红外遥感开关实验报告

红外遥感开关实验报告
红外遥感开关实验报告

红外遥感开关实验报告

§1 设计任务与要求

一、设计选题:红外遥控开关的设计实现

二、设计任务:设计一款双路红外遥控开关

三、设计要求:

1 、能够分别遥控两路负载,可用于控制灯具、电风扇、加湿器等常用家用电器。

2、作用距离大于2m。指向性要求:圆锥角不小于30o。

3、欠压条件下的红外光峰值辐照度:遥控器所用电源电压为额定工作电压的

80%时,遥控器的红外光峰值福照度不小于20卩W/cn2。指向性要求圆锥角不小于 30o

4、静态工作电流不大于 3卩A

§ 2系统概

、工作原理及设计思路

图i.i红外遥控开关组成框图

、设计框图

1、红外发射系统:

发射电路

信号

图1.2红外发射系统组成框图

红外遥控发射器由指令器、信号产生电路、调制电路、驱动电路及红外线发射器组成,如图1.2所示。当指令键被按下时,指令信号产生电路便产生所的控制指令信号。这里的控制指令信号是以某些不同的特征来区分常用的区分指令信号的特征和码组特征,即用不同的频率或不同编码的电信号代表不同的指令。这些不同的指令信号由调制电路进行调制后,最后由驱动电路驱动电路驱支红外线发射器件,发出红外线遥控指令信号。

三、红外接收系统的组成

图3红外接收系统组成框图

接收器由红外线接收器件、前置放大电路、解调电路、指令信号检出电、记忆及驱动电路、执行电路组成,如图3所示。当红外线接收器件接收到发射器的红外指令信号时,它将红外光信号变为电信号并送入前置放大器进行放大,再经解调后由指令信号检出电路将指令信号检出,最后由记忆及驱动执行电路,实现各种操作。

四、方案比较

红外线遥控开关,本身是比较简单的,一共有4种方案。

1、编码区分

2、频率区分

3、脉冲计数

信号0

4、幅度区分

经过查阅资料以及多方的考虑,我们最后决定走频率的道路。原因如下:

(1)幅度区分并不适用于这次设计,很明显会受传输距离很大的影响;

(2)尽管在电路控制的开关数较少的情况下,脉冲计数接收简单,不易受干扰,但是我们还是排除了这个方法,主要是考虑到定量脉冲的产生设计有些困难;

(3)频分制红外光遥控电路比较简单,调试简单,成本不大,通常应用在遥控通道数目不太多的控制系统中。

|方案一::采用频分制多通道红外遥控发射和接收系统。频分制的频率编码一般采用频道编码开关,通过改变振荡电路的参数来改变振荡电路的振荡参数和频率。当按下不同的编码键时,振荡器就会输出不同频率的指令信号。这些指令信号经驱动级放大后对高频载波进行调制,并驱动红外发光管发出红外光脉冲信号。

红外接收控制电路的组成框图包括红外接收光电转换器、前置放大器、频率译码电路、驱动级和执行机件等。当红外光电检测器接收到发射器发来的红外编码指令后,光电检测管随即将其转换成相应的电信号,再经过前置电压放大器放大后,加至频率译码电路和选频电路,选出不同指令的频率信号,并加至相应的驱动级及执行机件。对应每一频率的指令信号,应有一个相应的选频电路。

在频分制红外遥控电路中,代表控制指令信号的频率一般为几百赫兹至几十千赫兹。发射电路中的频率编码开关的位号应与接收电路中的选频电路的位号相对应,以选出不同频率的指令信号。

红外接收、译码电路由红外接收器、前置放大器、解调器、指令译码器、记忆和驱动级组成。红外光电二极管将接收到的红外光信号转变成相应的电脉冲信号,再经高倍数电压放大后加至解调器进行解调,然后由指令译码器解码出指令信号。指令译码器是与指令编码器相对应的译码器,用于脉冲指令信号译出。译出的指令信号加至相应的记忆和驱动级,驱动执行机件动作,实现红外光遥控

图4:方案一的方框图

'方案二]采用码分制多通道红外遥控发射和接收系统。码分制的遥控指令信

I J

号是由编码脉冲发生器(一般由数字集成电路和少量外围元件组成)产生的。码分指令是用不同的脉冲数目或不同宽度的脉冲组合而成的。

指令编码器由基本脉冲发生电路和指令编码开关组成。当按下S1 —Sn中的某个指令键时,指令编码器将产生不同编码的指令信号。该编码信号经调制器调制后变为编码脉冲调制信号,再经驱动电路功率放大后加至红外发射级,驱动红外发射管发出红外编码脉冲光信号。

S3

0-j-

Xi

1

1

1

1

图5:方案二的方框图

五、系统结构设计

方案选择

频分制红外光遥控电路比较简单,调试简单,成本不大,通常应用在遥控

通道数目不太多的控制系统中。这次的设计是两路遥控,所以采用频分制。

§ 3单元电路设计与分析、单元电路的选型

「发发射电电路

、工作原理

(一)发射器电路的设计

红外发射电路由1KHZ音频振荡器,3KHZ音频振荡器,40KHZ载波振荡器和驱动输出电路

组成如图2所示。1KHZ音频振荡器由四与非门集成电路 IC1( D1-D4)部的D1和电阻器R1、R2、电位器RP1、控制按钮S1组成。3KHZ音频振荡器由IC1部的D2和电阻器R3电位器RP2、电容器 C1,控制按钮S2组成。40KHZ载波振荡器由IC1部的D3 D4和电阻器R4、R5电容器C2组成。

驱动输出电路由电阻器 R6晶体管V1和红外发光二极管 VL组成。当

按下红外发射电路中的控制按钮 S1时,1KHZ音频振荡器振荡工作,产生1KHZ的指令信号,该信号经40KHZ载波振荡器调制后,通过V1驱动VL发射出红外光信号。当

按下红外发射电路中的控制按钮 S2时,3KHZ音频振荡器振荡工作,产生3KHZ的指令信号,该

接收控制电路

VCC

3V

信号经40KHZ载波振荡器调制后,通过V1驱动VL发射出红外光信号。

(二)接收与控制电路的设计

红外接收控制电路由红外线接收头IC2、音频译码器、反相器、双稳态触发器(A1、A2)

和控制执行电路组成,如图 3所示。

音频译码器由音频锁相环集成电路 IC3、IC4和外围阻容元件组成。反相器由晶体管 V2、 V3和电阻器R8-R10、R13-R15组成。双稳态触发器由双 D触发器集成电路IC5(A1、A2)担任。控制执行电路由电阻器 R11、R16晶体管V4、V5和继电器K1、K2组成。

当按下红外发射电路中的控制按钮S1时,IKHZt频振荡器振荡工作,产生1KHZ勺指令信号,该信号经40KHZ载波振荡器调制后,通过V1驱动VL发射出红外光信号。

红外接收头IC2接收到VL发射出的红外指令信号并对其进行放大和解调处理,解调后的指令信号经IC3译码、V2反相后去触发双稳态触发器 A1,使A1翻转,V4饱和导通,K1吸合,其常开触头闭合,将第一路负载的工作电源接通。再按动一下S1, A1又翻转为另一种稳态,

使V4截止,K1释放,第一路负载的工作电源被K1的常开触头切断。

当按下红外发射电路中的控制按钮S2时,3KHZt频振荡器振荡工作,产生3KHZ勺指令信号,该信号经40KHZ载波振荡器调制后,通过V1驱动VL发射出红外光信号。

IC2将接收到的红外光信号进行放大和解调处理后,得到解调后的指令信号,该信号经

IC4译码,V3反相后使A2翻转,V5饱和导通,K2吸合,其常开触头接通,使第二路负载运行工作。再次按动S2后,则A2翻转为第一种状态,使 V5截止,K2释放,第二路负载的工作电源被K2的常开触头

重庆交通大学 学生实验报告 实验课程名称遥感原理与应用 开课实验室测量与空间信息处理实验室 学院 2013 年级测绘工程专业 1班学生姓名刘文洋 学号 631301040126 开课时间 2015 至 2016 学年第 1 学期

目录 实验一 ENVI 视窗的基本操作 (2) 实验二遥感图像的几何校正 (4) 实验三遥感图像的增强处理 (8) 实验四遥感图像的变换 (12) 实验五遥感信息的融合 (15) 实验六遥感图像分类 --- 监督分类 (17) 实验七遥感图像分类 --- 非监督分类 (19) 实验八遥感图像分类后处理 (22)

实验一ENVI 视窗的基本操作 一、实验目的 初步了解目前主流的遥感图象处理软件 ENVI 的主要功能模块,在此基础上,掌握视窗操作模块的功能和操作技能,为遥感图像的几何校正等后续实习奠定基础。 二、实验内容 视窗功能介绍;文件菜单操作;显示数据;裁剪数据;合并波段 三、实验步骤 1、首先打开ENVI4.7软件,看见的只有菜单栏,如图所示: 2、打开每个下拉菜单浏览其下拉栏中都有哪些功能,比如:我们如果需要打开遥感文件,则可以选择File下的打开功能open image file,打开遥感图像如下图:

裁剪数据打开basic tools的resize data功能,如果需要对图像进行一系列处理,可以利用Transform,Classification等功能进行操作,在后续实验中我们也会用到其中的一些功能进行图像的一系列操作,到时候在详细叙述。 3、再熟悉了ENVI4.7的一些基本知识后我们可以简单地操作下,比如对一组数据分别用Gray Scale和Load RGB导入,看看两幅图的区别以及各自的优缺点。 四、实验结果分析 在这次的实验中,我们简单的熟悉了下ENVI4.7的一些功能,发现它是可以对遥感图像进行图像几何纠正,直方图均衡,监督分类,非监督分类等一系列操作,为我们后续利用软件对遥感图像处理打下了基础。

密码锁设计报告 摘要: 本系统是由键盘和报警系统所组成的密码锁。系统完成键盘输入、开锁、超时报警、输入位数显示、错误密码报警、复位等数字密码锁的基本功能。 关键字:数字密码锁GAL16V8 28C64 解锁与报警 1

目录: 一、系统结构与技术指标 1、系统功能要求 (4) 2、性能和电气指标 (5) 3、设计条件 (5) 二、整体方案设计 1、密码设定 (6) 2、密码判断 (6) 3、密码录入和判断结果显示 (6) 4、系统工作原理框面 (7) 三、单元电路设计 1、键盘录入和编码电路图 (8) 2、地址计数和存储电路 (12) 3、密码锁存与比较电路 (12) 2

4、判决与结果显示电路 (14) 5、延时电路 (15) 6、复位 (17) 7、整机电路图 (19) 8、元件清单……………………………………………19四、程序清单 1、第一片GAL (21) 2、第二片GAL (23) 五、测试与调整 1、单元电路测试 (25) 2、整体指标测试 (26) 3、测试结果 (26) 六、设计总结 1、设计任务完成情况 (27) 2、问题及改进 (27) 3、心得体会 (28) 3

一、系统结构与技术指标 1.系统功能要求 密码锁:用数字键方式输入开锁密码,输入密码时开锁;如 果输入密码有误或者输入时间过长,则发出警报。 密码锁的系统结构框图如下图所示,其中数字键盘用于输入 密码,密码锁用于判断密码的正误,也可用于修改密码。开锁LED1亮表示输入密码正确并开锁,报警LED2亮表示密码有误或者输入时间超时。 开锁green 键盘密码锁 错误red 4

哈尔滨工业大学 遥感图像处理及遥感系统仿真 实验报告 项目名称:《遥感图像处理及遥感系统仿真创新》 姓名:蒋国韬 学号:24 院系:电子与信息工程学院 专业:遥感科学与技术 指导教师:胡悦 时间:2017年7月

实验一:遥感数字图像的增强 一、实验目的: 利用一幅城市多光谱遥感图像,分析其直方图,并利用对比度增强和去相关拉伸方法对遥感图像进行增强。 二、实验过程: 1.用multibandread语句读取一幅多光谱遥感图像(7波段,512x512图像)的可 见1,2,3波段(分别对应R,G,B层); 2.显示真彩色图像; 3.通过研究直方图(imhist),分析直接显示的真彩色图像效果差的原因;

4.利用对比度增强方法对真彩色图像进行增强(imadjust,stretchlim); 5.画出对比度增强后的图像红色波段的直方图;

6.利用Decorrelation去相关拉伸方法(decorrstretch)对图像进行增强;

7.显示两种图像增强方法的结果图像。

三、实验分析: (1)高光谱影像由于含有近百个波段,用matlab自带的图像读写函数imread和imwrite往往不能直接操作,利用matlab函数库中的multibandred函数,可以读取多波段二进制图像。512×512为像素点,7位波段数,bil为图像数组的保存格式,uint8=>uint8为转换到matlab 的格式,[3 2 1]的波段分别对应RGB三种颜色。 (2)直接观察真彩复合图像发现,图像的对比度非常低,色彩不均匀。通过观察红绿蓝三色的波段直方图,可以观察到数据集中到很小的一段可用动态范围内,这是真彩色复合图像显得阴暗的原因之一。另外,根据三种颜色的三维散点图,如下

单片机电子时钟课程设 计实验报告 Pleasure Group Office【T985AB-B866SYT-B182C-BS682T-STT18】

《单片机原理与应用》课程设计 总结报告 题目:单片机电子时钟(带秒表)的设计 设计人员:张保江江润洲 学号: 班级:自动化1211 指导老师:阮海容 目录 1.题目与主要功能要求 (2) 2.整体设计框图及整机概述 (3) 3.各硬件单元电路的设计、参数分析及原理说明 (3) 4.软件流程图和流程说明 (4) 5.总结设计及调试的体会 (10) 附录 1.图一:系统电路原理图 (11) 2.图二:系统电路 PCB (12) 3.表一:元器件清单 (13) 4.时钟程序源码 (14)

题目:单片机电子时钟的设计与实现 课程设计的目的和意义 课程设计的目的与意义在于让我们将理论与实践相结合。培养我们综合运用电子课程中的理论知识解决实际性问题的能力。让我们对电子电路、电子元器件、印制电路板等方面的知识进一步加深认识,同时在软件编程、排错调试、焊接技术、相关仪器设备的使用技能等方面得到较全面的锻炼和提高,为今后能够独立完成某些单片机应用系统的开发和设计打下一个坚实的基础。 课程设计的基本任务 利用89C51单片机最小系统,综合应用单片机定时器、中断、数码显示、键盘输入等知识,设计一款单片机和简单外设控制的电子时钟。 主要功能要求 最基本要求 1)使用MCS-51单片机设计一个时钟。要求具有6位LED显示、3个按键输入。 2)完成硬件实物制作或使用Pruteus仿真(注意位驱动应能提供足够的电流)。 3)6位LED数码管从左到右分别显示时、分、秒(各占用2位),采用24小时标准计时制。开始计时时为000000,到235959后又变成000000。 4)使用3个键分别作为小时、分、秒的调校键。每按一次键,对应的显示值便加1。分、秒加到59后再按键即变为00;小时加到23后再按键即变为00。在调校时均不向上一单位进位 (例如分加到59后变为00,但小时不发生改变)。 5) 软件设计必须使用MCS-51片内定时器,采用定时中断结构,不得使用软件延时法,也不得使用其他时钟芯片。 6)设计八段数码管显示电路并编写驱动程序,输入并调试拆字程序和数码显示程序。7)掌握硬件和软件联合调试的方法。 8)完成系统硬件电路的设计和制作。 9)完成系统程序的设计。 10)完成整个系统的设计、调试和制作。

计算机操作系统综合设计 实验一 实验名称:进程创建模拟实现 实验类型:验证型 实验环境: win7 vc++6.0 指导老师: 专业班级: 姓名: 学号: 联系电话: 实验地点:东六E507 实验日期:2017 年 10 月 10 日 实验报告日期:2017 年 10 月 10 日 实验成绩:

一、实验目的 1)理解进程创建相关理论; 2)掌握进程创建方法; 3)掌握进程相关数据结构。 二、实验内容 windows 7 Visual C++ 6.0 三、实验步骤 1、实验内容 1)输入给定代码; 2)进行功能测试并得出正确结果。 2、实验步骤 1)输入代码 A、打开 Visual C++ 6.0 ; B、新建 c++ 文件,创建basic.h 头文件,并且创建 main.cpp 2)进行功能测试并得出正确结果 A 、编译、运行main.cpp B、输入测试数据 创建10个进程;创建进程树中4层以上的数型结构 结构如图所示:。

createpc 创建进程命令。 参数: 1 pid(进程id)、 2 ppid(父进程id)、3 prio(优先级)。 示例:createpc(2,1,2) 。创建一个进程,其进程号为2,父进程号为1,优先级为2 3)输入创建进程代码及运行截图 4)显示创建的进程

3、画出createpc函数程序流程图 分析createpc函数的代码,画出如下流程图:

四、实验总结 1、实验思考 (1)进程创建的核心内容是什么? 答: 1)申请空白PCB 2)为新进程分配资源 3)初始化进程控制块 4)将新进程插入到就绪队列 (2)该设计和实际的操作系统进程创建相比,缺少了哪些步骤? 答:只是模拟的创建,并没有分配资源 2、个人总结 通过这次课程设计,加深了对操作系统的认识,了解了操作系统中进程创建的过程,对进程创建有了深入的了解,并能够用高 级语言进行模拟演示。一分耕耘,一分收获,这次的课程设计让 我受益匪浅。虽然自己所做的很少也不够完善,但毕竟也是努 力的结果。另外,使我体会最深的是:任何一门知识的掌握, 仅靠学习理论知识是远远不够的,要与实际动手操作相结合才能 达到功效。

ENVI遥感图像配准 一、实验目的: 1、掌握ENVI软件的基本操作和对图像进行基本处理,包括打开图像,保存图像。 2、初步了解图像配准的基本流程及采用不同校准及采样方法生成匹配影像的特点。 3、深刻理解和巩固基本理论知识,掌握基本技能和动手操作能力,提高综合分析问题的能力。 二、实验原理 (1)最邻近法 最邻近法是将最邻近的像元值赋予新像元。该方法优点是输出图像仍然保持原来图像的像元值,简单,处理速度快。缺点就是会产生半个像元位置偏移,可能造成输出图像中某些地物的不连贯。适用于表示分类或某种专题的离散数据,如土地利用,植被类型等。

双线性插方法是使用临近4个点的像元值,按照其距插点的距离赋予不同的权重,进行线性插。该方法具有平均化的滤波效果,边缘受到平滑作用,而产生一个比较连贯的输出图像,其缺点是破坏了原来的像元值,在后来的波谱识别分类分析中,会引起一些问题。 示意图: 由梯形计算公式: 故 同理 最终得:

三次卷积插法是一种精度较高的方法,通过增加参与计算的邻近像元的数目达到最佳的重采样结果。使用采样点到周围16邻域像元距离加权计算栅格值,方法与双线性插相似,先在Y 方向插四次(或X 方向),再在X 方向(或Y 方向)插四次,最终得到该像元的栅格值。该方法会加强栅格的细节表现,但是算法复杂,计算量大,同样会改变原来的栅格值,且有可能会超出输入栅格的值域围。适用于航片和遥感影像的重采样。 作为对双线性插法的改进,即“不仅考虑到四个直接邻点灰度值的影响,还考虑到各邻点间灰度值变化率的影响”,立方卷积法利用了待采样点周围更大邻域像素的灰度值作三次插值。其三次多项式表示为: 我们可以设需要计算点的灰度值f(x,y)为:

电子商务系统分析与设计课程设计实 验报告

江苏科技大学 电子商务系统分析与设计课程设计 网上书城系统的开发 学生姓名张颖 学号 班级08404121 指导老师 成绩 经济管理学院信息管理系 1月8日 目录 一.系统规划 (4)

1.2初步调查 (5) 1.3确定电子商务模式和模型 (6) 1.4可行性分析和可行性分析报告 (6) 二.系统分析 (8) 2.1系统调查 (8) 2.2需求规格说明书 (9) 2.2.1 引言 (9) 2.2.2项目概述 (9) 2.2.3需求规定 (10) 2.2.4环境要求 (16) 2.3组织结构分析 (17) 2.4业务流程分析 (17) 2.5数据流程分析 (19) 三.系统设计 (21) 3.1系统总体结构 (21) 3.2网络基本结构 (22) 3.3系统平台选择 (22) 3.4应用系统方案 (23) 3.4.1各功能模块简要描述 (23) 3.4.4数据库设计 (24) 3.4.5用户界面设计 (31)

3.5.1客户端要求 (32) 3.5.2服务器端要求 (32) 3.5.3系统测试 (32) 四.支付系统设计 (39) 4.1支付协议选择 (39) 4.2支付系统数据流程分析 (39) 4.3支付系统安全需求分析 (41) 4.4支付系统总体设计 (42) 4.5支付系统功能 (44) 4.6交易流程设计 (46) 4.7支付系统安全设计 (47) 五.心得体会 (47) 一.系统规划 1.1明确用户需求 随着当今社会新系统大度的提高,网络的高速发展,计算机已被广泛应用于各个领域,因而网络成为人们生活中不可或缺的一部分。互联网用户应经接受了电子商务,网购成为一种时尚潮流。

实验一植被覆盖度反演 一、实验目的 植被覆盖度是指植被(包括叶、茎、枝)在地面的垂直投影面积占统计区总面积的百分比。通常林冠称郁闭度,灌草等植被称覆盖度。它是衡量地表植被覆盖的一个最重要的指标,被覆盖度及其变化是区域生态系统环境变化的重要指示,对水文、生态、全球变化等都具有重要意义。目前已有许多利用遥感技术测量植被覆盖度的方法,其中应用最广泛的方法是利用植被指数近似估算植被覆盖度,常用的植被指数为NDVI,本次实验完成植被覆盖度反演。 二、实验数据 实验选取两景覆盖北京市的Landsat8 OLI影像、土地覆盖类型图以及北京行政边界矢量数据为数据源。其中,土地覆盖类型图是作为掩膜文件使用,其目的是为了便于植被覆盖度的估算;北京行政边界矢量数据是裁剪出北京市行政区内的范围。Landsat8 OLI影像是从地理空间数据云网站上下载得到的,其成像时间为2013年10月份。与Landsat7的ETM+成像仪相比,OLI成像仪获取的遥感图像辐射分辨率达到12比特,图像的几何精度和数据的信噪比也更高。OLI成像仪包括9个短波谱段(波段1~波段9),幅宽185km,其中全色波段地面分辨率为15m,其他谱段地面分辨率为30m。 三、实验方法 本文反演植被覆盖度所采用的是像元二分模型方法,像元二分模型是一种简单实用的遥感估算模型,它假设一个像元的地表由有植被覆盖部分与无植被覆盖部分组成,而遥感传感器观测到的光谱信息(S)也由这2个组分因子线性加权合成,各因子的权重是各自的面积在像元中所占的比率,如其中植被覆盖度可以看作是植被的权重。因此,像元二分模型的原理如下:VFC = (S - Ssoil)/ ( Sveg - Ssoil) S为遥感信息,其中Ssoil 为纯土壤像元的信息, Sveg 为纯植被像元的信息。 改进的像元二分法——遥感信息选择为NDVI VFC = (NDVI - NDVIsoil)/ ( NDVIveg - NDVIsoil) 两个参数的求解公式 NDVIsoil=(VFCmax*NDVImin- VFCmin*NDVImax)/( VFCmax- VFCmin) NDVIveg=((1-VFCmin)*NDVImax- (1-VFCmax)*NDVImin)/( VFCmax- VFCmin) 当区域内可以近似取VFCmax=100%,VFCmin=0% VFC = (NDVI - NDVImin)/ ( NDVImax - NDVImin) 当区域内不可以近似取VFCmax=100%,VFCmin=0%,当有实测数据的情况下,取实测数据中的植被覆盖度的最大值和最小值;当没有实测数据的情况下,植被覆盖度的最大值和最小值根据经验估算。 其中, NDVIsoil 为裸土或无植被覆盖区域的NDVI值, 即无植被像元的NDVI 值;而NDVIveg 则代表完全被植被所覆盖的像元的NDVI 值, 即纯植被像元的NDVI 值。 四、实验处理步骤 1、实验处理流程如下图所示

遥感图像实验报告 一.实验目的 1、初步了解目前主流的遥感图象处理软件ERDAS的主要功能模块。 2、掌握Landsat ETM遥感影像数据,数据获取手段.掌握遥感分类的方法, 土地利用变化的分析,植被变化分析,以及利用遥感软件建模的方法。 3、加深对遥感理论知识理解,掌握遥感处理技术平台和方法。 二.实验内容 1、遥感图像的分类 2、土地利用变化分析,植被变化分析 3、遥感空间建模技术 三.实验部分 1.遥感图像的分类 (1)类别定义:根据分类目的、影像数据自身的特征和分类区收集的信息确定分类系统; (2)特征判别:对影像进行特征判断,评价图像质量,决定是否需要进行影像增强等预处理; (3)样本选择:为了建立分类函数,需要对每一类别选取一定数目的样本;(4)分类器选择:根据分类的复杂度、精度需求等确定哪一种分类器; (5)影像分类:利用选择的分类器对影像数据进行分类,有的时候还需要进行分类后处理;分类图如下:

图1.1 1992年土地利用图 图1.2 2001年土地利用图

(6)结果验证:对分类结果进行评价,确定分类的精度和可靠性。 图1.3 1992年精度图 图1.4 2002年精度图 2.土地利用变化 2.1 两年土地利用相重合区域 (1)在两年的遥感影像中选择相同的区域。 Subset(x:568121~684371,y:3427359~3288369),过程如下:

图2.1 截图过程图 图2.2.2 截图过程图

(2)土地利用专题地图如下: 图2.2.3 1992年专题地图 图2.2.4 2001年土地利用图

成像光谱技术研究动态 王立平刘洪博 1 引言 地物的反射辐射光谱特征是遥感的主要物理基础,是开展地球表层物质的物性和空间结构分析,进而加以识别的主要依据。成像光谱技术具有高光谱分辨率、超多波段和图谱合一的特点,在大尺度范围内探测地表物质连续光谱特性的同时,还获取了地物的空间形态和状态信息。成像光谱仪的光谱分辨率越高,所反映地物光谱特征就越精细,甚至可获取与实验室或地面实测光谱类似的曲线,为地物或地物成份的遥感识别奠定了基础。 2 成像光谱技术的发展与现状 成像光谱遥感所用的仪器是成像光谱仪。从世界范围来看,美国的成像技术发展较早,也最具代表性。从20世纪80年代到现在,美国已经研制了三代成像光谱仪。 第一代成像光谱仪的代表是航空成像光谱仪AIS。它由美国国家航空和航天管理局NASA所属的喷气推进实验室JPL设计,已于1984-1986年装在NASA的C-130飞机上飞行。这是一台装有二维、近红外阵列探测器的实验仪器,128个通道,光谱覆盖范围从1.2~2.4μm,并在内华达Cuprite地区的应用中取得很好的效果。 第二代成像光谱仪的代表是机载可见光/近红外成像光谱仪AVIRIS,它有224个通道,使用光谱范围为0.41~2.45μm,每个通道的波段宽约为10nm。曾放在改装后的高空U2飞机上使用.为目前最常用的航空光谱仪之一。 基于NASA仪器的成功应用,也基于采矿工业及石油工业的需求,在AVIRIS之后,地球物理环境研究公司GER又研制了l台64通道的高光谱分辨率扫描仪GERIS。其中63个通道为高光谱分辨率扫描仪,第64通道是用来存储航空陀螺信息。该仪器由3个单独的线性阵列探测器的光栅分光计组成。它与其他仪器的区别是在不同的光谱范围区内,通道的光谱宽度是不同的。

实验前准备:遥感图像处理软件认识 1、实验目的与任务: ①熟悉ENVI软件,主要是对主菜单包含内容的熟悉; ②练习影像的打开、显示、保存;数据的显示,矢量的叠加等。 2、实验设备与数据 设备:遥感图像处理系统ENVI4.4软件; 数据:软件自带数据和河南焦作市影响数据。 3、实验内容与步骤: ⑴ENVA软件的认识 如上图所示,该软件共有12个菜单,每个菜单都附有下拉功能,里面分别包含了一些操作功能。 ⑵打开一幅遥感数据 选择File菜单下的第一个命令,通过该软件自带的数据打开遥感图像,可知,打开一幅遥感影像有两种显示方式。一种是灰度显示,另一种是RGB显示。 Gray(灰度显示)RGB显示 ⑶保存数据 ①选择图像显示上的File菜单进行保存; ②通过主菜单上的Save file as进行保存

⑷光谱库数据显示 选择Spectral > Spectral Libraries > Spectral Library Viewer。将出现Spectral Library Input File 对话框,允许选择一个波谱库进行浏览。点 击“Open Spectral Library”,选择某一所需的 波谱库。该波谱库将被导入到Spectral Library Input File 对话框中。点击一个波谱库的名称, 然后点击“OK”。将出现Spectral Library Viewer 对话框,供选择并绘制波谱库中的波谱曲线。 ⑸矢量化数据 点选显示菜单下的Tools工具栏,接着选择下面的第四个命令,之后选择第一个命令,对遥感图像进行矢量化。点击鼠标左键进行区域选择,选好之后双击鼠标右键,选中矢量化区域。 ⑹矢量数据与遥感影像的叠加与切割 选择显示菜单下的Tools工具,之后点选第一个 Link命令,再选择其下面的第一个命令,之后 OK,结束程序。 选择主菜单下的Basic Tools 菜单,之后选择 其中的第二个命令,在文件选择对话框中,选择 输入的文件(可以根据需要构建任意子集),将 出现Spatial Subset via ROI Parameters 对 话框通过点击矢量数据名,选择输入的矢量数 据。使用箭头切换按钮来选择是否遮蔽不包含在 矢量数据中的像元。 遥感图像的辐射定标 1、实验目的与任务: ①了解辐射定标的原理; ②使用ENVI软件自带的定标工具定标; ③学习使用波段运算进行辐射定标。 2、实验内容与步骤: ⑴辐射定标的原理 辐射定标就是将图像的数字量化值(DN)转化为辐射亮度值或者反射率或者表面温度等

中南大学 电工电子技术课程设计报告 题目:可编程乐曲演奏器的设计 学院:信息科学与工程学院 指导老师:陈明义 专业班级: 姓名: 学号:

前言 随着科学技术发展的日新日异,电工电子技术在现代社会生产中占据着非常重要的地位,因此作为二十一世纪的自动化专业的学生而言,掌握电力电子应用技术十分重要。 电工电子课程设计的目的在于进一步巩固和加深所学电工电子基本理论知识。使学生能综合运用相关关课程的基本知识,通过本课程设计,培养我们独立思考的能力,学会和认识查阅学习我们未学会的知识,了解专业工程设计的特点、思路、以及具体的方法和步骤,掌握专业课程设计中的设计计算、软件编制,硬件设计及整体调试。设计过程中还能树立正确的设计思想和严谨的工作作风,达到提高我们的设计能力的目标。 从理论到实践,往往看似简单,实则是有很大的差距的,通过课程设计,可以培养我们学到很多东西,不仅可以巩固了以前所学过的知识,而且学到了很多在书本上所没有学到过的知识。只有理论知识是远远不够的,只有把所学的理论知识与实践相结合起来,从理论中得出结论,才能真正的学到知识,从而提高自己的实际动手能力和独立思考的能力。 在次,特别感谢老师给我们以实践动手的机会,让我们对以前的知识以复习,整合,并从理论走向实践,相信我们都会在这次课程设计中学到很多!!!

目录 前言 (2) 正文 第一章系统概述 (4) 系统功能 (4) 系统结构 (4) 实验原理 (4) 整体方案 (5) 第二章单元电路的设计与分析 (5) 音频发生器的设计 (5) 节拍发生器的设计 (6) 读取存储器数据 (7) 选择存储器地址 (8) 控制音频电路设计 (8) 第三章电路的安装与调试 (9) 第四章结束语 (9) 元器件明细表 (10) 参考文献 (10) 附录 (11)

绪论 根据遥感信息的利用方式和效应,可以把遥感技术的发展划分为四个阶段: 1.瞬时信息的定性分析 2.空间信息的定位分析 3.时间信息的趋势分析 4.环境信息的综合分 析,即多种来源信息的复合分析 第一章遥感信息的地学评价 (一)遥感信息的属性 1.遥感信息的多源性(平台、载体的多层次,波段不同,视场不同,时间不同) 2.遥感信息的物理属性(不同的空间分辨率、波普分辨率、时间分辨率) (二)遥感研究对象的地学属性 1.空间分布 2.波谱反射和辐射特征 3.时相变化 二、遥感信息地学评价的标准 (一)空间分辨率 空间分辨率又可称为地面分辨率,指一个影像上能够详细区分的最小单元的尺寸或大小。空间分辨率有三种表示形式: (1)象元,每个象元的大小在地面上对应的范围,即在地表与一个象元大小相当的尺寸,用米表示。 (2)象解率,指胶片上1毫米间隔内包含的线对数,用线对/毫米来表示。 (3)视场角,指电子传感器的瞬时视域,用豪弧度表示。视场角小,得到的光通量小,空间分辨率低;反之,空间分辨率高。 (二)波谱分辨率 波普分辨率指传感器所用的波段数目、波段波长以及波段宽度。也就是选择的通道数、每个通道的波长、带宽,这三个因素决定波普分辨率。 对于传感器波谱分辨率的选择,有两种情况。在实验过程中,分析波谱特征时,光谱波段分得愈多愈细、频带宽度愈窄,所包含的信息量就愈大,针对性愈强,则易于鉴别细微差异,因而在实验室研究中多光谱波段往往可以发展到十几、甚至几十个波段.但是在实际应用中,便要对之进行综合归纳。因为波段分得愈细,各波段数据间的相关性就愈大,增加了信息的冗余度,未必能达到预期识别效果。同时波段愈多,数据量愈大,给数据传输、数据处理和鉴别带来困难。 (三)时间分辨率 时间分辨率指对同一地区遥感影像重复覆盖的频率。 第二节陆地卫星系列的地学评价 (三)火箭遥感的特点 1. 火箭可以选择最有利的时机 2.火箭资料有快速、大面积同步覆盖的特点 3.火箭灵活、方便,发射简单,准备时间短,发射架小,可以移动 4.成本较低,并可根据用户的需要来设计 5.摄影处理设备简单 二、航空遥感的特点 航空遥感作为遥感立体观测系统中不可缺少的一部分,有其明显的特点。 1.航空遥感空间分辨率高、信息容量大,主要服务于较大比例尺的区域资源与环 境详查,以及解决工程技术上的具体问题,其经济与社会效益明显。 2,航空遥感灵活、方便,适用于专题遥感研究。它可以根据用户的需求,灵活选择具有一定空间分辨率、波谱分辨率、时间分辨率的遥感信息,设计航空遥惑飞行的方案和路线等。获得图象较为方便,成本不高。

Lab3 geometric correction and projection transformation of remotely sensed data Objective : The purpose of the current lab section is to adequately understand the mathematic principles and methods of geometric correction (co-registration) and projection transformation . In addition,you guys need to gain hands-on experience or skill to perform them in ENVI and ERDAS environments. 实验过程: 一、envi中图像配准 1、根据控制点的坐标对图像进行配准 1)加载中山陵地形图 2) 选择map 菜单下的registration菜单,选择select gcps:image to map 设置投影信息:基于经纬度的投影(geographic lat/lon),选择基准面为WGS—84

3)开始配准 依次移动一级窗口中的光标到四个图廓点的位置,在三级放大窗口中把十字司放在经纬线的交点的中间位置,输入该点的经纬度于编辑对话框中:

点击add point,完成对控制点的编辑 4)选择option菜单下的wrap file将配准好的地图生成一幅新的影像

修改生成图像信息,改为50带的UTM投影,基准面为WGS-84,保存 2、图像到图像的配准 1)加载全色波段影像作为待配准的影像

一.课程设计的目的 课程设计以电子线路CAD软件设计原理为基础,重点在硬件设计领域中实用的电子线路设计软件的应用。掌握电子线路设计中使用CAD的方法。为后继课程和设计打下基础。 通过电路设计,掌握硬件设计中原理图设计、功能仿真、器件布局、在线仿真、PCB设计等硬件设计的重要环节。 二.课程设计题目描述和要求 2.1振荡电路的模拟和仿真。 由555定时器构成多谐波振荡电路,用模拟的示波器观察输出的信号,熟悉555定时器构成多谐波振荡电路的基本原理,熟悉proteus的基本操作,和各元器件的查找。 2.2 8051单片机 用80c51单片机完成以下功能:(1)构成流水灯的控制电路,使八个流水灯轮流点亮。(2)构成音乐播放的简单电路。(3)构成串口通信电路,完成信息在单片机和串口之间的传播。(4)构成8255键盘显示模块。(5)构成A/D和D/A 转换模块。 首先用模拟器件构成基本电路,然后在单片机中加入驱动程序,运行仿真,最后对电路进行调整校正,完成相关功能。 熟悉单片机实现相关功能的基本原理,对单片机有个框架的了解。学习用proteus仿真单片机电路中不同模块间的组合,扩展单片机电路的功能。 三.课程设计报告内容。 3.1设计原理 3.1.1振荡电路仿真的原理 振荡电路原理: 555管脚功能介绍: 1脚为地。2脚为触发输入端;3脚为输出端,输出的电平状态受触发器控制,而触发器受上比较器6脚和下比较器2脚的控制。 当触发器接受上比较器A1从R脚输入的高电平时,触发器被置于复位状态,3脚输出低电平; 2脚和6脚是互补的,2脚只对低电平起作用,高电平对它不起作用,即电压小于1Ucc/3,此时3脚输出高电平。6脚为阈值端,只对高电平起作用,低电

物联网传输综合课程设计实验报告 人体红外数据通信实验 一、实验目的 1. 了解基于Z-Stack 协议栈的SappWsn 应用程序框架的工作机制 2. 掌握在ZigBee 协议栈中添加人体红外传感器驱动的方法。 二、实验设备 1. 装有IAR 开发工具的PC 机一台 2. 下载器一个 3. 物联网多网技术开发设计平台一套 三、实验原理 在Z-Stack APP中的HAL\Target\CC2530EB\Includes组中,提供了一个hal_io.h的文件,如图所示。 其中,提供了名为HalIOSetInput 的函数,可以将燃气传感器端口(P1.0)设置为输入,然后通过调用HalIOGetLevel 函数来获取传感器状态。 四、实验步骤 1、将单片机zigbee协调器拆卸下来,取出烧写器。通过Mini USB接口将zigbee 协调器与下载器和PC机相连。

2、将实验箱控制方式切换开关拨至“手动”一侧,转动实验箱“旋钮节点选择”旋钮,使得协调器旁边的LED灯被点亮 3、打开配套代码中的ZStack-CC2530\Projects\SappWsn\SappWsn.eww工程文件,在“Tools”组中,找到“f8wConfig.cfg”文件,双击打开,并找到大概第59 行的“-DZAPP_CONFIG_PAN_ID=0xFFFF”,将其中的“0xFFFF”修改为其他值,例如0x0010

4、在工程目录结构树上方的下拉列表中,选择“CoordinatorEB”,点击工具栏中的“Make”按钮,编译工程,等待工程编译完成,如看到警告,可以忽略。在工程目录结构树中的工程名称上点击鼠标右键,选择“Options”,并在弹出的对话框中选择左侧的“Debugger”,并在右侧的“Driver”列表中选择“Texas Instruments”,点击“Download and Debug”按钮。待程序下载完毕后,点击“Go”按钮,使程序开始运行。点击工具栏中的“Stop Debugging”,退出调试模式, 5、转动实验箱“旋钮节点选择”旋钮,使得热释红外传感器节点旁边的LED灯被点亮,在工程目录结构树上方的下拉列表中,选择“EndDeviceEB”,在“SAPP_Device.h”文件中,取消“HAS_IRPERS”的注释,并保证其他的功能均被注释,如图所示

遥感地学分析 实验报告 成绩: 姓名: 学号: 班级: 题目:

课程实验报告要求 一、实验目的 掌握并熟悉band math的操作,对建筑用地分离用的几个建筑指数;学会面对对象分类;学会反演地表温度。 二、实验准备 软件准备: 数据准备:中等分辨率数据AA、高分辨率数据、热岛监测band6 三、实验步骤 1.中等分辨率数据中城市范围的提取: (1)加载数据AA,首先在BAND MATH里面计算图像的NDVI值其公式:(float(b1)-float(b2))/(float(b1)+float(b2)),正确输入公式后点击OK; 在接下来的界面中为公式中b1和b2赋予相应的波段,及近红外波段和红色波段,选择合适的路径即可点击OK; 结果如图:

(2)同样用上述发放计算图像的归一化建筑指数(NDBI值),公式同样使用前面所用,但是后面给b1和b2赋予第五和第四波段就行,同样选择合适的路径即可; 结果如图:

(3)利用前面所计算的NDVI和NDBI值计算改进的归一化裸露指数(MNDBI),MNDBI= NDBI+(1-NDVI),首先在BAND MATH中输入一下公式并b1和b2赋予NDBI的波段和NDVI的波段; 结果如图:

(3)同样使用上述方法计算城镇用地指数(ULI)计算公式为ULI=NDBI and NDVI,同样在BAND MATH中输入公式并赋予相应的波段,在设置好输出路径即可; 结果如图:

(4)三种指数的阈值的设置,通过查看三种指数的直方图可以为每种指数的分离建筑用地提取合适的阈值;通过查看NDBI的阈值设置为,并将其在band math中进行二值化; 通过查看MNDBI的阈值设置为,并将其在band math中进行二值化;

电子技术课程设计实验报告 学院:物联网工程学院 班级:自动化1204 姓名:XXX 学号:1070412428 同组成员:XXX 二〇一四年六月

目录 一、实验名称 (3) 二、实验任务和要求 (3) 三、实验电路 (a)系统框图 (3) (b)总电路原理图 (4) (c)总电路管脚图 (5) 四、单元电路及原理分析 (1)+5V电源电路 (5) (2)正弦波发生及波形变换电路 (6) (3)单稳态定时电路 (7) (4)频率计数显示电路 (7) (5)超量程指示电路 (8) (6)控制电路 (9) 五、元器件列表 (10) 六、安装与调试 1、使用仪器仪表 (10) 2、安装 (10) 3、调试 (11) 4、调试中出现的故障、原因及排除方法 (14) 七、收获和体会 (15)

一、实验名称 正弦波发生、频率测量显示电路 二、实验任务和要求 正弦波振荡频率100~1000Hz,输出信号幅度5±5%V; (1)用3位数码管显示振荡频率; (2)能自动连续测量、显示频率,测量周期为4S; (3)用中规模集成电路实现。 三、实验电路 (a)系统框图 图1-1 正弦波发生电路组成框图 (b)总电路原理图

原理图分析:正弦波振荡器自激振荡产生正弦波输出信号,波形变换电路将正弦波变换成方波,方波输入到计数器中,由计数器对输入方波信号进行计数,计数器的计数结果在译码显示中显示;控制电路部分输出定时触发信号、超量程复位信号和清零信号,定时触发信号输入到单稳态定时电路中,单稳态定时电路将定时触发信号给计数器,计数器在定时周期内对方波信号进行计数;超量程复位信号和计数器输出的超量程指示同时控制超量程指示电路部分,发光二极管发光进行超量程指示;清零信号输入到计数器中,在计数超过量程时计数器清零。

《实验报告总结》 实验报告总结(一): 一个长学期的电路原理,让我学到了很多东西,从最开始的什么都不懂,到此刻的略懂一二。 在学习知识上面,开始的时候完全是老师讲什么就做什么,感觉速度还是比较快的,跟理论也没什么差距。但是之后就觉得越来越麻烦了。从最开始的误差分析,实验报告写了很多,但是真正掌握的确不多,到最后的回转器,负阻,感觉都是理论没有很好的跟上实践,很多状况下是在实验出现象以后在去想理论。在实验这门课中给我最大的感受就是,必须要先弄清楚原理,在做实验,这样又快又好。 在养成习惯方面,最开始的时候我做实验都是没有什么条理,想到哪里就做到哪里。比如说测量三相电,有很多种状况,有中线,无中线,三角形接线法还是Y形接线法,在这个实验中,如果选取恰当的顺序就能够减少很多接线,做实验就应要有良好的习惯,就应在做实验之前想好这个实验要求什么,有几个步骤,就应怎样安排才最合理,其实这也映射到做事情,不管做什么事情,就应都要想想目的和过程,这样才能高效的完成。电原实验开始的几周上课时间不是很固定,实验报告也累计了很多,第一次感觉有那么多实验报告要写,在交实验报告的前一天很多同学都通宵了的,这说明我们都没有合理的安排好自己的时间,我就应从这件事情中吸取教训,合理安排自己的时间,完成就应完成的学习任务。这学期做的一些实验都需要严谨的态度。在负阻的实验中,我和同组的同学连了两三次才把负阻链接好,又浪费时间,又没有效果,在这个实验中,有很多线,很容易插错,所以要个性仔细。 在最后的综合实验中,我更是受益匪浅。完整的做出了一个红外测量角度的仪器,虽然不是个性准确。我和我组员分工合作,各自完成自己的模块。我负责的是单片机,和数码显示电路。这两块都是比较简单的,但是数码显示个性需要细致,由于我自己是一个粗心的人,所以数码管我检查了很多遍,做了很多无用功。 总结:电路原理实验最后给我留下的是:严谨的学习态度。做什么事情都要认真,争取一次性做好,人生没有太多时间去浪费。 实验报告总结(二): 在分子生物学实验室为期两个月的实习使我受益匪浅,我不仅仅学习到了专业知识,更重要的是收获了经验与体会,这些使我一生受用不尽,记下来与大家共勉:

题型: 1、简答题:地表温度反演20分;简答10分。 2、判断题:2 x 10 = 20分; 3、填空题:2 x 10 = 20分; 4、选择题:2 x 5 = 10分; 5、名词解释:4 x 5 = 20分。 名词解释: 1、植被指数:多光谱遥感数据经分析运算(加、减、乘、除等线性或非线性组合方式),产生某些对植被长势、生物量等有一定指示意义的数值——即所谓的“植被指数”。 2、红边:反射光谱的一阶微分最大值所对应的光谱位置,对应红光区外叶绿素吸收减少部位到近红外高反射肩之间,健康植物的光谱响应陡然增加的(量度增加约10倍)的这一窄条区。通常位于0.68~0.75μm之间。 3、遥感地学分析:建立在地学规律基础上的遥感信息处理和分析模型,其结合物理手段、数学方法和地学分析等综合型应用技术和理论,通过对遥感信息的处理和分析,获得能反映地球区域分异规律和地学发展过程的有效信息的理论方法。 4、叶面积指数LAI:单位土地面积上的柱体内全部植物叶子面积(仅叶片向上半面)之和。 5、叶倾角:叶子向上半面某一点上的法线方向与Z轴(垂直于水平面指向天空)的交角,称为叶子在该点的倾角。 6、光合有效辐射:植物光合作用是植物叶片的叶绿素吸收光能和转化光能的过程。植物光合作用所能利用的仅仅是太阳光的可见光部分(0.4~0.7um),这个波长范围的太阳辐射也称为光合有效辐射 7、劈窗算法:是利用相邻两个热红外通道来进行地表温度反演的方法,是目前为止发展最为成熟的地表温度反演算法。 8、水体富营养化:当大量的营养盐进入水体后,在一定条件下引起藻类的大量繁殖,而后在藻类死亡分解过程中消耗大量溶解氧,从而导致鱼类和贝类的死亡。这一过程称为水体的富营养化。 填空题: 1、水体的反射光谱特性三方面的贡献:包含水表面反射、水体底部物质反射及水中悬浮物质的反射3方面的贡献。 2、1.3um以外植物含水量的三个吸收波段:1.4、1.9和2.7um。 3、Landsat TM缨帽变换为6维空间,前三维分量有意义,包括: 亮度,反映总体亮度变换 绿度GVI,反映地面植物的绿度 湿度 4、对水体的反射波谱影响最大的4个组分:纯水、浮游植物、悬浮物、黄色物质。 5、维恩位移定律:地面物体的温度在300k 时,辐射峰值波长在9.7um 附近。

实验一 遥感图像统计特性 一、实验目的 掌握遥感图像常用的统计特性的意义和作用,能运用高级程序设计语言实现遥感图像统 计参数的计算。 二、实验内容 编程实现对遥感图像进行统计特性分析,均值、方差(均方差)、直方图、相关系数等。 三、实验原理 1.均值 像素值的算术平均值,反映图像中地物的平均反射强度。 11 00 (,) N M j i f i j f MN --=== ∑∑ 2.方差(或标准差) 像素值与平均值差异的平方和,反映了像素值的离散程度。也是衡量图像信息量大小的 重要参数。 11 2 00 2[(,)] N M j i f i j f MN σ--==-= ∑∑ 3. 相关系数 反映了两个波段图像所包含信息的重叠程度。f , g 分别为两个波段的图像,它们之间的 相关系数计算公式为: 11 [((,))((,))] (,)M N f g f i j e g i j e C f g ---?-= ∑∑ 其中, e f , e g 分别为两个波段图像的均值。 四、实验步骤和内容 1.实验代码 clc clear all I =imread ('m1.jpg'); whos I %显示图像信息 figure (1),imshow (I ); R =double (I (:,:,1)); G =double (I (:,:,2)); B =double (I (:,:,3)); %求图像的R,G,B 的均值,avg=mean(mean(I))

%求图像的R,G,B的均值 mean(R(:)) mean(G(:)) mean(B(:)) %求R,G,B的方差 varR=var(R(:)); varG=var(G(:)) varB=var(B(:)) %求RG,RB,GB的相关系数 corrcoef(R(:),G(:)) corrcoef(R(:),B(:)) corrcoef(B(:),G(:)) 2.原始图像 Figure 1原始图像3.实验结果 R,G,B的均值

相关文档
最新文档