物理人教版选修3-4学案:第十一章第1节简谐运动 Word版含解析(2篇)

物理人教版选修3-4学案:第十一章第1节简谐运动 Word版含解析(2篇)
物理人教版选修3-4学案:第十一章第1节简谐运动 Word版含解析(2篇)

1简谐运动

课堂合作探究

问题导学

一、弹簧振子

活动与探究1

1.如图甲中弹簧振子水平放置时,思考其在平衡位置的受力情况怎样?乙图中竖直放置时又是怎样的?

2.物理模型是从生活实际中抽象出来的理想模型,它是忽略次要因素、突出主要因素而形成的。在弹簧振子模型中,忽略的次要因素是什么?突出的主要因素又是什么?与同学讨论分析后得出结论。

迁移与应用1

如图所示,弹簧下端悬挂一钢球,上端固定,它们组成一个振动的系统,用手把钢球向上托起一段距离,然后释放,钢球便上下振动起来,若以竖直向下为正方向,下列说法正确的是()

A.钢球运动所能达到的最低处为平衡位置

B.钢球原来静止时的位置为平衡位置

C.钢球振动到距原静止位置下方3 cm处时位移为3 cm

D.钢球振动到距原静止位置上方2 cm处时位移为2 cm

1.弹簧振子是一种理想化模型,应满足以下条件:

(1)质量:弹簧质量比振子(小球)质量小得多,可以认为质量只集中于振子(小球)上;

(2)体积:弹簧振子中与弹簧相连的小球的体积要足够小,可以认为小球是一个质点;

(3)阻力:在振子振动过程中,忽略弹簧与小球受到的各种阻力;

(4)弹性限度:振子从平衡位置拉开的最大位移在弹簧的弹性限度内。

2.物体原来静止时的位置为其平衡位置。振动物体的位移都是以平衡位置为参考点,物体在平衡位置正方向上,位移为正,反之为负。

二、简谐运动及其图象

活动与探究2

1.回忆先前学过的位移的概念,然后再分析一下振动系统中的位移又有什么特殊的地方。

2.教材中介绍了哪些获取振动系统位移—时间图象的方法?

3.教材记录振动的绘图中,为什么都要匀速拉动纸带?

4.试探究简谐运动的位移方向和速度方向特点。

迁移与应用2

如图所示是用频闪照相的方法获得的弹簧振子的位移—时间图象,下列有关该图象的说法正确的是()

A.该图象的坐标原点建立在弹簧振子的平衡位置

B.从图象可以看出小球在振动过程中是沿t轴方向移动的

C.为了显示小球在不同时刻偏离平衡位置的位移,应让底片沿垂直t轴方向匀速运动D.图象中小球的疏密显示出相同时间内小球位置变化快慢不同

1.振动图象描述的是振动质点的位移随时间的变化关系,而非质点运动的轨迹。比如弹簧振子沿一直线做往复运动,其轨迹为一直线,而它的振动图象却是正弦曲线。

2.从简谐运动的图象上可以获取以下信息

简谐运动的图象是正弦(或余弦)曲线,图象的横轴表示时间、纵轴表示位移,从图象上可直接看出不同时刻振动质点的位移大小和方向、速度的方向和速度大小的变化趋势。

例如:若远离平衡位置,则速度越来越小,加速度、位移越来越大,若靠近平衡位置,则速度越来越大,加速度、位移越来越小,如图中振子在P1点,从正位移向着平衡位置运动,则速度为负且增大,位移、加速度正在减小,振子在P2点向负位移远离平衡位置运动,则速度为负且减小,位移、加速度正在增大。

三、简谐运动的对称性

活动与探究3

简谐运动具有明显的对称性,你能找出哪些具有对称性的物理量?

迁移与应用3

一水平弹簧振子做简谐运动,下列说法中正确的是()

A.加速度增大时,速度必增大

B.加速度增大时,速度必减小

C.位移相同时,速度必相同

D.速度相同时,位移必相同

1.灵活应用简谐运动的对称性会使问题简化。

2.解答这类问题时要特别注意位移、速度、加速度的矢量性。

当堂检测

1.下列运动中属于机械振动的是()

A.人趴在地上做俯卧撑

B.水塘里的芦苇在微风作用后的左右摆动

C.五星红旗迎风飘扬

D.钓鱼时浮标在水中的上下浮动

2.如图(a),一弹簧振子在AB间做简谐运动,O为平衡位置。如图(b)是振子做简谐运动时的位移—时间图象。则关于振子的加速度随时间的变化规律。下列四个图象中正确的是()

3.有一弹簧振子做简谐运动,则下列说法正确的是()

A.加速度最大时,速度最大

B.速度最大时,位移最大

C.位移最大时,加速度最大

D.位移为零时,加速度最大

4.手机是常用的通信工具,当来电话时,它可以用振动来提示人们。振动原理很简单:是一个微型电动机带动转轴上的叶片转动。当叶片转动后,电动机就跟着振动起来。其中叶片的形状你认为是下图中的()

5.如图,小球套在光滑水平杆上,与弹簧组成弹簧振子,O为平衡位置,小球在O附近的AB间做简谐运动,设向右为正方向,则:

(1)速度由正变负的位置在___________________点。

(2)位移为负向最大的位置在___________________点。

答案:

课堂·合作探究

【问题导学】

活动与探究1:

1.答案:甲图中水平放置且振子处在平衡位置时,小球在竖直方向上受到杆的支持力和自身的重力,二力平衡,水平方向上不受力。竖直放置时,小球在竖直方向上受到弹簧的

弹力和自身的重力,二力平衡,水平方向不受力。两种情况下处于平衡位置时弹簧的受力不同,但小球所受的合力都为零。弹簧振子的平衡位置是合力为零的位置,不一定是弹簧处于原长的位置。

2.答案:弹簧振子模型忽略的次要因素是球与杆的摩擦、弹簧的质量(即所谓的“轻弹簧”),突出的主要因素是弹簧的弹性和球的质量。

迁移与应用1:BC解析:振子平衡位置的定义为振子原来静止时的位置,故A错,B 对。振子的位移为从平衡位置指向某时刻所在位置的有向线段,据题意可判断C对,D错。

活动与探究2:

1.答案:以前学过的位移是指物体(质点)相对初始位置的位置变化,用从初位置指向末位置的有向线段来表示,不同时间内的位移不一定相同。振动系统中的位移是专指振子偏离平衡位置的位移,所以其起始点定位在平衡位置。这种特定位移的方向是由平衡位置指向某时刻振子的位置,所以偏离平衡位置的位移的方向总是背离平衡位置,大小为平衡位置到该位置的距离。

2.答案:(1)频闪照相法;(2)用传感器与计算机结合获取图象的方法。

3.答案:因为匀速拉动纸带时,纸带的位移与时间成正比,即x=v t,这样,一定的位移就对应确定的时间,所以只有匀速拉动纸带,才能用纸带移动的距离表示时间。

4.答案:简谐运动的位移是指离开平衡位置的位移,所以位移的方向总是背离平衡位置指向外侧,只要振动物体通过同一位置,其位移的方向是一定的,而速度的方向就是运动方向,在振动物体经历同一位置(除最大位移处)时,速度的方向有两种可能:指向平衡位置或背离平衡位置。

迁移与应用2:AD解析:从图象中能看出坐标原点在平衡位置,A对。横轴是由底片匀速运动得到的,已经转化为时间轴,小球只在x轴上振动,所以B、C错。因图象中相邻小球之间所经时间相同,密处说明位置变化慢,D正确。

活动与探究3:答案:如图所示,物体在A与B间运动,O点为平衡位置,C和D两点关于O点对称,则有:

1.时间的对称

(1)振动质点来回通过相同的两点间的时间相等,即t DB=t BD。

(2)质点经过关于平衡位置对称的等长的两线段时间相等,即t CO=t OD。

图中t OB=t BO=t OA=t AO,t OD=t DO=t OC=t CO,t DB=t BD=t AC=t CA。

2.速度的对称

(1)物体连续两次经过同一点(如D点)的速度大小相等,方向相反。

(2)物体经过关于O点对称的两点(如C与D)的速度大小相等,方向可能相同,也可能相反。

3.位移和加速度的对称

(1)物体经过同一点(如C点)时,位移和加速度均相同。

(2)物体经过关于O点对称的两点(如C与D)时,位移与加速度均是大小相等,方向相反。

迁移与应用3:B解析:如图所示,振子在A、B间做简谐运动,O点为平衡位置,C、D关于O点对称。由图可知,当振子远离平衡位置O运动时,位移增大,加速度增大,而速度减小;当振子向平衡位置O运动时,位移减小,加速度减小,而速度增大。所以在简谐运动过程中,速度和加速度的变化趋势总是相反的。选项A错误,选项B正确。振子由O向B运动经过D点时和由B向O运动经过D点时,位移相同,速度大小相等,但方向相反,说明位移相同时,速度不一定相同。选项C错误。振子由B向O运动经过D点时和由O向A运动经过C点时,速度大小相等,方向相同,而位移虽然大小相等,但方向相反,说明速度相同时,位移不一定相同,选项D错误。

【当堂检测】

1.BD解析:物体在平衡位置附近的往复运动是机械振动,显然以上A、C两种说法中涉及的物体的运动不符合这一定义。

2.C解析:弹簧振子的加速度a=-k

m x,即大小与偏离平衡位置的位移成正比,方

向总与位移方向相反,C正确。

3.C解析:振子的加速度最大时,振子处在最大位移处,此时振子的速度为零;而速度最大时,振子在平衡位置,位移和加速度都为零。

4.A解析:B、C、D中图形均为中心对称图形,转动起来不会引起振动。

5.答案:(1)A(2)B

解析:(1)最大位移处是振动小球改变运动方向的位置,因此速度由正变负的位置在A 点。

(2)位移最大的位置在B点和A点,由于题干中设向右为正方向,故位移为负向最大的位置在B点。

简谐运动

教学目的

(1)了解什么是机械振动、简谐运动

(2)正确理解简谐运动图象的物理含义,知道简谐运动的图象是一条正弦或余弦曲线。

2.能力培养通过观察演示实验,概括出机械振动的特征,培养学生的观察、概括能力

教学重点:使学生掌握简谐运动的回复力特征及相关物理量的变化规律

教学难点:偏离平衡位置的位移与位移的概念容易混淆;在一次全振动中速度的变化

课型:启发式的讲授课

教具:钢板尺、铁架台、单摆、竖直弹簧振子、皮筋球、气垫弹簧振子、微型气源

教学过程(教学方法)

教学内容

[引入]我们学习机械运动的规律,是从简单到复杂:匀速运动、匀变速直线运动、平抛运动、匀速圆周运动,今天学习一种更复杂的运动——简谐运动。

1.机械振动

振动是自然界中普遍存在的一种运动形式,请举例说明什么样的运动就是振动?

[讲授]微风中树枝的颤动、心脏的跳动、钟摆的摆动、声带的振动……这些物体的运动都是振动。请同学们观察几个振动的实验,注意边看边想:物体振动时有什么特征?

[演示实验](1)一端固定的钢板尺[见图1(a)](2)单摆[见图1(b)]

(3)弹簧振子[见图1(c)(d)] (4)穿在橡皮绳上的塑料球[见图1(e)]

{提问}这些物体的运动各不相同:运动轨迹是直线的、曲线的;运动方向水平的、竖直的;物体各部分运动情况相同的、不同的……它们的运动有什么共同特征?

{归纳}物体振动时有一中心位置,物体(或物体的一部分)在中心位置两侧做往复运动,振动是机械振动的简称。

2.简谐运动

简谐运动是一种最简单、最基本的振动,我们以弹簧振子为例学习简谐运动。

(1)弹簧振子

演示实验:气垫弹簧振子的振动

[讨论] a.滑块的运动是平动,可以看作质点

b.弹簧的质量远远小于滑动的质量,可以忽略不计,一个轻质弹簧联接一个质点,弹簧的另一端固定,就构成了一个弹簧振子

c.没有气垫时,阻力太大,振子不振动;有了气垫时,阻力很小,振子

振动。我们研究在没有阻力的理想条件下弹簧振子的运动。

(2)弹簧振子为什么会振动?

物体做机械振动时,一定受到指向中心位置的力,这个力的作用总能使物体回到中心位置,这个力叫回复力,回复力是根据力的效果命名的,对于弹簧振子,它是弹力。

回复力可以是弹力,或其它的力,或几个力的合力,或某个力的分力。

在O点,回复力是零,叫振动的平衡位置。

(3)简谐运动的特征

弹簧振子在振动过程中,回复力的大小和方向与振子偏离平衡位置的位移有直接关系。在研究机械振动时,我们把偏离平衡位置的位移简称为位移。

3、简谐运动的位移图象——振动图象

简谐运动的振动图象是一条什么形状的图线呢?简谐运动的位移指的是什么位移?(相对平衡位置的位移)

【演示】当弹簧振子振动时,沿垂置于振动方向匀

速拉动纸带,毛笔P就在纸带上画出一条振动曲线。

说明:匀速拉动纸带时,纸带移动的距离与时间成

正比,纸带拉动一定的距离对应振子振动一定的时间,

因此纸带的运动方向可以代表时间轴的方向,纸带运动

的距离就可以代表时间。

介绍这种记录振动方法的实际应用例子:心电图

仪、地震仪。

理论和实验都证明:(1)简谐运动的振动图象都是正弦或余弦曲线。

让学生思考后回答:振动图象在什么情况下是正弦,什么情况下是余弦?(由开始计时的位置决定)

小结:

作业: 1、必作部分2.完成第5页第(3)题

大学物理A第九章 简谐振动

第九章 简谐振动 填空题(每空3分) 质点作简谐振动,当位移等于振幅一半时,动能与势能的比值为 ,位移等于 时,动能与势能相等。(3:1,2A ) 9-2两个谐振动方程为()120.03cos (),0.04cos 2()x t m x t m ωωπ==+则它们的合振幅为 。(0.05m ) 9-3两个同方向同频率的简谐振动的表达式分别为X 1=×10-2cos(T π2t+4 π ) (SI) , X 2=×10-2cos(T π2t -43π) (SI) ,则其合振动的表达式为______(SI).( X=×10-2cos(T π2t+4 π ) (SI)) 9-4一质点作周期为T 、振幅为A 的简谐振动,质点由平衡位置运动到2 A 处所需要的最短时间为_________。( 12 T ) 9-5 有两个同方向同频率的简谐振动,其表达式分别为 )4 cos(1π ω+ =t A x m 、 )4 3 cos(32πω+=t A x m ,则合振动的振幅为 。(2 A) 9-6 已知一质点作周期为T 、振幅为A 的简谐振动,质点由正向最大位移处运动到2 A 处所需要的最短时间为_________。 ( 6 T ) 9-7有两个同方向同频率的简谐振动,其表达式分别为 )75.010cos(03.01π+=t x m 、)25.010cos(04.02π-=t x m ,则合振动的振幅为 。 (0.01m ) 质量0.10m kg =的物体,以振幅21.010m -?作简谐振动,其最大加速度为2 4.0m s -?,通过平衡 位置时的动能为 ;振动周期是 。(-3 2.010,10s J π?) 9-9一物体作简谐振动,当它处于正向位移一半处,且向平衡位置运动,则在该位置时的相位为 ;在该位置,势能和动能的比值为 。(3π) 9-10质量为0.1kg 的物体,以振幅21.010m -?作谐振动,其最大加速度为14.0m s -?,则通过最大位移处的势能为 。(3210J -?) 9-11一质点做谐振动,其振动方程为6cos(4)x t ππ=+(SI ),则其周期为 。

高中物理总复习简谐运动

简谐运动 一、本周内容: 1、简谐运动 2、振幅、周期和频率 二、本周重点: 1、简谐运动过程中的位移、回复力、加速度和速度的变化规律 2、简谐运动中回复力的特点 3、简谐运动的振幅、周期和频率的概念 4、关于振幅、周期和频率的实际应用 二、知识点要点: 1、机械振动 (1)定义:物体在平衡位置附近所做的往复运动,叫做机械振动,简称振动。 (2)产生振动的条件: ①物体受到的阻力足够小 ②物体受到的回复力的作用 手施力使水平弹簧振子偏离平衡位置,感到振子受到一指向平衡位置的力,它总要使振子返回平衡位置,所以叫做回复力。回复力是根据力的作用效果命名的。回复力可以是弹力,也可以是其他的力,或几个力的合力,或某个力的分力。 (3)机械振动是一种普遍的运动形式,大至地壳振动,小至分子、原子的振动。 2、简谐运动 (1)定义:物体在跟位移的大小成正比,并且总指向平衡位置的回复力作用下的运动,叫简谐运动 (2)条件:物体做简谐运动的条件是F=-kx,即物体受到的回复力F跟位移大小成正比,方向跟位移方向相反。 (3)对F=-kx的理解:对一般的简谐运动,k是一个比例常数,不同的简谐运动,K值不同,k是由振动系统本身结构决定的物理量,在弹簧振子中,k是弹簧的劲度系数。 3、简谐运动的特点 (1)回复力:物体在往复运动期间,回复力的大小和方向均做周期性的变化,物体处在最大位移处时的回复力最大,物体处于平衡位置时的回复力最小(为零),物体经过平衡位置时,回复力的方向发生改变。 (2)加速度:由力与加速度的瞬时对应关系可知,回复力产生的加速度也是周期性变化的,且与回复力的变化步调相同。 (3)位移:物体做简谐运动时,它的位移(大小和方向)也是周期性变化的,为研究问题方便,选取平衡位置位移的起点,物体经平衡位置时位移的方向改变。 (4)速度:简谐运动是变加速运动,速度的变化也具有周期性(包括大小和方向),物体经平衡位置时的速度最大,物体在最大位移处的速度为零,且物体的速度方向改变。 4、振幅(A) (1)定义:振动物体离开平衡位置的最大距离,单位:m (2)作用:描述振动的强弱。 (3)振幅和位移的区别:对于一个给定的振动,振子的位移是时刻变化的,但振幅是不变的,位移是矢量,振幅是标量,它等于最大位移的大小。

高中物理简谐运动中路程和时间的关系专题辅导

简谐运动中路程和时间的关系 四川李同虎曾建明 简谐运动中质点运动路程和时间的关系既是教学的重点,又是教学的难点。由于二者 之间的关系比较复杂,学生做题时往往不能针对具体情况进行分析,千篇一律地用s=t/T ×4A进行判断或计算而出错。下面对这一问题进行分析: 1.若质点运动时间t与周期T的关系满足t=nT(n=1、2……),则s=t/T×4A成立。 分析不论计时起点对应质点在哪个位置向哪个方向运动,经历一个周期就完成一次 全振动,完成任何一次全振动质点通过的路程都等于4A。 2.若质点运动时间t与周期T的关系满足t=n×T/2(n=1、2……),则s=t/T ×4A成立。 分析当n为偶数时,即是上面1的情形。当n为奇数时,由简谐运动的周期性和对 称性知,不论计时起点对应质点在哪个位置向哪个方向运动,经历半个周期,完成半个全 振动,通过的路程一定等于2A。 3.若质点运动时间t与周期T的关系满足t=T/4,此种情况最复杂,分三种情形 (1)计时起点对应质点在三个特殊位置(两个最大位移处,一个平衡位置),由简谐 运动的周期性和对称性知,S=A成立。 (2)计时起点对应质点在最大位移和平衡位置之间,向平衡位置运动,则s>A。 分析在图1中,设质点由D→O→E的运动时间t=T/4,因O→B、D→O→E的时间相等,故D→O、E→B的时间相等;又质点在DO段的平均速度大于在EB段的平均速度,所以,路程,即s>A。 (3)计划起点对应质点在最大位移处和平衡位置之间,向最大位移处运动,则S<A。 分析在图2中,设质点由D→C→E的运动时间t=T/4。因O→C、D→C→E的运动时间相等,故O→D、C→E的运动时间相等;又质点在OD段的平均速度大于在CE段的平均速度,所以,路程,即S<A。 4.质点运动时间t为非特殊值,则需要利用简谐运动方程进行计算(对此种情况中学 物理不要求)。 例如图3为一做简谐运动质点的振动图像,试求:在t1=0.5s至t2=3.5s这段时间内质点运动的路程。

(完整版)2018高中物理选修知识点总结简谐运动

2018高中物理选修第一章知识点总结:简谐运动 2018高中物理选修第一章知识点总结:简谐运动 一.简谐运动 1、机械振动:物体(或物体的一部分)在某一中心位置两侧来回做往复运动,叫做机械振动。机械振动产生的条件是:(1)回复力不为零。(2)阻力很小。使振动物体回到平衡位置的力叫做回复力,回复力属于效果力,在具体问题中要注意分析什么力提供了回复力。 2、简谐振动:在机械振动中最简单的一种理想化的振动。对简谐振动可以从两个方面进行定义或理解:(1)物体在跟位移大小成正比,并且总是指向平衡位置的回复力作用下的振动,叫做简谐振动。(2)物体的振动参量,随时间按正弦或余弦规律变化的振动,叫做简谐振动,在高中物理教材中是以弹簧振子和单摆这两个特例来认识和掌握简谐振动规律的。 3、描述振动的物理量 描述振动的物理量,研究振动除了要用到位移、速度、加速度、动能、势能等物理量以外,为适应振动特点还要引入一些新的物理量。(1)位移x:由平衡位置指向振动质点所在位置的有向线段叫做 位移。位移是矢量,其最大值等于振幅。(2)振幅A:做机械振 动的物体离开平衡位置的最大距离叫做振幅,振幅是标量,表示振动的强弱。振幅越大表示振动的机械能越大,做简揩振动物体的振幅大小不影响简揩振动的周期和频率。(3)周期T:振动物体完 成一次余振动所经历的时间叫做周期。所谓全振动是指物体从某一位置开始计时,物体第一次以相同的速度方向回到初始位置,叫做完成了一次全振动。(4)频率f:振动物体单位时间内完成全振 动的次数。(5)角频率:角频率也叫角速度,即圆周运动物体单位时间转过的弧度数。引入这个参量来描述振动的原因是人们在研究质点做匀速圆周运动的射影的运动规律时,发现质点射影做的是简谐振动。因此处理复杂的简谐振动问题时,可以将其转化为匀速圆周运动的射影进行处理,这种方法高考大纲不要求掌握。周期、频率、角频率的关系是:。(6)相位:表示振动步调的物理量。现行中学教材中只要求知道同相和反相两种情况。 4、研究简谐振动规律的几个思路:(1)用动力学方法研究,受力特征:回复力

大学物理振动波动例题习题

精品 振动波动 一、例题 (一)振动 1.证明单摆是简谐振动,给出振动周期及圆频率。 2. 一质点沿x 轴作简谐运动,振幅为12cm ,周期为2s 。当t = 0时, 位移为6cm ,且向x 轴正方向运动。 求: (1) 振动表达式; (2) t = 0.5s 时,质点的位置、速度和加速度; (3)如果在某时刻质点位于x =-0.6cm ,且向x 轴负方向运动,求从该位置回到平衡位置所需要的时间。 3. 已知两同方向,同频率的简谐振动的方程分别为: x 1= 0.05cos (10 t + 0.75π) 20.06cos(100.25)(SI)x t π=+ 求:(1)合振动的初相及振幅. (2)若有另一同方向、同频率的简谐振动x 3 = 0.07cos (10 t +? 3 ), 则当? 3为多少时 x 1 + x 3 的振幅最大?又? 3为多少时 x 2 + x 3的振幅最小? (二)波动 1. 平面简谐波沿x 轴正方向传播,振幅为2 cm ,频率为 50 Hz ,波速为 200 m/s 。在t = 0时,x = 0处的质点正在平衡位置向y 轴正方向运动, 求:(1)波动方程 (2)x = 4 m 处媒质质点振动的表达式及该点在t = 2 s 时的振动速度。 2. 一平面简谐波以速度m/s 8.0=u 沿x 轴负方向传播。已知原点的振动曲线如图所示。求:(1)原点的振动表达式; (2)波动表达式; (3)同一时刻相距m 1的两点之间的位相差。 3. 两相干波源S 1和S 2的振动方程分别是1cos y A t ω=和2cos(/2)y A t ωπ=+。 S 1距P 点3个波长,S 2距P 点21/4个波长。求:两波在P 点引起的合振动振幅。

高二物理简谐运动测试题_简单

一、选择题(每小题有一个或多个选项,每小题4分,共48分) 1.关于简谐运动的位移、加速度和速度的关系,正确的说法是( ) A.位移减小时,加速度增大,速度增大 B.位移方向总和加速度方向相反,和速度方向相同 C.物体的速度增大时,加速度一定减小 D.物体向平衡位置运动时,速度方向和位移方向相同 2.关于简谐运动的下列说法中,正确的是( ) A.位移减小时,加速度减小,速度增大 B.位移方向总跟加速度方向相反,跟速度方向相同 C.物体的运动方向指向平衡位置时,速度方向跟位移方向相反;背向平衡位置时,速度方向跟位移方向相同 D.水平弹簧振子朝左运动时,加速度方向跟速度方向相同,朝右运动时,加速度方向跟速度方向相反 3.对做简谐运动的物体来说,当它通过平衡位置时,具有最大值的是:( ) A、加速度 B、势能 C、动能 D、回复力 4.弹簧振子做简谐运动时,从振子经过某一位置A开始计时,则( ) A.当振子再次与零时刻的速度相同时,经过的时间一定是半周期 B.当振子再次经过A时,经过的时间一定是半周期 C.当振子的加速度再次与零时刻的加速度相同时,一定又到达位置A D.一定还有另一个位置跟位置A有相同的位移 5.一质点做简谐运动的振动图象如右图所示,质点在哪两段时间内的速度与 加速度方向相同( ) A.0~0.3s和0.3~0.6s B.0.6~0.9s和0.9~1.2s C.0~0.3s和0.9~1.2s D.0.3~0.6s和0.9~1.2s 6.如上图所示,为一弹簧振子在水平面做简谐运动的位移一时间图象。则此 振动系统( ) A.在t1和t3时刻具有相同的动能和动量 B.在t3和t4时刻振子具有相同的势能和动量 C.在t1和t4时刻振子具有相同的加速度 D.在t2和t5时刻振子所受回复力大小之比为2∶1

高中物理教案示例[简谐运动的图像].

教案示例 一、素质教育目标 (一)知识教学点 1、知道振动图像的物理含义。 2、知道简谐运动的图像是一条正弦或余弦曲线。 3、能根据图象知道振动的振幅、周期和频率。 (二)能力训练点 1、学会用图象法、列表法表示简谐运动位移随时间变化规律,提高运用工具解决物理问题的能力。 2、分析简谐运动图像所表示的位移,速度、加速度和回复力等物理量大小及方向变化的规律,培养抽象思维能力。 (三)德育渗透点 1、描绘简谐运动的图像,培养学生认真、严谨、实事求是的科学态度。 2、从图像了解简谐运动的规律,培养学生分析问题的能力,以及审美能力(逐步认识客观存在着简洁美、对称美等)。 二、重点、难点、疑点及解决办法 1、重点 (二)简谐运动图像的物理意义。 (2)简谐运动图像的特点。 2、难点 (1)用描点法画出简谐运动的图像。 (2)振动图像和振动轨迹的区别。 (3)由简谐运动图像比较各时刻的位移、速度、加速度和回复力的大小及方向。 3、疑点 能用正弦(或余弦)图像判定一个物体的振动是否是简谐运动。 4、解决办法 (1)通过对颗闪照相的分析,利用表格,通过作图比较,认识简谐运动的特点。 (2)复习数学中的正弦(或余弦)图像知识;比较几种典型运动(匀速直线运动,匀加速、匀减速直线运动)的图像与简谐运动图像的区别。

三、课时安排 1课时 四、教具、学具准备 自制幻灯片、幻灯机(或多媒体课件)、音叉(带共鸣箱)(附小槌、灵敏话筒、示波器)。 五、学生活动设计 1、学生观看多媒体课件,观察振子的简谐运动情况及其频闪照片、位移一时间变化表格。 2、学生根据表格画出s-t图 3、学生分组讨论,确定振子在各时刻的位移、速度、回复力和加速度的方向。 六、教学步骤 (一)明确目标 (略) (二)整体感知 理解简谐运动图像的物理意义是认识简谐运动规律的关键。 (三)重点、难点的学习与目标完成过程 [导入新课] 提问 1、在匀速直线运动中,设开始计时的那一时刻位移为零,则运动的位移图像是一条什么线? (是一条过原点的直线) 2、在匀变速直线运动中,设开始计时的那一时刻位移为零,则运动的位移图像是一条什么线? (根据s=at2,运动的位移图像是一条过原点的抛物线) 那么,简谐运动的位移图像是一条什么线? [新课教学] 多媒体课件(或幻灯)显示。观察气垫导轨上弹簧振子的振动情况,这是典型的简谐运动。 观察振子从离平衡位置最左侧20mm处向右运动的1/2周期内频闪照片,以及接

高二物理简谐运动的特征及有关物理量的变化规律 人教版

高二物理简谐运动的特征及有关物理量的变化规律 一、简谐运动的特征 物体在跟偏离平衡位置的位移大小成正比,并且总指向平衡位置的回复力作用下的振动,叫做简谐运动。其受力特征为: F=kx - 式中回复力F是指振动物体所受的合外力,x表示物体偏离平衡位置的位移,式中的负号表示回复力的方向与位移的方向相反。式中k的含义因振动系统的不同而不同,它是由振动系统本身结构决定的,而对于一般的简谐运动,k不能理解为弹簧的劲度系数,只能理解为一般的比例常数。上式是判断一个物体的振动是不是简谐运动的基本条件。 例1.如图1甲所示,让一个小球在两个相连接、倾角为θ(θ很小)的光滑斜面上做上下滑动。问:小球的运动是不是简谐运动?为什么? 图1甲图1乙 解析:小球在两个斜面上的受力情况如图1乙所示,可以看出:小球受重力G 和斜面的支持力N的合力F总是指向斜面的最低点-平衡位置,因此小球将在这个回复力F的作用下,在平衡位置两侧往复地运动。虽然回复力F的方向总是和位移的方向相反,但它的大小等于Gsinθ始终不变,与位移的大小无关,不符合F=kx - 的条件。所以小球的运动不属于简谐运动,只是一般的机械振动。 评注:简谐运动是机械振动中最简单最基本的运动,其特征是运动物体受的回复力的大小与位移的大小成正比,回复力的方向与位移的方向相反。而一般的机

械振动虽然也在平衡位置两侧做往复运动,但不具有上述特征。 例2.如图2所示,将一个轻质弹簧一端悬挂于O 点,另一端系一质量为m 的 小物块,整个装置处于静止状态。今用外力向下拉动物块,使其向下移动一小段距 离,然后使小物块自由运动。试证明小物块的运动是简谐振动。 解析:物块受重力及弹簧的弹力作用,物块处在平衡位置时弹簧 被拉长了0x ,设弹簧的劲度系数为k ,则有mg =0kx 。设某一时刻物块 正处于平衡位置以下x 处,则物块所受的合力大小为F=0()k x x +- mg=kx ,方向向上指向平衡位置。若某一时刻物块处于平衡位置以上x 处,则物块所受合力大小为F= mg 0()k x x --=kx ,合力方向向下指向 平衡位置。与简谐运动特征相符,故小物块的运动是简谐振动。 评注:判断振动是不是简谐运动的基本思路:对振动物体进行受力分析;确 定平衡位置;设物体位移为x ,看回复力是否满足关系式F=kx -。 二、简谐运动中的几个物理量及其变化规律 1.回复力F 当物体离开平衡位置时,我们把物体受到的始终指向平衡位置的力叫做回复力, 回复力的存在是产生简谐运动的重要条件之一。回复力的方向始终指向平衡位置, 它是以力的作用效果而命名的,是振动物体在振动方向上的合力。它可能由物体所 受的某个力提供,也可能由物体所受的某个力的分力提供,或由某些力的合力提供。 2.加速度a 根据牛顿第二定率可知加速度大小跟回复力大小成正比,而回复力大小跟位移 大小成正比,所以有公式 a=k x m -,加速度的方向跟回复力的方向相同,即始终指向平衡位置。由于加速度大小在不断的变化,所以简谐运动是一种变加速运动。 3.位移x 做简谐运动的位移是指振动物体相对于平衡位置的位移,位移的起点在平衡位 置,方向是从平衡位置指向物体所在位置。 4.速度v 图2

高中物理 简谐运动

一简谐运动 【教学目标】 1、知识目标 (1)了解什么是机械振动,知道机械振动是物体机械运动的另一种形式。 (2)知道简谐运动是一种理想化模型,知道什么是简谐运动以及物体在什么样的力作用下做简谐运动,知道判断简谐运动的方法以及研究简谐运动的意义。 (3)理解简谐运动的运动规律,掌握在一次全振动过程中位移、回复力、加速度、速度随偏离平衡位置的位移变化的规律,掌握简谐运动回复力的特征。了解简谐运动的若干实例。 2、能力目标 (1)通过观察演示实验,概括出机械振动的特征,培养学生的观察、概括能力;通过相关物理量变化规律的学习,培养分析、推理能力。 (2)掌握建立物理模型的科学方法。通过对弹簧振子所做简谐运动的分析,得到了有关简谐运动的一般规律性的结论,使学生知道从个别到一般的思维方法。 (3)学会分析简谐运动的实例,提高学生理论联系实际的能力。 3、德育目标 (1)通过物体做简谐运动时的回复力和惯性之间关系的教学,使学生认识到回复力和惯性是矛盾的两个对立面,正是这一对立面能够使物体做简谐运动。 (2)通过对简谐运动的分析,使学生知道各物理量之间的普遍联系,知道各物理量之间有密切的相互依存关系,学会用联系的观点来分析问题。 (3)渗透物理学方法的教育,运用理想化方法,突出主要因素,忽略次要因素,抽象出物理模型——弹簧振子,研究弹簧振子在理想条件下的振动。 (4)培养学生实事求是的科学态度。 【教学重点】 简谐运动的回复力特征及相关物理量的变化规律。 【教学难点】 (1)偏离平衡位置的位移与运动学中的位移概念容易混淆。 (2)物体做简谐运动过程中位移、回复力、加速度、速度等变化规律的分析总结。【教学方法】 实验演示、讨论与归纳、推导与列表对比、多媒体模拟展示 【教具准备】 一端固定的钢尺、单摆、音叉、小槌、水平弹簧振子、气垫式水平弹簧振子、竖直弹簧振子、CAI课件 【教学过程】 一、导入新课 我们已学习了物体在平衡力作用下的静止或匀速直线运动,在大小和方向都不变的恒力作用下的匀变速直线运动,在大小不变方向变化的变力作用下的匀速圆周运动。那么物

高中物理:《简谐运动》教学设计

高中物理-《简谐运动》教学设计 一、设计思路 人教版老教材从动力学特征的角度定义简谐运动,不符合学生用运动学特征对质点运动进行分类的认知习惯。人教版新教材把“位移与时间的关系遵从正弦函数规律的振动”称为简谐运动,尊重学生的认知规律,有利于简谐运动的教学。正因为如此,通过科学探究,让学生认识弹簧振子的振动图象是一条正弦曲线,是本节课教学的关键所在。 本节课的教学以“探究弹簧振子的振动图象”为线索而展开,将学生的认知过程和探究过程合理链接,实现了物理知识和科学方法、定性探究和定量探究、实验探究和理论探究的有机融合,让学生在学习物理知识的同时应用物理思想方法,体验科学探究的一般过程:“提出问题→制定方案→收集数据→处理数据→猜想结论→分析论证→得出结论→误差分析”。 本节课的实验探究和理论探究都是教师引导下的学生探究,主要引导方式:问题链。两个探究实验分别是水摆和模拟频闪照片。设计水摆实验的目的是:(1)定性验证学生对振动图像图样的猜想;(2)让学生理解振动图象“时间轴”的展开过程。设计模拟频闪照片实验的目的是:(1)让学生体验利用图象处理数据的方法;(2)让学生经历利用假设法定量论证振动图象函数性质的过程。水摆是用饮料瓶制作而成的,实验中利用毛笔书法水写布代替照相机的底片。模拟频闪照片的实验原理也很简单,就是利用视频播放软件获得弹簧振子振动视频的每一帧照片,根据照片记录不同时刻振子的位移并绘制振动图像。从实验结果上看,这两个实验都没有利用位移传感器精确,但这样做可以让学生建立一种观点:科学探究并不是遥不可及的,它不一定要借助很先进的工具和仪器,最简单易行的方法也是好方法。 二、教学目标 1.知识与技能 (1)知道弹簧振子理想模型和简谐运动的运动学定义; (2)知道弹簧振子的振动图象是一条正弦曲线,并理解振动图象的物理意义; (3)理解振动图象“时间轴”的展开过程,会将底片的位移转换成振动时间。2.过程与方法 (1)引导学生经历探究“弹簧振子振动图象”的过程,发展学生“猜想假设”、“设计实验”、“处理数据”、“分析论证”和“误差分析”的能力,培养学生思维的灵活性和

大学物理振动习题含答案

一、选择题: 1.3001:把单摆摆球从平衡位置向位移正方向拉开,使摆线与竖直方向成一微小角度θ ,然后由静止放手任其振动,从放手时开始计时。若用余弦函数表示其运动方程,则该单摆振动的初相为 (A) π (B) π/2 (C) 0 (D) θ [ ] 2.3002:两个质点各自作简谐振动,它们的振幅相同、周期相同。第一个质点的振动方程为x 1 = A cos(ωt + α)。当第一个质点从相对于其平衡位置的正位移处回到平衡位置时,第二个质点正在最大正位移处。则第二个质点的振动方程为: (A) )π21cos(2++=αωt A x (B) )π21cos(2-+=αωt A x (C) )π23cos(2-+=αωt A x (D) )cos(2π++=αωt A x [ ] 3.3007:一质量为m 的物体挂在劲度系数为k 的轻弹簧下面,振动角频率为ω。若把此弹簧分割成二等份,将物体m 挂在分割后的一根弹簧上,则振动角频率是 (A) 2 ω (B) ω2 (C) 2/ω (D) ω /2 [ ] 4.3396:一质点作简谐振动。其运动速度与时间的曲线如图所示。若质点的振动规律用余弦函数描述,则其初相应为 (A) π/6 (B) 5π/6 (C) -5π/6 (D) -π/6 (E) -2π/3 [ ] 5.3552:一个弹簧振子和一个单摆(只考虑小幅度摆动),在地面上的固有振动周期分别为T 1和T 2。将它们拿到月球上去,相应的周期分别为1T '和2T ' 。则有 (A) 11T T >'且22T T >' (B) 11T T <'且22T T <' (C) 11T T ='且22T T =' (D) 11T T ='且22T T >' [ ] 6.5178:一质点沿x 轴作简谐振动,振动方程为 )312cos(1042π+π?=-t x (SI)。从t = 0时刻起,到质点位置在x = -2 cm 处,且向x 轴正方向运动的最短时间间隔为 (A) s 81 (B) s 61 (C) s 41 (D) s 31 (E) s 21 [ ] 7.5179:一弹簧振子,重物的质量为m ,弹簧的劲度系数为k ,该振子作振幅为A 的简谐振动。当重物通过平衡位置且向规定的正方向运动时,开始计时。则其振动方程为: (A) )21/(cos π+=t m k A x (B) )21/cos(π-=t m k A x (C) )π21/(cos +=t k m A x (D) )21/cos(π-=t k m A x (E) t m /k A x cos = [ ] v 21

高中物理-《简谐运动》教学设计

高中物理-《简谐运动》教学设计 一、教学内容分析 简谐运动是高二物理第十一章机械振动第一节内容,也是本章的重点内容;本节内容是在学生学习了运动学、动力学及功和能的知识后而编排的,是力学的一个特例。机械振动是一种比较复杂的机械运动形式,对它的研究为以后学习电磁振荡、电磁波和光的本性奠定了知识基础。此外,机械振动的知识与人们的日常生活、生产技术和科学研究有着密切的关系,因此学习这部分知识有着广泛的现实意义。 简谐运动是匀速直线运动、匀变速直线运动和匀速圆周运动之后学生接触的又一种运动类型,从局部来看,简谐运动是变加速直线运动,从整体来看,简谐运动同匀速圆周运动一样是一种周期运动。因此,简谐运动是以往所学知识的一次大综合,它的运动是比较复杂的。同时简谐运动又是后面学习“波动”的基础。因此,学好简谐运动,掌握它的运动特点,搞清楚它与其它运动的联系与区别是非常重要的。 二、教学对象分析 刚升入高二的学生思维具有单一性、定势性,他们习惯于分析恒力作用下物体的单程运动,对振动过程的分析,学生普遍会感到有些困难,因此对变力作用下来回运动的振动过程的多量分析成为本节的教学难点。教学时要密切联系旧有的知识,引导学生利用演示和讲解,把突破难点的过程当成巩固和加深对旧有知识的理解应用过程,当成培养学生分析能力的过程,从而全面达到预期的教学目的和要求。 目前,学生学习物理的兴趣正在从直观—因果一概括认识转化,他们的思维也正在从形象向抽象转移,所以教学中通过演示使学生观察到振动的特点,运用类比引导学生建立理想模型,指导学生讨论振动中各物理量的变化规律,归纳出产生振动的原因,使学生全面理解教材。因此,这节课可采用综合运用直观演示、讲授、自学、讨论并辅以电教手段等多种形式的教学方法。教学中,加强师生间的双向活动,启发引导学生积极思维。由于本节内容中,要研究的物理量较多,教学容量大,教师要严格控制教学进度,顺利完成本节课的教学任务。 三、教学设计思想及策略 本节的特点之一是,第一次研究变力作用下产生变加速度的运动,这有助于学生对加速度概念的

大学物理复习题(附答案)

第9章 振动学基础 复习题 1.已知质点的振动方程为)cos( ?ω+=t A x ,当时间4 T t =时 (T 为周期),质点的振动速度为: (A )?ωsin A v -= (B )?ωsin A v = (C )?ωcos A v = (D )?ωcos A v -= 2.两个分振动的位相差为2π时,合振动的振幅是: A.A 1+A 2; B.| A 1-A 2| C.在.A 1+A 2和| A 1-A 2|之间 D.无法确定 3.一个做简谐运动的物体,在水平方向运动,振幅为8cm ,周期为0.50s 。t =0时,物体位于离平衡位置4cm 处向正方向运动,则简谐运动方程为 . 4.一质点沿x 轴作简谐振动,振动方程为 )3 2cos(10 42 π π+ ?=-t x m 。从t = 0时刻起, 到质点位置在x = -2 cm 处,且向x 轴正方向运动的最短时间间隔为 . 5.一个简谐振动在t=0时位于离平衡位置6cm 处,速度v =0,振动的周期为2s ,则简谐振动的振动方程为 . 6.一质点作谐振动,周期为T ,当它由平衡位置向 x 轴正方向运动时,从二分之一最大位移处到最大位移处这段路程所需要的时间为 . 7.一个质量为0.20kg 的物体作简谐振动,其振动方程为)2 5cos(6.0π -=t x m ,当振动动 能和势能相等时振动物体的位置在 A .3.0±m B .35.0± m C .42.0±m D .0 8.某质点参与)4 3cos(41π π+ =t x cm 和)4 3cos(32π π- =t x cm 两个同方向振动的简谐 振动,其合振动的振幅为 9. 某质点参与)2 2cos(101π π+ =t x cm 和)2 2cos(41π π- =t x cm 两个同方向振动的简谐 运动,其合振动的振幅为 ; 10.一个作简谐振动的物体的振动方程为cm t s )3 cos(12π π-=,当此物体由cm s 12-=处 回到平衡位置所需要的最短时间为 。 11.一个质点在一个使它返回平衡位置的力的作用下,它是否一定作简谐运动? 12.简谐振动的周期由什么确定?与初始条件有关吗? 14. 两个同方向同频率的简谐振动合成后合振动的振幅由哪些因素决定? 15.两个同方向不同频率的简谐振动合成后合振动是否为简谐振动? 教材习题 P/223: 9-1,9-2,9-3,9-4 9-10,9-12,9-18

2018高中物理选修第一章知识点总结:简谐运动

2018高中物理选修第一章知识点总结: 简谐运动 课 件www.5yk https://www.360docs.net/doc/e61373305.html, 一.简谐运动 、机械振动: 物体(或物体的一部分)在某一中心位置两侧来回做往复运动,叫做机械振动。机械振动产生的条件是:(1)回复力不为零。(2)阻力很小。使振动物体回到平衡位置的力叫做回复力,回复力属于效果力,在具体问题中要注意分析什么力提供了回复力。 2、简谐振动: 在机械振动中最简单的一种理想化的振动。对简谐振动可以从两个方面进行定义或理解: (1)物体在跟位移大小成正比,并且总是指向平衡位置的回复力作用下的振动,叫做简谐振动。 (2)物体的振动参量,随时间按正弦或余弦规律变化的振动,叫做简谐振动,在高中物理教材中是以弹簧振子和单摆这两个特例来认识和掌握简谐振动规律的。 3、描述振动的物理量 描述振动的物理量,研究振动除了要用到位移、速度、

加速度、动能、势能等物理量以外,为适应振动特点还要引入一些新的物理量。 (1)位移x:由平衡位置指向振动质点所在位置的有向线段叫做位移。位移是矢量,其最大值等于振幅。 (2)振幅A:做机械振动的物体离开平衡位置的最大距离叫做振幅,振幅是标量,表示振动的强弱。振幅越大表示振动的机械能越大,做简揩振动物体的振幅大小不影响简揩振动的周期和频率。 (3)周期T:振动物体完成一次余振动所经历的时间叫做周期。所谓全振动是指物体从某一位置开始计时,物体第一次以相同的速度方向回到初始位置,叫做完成了一次全振动。 (4)频率f:振动物体单位时间内完成全振动的次数。 (5)角频率:角频率也叫角速度,即圆周运动物体单位时间转过的弧度数。引入这个参量来描述振动的原因是人们在研究质点做匀速圆周运动的射影的运动规律时,发现质点射影做的是简谐振动。因此处理复杂的简谐振动问题时,可以将其转化为匀速圆周运动的射影进行处理,这种方法高考大纲不要求掌握。 周期、频率、角频率的关系是:。 (6)相位:表示振动步调的物理量。现行中学教材中只要求知道同相和反相两种情况。

大学物理A第九章 简谐振动

第九章 简谐振动 一、填空题(每空3分) 9-1 质点作简谐振动,当位移等于振幅一半时,动能与势能的比值为 ,位移等于 时,动能与势能相等。(3:1,2A ) 9-2两个谐振动方程为()120.03cos (),0.04cos 2()x t m x t m ωωπ==+则它们的合振幅为 。(0.05m ) 9-3两个同方向同频率的简谐振动的表达式分别为X 1=6.0×10-2 cos( T π2t+4 π ) (SI) , X 2=4.0×10-2cos(T π2t -4 3π ) (SI) ,则其合振动的表达式为______(SI).( X=2.0× 10-2cos( T π2t+4 π ) (SI)) 9-4一质点作周期为T 、振幅为A 的简谐振动,质点由平衡位置运动到2 A 处所需要的最短时间为_________。( 12 T ) 9-5 有两个同方向同频率的简谐振动,其表达式分别为 )4 cos(1π ω+ =t A x m 、 )4 3 cos(32πω+=t A x m ,则合振动的振幅为 。(2 A) 9-6 已知一质点作周期为T 、振幅为A 的简谐振动,质点由正向最大位移处运动到2 A 处所需要的最短时间为_________。 ( 6 T ) 9-7有两个同方向同频率的简谐振动,其表达式分别为 )75.010cos(03.01π+=t x m 、 )25.010cos(04.02π-=t x m ,则合振动的振幅为 。 (0.01m ) 9-8 质量0.10m kg =的物体,以振幅21.010m -?作简谐振动,其最大加速度为2 4.0m s -?,通过平衡位置时的动能为 ;振动周期是 。(-3 2.010,10s J π?) 9-9一物体作简谐振动,当它处于正向位移一半处,且向平衡位置运动,则在该位置时的相位为 ;在该位置,势能和动能的比值为 。(3,1:3π) 9-10质量为0.1kg 的物体,以振幅21.010m -?作谐振动,其最大加速度为14.0m s -?,则通过最

大学物理学课后答案)第5-6章

第5章 机械振动 一、选择题 5-1 一个质点作简谐振动,振幅为A ,在起始时刻质点的位移为2 A -,且向x 轴的正方向运动,代表这个简谐振动的旋转矢量图为[ ] 分析与解 图中旋转矢量投影点的运动方向指向Ox 轴正向,同时矢端在x 轴投影点的位移为2 A - ,满足题意,因而选(D)。 5-2 作简谐振动的物体,振幅为A ,由平衡位置向x 轴正方向运动,则物体由平衡位置运动到3A x = 处时,所需的最短时间为周期的几分之几[ ] (A) 1 /2 (B) 1/4 (C) 1/6 (D) 1/12 分析与解 设1t 时刻物体由平衡位置向x 轴正方向运动,2t 时刻物体第一次运动到3A x = 处,可通过旋转矢量图,如图5-2所示,并根据公式2t T ? π??=得31226 t T T T ?πππ??===,,因而选(C)。 5-3 两个同周期简谐振动曲线如图5-3(a)所示, 1x 的相位比2x 的相位[ ] O O O O A A x x x (A) (B) (D) (C) A /2 -A /2 A /2 -A /2 A A ω ω ω ω x 习题5-1图 习题5-2图

(A) 落后2π (B) 超前2 π (C) 落后π (D) 超前π 分析与解 可通过振动曲线作出相应的旋转矢量图(b ),正确答案为(B )。 5-4 一弹簧振子作简谐振动,总能量为E ,若振幅增加为原来的2倍,振子的质量增加为原来的4倍,则它的总能量为[ ] (A) 2E (B) 4E (C) E (D) 16E 分析与解 因为简谐振动的总能量2 p k 12 E E E kA =+= ,因而当振幅增加为原来的2倍时,能量变为原来的4倍,因而答案选(B)。 5-5 两个同振动方向、同频率、振幅均为A 的简谐振动合成后,振幅仍为A ,则这两个简谐振动的相位差为[ ] (A) o 60 (B) o 90 (C) o 120 (D) o 180 分析与解 答案(C )。由旋转矢量图可知两个简谐振动的相位差为o 120时,合成后的简谐运动的振幅仍为A 。 二、填空题 5-6 一质量为m 的质点在力2F x π=-作用下沿x 轴运动,其运动的周期为 ________。 习题5-5图 x 2 O x 1 x t (a) 习题5-3图 (b)

人教版高中物理选修3教案-简谐运动

第十一章机械振动 11.1 简谐运动 三维教学目标 1、知识与技能 (1)了解什么是机械振动、简谐运动; (2)掌握简谐运动的位移图象。 2、过程与方法:正确理解简谐运动图象的物理含义,知道简谐运动的图象是一条正弦或余弦曲线; 3、情感、态度与价值观:通过观察演示实验,概括出机械振动的特征,培养学生的观察、概括能力。 教学重点:使学生掌握简谐运动的回复力特征及相关物理量的变化规律。 教学难点:偏离平衡位置的位移与位移的概念容易混淆;在一次全振动中速度的变化。 教学教具:钢板尺、铁架台、单摆、竖直弹簧振子、皮筋球、气垫弹簧振子、微型气源。 教学过程: 第一节简谐运动 (一)教学引入 我们学习机械运动的规律,是从简单到复杂:匀速运动、匀变速直线运动、平抛运动、匀速圆周运动,今天学习一种更复杂的运动——简谐运动。

(二)新课教学 1、机械振动 振动是自然界中普遍存在的一种运动形式,请举例说明什么样的运动就是振动?(微风中树枝的颤动、心脏的跳动、钟摆的摆动、声带的振动……这些物体的运动都是振动。)请同学们观察几个振动的实验,注意边看边想:物体振动时有什么特征? 演示实验 (1)一端固定的钢板尺,图1(a) (2)单摆,图1(b) (3)弹簧振子,图1(c)(d) (4)穿在橡皮绳上的塑料球,图1(e) 提问:这些物体的运动各不相同:运动轨迹是直线的、曲线的,运动方向水平的、竖直的,物体各部分运动情况相同的、不同的……它们的运动有什么共同特征? 归纳:物体振动时有一中心位置,物体(或物体的一部分)在中心位

置两侧做往复运动,振动是机械振动的简称。 2、简谐运动 简谐运动是一种最简单、最基本的振动,我们以弹簧振子为例学习简谐运动。 (1)弹簧振子 演示实验:气垫弹簧振子的振动 讨论: 第一、滑块的运动是平动,可以看作质点。 第二、弹簧的质量远远小于滑动的质量,可以忽略不计,一个轻质弹簧联接一个质点,弹簧的另一端固定,就构成了一个弹簧振子。 第三、没有气垫时,阻力太大,振子不振动;有了气垫时,阻力很小,振子振动。我们研究在没有阻力的理想条件下弹簧振子的运动。(2)弹簧振子为什么会振动? 物体做机械振动时,一定受到指向中心位置的力,这个力的作用总能使物体回到中心位置,这个力叫回复力,回复力是根据力的效果命名的,对于弹簧振子,它是弹力。回复力可以是弹力,或其它的力,或几个力的合力,或某个力的分力。在O点,回复力是零,叫振动的平衡位置。 (3)简谐运动的特征 弹簧振子在振动过程中,回复力的大小和方向与振子偏离平衡位

高二物理【简谐运动】

1.简谐运动 学习目标: 1.认识弹簧振子. 2.通过观察和分析,理解简谐运动的位移—时间图像是一条正弦曲线. 3.经历对简谐运动运动学特征的探究过程,加深领悟用图像描绘运动的方法. 一、弹簧振子 1.机械振动:物体或物体的一部分在一个位置附近的往复运动称为机械振动,简称振动. 2.弹簧振子 如图,如果球与杆之间的摩擦可以忽略,且弹簧的质量与小球的质量相比也可以忽略,我们把小球和弹簧组成的系统称为弹簧振子. 3.平衡位置:弹簧未形变时,小球所受合力为0的位置. 二、弹簧振子的位移—时间图像 1.建立坐标系:以小球的平衡位置为坐标原点,沿着它的振动方向建立坐标轴.小球在平衡位置右边时它对平衡位置的位移为正,在左边时为负.如图. 2.绘制图像:若用横轴表示振子运动的时间t,纵轴表示振子在振动过程中离开平衡位置的位移x,则振子振动的x-t图像如图所示,是一条正弦(或余弦)

曲线. 三、简谐运动 1.定义 如果物体的位移与时间的关系遵从正弦函数的规律,即它的振动图像(x-t图像)是一条正弦曲线,这样的振动叫作简谐运动. 2.特点 简谐运动是最简单、最基本的振动,其振动过程关于平衡位置对称,是一种往复运动.弹簧振子的运动就是简谐运动. 3.简谐运动的图像(如图所示) (1)简谐运动的图像是振动物体的位移随时间的变化规律. (2)简谐运动的图像是正弦(或余弦)曲线,从图像上可直接看出不同时刻振动质点的位移大小和方向、速度大小和方向的变化趋势. 1.思考判断(正确的打“√”,错误的打“×”) (1)弹簧振子的平衡位置都在原长处.(×) (2)振动的物体可以做直线运动,也可以做曲线运动.(√) (3)弹簧振子的运动是简谐运动.(√) (4)振子的位移相同时,速度也相同.(×) (5)简谐运动的图像都是正弦或余弦曲线.(√) 2.(多选)下列运动中属于机械振动的是() A.小鸟飞走后树枝的运动 B.爆炸声引起窗子上玻璃的运动 C.匀速圆周运动

2019-2020年高中物理 第二册简谐运动的图象教案 人教版

2019-2020年高中物理第二册简谐运动的图象教案人教版 一、教学目标: 1.正确理解简谐运动图象的物理含义,知道简谐运动的图象是一条正弦或余弦曲线。 2.能根据图象直接读出振动的振幅、周期(频率)和任一时刻的位移,分析运动速度和加速度的变化及方向,从而由图象了解物体的运动情况。 二、重点难点: 1.简谐运动图象的物理意义。2.简谐运动图象的应用。 三、教学方法:实验观察、计算机辅助教学 四、教具:弹簧振子,音叉,投影仪,计算机,大屏幕,自制CAI课件 五、教学过程 (一)引入新课 同学们知道,物体的运动规律可以用数学图象来描述。 问:“你能说出那些运动图象?” 学生讨论后回答:位移图象、速度图象。 引导学生说出匀速直线运动的位移s=vt,其图象是一条过原点的直线;初速度为零的匀加速直线运动的位移s=at2/2,其图象是一条过原点的抛物线;匀速直线运动的速度不变,图象是一条平行时间轴的直线;初速度为零的匀加速直线运动的速度v t=at, 其图象是一条过原点的直线.(教师可在黑板上画出相应的图象或让学生到黑板上画出来) 虽然简谐运动是较复杂的机械运动,其运动规律也可以用图象表示。本节课我们来讨论简谐运动的图象。 【板书】三简谐运动的图象(或投影) (二)进行新课 中学阶段,我们不讨论简谐运动的速度图象,只讨论简谐运动的位移图象,而且把简谐运动的位移图象叫做简谐运动的振动图象。 【板书】1、简谐运动的位移图象——振动图象(或投影) 简谐运动的振动图象是一条什么形状的图线呢?简谐运动的位移指的是什么位移?(相对平衡位置的位移) 投影显示课本所示的弹簧振子的频闪照片,引导学生观察。 取水平向右为位移的正方向,可得图示各时刻振子相对平衡位置的位移。 投影:第一个T/2,(T=1.33s)

高二物理重难点知识汇总 简谐运动

高二物理重难点知识汇总 第一讲 简谐运动及其图像 一.重难点讲解 要点一、机械振动 1.弹簧振子 弹簧振子是小球和弹簧所组成的系统,这是一种理想化模型.如图所示装置,如果球与杆之间的摩擦可以忽略,且弹簧的质量与小球的质量相比也可以忽略,则该装置为弹簧振子. 2.平衡位置 平衡位置是指物体所受回复力为零的位置. 3.振动 物体(或物体的一部分)在平衡位置附近所做的往复运动,叫做机械振动. 振动的特征是运动具有重复性. 要点诠释:振动的轨迹可以是直线也可以是曲线. 4.振动图像 (1)图像的建立:用横坐标表示振动物体运动的时间t ,纵坐标表示振动物体运动过程中对平衡位置的位移x ,建立坐标系,如图所示. (2)图像意义:反映了振动物体相对于平衡位置的位移x 随时间t 变化的规律. (3)振动位移:通常以平衡位置为位移起点,所以振动位移的方向总是背离平衡位置的.如图所示,在x t 图像中,某时刻质点位置在t 轴上方,表示位移为正(如图中12t t 、时刻),某时刻质点位置在t 轴下方,表示位移为负(如图中34t t 、时刻). (4)速度:跟运动学中的含义相同,在所建立的坐标轴(也称为“一维坐标系”)上,速度的正负号表示振子运动方向与坐标轴的正方向相同或相反.

如图所示,在x 坐标轴上,设O 点为平衡位置。A B 、为位移最大处,则在O 点速度最大,在 A B 、两点速度为零. 在前面的x t -图像中,14t t 、时刻速度为正,23t t 、时刻速度为负. 要点二、简谐运动 1.简谐运动 如果质点的位移与时间的关系遵从正弦函数规律,即它的振动图像是一条正弦曲线,这样的振动叫做简谐运动. 简谐运动是物体偏离平衡位置的位移随时间做正弦或余弦规律而变化的运动,它是一种非匀变速运动. 物体在跟位移的大小成正比,方向总是指向平衡位置的力的作用下的振动,叫做简谐运动. 简谐运动是最简单、最基本的振动. 2.实际物体看做理想振子的条件 (1)弹簧的质量比小球的质量小得多,可以认为质量集中于振子(小球);(2)当与弹簧相接的小球体积足够小时,可以认为小球是一个质点;(3)当水平杆足够光滑时,可以忽略弹簧以及小球与水平杆之间的摩擦力;(4)小球从平衡位置拉开的位移在弹簧的弹性限度内. 3.理解简谐运动的对称性 如图所示,物体在A 与B 间运动,O 点为平衡位置,C 和D 两点关于O 点对称,则有: (1)时间的对称: 4OB BO OA AO T t t t t ====, OD DO OC CD t t t t ===, DB BD AC CA t t t t ===. (2)速度的对称: ①物体连续两次经过同一点(如D 点)的速度大小相等,方向相反. ②物体经过关于O 点对称的两点(如C 与D 两点)的速度大小相等,方向可能相同,也可能相反. 4.从振动图像分析速度的方法 (1)从振动位移变化情况分析:如图所示,例如欲确定质点1P 在1t 时刻的速度方向,取大于1t 一

相关文档
最新文档