圆锥曲线的第三定义

圆锥曲线的第三定义
圆锥曲线的第三定义

圆锥曲线定义的运用

圆锥曲线定义的运用》案例分析 双鸭山31 中郭秀涛 一、教学内容分析 本课选自《全日制普通高级中学教科书(必修)?数学》(人教版)高二(上),第八章(圆锥曲线方程复习课) 圆锥曲线的定义反映了圆锥曲线的本质属性, 它是无数次实践后的高度抽象. 恰当地利用定义解题, 许多时候能以简驭繁. 因此, 在学习了椭圆、双曲线、抛物线的定义及标准方程、几何性质后,我认为有必要再一次回到定义, 熟悉“利用圆锥曲线定义解题”这一重要的解题策略. 二、学生学习情况分析 我所任教班级的学生是初中开始“课程改革”后的第一届毕业生,他们在初中三年的学习中,接受的是“新课改”的理念,学习的是“新课标”下的课程、教材,由于05 年高中“课改”还未全面推行,因此如今他们面对的高中教材还是旧教材。 与以往的学生比较,这届学生的特点是:参与课堂教学活动的积极性更强,思维敏捷,敢于在课堂上发表与众不同的见解,但计算能力较差,字母推理能力较弱,使用数学语言的表达能力也略显不足。 三、设计思想 由于这部分知识较为抽象, 难以理解. 如果离开感性认识, 容易使学生陷入困境,降低学习热情. 在教学时, 我有意识地引导学生利用波利亚的一般解题方法处理习题, 针对学生练习中产生的问题, 进行点评, 强调“双主作用”的发挥. 借助多媒体动画, 引导学生主动发现问题、解决问题, 主动参与教学,在轻松愉快的环境中发现、获取新知, 提高教学效率. 四、教学目标 1.深刻理解并熟练掌握圆锥曲线的定义,能灵活应用定义解决问题;熟练掌握焦点坐标、顶点坐标、焦距、离心率、准线方程、渐近线、焦半径等概念和求法;能结合平面几何的基本知识求解圆锥曲线的方程。 2.通过对练习,强化对圆锥曲线定义的理解,培养思维的深刻性、创造性、科学性和批判性, 提高空间想象力及分析、解决问题的能力;通过对问题的不断引申, 精心设问, 引导学生学习解题的一般方法及联想、类比、猜测、证明等合情推理方法. 3.借助多媒体辅助教学, 激发学习数学的兴趣. 在民主、开放的课堂氛围中, 培养学生敢想、敢说、勇于探索、发现、创新的精神. 五、教学重点与难点: 教学重点

圆锥曲线的两个定义

1.圆锥曲线的两个定义: (1)第一定义中要重视“括号”内的限制条件:椭圆中,与两个定点的距离的和等于常数2a,且此常数2a一定要大于,当常数等于时,轨迹是线段,当常数小于时, 无轨迹;双曲线中,与两定点的距离的差的绝对值等于常数 2a,且此常数2a一定要小于,定义中的“绝对值”与 不可忽视。若,则轨迹是以为端点的两条射线,若,则轨迹不存在。若去掉定义中的绝对值则轨 迹仅表示双曲线的一支。比如: ①已知定点,在满足下列条件的平面上动点P的轨迹中是椭圆的是 A. B. C. D.(答:C); ②方程表示的曲线是_____(答:双曲线的左支) (2)第二定义中要注意定点和定直线是相应的焦点和准线,且“点点距为分子、点线距为分母”,其商即是离心率e。圆锥曲线的第二定义,给出了圆锥曲线上的点到焦点距离与此点到相应准线距离间的关系,要善于运用第二定义对它们进行相互转化。 如已知点及抛物线上一动点P(x,y),则y+|PQ|

的最小值是_____(答:2) 2.圆锥曲线的标准方程(标准方程是指中心(顶点)在原点,坐标轴为对称轴时的标准位置的方程): (1)椭圆:焦点在x轴上时 (参数方程,其中为参数),焦点在y轴上时。方程表示椭圆的充要条件是什么?(ABC≠0,且A,B,C同号,A≠B)。比如:已知方程表示椭圆,则k 的取值范围为____(答:); (2)双曲线:焦点在x轴上:,焦点在y轴上: 。方程表示双曲线的充要条件是什 么?(ABC≠0,且A,B异号)。比如:双曲线的离心率等于, 且与椭圆有公共焦点,则该双曲线的方程_______(答: ); (3)抛物线:开口向右时,开口向左时

圆锥曲线定义的应用

圆锥曲线定义的应用 一、复习提问:(写成学案的形式由学生填写) 先由学生讨论回答定义中应注意的几个问题及定义的作用 教师总结: (1)注意将定义中的常数a 2与|F 1F 2|进行比较 (2)注意双曲线定义中的绝对值对轨迹的影响 (3)第一定义给出了圆锥曲线上的点与两焦点间距离的和(或差)的关系; 第二定义是圆锥曲线上的点到焦点的距离与到相应准线的距离之间进 行转化的依据 一、 思维点拨 1、涉及到圆锥曲线上的点与两焦点问题可考虑利用第一定义解决 2、涉及焦点、准线、离心率及圆锥曲线上的点中的三者,常用第二定义解决 二、 基础练习 1、已知21,F F 是椭圆)0(122 22>>=+b a b y a x 的两个焦点,A 、B 时过焦点的弦,则2ABF ?的周长为( ) (A ) 2 a (B) 4 a (C) 8 a (D) 2 a + 2 b 2、已知两定点)0,5(1-F ,)0,5(2F ,动点P 满足-||1PF ,2||2a PF =当3=a 和 5=a 时,点P 的轨迹分别为( ) (A )两个双曲线 (B) 两条射线 (C) 双曲线的一支和一条射线 (D) 双曲线的两支

3、P 是双曲线136 642 2=-y x 上一点,21,F F 是它的两个焦点,且,17||1=PF 则=||2PF ____________ 4、椭圆116 252 2=+y x 上一点P 到椭圆左焦点的距离为3,则点P 到椭圆右准线的距离为_________,点P 到左右准线的距离比为_________。 评注:(1)第3题学生往往忽视||1PF ≥a c -导致得出错误结论 (2) 第4题可利用第二定义将点P 到左右准线的距离比转化为到相应的 两焦点的距离比 三、 典例解析 例1、相距2000m 的两个哨所A 、B 听到远出传来的炮弹爆炸声。已知当时声 速是330m/s ,在A 哨所听到爆炸声的时间比在B 哨所听到的时间相差4s , 试判断爆炸点P 在什么样的曲线上,并求出曲线方程。 思路分析:(1)什么原因导致在在A 哨所和在B 哨所听到爆炸声的时间不同 ? (2)应如何理解时间“相差”4s ? 解答:(略) 学生思考:如何改变条件轨迹变为双曲线的一支? 评注:1、有关动点与两定点的距离和(或差)为定值的轨迹问题,应利用定 义法求轨迹,并注意将定值与两定点间的距离进行比较 2、求轨迹的题目中若没有建系,则应建系设点,写出对应的轨迹方程, 若轨迹为双曲线则更应注意绝对值对轨迹的影响 练习1、在平面直角坐标系中,已知三角形ABC 中BC 边长为4,且三边AC 、 BC 、AB 长依次成等差数列,求顶点A 的轨迹方程。 思考:若增加条件∣AC ∣>∣BC ∣>∣AB ∣顶点A 的轨迹方程会如何改变 ? 练习2、已知定圆9)3(:,1)3(:222221=++=+-y x C y x C ,动圆C 与C 1、C 2 都相内切,求动圆圆心C 的轨迹方程。 思考:若将条件改为与C 2相切,动圆圆心C 的轨迹方程回如何改变 ?

圆锥曲线第二定义在一些题目中的应用(供参考)

圆锥曲线第二定义在一些题目中的应用 北京一零一中学数学组 何效员 圆锥曲线的第二定义:平面上到定点与到定直线的距离的比为常数e 的点的轨迹是圆锥曲线概念的重要组成部分,它揭示了圆锥曲线之间的内在联系,是圆锥曲线在极坐标系下 具有统一形式的基本保证。利用圆锥曲线的第二定义,在某些情形下,可以更方便的求解一些题目。 但当我们利用第二定义时,有时候会忽略一个条件,即平面上的这个定点不能在定直线上,否则得到的曲线不是圆锥曲线。如:考虑坐标平面上,到定点(1,1)与到定直线1x =的距离之比为常数e 的点的轨迹讨论如下: ① 当1e =时,点的轨迹方程为1,(1)y x =≠, 直线去掉一点; ② 当1e >时,点的轨迹方程为211(1),y e x -=±-- (1)x ≠,两条直线去掉一点; ③ 当1e <时,点的轨迹不存在。 下面我们就一些具体的题目来体会第二定义的妙用。 例1 已知椭圆22 143 x y +=内一点(1,1)P -,F 为右焦点,椭圆上有一点M 使 ||2||MP MF +的值最小,求点M 的坐标。 分析:若按常规思路,设点(,)M x y ,右焦点(1,0)F , 则2222 ||2||(1)(1)2(1)MP MF x y x y +=-+++-+, 求其最小值无疑是困难,观察2||MF ,设M 点到右准线的距离d , ||1 2 MF c e d a ===,2||MF d ∴=,这样 ||2||MP MF +就转化为在椭圆上寻找一点到(1,1)P -的距离与到直线2 4a x c == M P F M x = 4 O y x

的距离和最小,当且仅当MP ⊥直线4x =时,点M 在点P 和直线4x =之间时取得,此时M 的坐标为26 ( ,1)3 -. 例2 已知椭圆方程为22 221(0)y x a b a b +=>>,求与这个椭圆有公共焦点的双曲线,使得 它们的交点为顶点的四边形的面积最大,并求出相应的四边形的顶点坐标。 分析:本体若通过椭圆与双曲线方程联立求解交点坐标, 继而讨论四边形面积的表达式,求出使面积最大时 的双曲线方程,计算会十分麻烦,考虑到椭圆和双 曲线有共同的焦点,不妨利用第二定义求解。 设所求双曲线方程为 22 2 21(,0)y x m n m n -=>,其中 22222c a b m n =-=+,设两曲线在第一象限内的交点111(,)P x y ,12,l l 分别为椭圆,双曲线的上准线,过1P 作11PQ l ⊥于Q ,1 2PR l ⊥于R , 22 1211111||||||||||c a c m PF e PQ e PR y y a c m c === -=-, 2211()()a m m y a y c c ∴-=-,解得 1am y c =,代入椭圆方程22221y x a b +=,得 1bn x c = ,利用双曲线与椭圆的对称性知 22 1122 4422abmn m n S x y ab ab c c +==≤?=,等号当且仅当22m n c ==时取得,故所求双曲线方程为22 2 2 2 a b y x --=,相应的四个顶点坐标为22(,)b a ±±. 例3 已知椭圆()22 2210x y a b a b +=>>的两个焦点分别为()1,0F c -和()2,0F c ,过点

圆锥曲线的定义及其应用

圆锥曲线的定义及其应用 一、教学目标: 1.进一步明确圆锥曲线定义,并用定义解决有关问题; 2.通过发散思维和创新思维的训练,培养学生的探究能力; 3.培养学生用运动变化的观点分析和解决问题. 二、教学重点、难点:圆锥曲线定义的灵活应用. 三、教学方法:教师引导启发与学生自主探索相结合. 四、教学过程: (一)引入: 问题1:平面内到定点12(3,0),(3,0)F F -的距离之和为8的点P 的轨迹是什么? 121286PF PF F F +=>= ∴P 的轨迹是以12(3,0),(3,0)F F -为焦点的椭圆,方程是22 1167 x y + = 问:(1)若到两定点距离之和为改为6,则点P 的轨迹是什么? ( 以12,F F 为端点的线段) (2)若改为到两定点距离之差为2,则P 点的轨迹是什么? (以12,F F 为焦点的双曲线的一支) (3)若改为到两定点距离之差为6,则P 点的轨迹是什么? (以12,F F 为端点的射线) (通过提问,让学生对圆锥曲线的第一定义进行回顾,并且进一步明确定义中所含的限制条件) 由学生总结椭圆和双曲线的定义 问题2:已知定点F (1,0),定直线:1l x =-,设一动点P 到直线l 的距离为d ,若有PF d =,则P 点的轨迹是什么? (F l ?,∴P 点的轨迹是以F (1,0)为焦点,以直线:1l x =-为准线的抛物线。) 问:(1)若点F 改为(-1,0),则点P 的轨迹是什么? (2)当 PF d 为何值时,所求轨迹是椭圆? (3)当PF d 为何值时,所求轨迹是双曲线? (通过提问,让学生对圆锥曲线的统一定义进行回顾和巩固,注意圆锥曲线第二定义的联系和区别) 由学生总结圆锥曲线的统一定义,。

圆锥曲线第三定义及扩展

圆锥曲线第三定义 令狐采学 在椭圆)0(122 22>>=+b a b y a x 中,A ,B 两点关于原点对称,P 是椭圆上异于A ,B 两点的任意一点,若PB PA k k ,存在,则 2 2 a b k k PB PA -=?。(反之亦成立) 在双曲线)0,0(122 22>>=-b a b y a x 中,A ,B 两点关于原点对称,P 是椭圆上异于A ,B 两点的任意一点,若PB PA k k ,存在,则 22 a b k k PB PA =?。(反之亦成立) ★焦点在Y 轴上时,椭圆满足2 2 b a k k PB PA -=?,双曲线满足 22b a k k PB PA =? 例、已知椭圆)0(122 22>>=+b a b y a x 的长轴长为 4,若点P 是椭圆上 任意一点,过原点的直线l 与椭圆相交与M 、N 两点,记直线PM 、PN 的斜率分别为k1、k2。若k1?k2=4 1 -,则椭圆的方程为。 变式:

1、设点 A , B 的坐标为(-2,0),(2,0),点P 是曲线 C 上任 意一点,且直线PA 与PB 的斜率之积为4 1 -,则曲线C 的方程为。 2、设点 P 是曲线C 上任意一点,坐标原点是O ,曲线C 与X 轴 相交于两点M (-2,0), N (2,0),直线PM ,PN 的斜率之积为4 3 -,则OP 的最小值是。 3、已知ABC ?的两个顶点坐标分别是(-8,0),(8,0),且AC ,BC 所在直线斜率之积为m (0≠m ),求顶点C 的轨迹。 4、P 是双曲线)0,0(122 22>>=-b a b y a x 上一点,M ,N 分别是双曲线的 左右顶点,直线PM ,PN 的斜率之积为5 1 ,则双曲线离心率为。 5、已知椭圆12 322=+y x 的左右顶点分别是A 、B ,M 是椭圆上异于 A 、 B 的动点,求证:MB MA k k ?为定值。 6、平面内与两定点1(,0)A a -,2(,0)A a (0)a >连续的斜率之积等于非零常数m 的点的轨迹,加上1A 、2A 两点所成的曲线C 可以是圆、椭圆成双曲线.求曲线C 的方程,并讨论C 的形状与m 值得关系; 第三定义的应用 例、椭圆14 22 =+y x 的左右顶点分别是 A , B ,点S 是椭圆上位于 X 轴上方的动点,直线AS ,BS 与直线3 10 := x l 分别交于点M 、N ,

圆锥曲线专题复习.doc

锥曲线专题训练 一、定义 【焦点三角形】 1、已知椭圆一 +八=1的左右焦点为E、F2, P为椭圆上一点, 9 4 (1) 若NRPF2=90°,求△EPF?的面积 (2) 若ZF1PF2=60°,求的面积 2 2 2、已知双曲线土-匕=1的左右焦点为E、F2, P为双曲线上一点, (1) 若NRPF2=90°,求△EPF?的面积 (2) 若ZF1PF2=60°,求Z^PF?的面积 2 2 3、鸟,氏是椭圆二+七=1(〃>。>0)的两个焦点,以鸟为圆心且过椭圆中心的 a~ b~ 圆与椭圆的一个交点为M。若直线&M与圆鸟相切,求该椭圆的离心率。 Y2 v2 4、椭圆瓦+ *_ = 1的焦点为与、「2。点P为其上的动点,当PF2为钝角时。点P横坐标的取值范围为多少? V-2 V2V-2 V2 5、椭圆—+ J(。>。>0)和双曲线、- —(m, n> 0)有公共的焦点F】(- 。,0)、 a~ b~〃广 F2(C,0),P为这两曲线的交点,求|商|?|户尸2|的值. 二、方程 已知圆亍+y2=9,从圆上任意一点P向X轴作垂线段PPL点M在PP,上,并且两=2布,求点M的轨迹。 2.3【定义法】(与两个定圆相切的圆心轨迹方程) :—动圆与两圆:『+ ,,2 =]和尤2 * ,2 _8x+]2 = 0都外切,#1勃圆的圆心 的轨迹方程是什么?AA

题型1:求轨迹方程例1. (1) 一动圆与圆J + y2+6x+5 = 0外切,同时与圆x2 + r-6x-91 = 0内切,

求动圆圆心M的轨迹方程,并说明它是什么样的曲线。. (2)双曲线y-/ =1有动点、P,月,%是曲线的两个焦点,求APgE的重心M的轨迹方程。 3、给出含参数的方程,说明表示什么曲线。 已知定圆G: x2 + y2 =9,圆C2:x2+6x+y2 =0 三、直线截圆锥曲线得相交弦(求相交弦长,相交弦的中点坐标)(结合向量)直线与圆锥曲线相交的弦长计算(1)要熟练利用方程的根与系数关系来计算弦 长.弦长公式: (2)对焦点弦要懂得用焦半径公式处理;对中点弦问题,还要掌握“点差法”. 3. 圆锥曲线方程的求法有两种类型:一种是已知曲线形状,可以用待定系数法求解;另一种是根据动点的几何性质,通过建立适当的坐标系来求解,一般是曲线的类型未知.主要方法有: ?直接法、定义法、相关点法、参数法、几何法、交轨法等.在求轨迹方程中要仔细检查“遗漏”和“多余”. 4. 圆锥曲线是用代数方法来研究几何问题,也就是说,它是处于代数与几何的交汇处,因此要处理好其综合问题,不仅要理解和掌握圆锥曲线的有关概念、定理、公式,达到灵活、综合运用,还要善于综合运用代数的知识和方法来解决问题,并注意解析法、数形结合和等价化归的数学思想的应用. 1、已知椭圆= i,过左焦点k倾斜角为£的直9 6 线交椭圆于A、8两点。求:弦48的长,左焦点K到48 中点〃的长。 2、椭圆以2+如2=1与直线对尸住0相交于爪8两点,C是线段花的中点.若

高中数学学案:圆锥曲线的定义在解题中的应用

高中数学学案:圆锥曲线的定义在解题中的应用 1. 了解圆锥曲线的统一定义,能够运用定义求圆锥曲线的标准方程. 2. 理解圆锥曲线准线的意义,会利用准线进行相关的转化和计算. 1. 阅读:选修11第52~53页(理科阅读选修21相应内容);阅读之前先独立书写出圆锥曲线的统一定义,并尝试根据圆锥曲线的统一定义推导出椭圆方程. 2. 解悟:①写出圆锥曲线的统一定义,写出椭圆x 2a 2+y 2b 2=1(a>b>0)和双曲线x 2a 2-y 2 b 2=1(a>0,b>0)的准线方程;②椭圆、双曲线、抛物线各有几条准线?有什么特征? 3. 在教材上的空白处完成选修11第54页练习第2题(理科完成选修21相应任务). 基础诊断 1. 点P 在椭圆x 225+y 2 9=1上,它到左焦点的距离是它到右焦点距离的两倍,则点P 到左准线 的距离为 25 3 . 解析:设椭圆的左,右焦点分别为F 1,F 2,由题意知PF 1+PF 2=2a =10,PF 1=2PF 2,所以PF 1=203,PF 2=103.因为椭圆x 225+y 29=1的离心率为e =45,所以点P 到左准线的距离d =PF 1e =20 345=253. 2. 已知椭圆x 225+y 29=1上一点的横坐标为2,则该点到左焦点的距离是 33 5 . 解析:椭圆x 225+y 29=1,则a =5,b =3,c =4,所以离心率e =c a =4 5.由焦半径公式可得该点到左 焦点的距离为a +ex =5+45×2=33 5. 3. 焦点在x 轴上,且一个焦点到渐近线的距离为3,到相应准线的距离为9 5的双曲线的标准 方程为 x 216-y 2 9=1 . 解析:设双曲线的方程为x 2a 2-y 2b 2=1,焦点为(-c,0),(c,0),渐近线方程为y =±b a x,准线方程为x =±a 2c ,由题意得焦点到渐近线的距离d =bc a 2+ b 2=bc c = b =3,所以b =3.因为焦点到相应准线的

圆锥曲线-基本定义-第一定义

学术正刊 圆锥曲线 基本定义 高中 1 LeO 著 第一定义 定义1.0(椭圆第一定义):平面内到两定点F 1、F 2的距离的和等于常数2a (2a >|F 1F 2|)的动点P 的轨迹称之为椭圆。即:|PF 1|+|PF 2|=2a 。 定义1.1(椭圆焦点):两定点F 1、F 2称作椭圆的左右焦点。 定义1.2(椭圆焦距):两焦点距离|F 1F 2|=2c 称作椭圆的焦距。 解:如图1,建立直角坐标系,设两焦点坐标F 1(?c,0)、F 2(c,0),动点坐标P (x,y ),依题意有: √(x +c )2+y 2+√(x ?c )2+y 2=2a ??1? ?1?式移项后再平方: (x +c )2+y 2=4a 2?4a√(x ?c )2+y 2+(x ?c )2+y 2 继续化简: (a 2?c 2)x 2+a 2y 2=a 2(a 2?c 2) ??2? ?2?式中令b 2=a 2?c 2,化简得: x 2a 2+y 2 b 2 =1 证毕。 图1 图2 定义2.0(双曲线第一定义):平面内到两定点F 1、F 2的距离的差等于常数2a (2a <|F 1F 2|)的动点P 的轨迹称之为双曲线。即:||PF 1|?|PF 2||=2a 。 定义2.1(双曲线焦点):两定点F 2、F 1称作双曲线的左右焦点。 定义2.2(双曲线焦距):两焦点距离|F 1F 2|=2c 称作双曲线的焦距。 解:如图2,建立直角坐标系,设两焦点坐标F 2(?c,0)、F 1(c,0),动点坐标P (x,y ),依题意有: √(x +c )2+y 2?√(x ?c )2+y 2=±2a ??1? ?1?式移项后再平方: (x +c )2+y 2=4a 2±4a√(x ?c )2+y 2+(x ?c )2+y 2 继续化简: (c 2?a 2)x 2?a 2y 2=a 2(c 2?a 2) ??2? ?2?式中令b 2=c 2?a 2,化简得: x 2a 2?y 2 b 2 =1 证毕。

圆锥曲线定义的运用(精)

圆锥曲线定义的运用 一、教学内容分析 本课选自《全日制普通高级中学教科书(必修) 数学》(人教版)高二 (上),第八章(圆锥曲线方程复习课) 圆锥曲线的定义反映了圆锥曲线的本质属性,它是无数次实践后的高度抽象.恰当地利用定义解题,许多时候能以简驭繁.因此,在学习了椭圆、双曲线、抛物线的定义及标准方程、几何性质后,我认为有必要再一次回到定义,熟悉“利用圆锥曲线定义解题”这一重要的解题策略. 二、学生学习情况分析 我所任教班级的学生是初中开始“课程改革”后的第一届毕业生,他们在初中三年的学习中,接受的是“新课改”的理念,学习的是“新课标”下的课程、教材,由于05年高中“课改”还未全面推行,因此如今他们面对的高中教材还是旧教材。 与以往的学生比较,这届学生的特点是:参与课堂教学活动的积极性更强,思维敏捷,敢于在课堂上发表与众不同的见解,但计算能力较差,字母推理能力较弱,使用数学语言的表达能力也略显不足。 三、设计思想 由于这部分知识较为抽象,难以理解.如果离开感性认识,容易使学生陷入困境,降低学习热情.在教学时,我有意识地引导学生利用波利亚的一般解题方法处理习题, 针对学生练习中产生的问题,进行点评,强调“双主作用”的发挥.借助多媒体动画,引导学生主动发现问题、解决问题,主动参与教学,在轻松愉快的环境中发现、获取新知,提高教学效率. 四、教学目标 1.深刻理解并熟练掌握圆锥曲线的定义,能灵活应用定义解决问题;熟练掌握焦点坐标、顶点坐标、焦距、离心率、准线方程、渐近线、焦半径等概念和求法;能结合平面几何的基本知识求解圆锥曲线的方程。 2.通过对练习,强化对圆锥曲线定义的理解,培养思维的深刻性、创造性、科学性和批判性,提高空间想象力及分析、解决问题的能力;通过对问题的不断引申,精心设问,引导学生学习解题的一般方法及联想、类比、猜测、证明等合情推理方法. 3.借助多媒体辅助教学,激发学习数学的兴趣.在民主、开放的课堂氛围中,培养学生敢想、敢说、勇于探索、发现、创新的精神. 五、教学重点与难点: 教学重点 1.对圆锥曲线定义的理解 2.利用圆锥曲线的定义求“最值” 3.“定义法”求轨迹方程 教学难点:

圆锥曲线定义及其应用

圆锥曲线定义及其应用 授课人:杨海芳 一、教学目标 1、 知识目标:能掌握圆锥曲线的二种定义及熟练灵活地应用定义求轨迹方程,距离,最值等问题。 2、 能力目标:能够准确地运用圆锥曲线的定义来解决实际问题,培养学生应用意识,提高分析,解决问题的能力。 二.、难点 圆锥曲线定义的灵活应用 三、教具 多媒体教学课件 四、教学过程 第一环节:经典回顾 圆锥曲线的定义:第一定义。第二定义。 第二环节:定义的应用 1.距离问题 例1、椭圆 上一点P 到右焦点F2的距离为7,求P 到左焦点的距离 思考: 变式1:求点P 到左准线的距离? 变式2:求点P 到右准线的距离? 2.坐标问题 例2.求抛物线y2=12x 上与焦点的距离等于9的点的坐标 由例2请大家在椭圆或双曲线上设计一道题目??? 注意:1、涉及椭圆双曲线上的点与两个焦点构成的三角形问题,常用第一定义来解决; 116252 2=+y x y F2 P X O F1 L1 L2 P2 P1 · · F M l N x o y

2、涉及焦点、准线、离心率、圆锥曲线上的点中的三者,常用统一定义解决问题. 第三环节:探究引申 1.轨迹问题 例3、已知动圆A 和圆B :(x+3)2+y2=81内切,并和圆C :(x-3)2+y2=1外切,求动圆圆心A 的轨迹方程。 分析:圆内外切时圆心与切点有何关系? 变式1:求三角形ABC 面积的最大值; 2.最值问题 变式2已知椭圆 中B 、C 分 别为其 左、右焦点和点M (2,2) ,试在椭圆上找一点A ,使: (1) 取得最小值; 点评: 1、在求轨迹方程时先利用定义判断曲线形状,可避免繁琐的计算; 2、一般,设A 为曲线含焦点F 的区域内一点在曲线上求一点P ,使|PF|+1/e|PA| 的值最小,都可以过点A 作与焦点F 相应准线的垂线,则垂线段与曲线的交点即为所求之点。 四、小结反思: 1、本节的重点是掌握圆锥曲线的定义在解题中的应用,要注意两个定义的区别和联系。 2、利用圆锥曲线的定义解题时,要注意曲线之间的共性和个性 3、利用圆锥曲线的定义解题时,要用数形结合、化归思想,以得到解题的最佳途径 4、有些最值问题要灵活地利用圆锥曲线的定义将折线段和的问题化归为平面几何中的直线段最短来解决。 y B C O x A AB AM 35+1162522=+y x 变式3:已知椭圆 中B 、C 分别为其 左、右焦点;又点 M ,试在椭圆上找一点 A,使: 取得最小值. 1162522=+y x )2,2(AC AM +

解析几何专题03圆锥曲线的定义方程及几何性质

解析几何专题03圆锥曲线的定义、方程及几何性质 学习目标 (1)理解圆锥曲线的定义,并能正确运用圆锥曲线的定义解决一些简单的问题; (2)掌握圆锥曲线的标准方程,并能熟练运用“待定系数法”求圆锥曲线的方程; (3)能根据圆锥曲线的方程研究圆锥曲线的一些几何性质(尤其是焦点、离心率以及双曲线的渐近线等)。 知识回顾及应用 1.圆锥曲线的定义 (1)椭圆 (2)双曲线 (3)抛物线 2.圆锥曲线的方程 (1)椭圆的标准方程 (2)双曲线的标准方程 (3)抛物线的标准方程 3.圆锥曲线的几何性质 (1)椭圆的几何性质 (2)双曲线的几何性质 (3)抛物线的几何性质 4.应用所学知识解决问题: 【题目】已知椭圆的两个焦点坐标分别是(-2,0),(2,0),并且经过点53 (,)22 -, 求椭圆的方程。 答案:22 1106 x y + = 【变式1】写出适合下列条件的椭圆的标准方程: (1)离心率14 e b = =,焦点在x 轴上; (2)4,a c ==焦点在y 轴上; (3)10,a b c +== 答案:(1)22116x y +=;(2)22 116y x +=;(3)2213616x y + =或2213616 y x +=。 【变式2】写出适合下列条件的椭圆的标准方程: (1)3a b =,且经过点(3,0)P ; (2)经过两点3(2-。 答案:(1)22 19x y +=或221819y x +=;(2)2214 x y +=。

问题探究(请先阅读课本,再完成下面例题) 【类型一】圆锥曲线的方程 例1.已知抛物线、椭圆和双曲线都经过点()1,2M ,它们在x 轴上有共同焦点,椭圆 和双曲线的对称轴是坐标轴,抛物线的顶点为坐标原点.求这三条曲线的方程。 解:设抛物线方程为()220y px p =>,将()1,2M 代入方程得2p = 24y x ∴= 抛物线方程为: 由题意知椭圆、双曲线的焦点为()()211,0,1,0,F F -∴ c=1 对于椭圆,1222a MF MF =++(2 2 2222211321 a a b a c ∴=+∴=+=+∴=-=+∴= 椭圆方程为: 对于双曲线,1222a MF MF '=-= 2222221321 a a b c a '∴='∴=-'''∴=-=∴= 双曲线方程为: 练习:1.在平面直角坐标系xOy 中,椭圆C 的中心为原点,焦点12,F F 在x 轴上,离心率为 2 。过1F 的直线L 交C 于,A B 两点,且2ABF 的周长为16,那么C 的方程为 。 答案:22 1168 x y + =求圆锥曲线的方程主要采用“待定系数法” 。需要注意的是在求解此类问题时应遵循“先定位,再定量”的原则。注意:当“焦点所在轴不定”时,要有“分类讨论”意识,

圆锥曲线的定义及几何性质

圆锥曲线的定义及几何性质 1. 椭圆 222 2 1x y a b + =和 222 2 x y k a b + =(0)k >一定具有( ) A .相同的离心率 B .相同的焦点 C .相同的顶点 D .相同的长轴长 2. 已知1F 、2F 是椭圆的两个焦点,过1F 且与椭圆长轴垂直的直线交椭圆于A 、B 两点,若2 ABF ?是正三角形,则这个椭圆的离心率是( ) A . 2 B . 3 C 2 D 3 3. 已知1F 、2F 是椭圆的两个焦点,满足120M F M F ?= 的点M 总在椭圆内部,则椭圆离心率的 取值范围是( )A .(01), B .1(0]2 , C .(02 D .1)2 4. 过椭圆 222 2 1(0) x y a b a b + =>>的左焦点1F 作x 轴的垂线交椭圆于点P ,2F 为右焦点,若 1260F PF ∠=°,则椭圆的离心率为( ) A . 2 B . 3 C .12 D .1 3 5. 已知椭圆 2222 1x y a b +=的左、 右焦点分别为1F 、2F ,且12||2F F c =,点A 在椭圆上,1120AF F F ?= ,2 12AF AF c ?= ,则椭圆的离心率e = ( ) A . 3 B . 2 C 2 D 2 6. 已知P 是以12F F ,为焦点的椭圆 222 2 1(0)x y a b a b + =>>上的一点,若 120 PF PF ?= , 121tan 2 PF F ∠= ,则此椭圆的的离心率为( ) A . 12 B . 23 C .1 3 D 3 7. 已知椭圆 2 2 15 x y m + = 的离心率e 5 =m 的值为( ) A .3 B . 253 或3 C . D 8. 椭圆的长轴为12A A ,B 为短轴的一个端点,若∠012120A BA =,则椭圆的离心率为( ) A . 12 B 3 C 3 D 2 9. 椭圆 222 2 1(0)x y a b a b + =>>的四个顶点为A 、B 、C 、D ,若四边形ABC D 的内切圆恰好过椭 圆的焦点,则椭圆的离心率是( ) A . 2 B . 4 C 2 D 4 10. 设12F F ,分别是椭圆 222 2 1x y a b + =(0a b >>)的左、右焦点,若在直线2 :a l x c = 上存在P (其 中c =),使线段1PF 的中垂线过点2F ,则椭圆离心率的取值范围是( ) A .0, 2? ?? B .0, 3? ? ? C .,12????? D .,13? ???? 11. 椭圆上一点A 看两焦点的视角为直角,设1AF 的延长线交椭圆于B ,又2||||AB AF =,则椭圆的 离心率e =( ) A .2-+ B . C 1- D 12. 椭圆() 222 2 10x y a b a b + =>>的右焦点F ,其右准线与x 轴的交点为A ,在椭圆上存在点满足线 段AP 的垂直平分线过点F ,则椭圆离心率的取值范围是( ) 13. A .02? ? ? B .102? ? ?? ?, C .)11 , D .112 ???? ??, 14. 已知椭圆() 222 2 10x y a b a b + =>>,A 是椭圆长轴的一个端点,B 是椭圆短轴的一个端点,F 为 椭圆的一个焦点. 若AB BF ⊥,则该椭圆的离心率为 ( ) 224416. 在ABC △中,A B B C =,7cos 18 B =- .若以A B ,为焦点的椭圆经过点C ,则该椭圆的离 心率e = . 17. 在平面直角坐标系xOy 中,设椭圆 222 2 1(0) x y a b a b +=>>的焦距为2c ,以点O 为圆心,a 为 半径作圆M .若过点20a P c ?? ? ?? ,作圆M 的两条切线互相垂直,则椭圆的离心率为 . 18. 直线:220l x y -+=过椭圆的左焦点1F 和一个顶点B ,该椭圆的离心率为_________. 19. 设12(0)(0)F c F c -,,,是椭圆 222 2 1(0) x y a b a b + =>>的两个焦点,P 是以12F F 为直径的圆与椭 圆的一个交点,若12 21 2PF F PF F ∠=∠,则椭圆的离心率等于________. 20. 椭圆 222 2 1(0)x y a b a b + =>>的半焦距为c ,若直线2y x =与椭圆一个交点的横坐标恰为c ,椭圆 的离心率为_________ 21. 已知1F ,2F 是椭圆的两个焦点,过1F 且与椭圆长轴垂直的直线交椭圆于A B ,两点,若 2ABF △是正三角形,则这个椭圆的离心率是_________.

圆锥曲线的定义及其应用(精)

圆锥曲线的定义及其应用 教学目标: 1.进一步明确圆锥曲线定义,并用定义解决有关问题; 2.通过发散思维和创新思维的训练,培养学生的探究能力; 3.培养学生用运动变化的观点分析和解决问题。 教学重点、难点:圆锥曲线定义的灵活应用。 教学方法:教师引导启发与学生自主探索相结合。 教学过程: 一.引入: 问题1:到定点12(2,0),(2,0) F F -的距离之和为8的点P 的轨迹是什么? 121284 PF PF F F +=>= ∴P 的轨迹是以12(2,0),(2,0)F F -为焦点的椭圆,方程是22 11614x y += 问:(1)若到两定点距离之和为改为4,则点P 的轨迹是什么? ( 以 12 ,F F 为端点的线段) (2)若改为到两定点距离之差为2,则P 点的轨迹是什么? (以 12 ,F F 为焦点的双曲线的一支) (3)若改为到两定点距离之差为4,则P 点的轨迹是什么? (以 12 ,F F 为端点的射线) (通过提问,让学生对圆锥曲线的第一定义进行回顾,并且进一步明确定义中所含的限制条件) 由学生总结椭圆和双曲线的定义(打出幻灯片) 问题2:已知定点F (1,2),定直线:210l x y +-=,设一动点P 到直线l 的距离为d ,若有PF d =,则P 点 的轨迹是什么? ( F l ?,∴P 点的轨迹是以F (1,2)为焦点,以直线:210l x y +-=的抛物线。) 问:(1)若点F 改为(3,-1),则点P 的轨迹是什么? (2)当PF d 为何值时,所求轨迹是椭圆? (3)当PF d 为何值时,所求轨迹是双曲线? (通过提问,让学生对圆锥曲线的统一定义进行回顾和巩固,注意圆锥曲线第二定义的联系和区别) 由学生总结圆锥曲线的统一定义,打出幻灯片。 二.圆锥曲线定义的应用 (一)利用圆锥曲线定义求轨迹 例1.设动圆M 过定点A (-3,0),并且在定圆B :22 (3)64x y -+=的内部与其内切,试求动圆圆心M 的轨迹方程。

圆锥曲线的第三定义

圆锥曲线的第三定义及运用 一、 椭圆和双曲线的第三定义 1. 椭圆 在椭圆()22 22C 10x y a b a b +=:中,A 、B 是关于原点对称的两点,P 是椭圆上 异于A 、B 的一点,若PA PB k k 、存在,则有:2 2 2=1=PA PB b k k e a ?-- 证明:构造△PAB 的PA 边所对的中位线MO ,PA MO k k =,由点差法结论: 2 2 2=1=MO PB b k k e a ?--知此结论成立。 2. 双曲线 在双曲线22 22C 1x y a b -=:中,A 、B 是关于原点对称的两点,P 是椭圆上异于A 、

B 的一点,若PA PB k k 、存在,则有:2 2 2 =1=PA PB b k k e a ?- 证明:只需将椭圆中的2b 全部换成2b -就能将椭圆结论转换成双曲线的结论。 二、 与角度有关的问题 例题一:已知椭圆()22 22C 10x y a b a b +=:的离心率3 2 e = ,A 、B 是椭圆的左右顶点,为椭圆与双曲线22 178x y -=的一个交点,令PAB=APB=αβ∠∠, ,则()cos =cos 2β αβ+ .

解答: 令=PBx γ∠,由椭圆第三定义可知:21tan tan =1=4 e αγ?-- ()()()cos cos cos cos sin sin 1tan tan 3=== cos 2cos cos cos sin sin 1tan tan 5 γαβ γαγααγαβγαγαγααγ-++?=+++-? 点评: 其实所谓的双曲线方程只是一个障眼法,并不影响题目的解答。两顶点一动点的模型要很快的联想到第三定义,那么剩下的任务就是把题目中的角转化为两直线的倾斜角,把正余弦转化为正切。题目中的正余弦化正切是三角函数的常见考点☆。 变式1-1:(石室中学2015级高二下4月18日周末作业) 已知双曲线22C 2015x y -=:的左右顶点分别为A 、B ,P 为双曲线右支一点,且 =4PAB APB ∠∠,求=PAB ∠ . 解答: 令=02PAB πα?? ∠∈???? ,,=02PBA π β?? ∠∈???? ,,则=5βα,由双曲线的第三定义知: 2tan tan =tan tan5=1=1e αβαα??- 则:1tan = =tan 5=5=tan52212πππαααααα?? -?-? ???

专题-圆锥曲线与方程(教师)

专题-圆锥曲线与方程 抓住3个高考重点 重点1 椭圆及其性质 1.椭圆的定义:椭圆的第一定义:对椭圆上任意一点M 都有1212||||2||2MF MF a F F c +=>= 椭圆的第二定义:对椭圆上任意一点M 都有 || ,(01)MF e e d =<< 2.求椭圆的标准方程的方法 (1)定义法:根据椭圆定义,确定2 2 ,a b 的值,再结合焦点位置,直接写出椭圆的标准方程. (2)待定系数法:根据椭圆焦点是在x 轴还是在y 轴上,设出相应形式的标准方程,然后根据条件确定关于,,a b c 的方程组,解出2 2 ,a b ,从而写出椭圆的标准方程. 3.求椭圆的标准方程需要注意以下几点? (1)如果椭圆的焦点位置不能确定,可设方程为2 2 1(0,0,)Ax By A B A B +=>>≠或22 221x y m n += (2)与椭圆2222 221()x y m n m n +=≠共焦点的椭圆方程可设为22222 21(,)x y k m k n m k n k +=>->-++ (3)与椭圆22221(0)x y a b a b +=>>有相同离心率的椭圆方程可设为22 122x y k a b +=(10k >,焦点在x 轴上)或 22 222 y x k a b +=(20k >,焦点在y 轴上) 4.椭圆的几何性质的应用策略 (1)与几何性质有关的问题要结合图形进行分析,即使不画出图形,思考时也要联想到图形:若涉及顶点、焦点、长轴、短轴等椭圆的基本量,则要理清它们之间的关系,挖掘出它们之间的联系,求解自然就不难了. (2)椭圆的离心率2 21c b e a a ==-当e 越接近于1时,椭圆越扁,当e 越接近于0时, 椭圆越接近于圆, 求椭圆的标准方程需要两个条件,而求椭圆的离心率只需要根据一个条件得到关于,,a b c 的齐次方程,再结合2 2 2 a b c =+即可求出椭圆的离心率 [高考常考角度] 角度1若椭圆12222=+b y a x 的焦点在x 轴上,过点)2 1,1(作圆12 2=+y x 的切线,切点分别为A ,B ,直线AB 恰好 经过椭圆的右焦点和上顶点,则椭圆方程是 14 52 2=+y x . 解析:方法一:设过点)21,1(的直线方程为:当斜率存在时,1 (1)2 y k x =-+,即22120kx y k -+-=

圆锥曲线的定义考点大全

圆锥曲线定义、标准方程及性质 一.椭圆 定义Ⅰ:若F 1,F 2是两定点,P 为动点,且21212F F a PF PF >=+ (a 为常数)则P 点的轨迹是椭圆。 定义Ⅱ:若F 1为定点,l 为定直线,动点P 到F 1的距离与到定直线l 的距离之比为常数e (0>b a 取值范围:}{a x a x ≤≤-, }{b y b x ≤≤- 长轴长=a 2,短轴长=2b 焦距:2c 准线方程:c a x 2 ±= 焦半径: )(21c a x e PF +=,)(2 2x c a e PF -=,2 12PF a PF -=,c a PF c a +≤≤-1等(注 意:涉及焦半径时①用点P 坐标表示,②第一定义,第二定义。) 注意:(1)图中线段的几何特征:=11F A c a F A -=22,=21F A c a F A +=12 =11F B a F B F B F B ===122221 ,222122b a B A B A += =等等。顶点与准线距离、 焦点与准线距离分别与c b a ,,有关。 (2)21F PF ?中经常利用余弦定理....、三角形面....积公式... 将有关线段1PF 、2PF 、2c ,有关角2 1PF F ∠结合起来,建立1 PF +2PF 、1 PF ? 2PF 等关系 (3)椭圆上的点有时常用到三角换元:?? ?θ =θ =sin cos b y a x ; (4)注意题目中椭圆的焦点在x 轴上还是在y 轴上,请补充当焦点在y 轴上时,其相应的性质。 二、双曲线 (一)定义:Ⅰ若F 1,F 2是两定点,21212F F a PF PF <=-(a 为常数),则动点P 的轨迹是双曲线。 Ⅱ若动点P 到定点F 与定直线l 的距离之比是常数e (e>1),则动点P 的轨迹是双曲线。 (二)图形:

相关文档
最新文档