牛顿插值法实验报告

牛顿插值法实验报告
牛顿插值法实验报告

牛顿插值法

一、实验目的:学会牛顿插值法,并应用算法于实际问题。

二、实验内容:给定函数 f ( x) x ,已知:

f (2.0) 1.4 1 4 2 1 4 f (2.1) 1.449138 f (2.2) 1.483240

f (2.3) 1.516575 f (2.4) 1.5 4 9 1 9 3

三、实验要求:

(1))用牛顿插值法求 4 次Newton 插值多项式在 2.15 处的值,以此作为函

数的近似值 2.15 N (2.15) 。在MATLAB 中用内部函数ezplot 绘制出4 次Newton 插值多项式的函数图形。

(2))在MATLAB 中用内部函数ezplot 可直接绘制出以上函数的图形,

并与作出的 4 次Newton 插值多项式的图形进行比较。

四、实验过程:

1、编写主函数。打开Editor 编辑器,输入Newton 插值法主程序语句:

function [y,L]=newdscg(X,Y,x)

n=length(X); z=x; A=zeros(n,n);A(:,1)=Y';s=0.0; p=1.0;

for j=2:n

for i=j:n

A(i,j)=(A(i,j-1)- A(i-1,j-1))/(X(i)-X(i-j+1));

end

end

C=A(n,n);

for k=(n-1):-1:1

C=conv(C,poly(X(k)));

d=length(C);C(d)=C(d)+A(k,k);

end

y(k)= polyval(C, z);

L(k,:)=poly2sym(C);

%%%%%%%%%%%%%%%%%%

t=[2,2.1,2.2,2.3,2.4];

fx=sqrt(t);

wucha=fx-Y;

以文件名newdscg.m 保存。

2、运行程序。

(1))在MATLAB 命令窗口输入:

>> X=[2,2.1,2.2,2.3,2.4]; Y

=[1.414214,1.449138,1.483240,1.516575,1.549193];

x=2.15;[y,P]=newdscg(X,Y,x)

回车得到:

y =1.4663

wucha =1.0e-06 *

-0.4376 -0.3254 -0.3026 0.0888 0.3385

P = - (4803839603609061*x^4)/2305843009213693952 + (7806239355294329*x^3)/288230376151711744 - (176292469178709*x^2)/1125899906842624 +

(1624739243112817*x)/2251799813685248 + 1865116246031207/4503599627370496 (2))在MATLAB 命令窗口输入:

>> v=[0,6,-1,3];

>> ezplot(P),axis(v),grid

>> hold on

>> x=0:0.1:6;

>> yt=sqrt(x);plot(x,yt,':')

>> legend(' 插值效果','原函数')

>> xlabel('X')

>> ylabel('Y')

>>title('Newton 插值与原函数比较')

回车即可得到图像1-1 。

图1-1 牛顿插值效果

五、实验结果分析:

由上运行(1)的程序可得,用牛顿插值法求 4 次Newton 插值多项式在 2.15 处函数的近似值 2.15 N ( 2.15) =1.4663 。

由在MATLAB 中用内部函数ezplot 直接绘制出出的 4 次Newton 插值图形与原函数的图形知,4 次Newton 插值图形在区间[0,1]与区间[4,5]内与原函数存在一定的偏差,而在区间[1,4] 内误差在10 的-6 次方,这个精度是非常高的。因此,在计算区间[1,4] 内的值时结果是比较准确的。

Welcome To Download !!!

欢迎您的下载,资料仅供参考!

牛顿插值法的C语言编程

Newton 插值 Newton 插值函数 Newton 插值函数是用差商作为系数,对于01,,,n x x x …这1n +个点,其一般形式为: 00100120101011()[][,]()[,,]()()[,,,]()()() n n n N x f x f x x x x f x x x x x x x f x x x x x x x x x ?=+?+??++???…………对于011,,,n x x x ?…这n 个点, 100100120101012()[][,]()[,,]()()[,,,]()()() n n n N x f x f x x x x f x x x x x x x f x x x x x x x x x ??=+?+??++???…………差商的定义 若已知函数()f x 在点(0,1,2,,)i x i n =???处的函数值()i f x 。则称: 00[]()f x f x =为函数()f x 在点0x 的0阶差商; 100110 [][] [,]f x f x f x x x x ?= ?为函数()f x 关于01,x x 的1阶差商; 120101220 [,][,] [,,]f x x f x x f x x x x x ?= ?为函数()f x 过点012,,x x x 的2阶差商; 依此类推,一般地称 121012101210 [,,,,][,,,,] [,,,,,]k k k k k k k f x x x x f x x x x f x x x x x x x ??????????????= ?为函数()f x 关于01,,,k x x x ???的 k 阶差商。 表1 差商表 i x ()i f x 1阶差商 2阶差商 3阶差商 4阶差商 0x 1x 2x 3x 4x …… 0()f x 1()f x 2()f x 3()f x 4() f x …… 01[,]f x x 12[,]f x x 23[,]f x x 34[,]f x x …… 012[,,]f x x x 123[,,]f x x x 234[,,] f x x x …… 0123[,,,]f x x x x 1234[,,,] f x x x x …… 01234[,,,,]f x x x x x …… 根据Newton 插值函数编写的C 语言编程 根据Newton 插值函数并对照上面的差商表,可编写出Newton 插值法的C 语言程序如下: #include #include #include double NewtonInterpolation(double *x,double *y,int n,double xx,double *pyy) {

插值法数值上机实验报告

插值法数值上机实验报告 实验题目: 利用下列条件做插值逼近,并与R (x) 的图像比较 考虑函数:R x y=1 1+x2 (1)用等距节点X i=?5+i,i=0,1,...,10.给出它的10次Newton插值多项式的图像; π),i=0,1,...,20.给出它的20次Lagrange插值多项式(2)用节点X i=5cos(2i+1 42 的图像; (3)用等距节点X i=?5+i,i=0,1,...,10.给出它的分段线性插值函数的图像;(4)用等距节点X i=?5+i,i=0,1,...,10.给出它的三次自然样条插值函数的图像; (5)用等距节点X i=?5+i,i=0,1,...,10.给出它的分段三次Hermite插值函数的图像; 实验图像结果:

实验结果分析: 1.为了验证Range现象,我还特意做了10次牛顿插值多项式和20次牛顿插值多项式的对比图像,结果如下图(图对称,只截取一半) 可以看出,Range现象在高次时变得更加明显。这也是由于高次多项式在端点处的最值随次数的变大很明显。可以料定高次多项式在两侧端点处剧烈震荡,在更小的间距内急剧上升然后下降,Range现象非常明显。

2.分析实验(2)的结果,我们会惊讶地发现,由于取21个点逼近,原本预料的Range现象会很明显,但这里却和f(x)拟合的很好。(即下图中Lagrange p(x)的图像)。可是上图中取均匀节点的20次牛顿多项式逼近的效果在端点处却很差。料想是由于节点X i=5cos2i+1 42 π ,i=0,1,...,20 取得很好。由书上第五章的 知识,对于函数y=1 1+x ,y 1 2对应的cherbyshev多项式的根恰好为X i= 5cos2i+1 42 π ,i=0,1,...,20 。由于所学限制,未能深入分析。 (3)比较三次样条插值图像和Hermit插值图像对原函数图像的逼近情形。见下图:

计算方法第二章方程求根上机报告

实验报告名称 班级:学号:姓名:成绩: 1实验目的 1)通过对二分法与牛顿迭代法作编程练习与上级运算,进一步体会二分法与牛顿迭代法的不同特点。 2)编写割线迭代法的程序,求非线性迭代法的解,并与牛顿迭代法。 2 实验内容 用牛顿法和割线法求下列方程的根 x^2-e^x=0; x*e^x-1=0; lgx+x-2=0; 3实验步骤 1)根据二分法和牛顿迭代法,割线法的算法编写相应的求根函数; 2)将题中所给参数带入二分法函数,确定大致区间; 3)用牛顿迭代法和割线法分别对方程进行求解; 3 程序设计 牛顿迭代法x0=1.0; N=100; k=0; eps=5e-6; delta=1e-6; while(1) x1=x0-fc1(x0)/fc2(x0); k=k+1; if k>N disp('Newmethod failed')

break end if(abs(x1-x0)=delta) c=x1; x1=cutnext(x0,x1); x0=c; %x0 x1μYí?μ?μ?x1 x2 è?è?±£′??úx0 x1 end k=k+1; if k>N disp('Cutline method failed') break; end if(abs(x1-x0)

牛顿插值法原理及应用

牛顿插值法 插值法是利用函数f (x)在某区间中若干点的函数值,作出适当的特定函数,在这些点上取已知值,在区间的其他点上用这特定函数的值作为函数f (x)的近似值。如果这特定函数是多项式,就称它为插值多项式。当插值节点增减时全部插值基函数均要随之变化,这在实际计算中很不方便。为了克服这一缺点,提出了牛顿插值。牛顿插值通过求各阶差商,递推得到的一个公式: f(x)=f[x0]+f[x0,x1](x-x0)+f[x0,x1,x2](x-x0)(x-x1)+...f[x0,...xn](x-x0 )...(x-xn-1)+Rn(x)。 插值函数 插值函数的概念及相关性质[1] 定义:设连续函数y-f(x) 在区间[a,b]上有定义,已知在n+1个互异的点 x0,x1,…xn上取值分别为y0,y1,…yn (设a≤ x1≤x2……≤xn≤b)。若在函数类中存在以简单函数P(x) ,使得P(xi)=yi,则称P(x) 为f(x)的插值函数. 称x1,x2,…xn 为插值节点,称[a,b]为插值区间。 定理:n次代数插值问题的解存在且唯一。

牛顿插值法C程序 程序框图#include void main() { float x[11],y[11][11],xx,temp,newton; int i,j,n; printf("Newton插值:\n请输入要运算的值:x="); scanf("%f",&xx); printf("请输入插值的次数(n<11):n="); scanf("%d",&n); printf("请输入%d组值:\n",n+1); for(i=0;i

牛顿插值法的分析与应用

牛顿插值法的分析与应用 学生: 班级: 学号: : 指导教师: 成绩:

一.定义 )(x f 关于i x 的零阶差商 )(][i i x f x f = )(x f 关于i x ,j x 的一阶差商 i j i j j i x x x f x f x x f --= ][][],[ 依次类推,)(x f 关于i x ,1+i x ,……,k i x +的k 阶差商 i k i k i i k i i k i i i x x x x f x x f x x x f --= +-+++++] ,,[],,[],,,[111 二. 牛顿插值多项式 设给定的n+1个互异点))(,(k k x f x ,n k ,,1,0 =,j i x x ≠,j i ≠, 称满足条件 )()(k k n x f x N =,n k ,,1,0 = 的n 次多项式 )()](,,,[)](,[][)(10100100---++-+=n n n x x x x x x x f x x x x f x f x N 为Newton 插值多项式,称 ],[,)(],,,[)()()(0 10b a x x x x x x f x N x f x E n j j n n ∈-=-=∏= 为插值余项。 三.算法 步骤1:输入节点(xj ,yj ),精度ξ,计值点xx ,f0→p ,1→T ,1→i ; 步骤2:对k=1,2,……,i 依次计算k 阶均差 f[xi-k,xi-k+1,…,xi] = (f[xi-k+1,…,xi]- f[xi-k,…,xi])/( xi -xi-k ) 步骤3:(1)、若| f[x1,…,xi]- f[x0,…,xi-1]|< ξ,则p 为最终结果Ni-1(x),余项Ri-1= f[x0,…,xi](xx-xi-1)T 。 (2)、否则(xx-xi-1)*T →T ,p+ f[x0,…,xi]*T →p ,转步骤4。 步骤4:若i

数值分析实验报告记录

数值分析实验报告记录

————————————————————————————————作者:————————————————————————————————日期:

数值分析实验报告 (第二章) 实验题目: 分别用二分法、牛顿迭代法、割线法、史蒂芬森迭代法求方程 的根,观察不同初始值下的收敛性,并给出结论。 问题分析: 题目有以下几点要求: 1.不同的迭代法计算根,并比较收敛性。 2.选定不同的初始值,比较收敛性。 实验原理: 各个迭代法简述 二分法:取有根区间的重点,确定新的有根区间的区间长度仅为区间长度的一版。对压缩了的有根区间重复以上过程,又得到新的有根区间,其区间长度为的一半,如此反复,……,可得一系列有根区间,区间收敛到一个点即为根。 牛顿迭代法:不动点迭代法的一种特例,具有局部二次收敛的特性。迭代格式为 割线法:是牛顿法的改进,具有超线性收敛的特性,收敛阶为1.618. 迭代格式为 史蒂芬森迭代法:采用不动点迭代进行预估校正。至少是平方收敛的。迭代格式为 这里可采用牛顿迭代法的迭代函数。 实验内容:

1.写出该问题的函数代码如下: function py= f(x) syms k; y=(k^2+1)*(k-1)^5; yy=diff(y,k); py(1)=subs(y,k,x); py(2)=subs(yy,k,x); end 2.分别写出各个迭代法的迭代函数代码如下: 二分法: function y=dichotomie(a,b,e) i=2; m(1)=a; while abs(a-b)>e t=(a+b)/2; s1=f(a); s2=f(b); s3=f(t); if s1(1)*s3(1)<=0 b=t; else a=t; end m(i)=t; i=i+1; end y=[t,i+1,m]; end 牛顿迭代法: function y=NewtonIterative(x,e) i=2; en=2*e;m(1)=x; while abs(en)>=e s=f(x); t=x-s(1)/s(2); en=t-x; x=t; m(i)=t; i=i+1; end y=[x,i+1,m]; end 牛顿割线法: function y=Secant(x1,x2,e) i=3; m(1)=x1,m(2)=x2; while abs(x2-x1)>=e s1=f(x1); s2=f(x2); t=x2-(x2-x1)*s2(1)/(s2(1)-s1( 1)); x1=x2; x2=t; m(i)=t; i=i+1; end

数值计算(二分法、简单迭代法、Newton迭代法、弦截法(割线法、双点弦法))

本科生实验报告 实验课程数值计算方法 学院名称信息科学与技术学院 专业名称计算机科学与技术 学生姓名 学生学号 指导教师 实验地点 实验成绩 二〇一六年五月二〇一六年五月

实验一非线性方程求根 1.1问题描述 实验目的:掌握非线性方程求根的基本步骤及方法,。 实验内容:试分别用二分法、简单迭代法、Newton迭代法、弦截法(割线法、双点弦法),求x5-3x3+x-1= 0 在区间 [-8,8]上的全部实根,误差限为10-6。 要求:讨论求解的全过程,对所用算法的局部收敛性,优缺点等作分析及比较, 第2章算法思想 2.1二分法 思想:在函数的单调有根区间内,将有根区间不断的二分,寻找方程的解。 步骤: 1.取中点mid=(x0+x1)/2 2.若f(mid)=0,则mid为方程的根,否则比较与两端的符号,若与 f(x0) 异号,则根在[x0,mid]之间,否则在[mid,x1]之间。 3并重复上述步骤,直达达到精度要求,则mid为方程的近似解。

2.2 简单迭代法 思想:迭代法是一种逐次逼近的方法,它是固定公式反复校正跟的近似值,使之逐步精确,最后得到精度要求的结果。 步骤:1.构造迭代公式f(x),迭代公式必须是收敛的。 2.计算x1,x1=f(x0). 3.判断|x1-x0|是否满足精度要求,如不满足则重复上述步骤。 4.输出x1,即为方程的近似解。

开始 输入x0,e X1=f(x0)|x1-x0|

牛顿插值法试验报告

. 牛顿插值法一、实验目的:学会牛顿插值法,并应用算法于实际问题。 x?x)f(二、实验内容:给定函数,已知: 4832401.2)?.?1449138f(2.f.f(20)?1.414214(2.1) 549193.)?1f(2.4516575(f2.3)?1. 三、实验要求:以此作为函数2.15插值多项式在处的值,用牛顿插值法求4 次Newton( 1)2.15?N(2.15)。在MATLAB中用内部函数ezplot绘制出的近似值4次Newton插值多项式的函数图形。 (2)在MATLAB中用内部函数ezplot可直接绘制出以上函数的图形,并与作出的4次Newton插值多项式的图形进行比较。 四、实验过程: 1、编写主函数。打开Editor编辑器,输入Newton插值法主程序语句: function [y,L]=newdscg(X,Y,x) n=length(X); z=x; A=zeros(n,n);A(:,1)=Y';s=0.0; p=1.0; for j=2:n for i=j:n A(i,j)=(A(i,j-1)- A(i-1,j-1))/(X(i)-X(i-j+1)); end end C=A(n,n); for k=(n-1):-1:1 C=conv(C,poly(X(k))); d=length(C);C(d)=C(d)+A(k,k); end y(k)= polyval(C, z); L(k,:)=poly2sym(C); 0 / 3 . %%%%%%%%%%%%%%%%%% t=[2,2.1,2.2,2.3,2.4]; fx=sqrt(t); wucha=fx-Y; 以文件名newdscg.m保存。 2、运行程序。 (1)在MATLAB命令窗口输入: >> X=[2,2.1,2.2,2.3,2.4]; Y =[1.414214,1.449138,1.483240,1.516575,1.549193]; x=2.15;[y,P]=newdscg(X,Y,x) 回车得到:

用牛顿迭代法求解非线性方程

数值分析实验报告(一) 实验 名称 用牛顿迭代法求解非线性方程实验时间2011年11 月19日姓名班级学号成绩 一、实验目的 1.了解求解非线性方程的解的常见方法。 2.编写牛顿迭代法程序求解非线性方程。 二、实验内容 分别用初值 0.01 x=, 10 x=和 300 x=求113,要求精度为5 10-。 三、实验原理 设113 x=,则21130 x-=,记f(x)= 2113 x-,问题便成为了求2x -113=0的正根; 用牛顿迭代公式得 2 1 113 2 k k k k x x x x + - =-,即 1 1113 () 2 k k k x x x + =+(其中k=0,1,2,3,…,) 简单推导 假设f(x)是关于X的函数: 求出f(x)的一阶导,即斜率: 简化等式得到: 然后利用得到的最终式进行迭代运算直至求到一个比较精确的满意值。 如果f函数在闭区间[a,b]内连续,必存在一点x使得f(x) = c,c是函数f在闭区间[a,b]内的一点 我们先猜测一X初始值,然后代入初始值,通过迭代运算不断推进,逐步靠近精确值,直到得到我们主观认为比较满意的值为止。 回到我们最开始的那个”莫名其妙”的公式,我们要求的是N的平方根,令x2 = n,假设一关

于X的函数f(x)为: f(X) = X2 - n 求f(X)的一阶导为: f'(X) = 2X 代入前面求到的最终式中: X k+1 = X k - (X k 2 - n)/2X k 化简即得到我们最初提到求平方根的迭代公式: 四、实验步骤 1.根据实验题目,给出题目的C程序。 当初值为0.01、10、300时,即x=0.01,10,300 分别应用程序: #include "stdio.h" int main() { float number; printf("Please input the number:"); scanf("%f", &number); float x=1; int i; for (i=0;i<1000;i++) { x = (x + number/x)/2; } printf("The square root of %f is %8.5f\n", number ,x); } 得出结果 2.上机输入和调试自己所编的程序。 当x=0.01时,结果为:10.63015 x=10时,结果为:10.63015 x=300时,结果也为:10.63015 3.实验结果分析。 当初值取0.01、10、300时取不同的初值得到同样的结果10.63015。 五、程序

数值分析实验报告-插值、三次样条(教育教学)

实验报告:牛顿差值多项式&三次样条 问题:在区间[-1,1]上分别取n=10、20用两组等距节点对龙格函数2 1()25f x x 作多项式插值及三次样条插值,对每个n 值,分别画出插值函数及()f x 的图形。 实验目的:通过编程实现牛顿插值方法和三次样条方法,加深对多项式插值的理解。应用所编程序解决实际算例。 实验要求: 1. 认真分析问题,深刻理解相关理论知识并能熟练应用; 2. 编写相关程序并进行实验; 3. 调试程序,得到最终结果; 4. 分析解释实验结果; 5. 按照要求完成实验报告。 实验原理: 详见《数值分析 第5版》第二章相关内容。 实验内容: (1)牛顿插值多项式 1.1 当n=10时: 在Matlab 下编写代码完成计算和画图。结果如下: 代码: clear all clc x1=-1:0.2:1; y1=1./(1+25.*x1.^2); n=length(x1); f=y1(:); for j=2:n for i=n:-1:j f(i)=(f(i)-f(i-1))/(x1(i)-x1(i-j+1)); end end syms F x p ; F(1)=1;p(1)=y1(1); for i=2:n F(i)=F(i-1)*(x-x1(i-1)); p(i)=f(i)*F(i);

end syms P P=sum(p); P10=vpa(expand(P),5); x0=-1:0.001:1; y0=subs(P,x,x0); y2=subs(1/(1+25*x^2),x,x0); plot(x0,y0,x0,y2) grid on xlabel('x') ylabel('y') P10即我们所求的牛顿插值多项式,其结果为:P10(x)=-220.94*x^10+494.91*x^8-9.5065e-14*x^7-381.43*x^6-8.504e-14*x^5+123.36*x^4+2.0202e-1 4*x^3-16.855*x^2-6.6594e-16*x+1.0 并且这里也能得到该牛顿插值多项式的在[-1,1]上的图形,并和原函数进行对比(见Fig.1)。 Fig.1 牛顿插值多项式(n=10)函数和原函数图形 从图形中我们可以明显的观察出插值函数在两端点处发生了剧烈的波动,产生了极大的误差,即龙格现象,当n=20时,这一现象将更加明显。 1.2 当n=20时: 对n=10的代码进行修改就可以得到n=20时的代码。将“x1=-1:0.2:1;”改为“x1=-1:0.1:1;”即可。运行程序,我们得到n=20时的牛顿插值多项式,结果为:P20(x)= 260188.0*x^20 - 1.0121e6*x^18 + 2.6193e-12*x^17 + 1.6392e6*x^16 + 2.248e-11*x^15 - 1.4429e6*x^14 - 4.6331e-11*x^13 + 757299.0*x^12 + 1.7687e-11*x^11 - 245255.0*x^10 + 2.1019e-11*x^9 + 49318.0*x^8 + 3.5903e-12*x^7 - 6119.2*x^6 - 1.5935e-12*x^5 + 470.85*x^4 + 1.3597e-14*x^3 - 24.143*x^2 - 1.738e-14*x + 1.0 同样的,这里得到了该牛顿插值多项式的在[-1,1]上的图形,并和原函数进行对比(见Fig.2)。

牛顿迭代法实验报告

用牛顿迭代法求非线性方程的根 一、 实验题目 求方程()013=--=x x x f 在5.1附近的根。 二、 实验引言 (1)实验目的 1. 用牛顿迭代法求解方程的根 2. 了解迭代法的原理 3. 改进和修缮迭代法 (2)实验意义 牛顿迭代法就是众多解非线性方程迭代法中比较普遍的一种,求解方便实用。 三、 算法设计 (1)基本原理 给定初始值0x ,ε为根的容许误差,η为()x f 的容许误差,N 为迭代次数的容许值。 1.如果()0='x f 或迭带次数大于N ,则算法失败,结束;否则执行2. 2.计算()() 0001x f x f x x '-=. 3.若ε<-21x x 或()η<1x f ,则输出1x ,程序结束;否则执行4. 4.令10x x =,转向1. (2)流程图

四、程序设计program nndd01 implicit none real,parameter::e=0.005 real,parameter::n=9 real::x1 real::x0=1.5 integer::k real,external::f,y do k=1,9 if (y(x0)==0) then write(*,*)"失败" else x1=x0-f(x0)/y(x0) if (abs(x1-x0)

else x0=x1 end if end if end do end function f(x) implicit none real::f real::x f=x*x*x-x-1 return end function function y(x) implicit none real::y real::x y=3*x*x-1 return end function 五、求解结果 3 1.324718 4 1.324718 5 1.324718 6 1.324718 7 1.324718 8 1.324718 9 1.324718 六、算法评价及讨论 1.在求解在1.5处附近的根,不难发现在输入区间左端值为1时 需要迭代6次,而输入区间左端值为1.5时,却只要4次。初

牛顿插值法的应用

牛顿插值法在处理磁化曲线和铁损曲线 中的应用 指导老师:李国霞 院系:物理工程学院 专业:物理电子学 姓名:夏委委 学号:201112131526

一、牛顿插值法简介 在科学研究与其他领域中所遇到的许多实际问题中,经常会出现函数不便于处理或计算的情形。有时候函数关系没有明显的解析表达式,需要根据实验数据或其他方法来确定与自变量的某些值相对应的函数值;有时候函数虽有明显的解析表达式,但是使用很不方便。因此,在实际应用中,往往需要对实际使用的函数建立一个简单的便于处理和计算的近似表达式,即用一个简单的函数表达式来近似替代原来复杂的函数。与用近似数代替准确值一样,这也是计算法中最基本的概念和方法之一。近似代替又称为逼近。用多项式逼近列表函数的问题即为多项式插值问题。根据函数)(x f 已有的数据表格来计算函数)(x f 在一些新的点x 处的函数值,这就是插值法所要解决的问题。因此,所谓的插值法就是在所给定的函数表格中间在插入一些所需要的新的点上的函数值。 插值法的基本思想:首先设法根据表格中已有的函数值来构造一个简单的函数)(x y 作为)(x f 的近似表达式,然后再用)(x y 来计算新的点上的函数值作为 )(x f 的近似值。通常可以选用多项式函数作为近似函数)(x y ,因为多项式具有 各阶的导数,求值比较方便。用代数多项式作为工具研究插值问题,通常称为代数插值。 代数插值法问题的完整提法如下:设函数)(x f y =在区间[]b a ,上是连续的,且已知)(x f 在区间[]b a ,上1+n 个互异点处的函数值,即n i x f y i i ,......1,0),(== 其中,)(j i x x j i ≠≠。寻找一个次数不高于 n 的多项式 0111)(a x a x a x a x P n n n n n +++=-- 使满足条件n i x f x P i i n ,,1,0),()( ==称)(x P n 为)(x f 的插值多项式,),,1,0(n i x i =称为插值结点,[]b a ,称为插值区间。 牛顿(Newton)插值是数值逼近中的一个重要部分,它向前继承了拉格朗日(Lagrange)插值,向后引出了埃尔米特(Hermite)插值,可以看作对多项式插值作了一个简单的统一。牛顿插值公式具有形式简单,便于计算等优点。因此,在插值中得到广泛的应用。牛顿插值公式为)()()(x R x P x f n n +=,其中)(x P n 是牛顿插值多项式,)(x R n 为牛顿插值余项,)(x P n 和)(x R n 的表达式如下式所示:

matlab(迭代法-牛顿插值)Word版

实验报告内容: 一:不动点迭代法解方程 二:牛顿插值法的MATLAB实现 完成日期:2012年6月21日星期四 数学实验报告一 日期:2012-6-21

所以,确定初值为x0=1 二:不断迭代 算法: 第一步:将f(x0)赋值给x1 第二步:确定x1-x0的绝对值大小,若小于给定的误差值,则将x1当做方程的解,否则回到第一步 编写计算机程序: clear f=inline('0.5*sin(x)+0.4'); x0=1; x1=f(x0); k=1; while abs(x1-x0)>=1.0e-6 x0=x1; x1=f(x0); k=k+1; fprintf('k=%.0f,x0=%.9f,x1=%.9f\n',k,x0,x1) end 显示结果如下: k=2,x0=0.820735492,x1=0.765823700 k=3,x0=0.765823700,x1=0.746565483 k=4,x0=0.746565483,x1=0.739560873

k=6,x0=0.736981783,x1=0.736027993 k=7,x0=0.736027993,x1=0.735674699 k=8,x0=0.735674699,x1=0.735543758 k=9,x0=0.735543758,x1=0.735495216 k=10,x0=0.735495216,x1=0.735477220 k=11,x0=0.735477220,x1=0.735470548 k=12,x0=0.735470548,x1=0.735468074 k=13,x0=0.735468074,x1=0.735467157 >>。。。 以下是程序运行截图:

Steffense迭代法和代数Newton法实验报告

实 验 报 告 实验班级:xxx 学生姓名:xxx 学生学号:xxx 指导老师:xxx 实验时间: xxx

实验题目 用Steffense 迭代法和代数Newton 法求1)(5--=x x x f 的近似解 1、实验目的: (1)通过MATLAB 编程实现Steffense 迭代法和代数Newton 法,掌握他们的非线性方程迭代算法,培养编程与上机调试能力; (2)应用所编程序求解1)(5--=x x x f 的近似解; (3)比较两种方法所得的结果,并与计算器所求结果进行比较,分析误差。 2、基本原理: Steffense 迭代法: 把Aitken 迭代算法加速技巧与不动点迭代结合,则可得到如下的Steffense 加速收敛迭代格式思想: k k k k k k k k k k k x y z x y x x y z x y +--- ===+2)(), (),(21?? (k=0,1,2,........) 这称为Steffensen 迭代法。它是二阶收敛或平方收敛的,可以让不收敛函数的收敛,即使是收敛的用Steffensen 后可达到二阶收敛. 代数Newton 法: 设*x 是方程0)(=x f 的一个实根,又设0x 为*x 的一个近似值,且)(x f 二次可微,将)(x f 在点0x 处作 Taylor 展开得: ()()()()()ξ''200'002 1 )(f x x x f x x x f x f -+ -+=,其中x x <<ξ0。令*x x =,有()()()()() ()η''20*0'0*0*2 1 0f x x x f x x x f x f -+-+==,其中*0x x <<η。略去上式的 () 0* x x -的二次项,可得*x 的一个近似解为()() 0001*'x f x f x x x - =≈,以1x 代替0x ,重复上述过程可得*x 新的近似解2x ,如此下去,得*x 的近似解序列 ()()() ,3,2,1'1=- =+n x f x f x x n n n n 。在序列{}∞0 n x 收敛时,即* lim x x n n =∞ →,则获得方程()0=x f 的解。

牛顿迭代法的实验报告

牛顿迭代法实验报告 1.功能 本程序采用牛顿法,求实系数高次代数方程 f(x)=a0x n+a1x n-1+…+a n-1x+a n=0(a n≠0)(1) 的在初始值x0附近的一个根。 2.使用说明 (1)函数语句 Y=NEWTON_1(A,N,X0,NN,EPS1) 调用M文件newton_1.m。 (2)参数说明 A n+1元素的一维实数组,输入参数,按升幂存放方程系数。 N整变量,输入参数,方程阶数。 X0 实变量,输入参数,初始迭代值。 NN整变量,输入参数,允许的最大迭代次数。 EPS1实变量,输入参数,控制根的精度。 3.方法简介 解非线性议程f(x)=0的牛顿法是把非线性方程线性化的一种近似方法。把f(x)在x0点附近展开成泰勒级数 f(x)=f(x0)+(x-x0)fˊ(x0)+(x-x0)2 !2) (0x f'' +… 取其线性部分,作为非线性方程f(x)=0的近似方程,则有 f(x0)+fˊ(x0)(x-x0)=0 设fˊ(x0)≠0则其解为 x1=x0-f(x0)/fˊ(x0) 再把f(x)在x1附近展开成泰勒级数,也取其线性部分作f(x)=0的近似方程。若f(x1)≠0,则得 x2=x1-f(x1)/fˊ(x1) 这样,得到牛顿法的一个迭代序列 x n+1=x n-f(x n)/fˊ(x n) 4.newton_1.m程序

function y=newton_1(a,n,x0,nn,eps1) x(1)=x0; b=1; i=1; while(abs(b)>eps1*x(i)) i=i+1; x(i)=x(i-1)-n_f(a,n,x(i-1))/n_df(a,n,x(i-1)); b=x(i)-x(i-1); if(i>nn)error(ˊnn is fullˊ); return; end end y=x(i); i 5.程序附注 (1)程序中调用n_f.m和n_df.m文件。n_f.m是待求根的实数代数方程的函数,n_df.m 是方程一阶导数的函数。由使用者自己编写。 (2)牛顿迭代法的收敛速度:如果f(x)在零点附近存在连续的二阶微商,ξ是f(x)的一个重零点,且初始值x0充分接近于ξ,那么牛顿迭代是收敛的,其收敛速度是二阶的,即平方收敛速度。 6.例题 用牛顿法求下面方程的根 f(x)=x3+2x2+10x-20 7.运行结果 >>a=[1,2,10,-20] ; >>n=3; >>x0=1; >>nn=1000; >>eps1=1e-8; >>y=newton_1(a,n,x0,nn,eps1)

数值分析课程实验报告-拉格朗日和牛顿插值法

《数值分析》课程实验报告 用拉格朗日和牛顿插值法求解函数值 算法名称用拉格朗日和牛顿插值法求函数值 学科专业xxxxx 作者姓名xxxx 作者学号xxxxx 作者班级xxxxxx xxx大学 二〇一五年十二月

《数值分析》课程实验报告

得到的近似值为。 拉格朗日插值模型简单,结构紧凑,是经典的插值法。但是由于拉格朗日的插值多项式和每个节点都有关,当改变节点个数时,需要重新计算。且当增大插值阶数时容易出现龙格现象。 2.牛顿插值法 在命令窗口输入: x=[ ]; y=[ ]; xt=; [yt,N]=NewtInterp(x,y,xt) z=::2; yz=subs(N,'t',z); figure; plot(z,sqrt(z),'--r',z,yz,'-b') hold on plot(x,y,'marker','+') hold on plot(xt,yt,'marker','o') h=legend('$\sqrt{x}$','牛顿','$(x_k,y_k)$','$x=$'); set(h,'Interpreter','latex') xlabel('x') ylabel('y') 得到结果及图像如下: yt = N = - *t^4 + *t^3 - *t^2 + *t +

得到√的近似值为,插值函数为 N =- *t^4 + *t^3 - *t^2 + *t + , 其计算精度是相当高的。 Lagrange插值法和Newton插值法解决实际问题中关于只提供复杂的离散数据的函数求值问题,通过将所考察的函数简单化,构造关于离散数据实际函数f(x)的近似函数P(x),从而可以计算未知点出的函数值,是插值法的基本思路。 实际上Lagrange插值法和Newton插值法是同一种方法的两种变形,其构造拟合函数的思路是相同的,而实验中两个实际问题用两种算法计算出结果是相同的。

非线性方程组的牛顿迭代法的应用

非线性方程组的牛顿迭代法的应用

CENTRAL SOUTH UNIVERSITY 数值分析实验报告

非线性方程组的牛顿迭代法的应用 一、问题背景 非线性是实际问题中经常出现的,并且在科学与工程计算中的地位越来越重要,很多我们熟悉的线性模型都是在一定条件下由非线性问题简化的,为得到更符合实际的解答,往往需要直接研究非线性科学,它是21世纪科学技术发展的重要支柱,非线性问题的数学模型有无限维的如微分方程,也有有限维的。道遥咏计算机进行科学计算都要转化为非线性的单个方程或方程组的求解。从线性到非线性是一个质的变化,方程的性质有本质不同,求解方法也有很大差别。本文主要介绍的是非线性方程组的牛顿迭代法的数值解法。 二、数学模型 对于方程()0=x f ,如果()x f 湿陷性函数,则它的求根是容易的。牛顿法实质上是一种线性化方法,其基本思想是将线性方程()0=x f 逐步归结为某种线性方程来求解。 设已知方程()0=x f 有近似根k x (假定()0'≠k x f ),将函数()x f 在点k x 展开,有 ()()()()k k k x x x f x f x f -+≈', 于是方程()0=x f 可近似地表示为 ()()()0'=-+k k k x x x f x f 这是个线性方程,记其根为1+k x ,则1+k x 的计算公式 () () k k k k x f x f x x ' 1- =+, ,1,0=k 这就是牛顿法。 三、算法及流程 对于非线性方程 ()()()???? ????????=n n n n x L x x f M x L x x f x L x x f f ,,,,,,,,,2 12 12211 在()k x 处按照多元函数的泰勒展开,并取线性项得到

牛顿插值法实验报告

牛顿插值法 一、实验目的:学会牛顿插值法,并应用算法于实际问题。 二、实验内容:给定函数 x x f =)(,已知: 414214.1)0.2(=f 449138.1)1.2(=f 483240.1)2.2(=f 516575.1)3.2(=f 549193.1)4.2(=f 三、实验要求: (1)用牛顿插值法求4次Newton 插值多项式在2.15处的值,以此作为函数的近似值)15.2(15.2N ≈。在MATLAB 中用内部函数ezplot 绘制出4次Newton 插值多项式的函数图形。 (2)在MATLAB 中用内部函数ezplot 可直接绘制出以上函数的图形,并与作出的4次Newton 插值多项式的图形进行比较。 四、实验过程: 1、编写主函数。打开Editor 编辑器,输入Newton 插值法主程序语句: function [y,L]=newdscg(X,Y,x) n=length(X); z=x; A=zeros(n,n);A(:,1)=Y';s=0.0; p=1.0; for j=2:n for i=j:n A(i,j)=(A(i,j-1)- A(i-1,j-1))/(X(i)-X(i-j+1)); end end C=A(n,n); for k=(n-1):-1:1 C=conv(C,poly(X(k))); d=length(C);C(d)=C(d)+A(k,k); end y(k)= polyval(C, z); L(k,:)=poly2sym(C);

%%%%%%%%%%%%%%%%%% t=[2,2.1,2.2,2.3,2.4]; fx=sqrt(t); wucha=fx-Y; 以文件名newdscg.m保存。 2、运行程序。 (1)在MATLAB命令窗口输入: >> X=[2,2.1,2.2,2.3,2.4]; Y =[1.414214,1.449138,1.483240,1.516575,1.549193]; x=2.15;[y,P]=newdscg(X,Y,x) 回车得到: y =1.4663 wucha =1.0e-06 * -0.4376 -0.3254 -0.3026 0.0888 0.3385 P = - (4803839603609061*x^4)/2305843009213693952 + (7806239355294329*x^3)/288230376151711744 - (176292469178709*x^2)/1125899906842624 + (1624739243112817*x)/2251799813685248 + 1865116246031207/4503599627370496 (2)在MATLAB命令窗口输入: >> v=[0,6,-1,3]; >> ezplot(P),axis(v),grid >> hold on >> x=0:0.1:6; >> yt=sqrt(x);plot(x,yt,':') >> legend('插值效果','原函数') >> xlabel('X') >> ylabel('Y') >>title('Newton插值与原函数比较') 回车即可得到图像1-1。

计算方法上机作业插值与拟合实验报告

计算方法实验 题目: 班级: 学号: 姓名:

目录 计算方法实验 (1) 1 实验目的 (3) 2 实验步骤 (3) 2.1环境配置: (3) 2.2添加头文件 (3) 2.3主要模块 (3) 3 代码 (4) 3.1主程序部分 (4) 3.2多项式方程部分 (4) 3.3核心算法部分 (8) 3.4数据结构部分 (13) 4运行结果 (19) 4.1拉格朗日插值法运行结果 (19) 4.2牛顿插值法运行结果 (20) 4.3多项式拟合运行结果 (20) 5总结 (21) 拉格朗日插值法 (21) 牛顿插值法 (21) 多项式拟合 (21) 6参考资料 (22)

1 实验目的 1.通过编程对拉格朗日插值法、牛顿插值法以及多项式拟合数据的理解 2.观察上述方法的计算稳定性和求解精度并比较各种方法利弊 2 实验步骤 2.1环境配置: VS2013,C++控制台程序 2.2添加头文件 #include "stdio.h" #include "stdlib.h" #include "stdafx.h" 2.3主要模块 程序一共分成三层,最底层是数据结构部分,负责存储数据,第二层是交互部分,即多项式方程部分,负责输入输出获得数据,最上层是核心的算法部分,负责处理已获得的数据。具体功能如下: ●数据结构部分 数据结构部分是整个程序的最底层,负责存储部分。因方程系数作为数据元素插入和删除操作较少,而顺序表空间利用率大且查看方便,故此程序选用顺序表保存系数。数据结构文件中写的是有关顺序表的所有基本操作以供其他文件调用。本次实验使用列主元高斯消元法作为求解方程组的方法,所以也用了二维顺序表存储数组。综上,数据结构部分文件是前两个试验的文件内容和,稍作修改。 ●常系数微分方程部分 多项式方程部分是程序的第二层,内容主要是常系数微分方程导数的计算和显示菜单部分。 ●算法部分 算法部分分为两个文件,一个是插值部分,一个是拟合部分。 插值部分文件负责有关插值的核心算法,处于整个程序最上层部分,负责拉格朗日插值法和牛顿插值法的具体实现过程。调用方程文件的函数,将获得的数据进行处理运算,将结果返回给方程主函数和输出的第二层。每种方法有两个函数,一个为仅仅实现一次插值的算法,另一个是和方程部分联系的

相关文档
最新文档