roughness scattering is written as

Σ<,rough

α1α2,k

(E)= ββ′,k′ V roughα1β(k?k′)V roughβ′α2(k′?k) G<,roughββ′,k′(E).(B11) This equation is more general than Eq.(6)since it includes the o?diagonal contributions.

Now we assume that the diagonal parts of G<,rough

ββ′,k′dominate,and we keep only the terms

β=β′in the summation.Then we obtain for the matrix element term

V rough

α1β(?p)V rough

βα2

(p) = V rough

m1μ1,nν

(?p)V rough

nν,m2μ2

(p)

=

(?E c)2

A2

d2r1 d2r2e i p·(r1?r2)?f(|r1?r2|)

× jψ?μ1(z j?m1d)|ψν(z j?nd)|2ψμ2(z j?m2d) =

(?E c)2

where we have expanded the general indices α1,α2,βin terms of the period and Wannier level indices [see after Eq.(4)],and de?ned p =k ′?k .Because of the orthogonality of the wave functions,and because the wave functions extend over many interfaces,the sum over j tends to vanish for m 1=m 2and μ1=μ2.This suggests replacing this term in the last

line with F μ1ν

m 1?n δm 1,m 2δμ1,μ2

where F μ1ν

h

=

j

|ψ?μ1

(z j ?hd )|2|ψν(z j )|2.(B13)

Applying Eq.(B8)we obtain

V rough mμ,nν(?p )V rough

nν,mμ(p )

=

(?E c )2η2

(1+E p /E λ)

3/2

F μν

m ?n =F (E p ),(B14)

with E λ=ˉh 2/2mλ2and E p =ˉh 2p 2/2m =E k +E k ′?2

E k E k ′cos θ)

=

(?E c )2η2

(a ?b )

2b

E λb =2√

E λ

.(B16)

E (x )is the complete elliptic integral of the second kind which is of order π/2=E (0)>E (x )>E (1)=1(Ref.30,17.3).Therefore we set E (x )≈π/2,and ?xing E k =E typ and E k ′=E typ +?E αβas described earlier,we de?ne the ?ctitious interface roughness scattering rate [using Eq.(B3)]

γrough

(m ?n ),μν=π(?E c )2η2

√ E λ+

E typ +?E αβ 2 E typ +

(1+?E αβ/E typ )2

.(B18)

The parameter γimp

par (see Table I)is estimated from calculations of impurity scattering in simple superlattice structures.31

独立同分布随机变量序列的顺序统计方法(2019)

独立同分布随机变量序列的顺序统计方法 设有限长度离散随机变量序列12,,...,n x x x ,对其按从小到大的顺序排列,得到新的随机序列12,,...,n y y y ,满足:12...n y y y ≤≤≤;假设12,,...,n x x x 是独立同分布的连续取值型随机变量,每个变量的概率分布函数及概率密度分布函数分别为(),()F x f x 。 (1)求(1)k y k n ≤≤的概率密度分布函数()k y f y 解:k y 在y 处无穷小邻域取值的概率()k y f y dy 可以等效为这样一些事件发生的概率之 和:12,,...,n x x x 这n 个随机变量中有任意一个在y 处无穷小邻域取值,而剩余的n -1个随机变量中有任意k -1个的取值小于等于y ,对应的另外n -k 个变量的取值大于等于y 事件的个数(变量的组合数)为111n n k -???? ???-???? ,每个事件的概率为1[()]()[1()]k n k f y dy F y F y ---,则 11()()()[1()]11k k n k y n n f y dy f y dyF y F y k ---????=- ???-???? => 1!()()[1()]() (1)(1)!()! k k n k y n f y F y F y f y k n k n k --= -≤≤-- (2)求随机变量,(1)k l y y k l n ≤<≤的联合概率密度分布函数(,)k l y y f u v 解:(,) ()k l y y k l <在平面上的点(,) ()u v v u ≥处无穷小邻域取值的概率

应用matlab求解约束优化问题

应用matlab求解约束优化问题 姓名:王铎 学号: 2007021271 班级:机械078 上交日期: 2010/7/2 完成日期: 2010/6/29

一.问题分析 f(x)=x1*x2*x3-x1^6+x2^3+x2*x3-x4^2 s.t x1-x2+3x2<=6 x1+45x2+x4=7 x2*x3*x4-50>=0 x2^2+x4^2=14 目标函数为多元约束函数,约束条件既有线性约束又有非线性约束所以应用fmincon函数来寻求优化,寻找函数最小值。由于非线性不等式约束不能用矩阵表示,要用程序表示,所以创建m文件其中写入非线性不等式约束及非线性等式约束,留作引用。 二.数学模型 F(x)为目标函数求最小值 x1 x2 x3 x4 为未知量 目标函数受约束于 x1-x2+3x2<=6 x1+45x2+x4=7 x2*x3*x4-50>=0 x2^2+x4^2=14 三.fmincon应用方法 这个函数的基本形式为 x = fmincon(fun,x0,A,b,Aeq,beq,lb,ub,nonlcon,options) 其中fun为你要求最小值的函数,可以单写一个文件设置函数,也可是m文件。 1.如果fun中有N个变量,如x y z, 或者是X1, X2,X3, 什么的,自己排个顺序,在fun中统一都是用x(1),x(2)....x(n) 表示的。 2. x0, 表示初始的猜测值,大小要与变量数目相同 3. A b 为线性不等约束,A*x <= b, A应为n*n阶矩阵。 4 Aeq beq为线性相等约束,Aeq*x = beq。 Aeq beq同上可求 5 lb ub为变量的上下边界,正负无穷用 -Inf和Inf表示, lb ub应为N阶数组 6 nonlcon 为非线性约束,可分为两部分,非线性不等约束 c,非线性相等约束,ceq 可按下面的例子设置 function [c,ceq] = nonlcon1(x) c = [] ceq = [] 7,最后是options,可以用OPTIMSET函数设置,具体可见OPTIMSET函数的帮助文件。 四.计算程序

三角函数图像变换顺序详解(全面).

《图象变换的顺序寻根》 题根研究 一、图象变换的四种类型 从函数y = f (x)到函数y = A f ()+m,其间经过4种变换: 1.纵向平移——m 变换 2.纵向伸缩——A变换 3.横向平移——变换 4.横向伸缩——变换 一般说来,这4种变换谁先谁后都没关系,都能达到目标,只是在不同的变换顺序中,“变换量”可不尽相同,解题的“风险性”也不一样. 以下以y = sin x到y = A sin ()+m为例,讨论4种变换的顺序问题. 【例1】函数的图象可由y = sin x的图象经过怎样的平移和伸缩变换而得到? 【解法1】第1步,横向平移: 将y = sin x向右平移,得 第2步,横向伸缩: 将的横坐标缩短倍,得 第3步:纵向伸缩: 将的纵坐标扩大3倍,得 第4步:纵向平移: 将向上平移1,得 【解法2】第1步,横向伸缩: 将y = sin x的横坐标缩短倍,得y = sin 2x 第2步,横向平移:

将y = sin 2x向右平移,得 第3步,纵向平移: 将向上平移,得 第4步,纵向伸缩: 将的纵坐标扩大3倍,得 【说明】解法1的“变换量”(如右移)与参数值()对应,而解法2中有的变 换量(如右移)与参数值()不对应,因此解法1的“可靠性”大,而解法2的“风险性”大. 【质疑】对以上变换,提出如下疑问: (1)在两种不同的变换顺序中,为什么“伸缩量”不变,而“平移量”有变? (2)在横向平移和纵向平移中,为什么它们增减方向相反—— 如当<0时对应右移(增方向),而m < 0时对应下移(减方向)? (3)在横向伸缩和纵向伸缩中,为什么它们的缩扩方向相反—— 如|| > 1时对应着“缩”,而| A | >1时,对应着“扩”? 【答疑】对于(2),(3)两道疑问的回答是:这是因为在函数表达式y = A f ()+m 中x和y的地位在形式上“不平等”所至. 如果把函数式变为方程式 (y+) = f (),则x、y在形式上就“地位平等”了. 如将例1中的变成 它们的变换“方向”就“统一”了. 对于疑问(1):在不同的变换顺序中,为什么“伸缩量不变”,而“平移量有变”?这是因为在“一次”替代:x→中,平移是对x进行的. 故先平移(x→)对后伸缩(→)没有影响; 但先收缩(x→)对后平移(→)却存在着“平移”相关. 这

《测试技术基础》期末试题及答案_-

第一章 信号及其描述 (一)填空题 1、 测试的基本任务是获取有用的信息,而信息总是蕴涵在某些物理量之中,并依靠它们来传输的。这些物理量就是 信号 ,其中目前应用最广泛 的是电信号。 2、 信号的时域描述,以 时间 为独立变量;而信号的频域描述,以 频率 为独立变量。 3、 周期信号的频谱具有三个特点:离散的 ,谐波型 , 收敛性 。 4、 非周期信号包括 瞬态非周期 信号和 准周期 信号。 5、 描述随机信号的时域特征参数有 均值x μ、均方值2x ψ,方差2 x σ ;。 6、 对信号的双边谱而言,实频谱(幅频谱)总是 偶 对称,虚频谱(相频谱)总是 奇 对称。 (二)判断对错题(用√或×表示) 1、 各态历经随机过程一定是平稳随机过程。( v ) 2、 信号的时域描述与频域描述包含相同的信息量。( v ) 3、 非周期信号的频谱一定是连续的。( x ) 4、 非周期信号幅频谱与周期信号幅值谱的量纲一样。( x ) 5、 随机信号的频域描述为功率谱。( v ) (三)简答和计算题 1、 求正弦信号t x t x ωsin )(0 =的绝对均值μ|x|和均方根值x rms 。 2、 求正弦信号)sin()(0?ω+=t x t x 的均值 x μ,均方值2x ψ,和概率密度函数p(x)。 3、 求指数函数)0,0()(≥>=-t a Ae t x at 的频谱。 4、 求被截断的余弦函数 ?? ?≥<=T t T t t t x ||0 ||cos )(0ω的傅立叶变换。 5、 求指数衰减振荡信号)0,0(sin )(0≥>=-t a t e t x at ω的频谱。 第二章 测试装置的基本特性 (一)填空题 1、 某一阶系统的频率响应函数为 1 21)(+= ωj j H ,输入信号 2 sin )(t t x =,则输出信号)(t y 的频率为=ω ,幅值 =y ,相位=φ 。 2、 试求传递函数分别为 5 .05.35.1+s 和2 2 2 4.141n n n s s ωωω++的两个环节串联后组成的系统的总灵敏度。 3、 为了获得测试信号的频谱,常用的信号分析方法有 、 和 。 4、 当测试系统的输出)(t y 与输入)(t x 之间的关系为)()(0 t t x A t y -=时,该系统能实现 测试。此时,系统的频率特性为 =)(ωj H 。 5、 传感器的灵敏度越高,就意味着传感器所感知的 越小。 6、 一个理想的测试装置,其输入和输出之间应该具有 线性 关系为最佳。 (二)选择题 1、 4 不属于测试系统的静特性。 (1)灵敏度 (2)线性度 (3)回程误差 (4)阻尼系数 2、 从时域上看,系统的输出是输入与该系统 3 响应的卷积。 (1)正弦 (2)阶跃 (3)脉冲 (4)斜坡 3、 两环节的相频特性各为 )(1ωQ 和)(2ωQ ,则两环节串联组成的测试系统,其相频特性为 2 。 (1))()(21ωωQ Q (2))()(21ωωQ Q + (3) ) ()()()(2121ωωQ Q Q Q +(4))()(21ωωQ Q - 4、 一阶系统的阶跃响应中,超调量 4 。 (1)存在,但<5% (2)存在,但<1 (3)在时间常数很小时存在 (4)不存在 5、 忽略质量的单自由度振动系统是 2 系统。 (1)零阶 (2)一阶 (3)二阶 (4)高阶 6、 一阶系统的动态特性参数是 3 。 (1)固有频率 (2)线性度 (3)时间常数 (4)阻尼比 7、 用阶跃响应法求一阶装置的动态特性参数,可取输出值达到稳态值 1 倍所经过的时间作为时间常数。 (1)0.632 (2)0.865 (3)0.950 (4)0.982 (三)判断对错题(用√或×表示) 1、 一线性系统不满足“不失真测试”条件,若用它传输一个1000Hz 的正弦信号,则必然导致输出波形失真。( x ) 2、 在线性时不变系统中,当初始条件为零时,系统的输出量与输入量之比的拉氏变换称为传递函数。( v ) 3、 当输入信号 )(t x 一定时,系统的输出)(t y 将完全取决于传递函数)(s H ,而与该系统的物理模型无关。( v ) 4、 传递函数相同的各种装置,其动态特性均相同。( v ) 5、 测量装置的灵敏度越高,其测量范围就越大。( x ) 6、 幅频特性是指响应与激励信号的振幅比与频率的关系。( x ) (四)简答和计算题 1、 什么叫系统的频率响应函数?它和系统的传递函数有何关系? 2、 测试装置的静态特性和动态特性各包括那些? 3、 测试装置实现不失真测试的条件是什么? 4、 某测试装置为一线性时不变系统,其传递函数为 1 005.01)(+= s s H 。求其对周期信号)45100cos(2.010cos 5.0)(?-+=t t t x 的 稳态响应)(t y 。 5、 将信号 t ωcos 输入一个传递函数为s s H τ+= 11)(的一阶装置,试求其包括瞬态过程在内的输出)(t y 的表达式。 第三章 常用传感器 (一)填空题

三角函数图像变换顺序详解

三角函数图像变换顺序 详解 -CAL-FENGHAI.-(YICAI)-Company One1

《图象变换的顺序寻根》 题根研究 一、图象变换的四种类型 从函数y = f (x)到函数y = A f ()+m,其间经过4种变换: 1.纵向平移——m 变换 2.纵向伸缩——A变换 3.横向平移——变换 4.横向伸缩——变换 一般说来,这4种变换谁先谁后都没关系,都能达到目标,只是在不同的变换顺序中,“变换量”可不尽相同,解题的“风险性”也不一样. 以下以y = sin x到y = A sin ()+m为例,讨论4种变换的顺序问题. ? 【例1】函数的图象可由y = sin x的图象经过怎样的平移和伸缩变换而得到 【解法1】第1步,横向平移: 将y = sin x向右平移,得 第2步,横向伸缩: 将的横坐标缩短倍,得 第3步:纵向伸缩: 将的纵坐标扩大3倍,得 第4步:纵向平移: 将向上平移1,得 ?

【解法2】第1步,横向伸缩: 将y = sin x的横坐标缩短倍,得y = sin 2x 第2步,横向平移: 将y = sin 2x向右平移,得 第3步,纵向平移: 将向上平移,得 第4步,纵向伸缩: 将的纵坐标扩大3倍,得 ? 【说明】解法1的“变换量”(如右移)与参数值()对应,而解法 2中有的变换量(如右移)与参数值()不对应,因此解法1的“可靠性”大,而解法2的“风险性”大. ? 【质疑】对以上变换,提出如下疑问: (1)在两种不同的变换顺序中,为什么“伸缩量”不变,而“平移量”有变 (2)在横向平移和纵向平移中,为什么它们增减方向相反—— 如当<0时对应右移(增方向),而m < 0时对应下移(减方向)(3)在横向伸缩和纵向伸缩中,为什么它们的缩扩方向相反——如|| > 1时对应着“缩”,而| A | >1时,对应着“扩” ? 【答疑】对于(2),(3)两道疑问的回答是:这是因为在函数表达式y = A f ()+m中x和y的地位在形式上“不平等”所至. 如果把函数式变为方程式

数值分析编程及运行结果(高斯顺序消元法)

高斯消元法1.程序: clear format rat A=input('输入增广矩阵A=') [m,n]=size(A); for i=1:(m-1) numb=int2str(i); disp(['第',numb,'次消元后的增广矩阵']) for j=(i+1):m A(j,:)=A(j,:)-A(i,:)*A(j,i)/A(i,i); end A end %回代过程 disp('回代求解') x(m)=A(m,n)/A(m,m); for i=(m-1):-1:1 x(i)=(A(i,n)-A(i,i+1:m)*x(i+1:m)')/A(i,i); end x

2.运行结果:

高斯选列主元消元法1.程序: clear format rat A=input('输入增广矩阵A=') [m,n]=size(A); for i=1:(m-1) numb=int2str(i); disp(['第',numb,'次选列主元后的增广矩阵']) temp=max(abs(A(i:m,i))); [a,b]=find(abs(A(i:m,i))==temp); tempo=A(a(1)+i-1,:); A(a(1)+i-1,:)=A(i,:); A(i,:)=tempo disp(['第',numb,'次消元后的增广矩阵']) for j=(i+1):m A(j,:)=A(j,:)-A(i,:)*A(j,i)/A(i,i); end A end %回代过程 disp('回代求解')

x(m)=A(m,n)/A(m,m); for i=(m-1):-1:1 x(i)=(A(i,n)-A(i,i+1:m)*x(i+1:m)')/A(i,i); end x 2.运行结果:

用宏表函数与公式

用宏表函数与公式 1. 首先:点CTRL+F3打开定义名称,再在上面输入“纵当页”,在下面引用位置处输入: =IF(ISNA(MATCH(ROW(),GET.DOCUMENT(64))),1,MATCH(ROW(),GET.DOCUMENT(64))+1) 2.然后再继续添加第二个名称:“横当页”,在下面引用位置处输入: =IF(ISNA(MATCH(column(),GET.DOCUMENT(65))),1,MATCH(column(),GET.DOCUMENT(65))+1) 3.再输入“总页”;引用位置处输入:(在MSoffice2007不管有多少页,都只显示共有1页,不知为什么) =GET.DOCUMENT(50)+RAND()*0 4.最后再定义“页眉”,引用位置: ="第"&IF(横当页=1,纵当页,横当页+纵当页)&"页/共"&总页&"页" 5.在函数栏使用应用即可得到需要的页码。 另外一般情况下,一般的表册都要求每页25行数据,同时每页还需要设置相同的表头,虽然上面的方法可以在任意单元格内计算所在页面的页码,但是如果公式太多的话,计算特别慢。如果每页行数是固定的(比如25行)话,就可以采用下面的笨方法。 1、设置顶端标题行,“页面设置”→“工作表”→“顶端标题行”中输入“$1:$4”(第1行到第4行) 2、在工作表中数据输入完毕后,设置好各种格式,除表头外,保证每页是25行数据。 3、在需要设置该行所在页面的页码的单元格内输入如下公式: =INT((ROW()-ROWS(Print_Titles)-1)/25)+1 (公式里面的Print_Titles就是前面第1步所设置的顶端标题行区域。) 4、通过拖动或者复制的方法复制上面的公式,即可得到页码。

分部积分法顺序口诀

分部积分法顺序口诀 对于分部积分法,很多小伙伴在学习时感到很烦恼,老是记不住,小编整理了口诀,希望能帮助到你。 一、口诀 “反对不要碰,三指动一动”(这是对两个函数相乘里面含有幂函数而言),反——反三角函数对——对数函数三——三角函数指——指数函数(幂函数)。 将分部积分的顺序整理为口诀:“反对幂指三”。 (分别代指五类基本函数:反三角函数、对数函数、幂函数、指数函数、三角函数的积分。) 反>对>幂>三>指就是分部积分法的要领 当出现两种函数相乘时 指数函数必然放到( )中然后再用分部积分法拆开算 而反三角函数不需要动 再具体点就是: 反*对->反(对) 反*幂->反(幂) 对*幂->对(幂) 二、相关知识 (一)不定积分的公式 1、∫a dx = ax + C,a和C都是常数

2、∫x^a dx = [x^(a + 1)]/(a + 1) + C,其中a为常数且a ≠-1 3、∫1/x dx = ln|x| + C 4、∫a^x dx = (1/lna)a^x + C,其中a > 0 且a ≠1 5、∫e^x dx = e^x + C 6、∫cosx dx = sinx + C 7、∫sinx dx = - cosx + C 8、∫cotx dx = ln|sinx| + C = - ln|cscx| + C (二)求不定积分的方法: 第一类换元其实就是一种拼凑,利用f'(x)dx=df(x);而前面的剩下的正好是关于f(x)的函数,再把f(x)看为一个整体,求出最终的结果。 分部积分,就那固定的几种类型,无非就是三角函数乘上x,或者指数函数、对数函数乘上一个x这类的,记忆方法是把其中一部分利用上面提到的f‘(x)dx=df(x)变形,再用∫xdf(x)=f(x)x-∫f(x)

信号与系统实验之连续线性时不变系统的分析

信号与系统实验报告连续线性时不变系统的分析 专业:电子信息工程(实验班) 姓名:曾雄 学号:14122222203 班级:电实12-1BF

目录 一、实验原理与目的 (3) 二、实验过程及结果测试 (3) 三、思考题 (10) 四、实验总结 (10) 五、参考文献 (11)

一、实验原理与目的 深刻理解连续时间系统的系统函数在分析连续系统的时域特性、频域特性及稳定性中的重要作用及意义。掌握利用MATLAB 分析连续系统的时域响应、频响特性和零极点的基本方法。 二、实验过程及结果测试 1.描述某线性时不变系统的微分方程为: ''() 3'()2()'()y t y t y t f t f t ++=+ 且f(t)=t 2,y(0-)=1,y ’(0-)=1;试求系统的单位冲激响应、单位阶跃响应、全响应、零状态响应、零输入响应、自由响应和强迫响应。编写相应MATLAB 程序,画出各波形图。 (1)单位冲激响应: 程序如下: %求单位冲激响应 a=[1,3,2]; b=[1,2]; sys=tf(b,a); t=0:0.01:10; h=impulse(sys,t); %用画图函数plot( )画单位冲激响应的波形 plot(h); %单位冲激响应曲线 xlabel('t'); ylabel('h'); title('单位冲激响应h(t)') 程序运行所得波形如图一: 200 400 600800 1000 1200 0.1 0.20.30.40.50.60.70.80.91t h 单位冲激响应h(t ) 图一 单位冲激响应的波形

(2)单位阶跃响应: 程序如下: %求单位阶跃响应 a=[1,3,2]; b=[1,2]; sys=tf(b,a); t=0:0.01:10; G=step(sys,t); %用画图函数plot( )画单位阶跃响应的波形 plot(G); %单位阶跃响应曲线 xlabel('t'); ylabel('g'); title('单位阶跃响应g(t)') 程序运行所得波形如图二: 200 400 600800 1000 1200 00.1 0.20.30.40.50.60.70.80.91t g 单位阶跃响应g(t ) 图二 单位阶跃响应的波形 (3)零状态响应: 程序如下: %求零状态响应 yzs=dsolve('D2y+3*Dy+2*y=2*t+2*t^2','y(0)=0,Dy(0)=0') %用符号画图函数ezplot( )画各种响应的波形 t=0:0.01:3; ezplot(yzs,t); %零状态响应曲线 axis([0,3,-1 5]); title('零状态响应曲线yzs'); ylabel('yzs'); 程序运行所得波形如图三:

Excel常用函数公式大全(实用)

Excel常用函数公式大全 1、查找重复内容公式:=IF(COUNTIF(A:A,A2)>1,"重复","")。 2、用出生年月来计算年龄公式:=TRUNC((DAYS360(H6,"2009/8/30",FALSE))/360,0)。 3、从输入的18位身份证号的出生年月计算公式: =CONCATENATE(MID(E2,7,4),"/",MID(E2,11,2),"/",MID(E2,13,2))。 4、从输入的身份证号码内让系统自动提取性别,可以输入以下公式: =IF(LEN(C2)=15,IF(MOD(MID(C2,15,1),2)=1,"男","女"),IF(MOD(MID(C2,17,1),2)=1,"男","女"))公式内的“C2”代表的是输入身份证号码的单元格。 1、求和:=SUM(K2:K56) ——对K2到K56这一区域进行求和; 2、平均数:=AVERAGE(K2:K56) ——对K2 K56这一区域求平均数; 3、排名:=RANK(K2,K$2:K$56) ——对55名学生的成绩进行排名; 4、等级:=IF(K2>=85,"优",IF(K2>=74,"良",IF(K2>=60,"及格","不及格"))) 5、学期总评:=K2*0.3+M2*0.3+N2*0.4 ——假设K列、M列和N列分别存放着学生的“平时总评”、“期中”、“期末”三项成绩; 6、最高分:=MAX(K2:K56) ——求K2到K56区域(55名学生)的最高分; 7、最低分:=MIN(K2:K56) ——求K2到K56区域(55名学生)的最低分; 8、分数段人数统计: (1)=COUNTIF(K2:K56,"100") ——求K2到K56区域100分的人数;假设把结果存放于K57单元格; (2)=COUNTIF(K2:K56,">=95")-K57 ——求K2到K56区域95~99.5分的人数;假设把结果存放于K58单元格; (3)=COUNTIF(K2:K56,">=90")-SUM(K57:K58) ——求K2到K56区域90~94.5分的人数;假设把结果存放于K59单元格; (4)=COUNTIF(K2:K56,">=85")-SUM(K57:K59) ——求K2到K56区域85~89.5分的人数;假设把结果存放于K60单元格;

三角函数图像变换顺序详解

《图象变换的顺序寻根》 题根研究? 一、图象变换的四种类型 从函数y二f (x)到函数y二A f ( : "「)+m其间经过4种变换: 1. 纵向平移——m变换 2. 纵向伸缩——A变换 3.横向平移一一变换 4. 横向伸缩一一总变换 一般说来,这4种变换谁先谁后都没关系,都能达到目标,只是在不同的变换顺序中,“变换量”可不尽相同,解题的“风险性”也不一样. 以下以y二sin x到y二A sin ( ' :」)+m为例,讨论4种变换的顺序问题 V:= / (x)= 1+ 3sin( 2x- [例1】函数 ' -的图象可由y二sin x的图象经过怎 样的平移和伸缩变换而得到 【解法1】第1步,横向平移: 将y二sin x向右平移:,得 第2步,横向伸缩: L-1—A ——J — 将. 二的横坐标缩短二倍, 第3步:纵向伸缩: v 二s£n( 2x——''i 将. -的纵坐标扩大3倍,得 第4步:纵向平移: v = 3sin(2x——) v = 1 + —— 将二向上平移1,得

【解法2】第1步,横向伸缩:

2 将y 二sin x 的横坐标缩短二倍,得 y 二sin 2 x 第2步,横向平移: 第3步,纵向平移: y — sinC2x ——) 将, -向上平移】;,得 第4步,纵向伸缩: v = — 4- sinf 2x — 将1 1的纵坐标扩大 71 【说明】 解法1的“变换量”(如右移:)与参数值(「对应,而解法2 71 71 中有的变换量(如右移1)与参数值(一)不对应,因此解法1的“可靠性” 大, 而解法2的“风险性”大. 【质疑】 对以上变换,提出如下疑问: (1) 在两种不同的变换顺序中,为什么“伸缩量”不变,而“平移量”有 变 (2) 在横向平移和纵向平移中,为什么它们增减方向相反一一 如当匚<0时对应右移(增方向),而m < 0时对应下移(减方向) (3) 在横向伸缩和纵向伸缩中,为什么它们的缩扩方向相反一一 如1^1 > 1时对应着“缩”,而| A | >1时,对应着“扩” 【答疑】 对于(2),(3)两道疑问的回答是:这是因为在函数表达式 y 二A f (-八i )+m 中x 和y 的地位在形式上“不平等”所至.如果把函数式变为方 程式 -r (y^' ) = f (一」),则x 、y 在形式上就“地位平等”了 v = 1 + 2x- — (v — 1) = sinf 2x -—) 71 将y 二sin 2 x 向右平移;一:,得 尸二 sin ( 2孟一— .-I + 3sin( 2x —— 3倍,得. - 71

故障诊断第二章习题

第二章第一节信号特征检测 一、填空题(10) 1.常用的滤波器有、低通、带通、四种。 2.加速度传感器,特别是压电式加速度传感器,在及的振动监测与诊断中应用十分广泛。 3.传感器是感受物体运动并将物体的运动转换成的一种灵敏的换能器件。 4.振动传感器主要有、速度传感器、三种。 5.把模拟信号变为数字信号,是由转换器完成的。它主要包括和两个环节。 6.采样定理的定义是:。采样时,如果不满足采样定理的条件,会出现频率现象。 7.电气控制电路主要故障类型、、。 8.利用对故障进行诊断,是设备故障诊断方法中最有效、最常用的方法。 9.振动信号频率分析的数学基础是变换;在工程实践中,常运用快速傅里叶变换的原理制成,这是故障诊断的有力工具。 10.设备故障的评定标准常用的有3种判断标准,即、相对判断标准以及类比判断标准。可用制定相对判断标准。 二、选择题(10) 1.()在旋转机械及往复机械的振动监测与诊断中应用最广泛。 A 位移探测器 B 速度传感器 C 加速度计 D 计数器 2.当仅需要拾取低频信号时,采用()滤波器。 A 高通 B 低通 C 带通 D 带阻

3.()传感器,在旋转机械及往复机械的振动监测与诊断中应用十分广泛。 A 压电式加速度 B 位移传感器 C 速度传感器 D 以上都不对 4.数据采集、谱分析、数据分析、动平衡等操作可用()实现。 A 传感器 B 数据采集器 C 声级计 D 滤波器 5.()是数据采集器的重要观测组成部分。 A. 滤波器 B. 压电式传感器 C 数据采集器 D 数据分析仪 6.传感器是感受物体运动并将物体的运动转换成模拟()的一种灵敏的换能器件。 A 力信号 B 声信号 C 光信号 D. 电信号 7.在对()进行电气故障诊断时,传感器应尽可能径向安装在电机的外壳上。 A 单相感应电机 B 三相感应电机 C 二相感应电机 D 四相感应电机 8.从理论上讲,转速升高1倍,则不平衡产生的振动幅值增大()倍。 A 1 B 2 C 3 D 4 9.频谱仪是运用()的原理制成的。 A 绝对判断标准 B 阿基米德 C 毕达哥拉斯 D 快速傅立叶变换 10.伺服控制上常用三环结构,三个环都是调节器,其中有的采用P调节器,有的采用PI调节器,有的采用PID调节器。其中PID调节器称为()。 A 比例调节器 B 比例积分微分调节器 C 比例积分调节器 D 积分调节器 三、多选题(5) 1.传感器的安装部位通常在轴承座部位,并按信号传动的方向选择( )布置。 A 垂直 B 水平

宏表函数

宏表函数 贡献者:zuazua日期:2010-11-18 阅读:2484 相关标签:et2010 > 公式 > 函数 > 宏表函数 EVALUATE 对以文字表示的一个公式或表达式求值,并返回结果 INDIRECT函数 贡献者:843211日期:2008-07-21 阅读:58024 相关标签:et2007 > 公式 > 函数 > 函数类型 > 查找与引用函数 > INDIRECT 返回由文本字符串指定的引用。此函数立即对引用进行计算,并显示其内容。当需要更改公 式中单元格的引用,而不更改公式本身,请使用函数INDIRECT。 语法 INDIRECT(ref_text,a1) Ref_text 为对单元格的引用,此单元格可以包含A1-样式的引用、R1C1-样式的引用、定 义为引用的名称或对文本字符串单元格的引用。如果ref_text 不是合法的单元格的引用, 函数INDIRECT 返回错误值#REF!。 ? 如果ref_text 是对另一个工作簿的引用(外部引用),则那个工作簿必须被打开。如果 源工作簿没有打开,函数INDIRECT 返回错误值#REF!。 A1 为一逻辑值,指明包含在单元格ref_text 中的引用的类型。 ? 如果a1 为TRUE 或省略,ref_text 被解释为A1-样式的引用。 ? 如果a1 为FALSE,ref_text 被解释为R1C1-样式的引用。 示例 如果您将示例复制到空白工作表中,可能会更易于理解该示例。 A B 1数据数据 2B2 1.333 3B345 4George10 5562 公式说明(结果) =INDIRECT($A$2)单元格A2中的引用值(1.333) =INDIRECT($A$3)单元格A3中的引用值(45) =INDIRECT($A$4)如果单元格B4有定义名“George”,则返回定义名的值(10) =INDIRECT("B"&$A$5)单元格A5中的引用值(62)

线性时不变系统

信号与系统实验报告 实验名称: 线性时不变系统 姓名:姚敏 学号:110404212 班级:通信(2)班 时间:2013.5.17 南京理工大学紫金学院电光系

一、 实验目的 1、 掌握线性时不变系统的特性; 2、 学会验证线性时不变系统的性质。 二、实验基本原理 线性时不变系统具有如下的一些基本特性。 1.线性特性(包含叠加性与均匀性) 对于给定的系统,11()()x t t 、y 和22()()x t t 、y 分别代表两对激励与响应。 对于叠加性:当11()()x t y t ??→,22()()x t y t ??→ 则1212()()()()x t x t y t y t +??→+ 图2.1 对于均匀性: 当()()x t y t ??→, 则()()kx t ky t ??→,0k ≠ 图2.2 综合以上,则当激励是1122()()k x t k x t ?+?时,则对应的响应为 1122()()k y t k y t ?+?。对于线性时不变系统,如果起始状态为零,则系统满足叠加 性与均匀性(线性性)。 2.时不变特性 对于时不变系统, 当11()()x t t ??→y , 则1010()()x t t t t -??→-y

图2.3 3. 微分特性 对于线性时不变系统,当()()x t t ??→y 则 ()() dx t dy t dt dt ??→ 图2.4 4. 因果性 因果系统是指系统在时刻0t 的响应只与0t t =和0t t <时刻的输入有关。 也就是说,激励是产生响应的原因,响应是激励引起的后果,这种特性称为因果性。通常由电阻器、电感线圈、电容器构成的实际物理系统都是因果系统。 三、实验内容及结果 记录实验过程中的输入输出波形。 1、 线性特性 (1) 叠加性 1()x t 1()y t

约束条件下多变量函数的寻优方法

第十章约束条件下多变量函数 的寻优方法 ●将非线性规划→线性规划 ●将约束问题→无约束问题 ●将复杂问题→较简单问题 10.1约束极值问题的最优性条件 非线性规划:min f(X) h i(X)=0 (i=1,2,…,m) (10.1.1) g j(X)≥0 (j=1,2,…,l) 一、基本概念 1.起作用约束 设X(1)是问题(10.1.1)的可行点。对某g j(X)≥0而言: 或g j(X(1))=0:X(1)在该约束形成的可行域边界上。 该约束称为X(1)点的起作用约束。 或g j(X(1))>0:X(1)不在该约束形成的可行域边界上。 该约束称为X(1)点的不起作用约束。 X(1)点的起作用约束对X(1)点的微小摄动有某种限制作用。等式约束对所有可行点都是起作用约束。

() θcos ab b a =? 2.正则点 对问题(10.1.1),若可行点X (1)处,各起作用约束的梯度线性无关,则X (1)是约束条件的一个正则点。 3.可行方向(对约束函数而言) 用R 表示问题(10.1.1)的可行域。设X (1)是一个可行点。对某方向D 来说,若存在实数λ1>0,使对于任意λ(0<λ<λ1)均有X (1)+λD ∈R ,则称D 是点X (1)处的一个可行方向。 经推导可知,只要方向D 满足: ▽g j (X (1))T D>0 (j ∈J ) (10.1.3) 即可保证它是点X (1)的可行方向。J 是X (1)点起作用约束下标的集合。 在X (1)点,可行方向D 与各起作用约束的梯度方向的夹角为锐角 。 4.下降方向(对目标函数而言) 设X (1)是问题(10.1.1)的一个可行点。对X (1)的任一方向D 来说,若存在实数λ1>0,使对于任意λ(0<λ<λ1)均有f(X (1)+λD)

001顺序结构讲义

顺序结构讲义 一、顺序结构程序设计至少由三部分组成。 1、输入部分:确定已知变量的值; 2、处理部分:按顺序进行求解; 3、输出部分:给出结果。 结构化程序设计语言提供了输入(read、readln)、赋值(:=)和输出(write、writeln)语句实现算法中三部分内容最基本的描述。 二、顺序问题解决方案:顺序结构算法设计——使用输入、赋值、输出语句实现算法程序设计——执行程序得到正确结果。 三、变量与常量。(一)变量。1、定义:在程序运行过程中,其值可以改变的量称为变量。2、要素:变量名、变量类型、变量值。3、标识符:变量名也称变量标识符。Pascal语言对标识符有如下规定:(1)定义:标识符是以字母开头的字母、数字序列,可以用来标识常量、变量、程序、函数和过程等;(2)标识符分为标准标识符(Pascal 已定义的,具有特殊含义的)和用户自定义标识符(定义时不能与标准标识符相同,最好用英语单词或汉语拼音)。4、数据:是程序处理的对象,数据的一个非常重要的特征就是它的类型。数据类型不仅确定了该类型数据项的表示形式和取值范围,而且还确定了对它所进行的各种运算。5、Pascal常用的标准数据类型:(1)实型(real):2.9×10-39~1.7×1038;(2)整型(integer):-32768~32767;长整型(longint):-231~231-1;(3)字符型(char):单个字符用一对单引号括起来的数据;字符串(string):一个或一串用一对单引号括起来的数据;(4)布尔型(boolean):值只有true和false。6、变量定义格式:V ar <变量标识符>[,<变量标识符>]:<类型> (二)常量。1、定义:在程序运行过程中,其值不能改变的量称为常量。2、定义格式:const <常量标识符>=<常量>{注意区别}。 3、常量说明部分既定义了常量名及其值,还隐含定义了常量类型。 四、赋值语句。1、格式:变量名:=表达式(函数名:=表达式); 2、功能:计算表达式的值,并赋值给变量。 3、几点说明:(1)赋值语句严格遵从式子左边为变量名,右边为表达式的格式,其意义是先计算表达式的值,然后赋值给变量。(2)“:=”称为赋值号,与数学中的“=”意义不同,赋值语句兼有计算和赋值双重功能。(3)任何一个变量必须首先赋初值,然后才能使用,否则变量的值将不确定。(4)赋值号“:=”右边表达式值的类型必须与左边的变量类型相同或相兼容。 五、Pascal常用函数库。 Pascal把常用的一些运算定义为系统标准函数,只要在程序中写出某一函数名以及此函数所需的参数,系统就会自动运算得到结果。在使用标准函数时,需要注意如下几点。(1)正确书写标准函数名和提供正确的调用参数。(2)每一个标准函数对自变量的数据类型都有一定的要求(例如要求使用整形,不能使用实型)。(3)函数值的类型也是一定的。

excel常用宏

1.拆分单元格赋值 Sub 拆分填充() Dim x As Range For Each x In https://www.360docs.net/doc/e512979519.html,edRange.Cells If x.MergeCells Then x.Select x.UnMerge Selection.Value = x.Value End If Next x End Sub 2.E xcel 宏按列拆分多个excel Sub Macro1() Dim wb As Workbook, arr, rng As Range, d As Object, k, t, sh As Worksheet, i& Set rng = Range("A1:f1") Application.ScreenUpdating = False Application.DisplayAlerts = False arr = Range("a1:a" & Range("b" & Cells.Rows.Count).End(xlUp).Row) Set d = CreateObject("scripting.dictionary") For i = 2 To UBound(arr) If Not d.Exists(arr(i, 1)) Then Set d(arr(i, 1)) = Cells(i, 1).Resize(1, 13) Else Set d(arr(i, 1)) = Union(d(arr(i, 1)), Cells(i, 1).Resize(1, 13)) End If Next k = d.Keys t = d.Items For i = 0 To d.Count - 1 Set wb = Workbooks.Add(xlWBATWorksheet) With wb.Sheets(1) rng.Copy .[A1] t(i).Copy .[A2] End With wb.SaveAs Filename:=ThisWorkbook.Path & "\" & k(i) & ".xlsx" wb.Close Next

测试技术章节习题(附答案)

各章节习题(后附答案) 第一章 信号及其描述 (一)填空题 1、 测试的基本任务是获取有用的信息,而信息总是蕴涵在某些物理量之中,并依靠它们来 传输的。这些物理量就是 ,其中目前应用最广泛的是电信号。 2、 信号的时域描述,以 为独立变量;而信号的频域描述,以 为独立变量。 3、 周期信号的频谱具有三个特 点: , , 。 4、 非周期信号包括 信号和 信号。 5、 描述随机信号的时域特征参数有 、 、 。 6、 对信号的双边谱而b ,实频谱(幅频谱)总是 对称,虚频谱(相频谱)总是 对 称。 (二)判断对错题(用√或×表示) 1、 各态历经随机过程一定是平稳随机过程。( ) 2、 信号的时域描述与频域描述包含相同的信息量。( ) 3、 非周期信号的频谱一定是连续的。( ) 4、 非周期信号幅频谱与周期信号幅值谱的量纲一样。( ) 5、 随机信号的频域描述为功率谱。( ) (三)简答和计算题 1、 求正弦信号t x t x ωsin )(0=的绝对均值μ|x|和均方根值x rms 。 2、 求正弦信号)sin()(0?ω+=t x t x 的均值x μ,均方值2 x ψ,和概率密度函数p(x)。 3、 求指数函数)0,0()(≥>=-t a Ae t x at 的频谱。 4、 求被截断的余弦函数?? ?≥<=T t T t t t x ||0 ||cos )(0ω的傅立叶变换。 5、 求指数衰减振荡信号)0,0(sin )(0≥>=-t a t e t x at ω的频谱。

第二章测试装置的基本特性

(一)填空题 1、 某一阶系统的频率响应函数为1 21)(+= ωωj j H ,输入信号2 sin )(t t x =,则输出信号)(t y 的频率为=ω ,幅值=y ,相位=φ 。 2、 试求传递函数分别为5.05.35 .1+s 和2 22 4.141n n n s s ωωω++的两个环节串联后组成的系统的总灵敏度。 3、 为了获得测试信号的频谱,常用的信号分析方法有 、 和 。 4、 当测试系统的输出)(t y 与输入)(t x 之间的关系为)()(00t t x A t y -=时,该系统能实现 测试。此时,系统的频率特性为=)(ωj H 。 5、 传感器的灵敏度越高,就意味着传感器所感知的 越小。 6、 一个理想的测试装置,其输入和输出之间应该具有 关系为最佳。 (二)选择题 1、 不属于测试系统的静特性。 (1)灵敏度 (2)线性度 (3)回程误差 (4)阻尼系数 2、 从时域上看,系统的输出是输入与该系统 响应的卷积。 (1)正弦 (2)阶跃 (3)脉冲 (4)斜坡 3、 两环节的相频特性各为)(1ωQ 和)(2ωQ ,则两环节串联组成的测试系统,其相频特 性为 。 (1))()(21ωωQ Q (2))()(21ωωQ Q + (3) ) ()() ()(2121ωωωωQ Q Q Q +(4) )()(21ωωQ Q - 4、 一阶系统的阶跃响应中,超调量 。 (1)存在,但<5% (2)存在,但<1 (3)在时间常数很小时存在 (4)不存在 5、 忽略质量的单自由度振动系统是 系统。 (1)零阶 (2)一阶 (3)二阶 (4)高阶 6、 一阶系统的动态特性参数是 。 (1)固有频率 (2)线性度 (3)时间常数 (4)阻尼比 7、 用阶跃响应法求一阶装置的动态特性参数,可取输出值达到稳态值 倍所经 过的时间作为时间常数。 (1)0.632 (2)0.865 (3)0.950 (4)0.982 (三)判断对错题(用√或×表示) 1、 一线性系统不满足“不失真测试”条件,若用它传输一个1000Hz 的正弦信号,则 必然导致输出波形失真。( ) 2、 在线性时不变系统中,当初始条件为零时,系统的输出量与输入量之比的拉氏变换 称为传递函数。( ) 3、 当输入信号)(t x 一定时,系统的输出)(t y 将完全取决于传递函数)(s H ,而与该系 统的物理模型无关。( ) 4、 传递函数相同的各种装置,其动态特性均相同。( ) 5、 测量装置的灵敏度越高,其测量范围就越大。( ) 6、 幅频特性是指响应与激励信号的振幅比与频率的关系。( ) (四)简答和计算题 1、 什么叫系统的频率响应函数?它和系统的传递函数有何关系?

相关文档
最新文档