如何提高谷氨酸生产的技术水平

如何提高谷氨酸生产的技术水平
如何提高谷氨酸生产的技术水平

如何提高谷氨酸生产的技术水平

一、选育高产菌株,改良菌株性能

选育高产稳产的新菌种是提高谷氨酸发酵产率的主要途径之一。日本等国发酵界一直致力于探索选育各种生化标记的菌株,20世纪70年代已阐明了选育长链不饱和脂肪酸缺陷型和甘油缺陷型的方法和效果。随后又选育出温度敏感突变株各种抗药物突变株许多标记突变株的谷氨酸发酵对糖转化率比亲株有大幅提高。同时采用遗传工程和细胞工程新技术改造原有高产菌株的性能,提高了生长、耗糖和产酸速度,而且耐高温、高糖和高酸。

二、谷氨酸生产技术路线改进

1.制糖工艺技术路线

双酶法制糖工艺,具有明显的淀粉转化率高,有利于发酵和提取的特点。双酶法制糖工艺过程基本分为两种:两次喷射工艺、一次喷射工艺。两次喷射工艺过程存在着明显的弱点:蒸汽消耗和动力消耗大,糖液质量不稳;设备数量多,占地面积大,劳动强度大,生产环境很差,自动化程度低、难以管理、生产浪费较严重。

一次喷射工艺过程明显改变了两次喷射的弱点,具有蒸汽消耗和动力消耗小,容易控制,糖液质量稳定,设备数量少,占地面积小,生产环境好,可实现计算机控制等优点。

2.发酵工艺技术路线

通过改变发酵工艺技术使生产过程易于把握、提高糖酸转化率、实现节能降耗,。

首先,改变传统的供气系统,建立完善的低能耗、高质量的供气系统。采用多级分散式过滤系统,以避免全发酵系统同时出现染菌现象,同时有利于减少占地面积、方便检查、检修和排除故障。

其次,连消系统:采用连续喷射式、热能回收型系统,并用计算机控制。

第三,发酵降温冷却水系统:采用冷水和循环水兼顾的系统,实现节能降耗,采用计算机控制。

第四,发酵系统要采用大型发酵罐,尽可能增大冷却面积。

3. 提取工艺技术路线

采用更加先进的提取技术:谷氨酸双结晶高效提取工艺技术、连续低温等电浓缩法工艺技术、离子交换法提取谷氨酸、膜分离技术的应用、浓缩连续等电提取工艺等。

三、生物素超亚适量,强制发酵

谷氨酸发酵特点:高生物素、大种量、高通风量。谷氨酸发酵时糖酵解经过酵解途径和磷酸己糖途径两个途径,通过控制生物素的超亚适量的结果,可将葡糖糖发酵谷氨酸进入理想状态。

生物素对二氧化碳固定反应有重要影响通过控制生物素高亚适量,既可保证谷氨酸正常新城代谢作为关键乙酰羧化酶辅酶,参与磷脂的合成,进而影响磷脂

合成,使细胞形成不完全的细胞膜,细胞变形,谷氨酸从细胞膜内向细胞膜外漏出,大量积累于发酵液中。

四、改善发酵环境,进行清洁生产,杜绝染菌

1.杜绝发酵液的跑、冒、滴、漏。

2.采用新型过滤器和无油润滑螺杆空压机,提高对空气净化能力。

3.严格把关,杜绝染杂菌及噬菌体的侵入。

参考文献:

陈宁:氨基酸工艺学,北京:中国轻工业出版社,2011.8

周秀琴:谷氨酸发酵液除菌体提取谷氨酸研究进展,发酵科技通讯,

徐洪昌,金杼等:发酵法生产谷氨酸的谷氨酸提取工艺(专利),中华人民共和国知识产权局,2004年

周秀琴:日本生产谷氨酸高效率的方法,中国食品工业协会发酵工程研究会年度技术经验交流会论文集,2000年

王国利,郝艳捧,刘味果,李彦明,电力变压器超高频局部放电测量系统,电压技术2001年

陈思杰:稳定提高谷氨酸发酵生产水平的几点做法,现代食品技术,2006(3):171-172

谷氨酸生产工艺

生物工程专业综合实训 (2016 年 11 月

谷氨酸生产工艺 摘要: 谷氨酸做为一种人体所必须的氨基酸,在生命的生理活动周期中具有很大的作用。不仅参与各种蛋白质的合成,组成人体结构,还做为味精可以给我们带来味蕾上的享受。现代生产谷氨酸的工艺主要是利用微生物发酵提取而来。不同的发酵方法和不同的发酵条件会造成产量的很大不同。本次谷氨酸的生产工艺,主要是掌握发酵方法和发酵条件的控制,还有各种仪器的使用方法。通过测得的数据来观察菌种的生长变化,同时谷氨酸发酵工艺各个工段的原理和使用方法。关键词:谷氨酸;发酵;工艺;等电点。

引言 谷氨酸是一种酸性氨基酸,是生物机体内氮代谢的基本氨基酸之一,在代谢上具有重要意义。不论在食品、化妆品还是医药行业,谷氨酸都有很大的用途。 谷氨酸在生物体内的蛋白质代谢过程中占重要地位,参与动物、植物和微生物中的许多重要化学反应。医学上谷氨酸主要用于治疗肝性昏迷,还用于改善儿童智力发育。食品工业上,味精是常用的仪器增鲜剂,其主要成分是谷氨酸钠盐。过去生产味精主要用小麦面筋(谷蛋白)水解法进行,现改用微生物发酵法来进行大规模生产。不论在食品、化妆品还是医药行业,谷氨酸都有很大的用途。 谷氨酸钠俗称味精,是重要的鲜味剂,对香味具有增强作用。谷氨酸钠广泛用于食品调味剂,既可单独使用,又能与其它氨基酸等并用。用于食品内,有增香作用。甘氨酸具有甜味,和味精协同作用能显着提高食品的风味。谷氨酸作为风味增强剂可用于增强饮料和食品的味道,不仅能增强食品风味,对动物性食品有保鲜作用。

一、谷氨酸简介 谷氨酸一种酸性氨基酸。分子内含两个羧基,化学名称为α-氨基戊二酸。谷氨酸是里索逊1856年发现的,为无色晶体,有鲜味,微溶于水,而溶于盐酸溶液,等电点3.22。大量存在于谷类蛋白质中,动物脑中含量也较多。谷氨酸在生物体内的蛋白质代谢过程中占重要地位,参与动物、植物和微生物中的许多重要化学反应。医学上谷氨酸主要用于治疗肝性昏迷,还用于改善儿童智力发育。食品工业上,味精是常用的仪器增鲜剂,其主要成分是谷氨酸钠盐。过去生产味精主要用小麦面筋(谷蛋白)水解法进行,现改用微生物发酵法来进行大规模生产。 谷氨酸是生物机体内氮代谢的基本氨基酸之一,在代谢上具有重要意义。L -谷氨酸是蛋白质的主要构成成分,谷氨酸盐在自然界普遍存在的。多种食品以及人体内都含有谷氨酸盐,它即是蛋白质或肽的结构氨基酸之一,又是游离氨基酸,L型氨基酸美味较浓。 L-谷氨酸又名“麸酸”或写作“夫酸”,发酵制造L-谷氨酸是以糖质为原料经微生物发酵,采用“等电点提取”加上“离子交换树脂”分离的方法而制得。 谷氨酸产生菌主要是棒状类细菌,这类细菌中含质粒较少,而且大多数是隐蔽性质粒,难以直接作为克隆载体,而且此类菌的遗传背景、质粒稳定尚不清楚,在此类细菌这种构建合适的载体困难较多。需要对它们进行改建将棒状类细菌质粒与已知的质粒进行重组,构建成杂合质粒。受体菌选用短杆菌属和棒杆菌属的野生菌或变异株,特别是选用谷氨酸缺陷型变异株为受体,便于从转化后的杂交克隆中筛选产谷氨酸的个体,用谷氨酸产量高的野生菌或变异菌作为受体效果更好。供体菌株选择短杆菌及棒杆菌属的野生菌或变异株,只要具有产谷氨酸能力都可选用, 但选择谷氨酸产量高的菌株作为供体效果最好。这样就可以较容易地在棒状类细菌中开展各项分子生物学研究。有了合适的载体及其转化系统后,就可通过DNA体外重组技术进行谷氨酸产生菌的改造。这对以后谷氨酸发酵的低成本、大规模、高质量有较大的发展空间。

年产2万吨谷氨酸发酵生产的初步设计

年产2万吨谷氨酸发酵生产的初步设计

第一章总论 一、设计项目: (1)设计课题:年产2万吨谷氨酸发酵工厂的初步设计 (2)厂址:某市 (3)重点工段:糖化 (4)重点设备:糖化罐 二、设计范围: (1)厂址选择及全厂概况介绍(地貌、资源、建设规模、人员);(2)产品的生产方案、生产方法、工艺流程及技术条件的制定;(3)重点车间详细工艺设计、工艺论证、设备选型及计算;(4)全厂的物料衡算; (5)全厂的水、电、热、冷、气的衡算; (6)车间的布置和说明; (7)重点设备的设计计算; (8)对锅炉、电站、空压站等提出要求及选型; (9)对生产和环境措施提出可行方案。 三、要完成的设计图纸: (1)全厂工艺流程图一张; (2)重点车间工艺流程图一张; (3)重点车间设备布置立面图一张;

(4)重点车间设备布置平面图一张; (5)重点设备装配图一张。 四、设计依据: (1)批准的设计任务书和附件可行性报告,以及可靠的设计基础资料。 (2)我国现行的有关设计和安装的设计规范和标准 (3)广东轻工职业技术学院食品系下达的毕业设计任务书 五、设计原则: (1)设计工作要围绕现代化建设这个中心,为这个中心服务。首先要有加速社会主义四个现代化早日实现的明确指导思想,做到精心设计,投资省,技术新,质量好,收效快,收回期短,使设计工作符合社会主义经济建设的总原则。 (2)要学会查阅文献,收集设计必要的技术基础资料,要善于从实际出发去分析研究问题,加强技术经济的分析工作。(3)要解放思想,积极采用技术,力求设计上具有现实性和先进性,在经济上具有合理性,尽可能做到能提高生产率,实现机械化和自动化,同时兼顾社会和环境的效益。 (4)设计必须结合实际,因地制宜,体现设计的通用性和独特性相结合,工厂生产规模、产品品种的确定,要适应国民经济的需求,要考虑资金的来源,建厂的地点、时间、三废综合

谷氨酸生产工艺计算

工艺计算 第一节:物料平衡计算 凡引入某一系统或设备的物料重量Gm ,必需等于用于转化形成产物所消耗的物量Gp 和物料损失之和Gt Gm=Gp+Gt 一、物料衡算目的: (1)确定生产设备的容量、个数和主要设备尺寸; (2)工艺流程草图设计 (3)水、蒸汽、热量、冷量衡算; (4)控制生产水平。 二、方法 1.给出物料衡算流程示意图 2.选定计算基准 a.按每批投料量进行计算; b.按每吨产品消耗的原料量计算; c.按时间计算。 3.确定工艺指标及消耗定额以及相关的基础数据; 4.列出各工艺阶段的物料衡算表并绘出物料流程图。 三、实例(以年产商品味精10000t为实例) (一)、生产规模及产品规格 (1)99%规格的味精占80%,即8000t/a; (2)80%的味精占20%,即2000t/a; 折算为100%味精为: 8000×99%+2000×80%=9520(t/a) (二)、生产工作制度 全年生产日320天;2~3班作业,连续生产。 (三)、主要工艺技术参数 原料及动力单耗表

生产过程的总物料衡算 (一)生产能力 以年产商品MSG1000t 为实例。折算为100%MSG9520t/a。 日产商品MSG:1000/320=31.25(t/d)(其中99%的MSG25t,80%的MSG62.t) 日产100%MSG:9520/320=29.75(t/d) (二)总物料衡算(以淀粉质原料为例) (1)1000kg纯淀粉理论上产100%MSG量: 1000×1.11×81.7%×1.272=1153.5(kg) (2)1000kg纯淀粉实际产100%MSG: 1000×1.11×98%×50%×86%×92%×1.272=547.4(kg) (3)1000kg工业淀粉(含量86%的玉米淀粉)产100%MSG量: 547.4×86%=470.8(kg) (4)淀粉单耗 ①1t 100%MSG消耗纯淀粉量:1000/547.4=1.827(t) ②1t 100%MSG实际消耗工业淀粉量:1000/470.8=2.124(t) ③1t 100%MSG理论上消耗纯淀粉量:1000/1153.5=0.8669(t) ④1t 100%MSG理论上消耗工业淀粉量:0.8669/86%=1.008(t) (5)总收率:可以按以下两种方法计算。 ①实际产量(kg)/理论产量×100%=547.4/1153.5×100%=47.45% ②(98%×50%×86%×92%)/81.7%×100%=47.45% (6)淀粉利用率: 1.008/ 2.124×100%=47.45% (7)生产过程总损失:100%-47.45%=52.55% 物料在生产过程中损失的原因: ①糖转化率稍低。 ②发酵过程中部分糖消耗于长菌体以及呼吸代谢;残糖高;灭菌损失;产生其他产 物。 ③提取收率低,母液中Glu含量高。 ④精制加工过程损耗及产生焦谷氨酸纳等。 (8)原料以及中间品的计算 ①淀粉用量:29.75 ×2.124=63.19(t/d)

(完整版)谷氨酸发酵

1)生物素营养缺陷型 ?作用机制:生物素是脂肪酸生物合成最初反应的关键酶乙酰CoA羧化酶的辅酶,参与 了脂肪酸的合成,进而影响脂肪酸的合成.当磷脂合成量少到正常的1/2左右时,细胞变形,Glu向膜外泄漏. ?控制关键:使用该类突变株必须限制发酵培养基中生物素亚适量(5-10 g/L).在发酵 初期(0-8小时),细胞正常生长,当生物素耗尽后,在菌的再次倍增时,开始出现异常形态细胞,即完成了细胞从生长型到积累型转换. 2)油酸营养缺陷型 ?作用机制:油酸营养缺陷型丧失了合成油酸的能力,通过控制油酸使磷脂合成量减少 到正常量的1/2左右. ?控制关键:保证在培养基中油酸亚适量,完成细胞从生长型到生产型的转换. (3)添加表面活性剂 ?添加表面活性剂(如吐温60)或不饱和脂肪酸(C16-18),也能造成细胞渗漏,积累谷氨 酸. ?机理:两者在脂肪酸合成时对生物素有拮抗作用,导致磷脂合成不足,形成不完整的细 胞膜. ?关键:控制好脂肪酸或表面活性剂的时间和浓度,必须在药剂加入后,在这些药剂存在 下进行分裂,形成产酸型细胞. (4)添加青霉素 ?机理:青霉素抑制谷氨酸生产菌细胞壁后期的合成,细胞膜在失去保护,在渗透压的作 用下受损,向外泄露谷氨酸. ?控制关键:一般在进入对数生长期的早期(3-6小时)添加.添加青霉素后倍增的菌体不 能合成完整的细胞壁,完成细胞功能的转换. 谷氨酸发酵强制控制工艺 ?为了稳产,克服培养基原料中某些成分不易控制带来的影响,在谷氨酸发酵时可采取 “强制控制”的方法,如:“高生物素高吐温”或“高生物素高青霉素”的方法. ?控制方法:在发酵培养基中预先配加一定量(过量)的纯生物素,大大地削弱每批原料 中生物素含量变化的影响,高生物素、大接种量能促进菌体迅速增殖.再在菌体倍增的早期加入相对高的吐温或青霉素,形成产酸型细胞.固定其它条件,确保高产稳产。谷氨酸发酵 ? 1.适应期:尿素分解出氨使pH上升.糖不利用.2-4h. 措施:接种量和发酵条件控制使适应期缩短. ? 2.对数生长期:糖耗快,尿素大量分解使pH上升,氨被利用pH又迅速下降.溶氧急剧 下降后维持在一定水平.菌体浓度迅速增大,菌体形态为排列整齐的八字形.不产酸.12h. 措施:及时供给菌体生长必须的氮源及调节pH,在pH7.5-8.0时流加尿素;维持温度30- 32℃ ? 3.菌体生长停止期:谷氨酸合成. 措施:提供必须的氨及pH维持在7.2-7.4.大量通**,控制温度34-37 ℃. ? 4.发酵后期:菌体衰老,糖耗慢,残糖低. 措施:营养物耗尽酸浓度不增加时,及时放罐. 发酵周期一般为30h. 二、谷氨酸发酵的生化过程

谷氨酸发酵生产工艺

目录1.谷氨酸发酵生产工艺简介 1.1工艺流程 1.2工艺参数 1.3工艺要求 2串级控制系统特点与分析 2.1串级系统特点 2.2串级控制结构框图及分析 3控制方案 3.1总体方案 3.2系统放图 3.3待检测点的控制系统流程图 4仪表的选型 4.1热交换器 4.2仪表清单 5控制算法选择 5.1控制规律 5.2调节器正反作用的选择 6总结 7参考文献 附图

串级控制系统-----两只调节器串联起来工作,其中一个调节器的输出作为另一个调节器的给定值的系统。 例:加热炉出口温度与炉膛温度串级控制系统 1. 基本概念即组成结构

串级控制系统采用两套检测变送器和两个调节器,前一个调节器的输出作为后一个调节器的设定,后一个调节器的输出送往调节阀。 前一个调节器称为主调节器,它所检测和控制的变量称主变量(主被控参数),即工艺控制指标;后一个调节器称为副调节器,它所检测和控制的变量称副变量(副被控参数),是为了稳定主变量而引入的辅助变量。 整个系统包括两个控制回路,主回路和副回路。副回路由副变量检测变送、副调节器、调节阀和副过程构成;主回路由主变量检测变送、主调节器、副调节器、调节阀、副过程和主过程构成。 在该反应中,主要控制的指标是釜温。但由于测量元件的测量滞后,以及由于测量套管插入其内,在套管的外表面有反应发生,很容易造成釜温的假象。因此在升温-恒温控制的过程中需要热水和冷水的交换切换,以便使谷氨酸发酵充分反应,提高产品质量。 主、副变量,主、副控制器(调节器),主、副对象,主、副检测变送器,主、副回路。 作用在主、副对象上的干扰分别为一、二次干扰 系统特点及分析 * 改善了过程的动态特性,提高了系统控制质量。 * 能迅速克服进入副回路的二次扰动。 * 提高了系统的工作频率。 * 对负荷变化的适应性较强 串级控制系统的特点:

谷氨酸生产

有关味精的探讨 姓名:陈荣珍学号:20090305110 班级:生物化工工艺091班 摘要:味精作为我们日常生活的食品添加剂,常用于增加食品的鲜味,也可用于汤和调味汁。味精的主要成分是谷氨酸钠,是通过微生物发酵生产谷氨酸制得。味精是由一日本化学教授发明并传入中国,在中国得到广泛的应用,使得味精业在中国有很好的前景。味精虽是一种安全的食品添加剂,但过量的食用是否会对人们的身体带来一定的危害呢?联合国粮农及食品添加剂法规委员会表示:正确的使用味精对人体有益,所以不用担心味精会对人体产生危害。 关键词:味精、起源、安全性、生理作用、发展趋势。 1.味精的起源 1908年的一天中午,日本帝国大学的化学教授池田菊苗坐到餐桌前。味精由于在上午完成了一个难度较高的实验,此刻他的心情特别舒展,因此当妻子端上来一盘海带黄瓜片汤时,池田一反往常的快节奏饮食习惯,竟有滋有味地慢慢品尝起来了。池田这一品,竟品出点味道来了。他发现今天的汤味道恃别的鲜美,一开始他还以为是今天心情特别好的缘故,再喝上几口觉得确实是鲜。“这海带和黄瓜都是极普通的食物,怎么会产生这样的鲜味呢?”池田自言自语起来,“嗯,也许海带里有奥妙。”职业敏感使教授一离开饭桌,就又钻进了实验室里。他取来一些海带,细细研究起来。这一研究,就是半年。半年后,池田菊苗教授发表了他的研究成果,在海带中可提取出一和叫做谷氨酸钠的化学物质,如把极少量的谷氨酸钠加到汤里去,就能使味道鲜美至极。池田在发表了上述研究成果后,他便转向了其他的工作。当时一位名叫铃木三朗助的日本商人,正和他人共同研究从海带中提取碘的生产方法。当他一看到池田教授的研究成果后,灵机一动立刻改变了主意,“好哇,咱们不搞提取碘的事了,还是用海带来提取谷氨酸钠吧!”铃木按响了池田家的门铃,一位学者和一位商人就此携起手来,池田告诉铃木,从海带中提取谷氨酸钠作为商品出售不够现实,因为每10公斤的海带中只能提出0.2克的这种物质。可是,在大豆和小麦的蛋白质里也含有这种物质,利用这些廉价的原料也许可以大量生产谷氨酸钠。池田和铃木的合作很快就结出了硕果。不久后,一种叫“味之素”的商品出现在东京浅草的一家店铺里,广告做得大大的——“家有味之素,白水变鸡汁”。一时间,购买“味之素”的人差一点挤破了店铺的大门。日本人的“味之素”很快就传进了中国。这种奇妙的白色粉末打动了一位名叫吴蕴初的化学工程师的味精心。他买了一瓶回去研究,看看这种被日本人严格保密的白粉究竟是什么东西。一化验,原来就是谷氨酸钠。又经过一年多的时间,他独立发明出一种生产谷氨酸钠的方法来:在小麦麸皮(面筋)中,谷氨酸的含量可达40%,他先用34%的盐酸加压水解面筋,得到一种黑色的水解物,经过活性炭脱色,真空浓缩,就得到白色结晶的

50吨L-谷氨酸生产车间设计

目录 年产50吨L-谷氨酸的工艺设计 1文献评述 1.1产品概述 1.1.1名称 学名:L-谷氨酸-水化合物; 商品名:L-谷氨酸。因L-谷氨酸起源于小麦,故俗称麸酸。 英文名:Monosodium L-glutamate 其它名称:L-2-Aminoglutaric acid, H-Glu-OH, L-glutamic acid, L(+)-glutamic acid, H-L-Glu-OH, S-2-Aminopentanedioic acid 1.1.2 产品规格及标准 结构式: 分子式C 6H 14 N 4 O 2 .C 5 H 9 NO 4 分子量321.33 1.1.3理化性质 L-谷氨酸为白色鳞片状晶体。无臭,稍有特殊的滋味和酸味。呈微酸性。微溶于冷水,易溶于热水,几乎不溶于乙醚、丙酮和冷醋酸中,不溶于乙醇和甲醇。247-249℃分解,200℃升华,相对密度1.538(20/4℃),旋光度[α]+30-+33°。 1.1.4产品用途 (1)食品业 氨基酸作为人体生长的重要营养物质,不仅具有特殊的生理作用,而且在食品工业中具有独特的功能。 (2)日用化妆品等 谷氨酸为世界上氨基酸产量最大的品种,作为营养药物可用于皮肤和毛发。

聚谷氨酸是一种出色的环保塑料,可用于食品包装、一次性餐具及其它工业用途,可在自然界迅速降解,不污染环境。随着科学的进步,研究的深入,谷氨酸新的应用领域将越来越广。 (3)医药行业 谷氨酸还可用于医药,因为谷氨酸是构成蛋白质的氨基酸之一,虽然它不是人体必须的氨基酸,但它可作为碳氮营养与机体代谢,有较高的营养价值。 2、工业生产方法的选择和论证 2.1L-谷氨酸生产方法的选择与确定 2.1.1传统工艺中L-谷氨酸的生产方法有两种:合成法和发酵法。 (1)合成法 丙烯腈与氢和一氧化碳在高温,高压和催化剂的作用下得到β-氰基丙醛(OHCCH2CH2CN),后者与氰化钾和氯化铵进行斯脱拉克(Straker)反应生成氨基腈。将氨基腈用氢氧化钠水解,得谷氨酸二钠,然后用硫酸中和,生成D,L-谷氨酸析出,将D,L-谷氨酸进行光学分离,即可分成L-谷氨酸和D- 谷氨酸,后者经消旋化再返回到中和工序。此法日本曾用之生产L-谷氨酸10年之久,于1973年停用。 (2)发酵法 此法是L-谷氨酸工业生产的主要方法。薯类,玉米,木薯等的淀粉水解糖或糖蜜,借助于微生物类,以铵盐,尿素等提供氮源,于大型发酵罐中,在通气搅拌下进行发酵30-50个小时,保持30-40度。PH值为7-8,发酵完毕。 表1.两种方法的比较 缺点优点 合成法需要高压,有易燃,有毒物质,设 备投资大,年产量小于5000吨L- 谷氨酸时不经济,生产工艺复杂 不用粮食,采用石油废气 发酵法需设置菌种实验室,生产过程需要 严格消毒灭菌原料来源广,设备腐蚀性小,劳动强度小,可自动化,连

谷氨酸发酵车间的物料衡算

工艺计算 生产方法:以工业淀粉为原料、双酶法糖化、流加糖发酵,低温浓缩、等电提取。主要技术指标: 淀粉液化工艺参数: 糖化工艺参数:

培养基配方: 灭菌各参数:

一、谷氨酸发酵车间的物料衡算 首先计算生产1000kg 纯度为100%的味精需耗用的原材料以及其他物料量。 (一)、发酵液量 设发酵液初糖和流加高浓糖最终发酵液总糖浓度为180kg/ ,则发酵液量为: )(0.8% 124%99%95%601801000 3 1m V =????= 式中 180——发酵培养基终糖浓度(kg/) 60%——糖酸转化率 95%——谷氨酸转化率 99%——除去倒罐率1%后的发酵成功率 124%——味精对谷氨酸的精制产率 (二)、发酵液配制需水解糖量,以纯糖计算: )(136017011kg V G =?= (三)、二级种液量: ) (4.0%53 12m V V == (四)、二级种子培养液所需水解糖量: )(164022kg V G == 式中 40——二级种液含糖量(kg/) (五)、生产1000kg 味精需水解糖总量: )(137616136021kg G G G =+=+= (六)、耗用淀粉原料量: 理论上,100kg 淀粉转化生成葡萄糖量为111kg ,故耗用淀粉量为: )(6.1572%)111%5.98%80(G kg G =??÷=淀粉 式中 80%—淀粉原料含纯淀粉量 98.5%—淀粉糖化转化率 (七)、液氨耗用量: 二级种液耗液氨量:2.4V 2=0.96(kg ) 发酵培养基耗液氨量:20V 1=160(kg ) 共耗液氨量:160+0.96=161.0(kg ) (八)、磷酸氢二钾耗量:

各种氨基酸的生产工艺

各种氨基酸的生产工艺 1、谷氨酸 (1)等电离交工艺方法一一从发酵液中提取谷氨酸,即将谷氨酸发酵液降温并用硫酸调PH值至谷氨酸等电点(pH3.0- 3.2),温度降到10 以下沉淀,离心分离谷氨酸,再将上清 液用硫酸调pH至1.5上732强酸性阳离子交换树脂,用氨水调上清液pH10进行洗脱,洗 脱下来的高流分再用硫酸调pH1.0返回等电车间加入发酵液进行等电提取,离交车间的上柱后的上清液及洗柱水送去环保车间进行废水处理。 该工艺方法的缺点是:废水量大,治理成本高,酸碱用量大。 ⑵连续等电工艺一一将谷氨酸发酵液适当浓缩后控制40 C左右,连续加入有晶种的等电罐中,同时加入硫酸,控制等电罐中PH值维持在3.2左右,温度40 C进行结晶。 该工艺方法废的优点是:水量相对较少;缺点是:氨酸提取率及产品质量较差。 (3) 发酵法生产谷氨酸的谷氨酸提取工艺——谷氨酸发酵液经灭菌后进入超滤膜进行 超滤,澄清的谷氨酸发酵液在第一调酸罐中被调整pH值为3.20?3.25,然后进入常温的 等电点连续蒸发降温结晶装置进行结晶,分离、洗涤,得到谷氨酸晶体和母液,将一部分母液进入脱盐装置,脱盐后的谷氨酸母液一部分与超滤后澄清的谷氨酸发酵液合并;另一部分在第二调酸罐中被调整 pH值至4.5?7,蒸发、浓缩、再在第三调酸罐中调pH值至 3.20?3.25后,进入低温的等电点连续蒸发降温结晶装置,使母液中的谷氨酸充分结晶出来,低温的等电点连续蒸发降温结晶装置排出的晶浆被分离、洗涤,得到谷氨酸晶体和二次母液。 (4) 水解等电点法 发酵液-一浓缩(78.9kPa , 0.15MPa 蒸汽)----盐酸水解(130 C, 4h ) 一过滤-- ---滤液脱色-----浓缩-----中和,调pH至3.0-3.2 ( NaOH或发酵液) 一-低温放置, 析晶---- 谷氨酸晶体 此工艺的优点:设备简单、废水量减少、生产成本低、酸碱用量省 ⑸低温等电点法 发酵液-----边冷却边加硫酸调节PH4.0-4.5----- 加晶种,育晶2h-----边冷却边加硫酸 调至pH3.0-3.2——冷却降温——搅拌16h——4 C 静置4h——离心分离—— --谷氨酸晶体 此工艺的优点:设备简单、废水量减少、生产成本低、酸碱用量省 ⑹直接常温等电点法 发酵液-----加硫酸调节PH4.0-4.5----- 育晶2-4h----- 加硫酸调至pH3.5-3.8------ 育 晶2h------加硫酸调至pH3.0-3.2------ 育晶2h------冷却降温------搅拌16-20h------ 沉淀2-4h ------- 谷氨酸晶体 此工艺的优点:设备简单、操作容易、生产周期短、酸碱用量省。 2、L-亮氨酸 (1) 浓缩段原料:蒸汽将一次母液通入浓缩罐内,通入蒸汽,温度120度,气压-0.09Mpa ,浓缩时间6h,结晶。 终点产物:结晶液(去一次中和段) (2 ) 一次中和段辅料:硫酸,纯水结晶液进入一次中和罐,通入硫酸,纯水,温度80,中和时间4h,过滤

谷氨酸生产现状

谷氨酸生产行业现状综合分析 来源:中国发酵工业网 2009-09-25 14:01:57 目前,我国的味精相关产品发展迅速,产量高居世界首位,年需求量为119万t。味精年人均占有量为769g,而台湾和港澳地区为2500g,两者相差甚远。农村味精市场发展较快,各类小食品、食品加工业冷藏盐渍食品和方便食品等不断增加,味精出口逐年扩大,销路日旺。据美国嘉吉公司的市场调查预测,未来 10年,中国味精相关产品产量将达到 160万t。味精市场空间较大,很有发展前景。 1味精厂家分布状况 笔者先后对山东的铃兰集团、上海新立公司、上海五旋公司、上海理工大学、武汉的味全公司、河南莲花集团、河北廊坊梅花集团、河北昌黎玉龙集团、内蒙古通辽梅花集团三公司、沈阳红梅公司和沈阳联信氨基酸技术中心进行了考察。我国的味精生产厂共有82家,其中规模较大和效益好的有:河北梅花(霸洲)、山东阜丰(莒南、宝鸡)、江苏菊花(张家港)、山东济宁菱花、山东齐鲁(荏平)山东雪花(兖州)、沈阳红梅、浙江蜜蜂(义乌)重庆飞亚(万州)、宁夏伊品(永宁)、广东星湖(肇庆)和温州快鹿等。然而,现有许多味精老厂家设备陈旧,管理落后,加之近年来我国浙苏闽粤等沿海地区由于原材料和煤、水、电的价格上调,运费增加,污水处理非常困难,使全国味精产量有很大的滑坡,有些企业转产或停产,有些企业将发酵部分转移至西北、东北和内蒙古等地,预计这种迁移尚需3年-4年时间。从一定意义上讲,现在是上谷氨酸项目的一个好时机。 2菌种工艺

从以上味精生产企业、行业专家和有相关专业刊物的报道看,我国现有生产谷氨酸的菌种有3种: 1)生物素亚适量型; 2)高生物素及表面活性剂型; 3)温度敏感型。 其中,高生物素及表面活性剂型菌种以糖蜜为原料,不具有广泛代表性,笔者主要对生物素亚适量型和温度敏感型菌种进行考察。 现在全国味精行业82家生产厂所用的生物素亚适量菌种为 S9114和FM415两种,基本上各50%。只有山东铃兰和河南周口两家在使用温度敏感型菌种,尚处生产试验阶段;安徽丰源原设计用温度敏感型菌种,设计能力年产6000t谷氨酸,据业内人士介绍,丰源厂已转产为赖氨酸。 生物素亚适量型菌种是谷氨酸发酵较为普遍使用的菌种,其特点是产酸稳定、提取收率高、发酵周期短、不易染菌、放罐体积小和经济效益好。生物素亚适量菌种发酵周期为30h,产酸率为10.5%,糖酸转化率60%以上,提取收率达96%。生物素亚适量菌种工艺路线是液化、糖化、发酵、提取和精制,为等电加离交的提取工艺。污水处理采用离交流出液等高浓度污水,提取菌体蛋白后做复合肥,其余污水做厌氧—好氧处理后,达到国家规定的标准排放。 温度敏感型菌种是现在一种新兴的菌种,此菌种的优点是发酵产酸率高和糖酸转化率高。温度敏感型菌种的产酸率在 14%-16%,糖酸转化率64%左右,提取收率达85%,发酵时间为36h。提取收率低和提取困难是困扰其优势成果转化的主要原因。生物素亚适量型菌种和温度敏感型菌种发酵工艺的比较见表1,温度敏感型菌株与生物素亚适量型菌株生产

味精的生产工艺流程简介教程文件

1味精的生产工艺流程简介 味精的生产一般分为制糖、谷氨酸发酵、中和提取及精制 等4个主要工序。 1.1液化和糖化 因为大米涨价,目前大多数味精厂都使用淀粉作为原材 料。淀粉先要经过液化阶段。然后在与B一淀粉酶作用进入糖 化阶段。首先利用一淀粉酶将淀粉浆液化,降低淀粉粘度并 将其水解成糊精和低聚糖,应为淀粉中蛋白质的含量低于原来 的大米,所以经过液化的混合液可直接加入糖化酶进入糖化阶 段,而不用像以大米为原材料那样液化后需经过板筐压滤机滤 去大量蛋白质沉淀。液化过程中除了加淀粉酶还要加氯化钙, 整个液化时间约30min。一定温度下液化后的糊精及低聚糖在 糖化罐内进一步水解为葡萄糖。淀粉浆液化后,通过冷却器降 温至60℃进入糖化罐,加入糖化酶进行糖化。糖化温度控制在60℃左右,PH值4.5,糖化时间18-32h。糖化结束后,将糖化罐加热至80 85℃,灭酶30min。过滤得葡萄糖液,经过压滤 机后进行油水分离(一冷分离,二冷分离),再经过滤后连续消 毒后进入发酵罐。 1.2谷氨酸发酵发酵 谷氨酸发酵过程消毒后的谷氨酸培养液在流量监控下进入谷氨酸发酵罐,经过罐内冷却蛇管将温度冷却至32℃,置入 菌种,氯化钾、硫酸锰、消泡剂及维生素等,通入消毒空气,经一

段时间适应后,发酵过程即开始缓慢进行。谷氨酸发酵是一个 复杂的微生物生长过程,谷氨酸菌摄取原料的营养,并通过体 内特定的酶进行复杂的生化反应。培养液中的反应物透过细胞 壁和细胞膜进入细胞体内,将反应物转化为谷氨酸产物。整个 发酵过程一般要经历3个时期,即适应期、对数增长期和衰亡期。每个时期对培养液浓度、温度、PH值及供风量都有不同的 要求。因此,在发酵过程中,必须为菌体的生长代谢提供适宜的生长环境。经过大约34小时的培养,当产酸、残糖、光密度等指标均达到一定要求时即可放罐。 1.3 谷氨酸提取与谷氨酸钠生产工艺 该过程在提取罐中进行。利用氨基酸两性的性质,谷氨酸 的等电点在为pH3.0处,谷氨酸在此酸碱度时溶解度最低,可经长时间的沉淀得到谷氨酸。粗得的官司谷氨酸经过于燥后分 装成袋保存。 1.4谷氨酸钠的精制 谷氨酸钠溶液经过活性碳脱色及离子交换柱除去C a 、 Mg 、F e 离子,即可得到高纯度的谷氨酸钠溶液。将纯净的 谷氨酸钠溶液导入结晶罐,进行减压蒸发,当波美度达到295 时放入晶种,进入育晶阶段,根据结晶罐内溶液的饱和度和结 晶情况实时控制谷氨酸钠溶液输入量及进水量。经过十几小时 的蒸发结晶,当结晶形体达到一定要求、物料积累到80%高度时,将料液放至助晶槽,结晶长成后分离出味精,送去干燥和筛

年产三万吨谷氨酸的发酵罐设计与选型

年产3万吨谷氨酸发酵罐设计 目录 第一章前言 第二章谷氨酸发酵罐的主要技术指标 第三章谷氨酸生产工艺流程及计算 3.1谷氨酸生产原料及处理 3.2谷氨酸生产工艺流程图 第四章谷氨酸发酵罐的总物料衡算 4.1谷氨酸生产的工艺技术指标 4.2谷氨酸发酵车间的物料衡算 4.3三万吨谷氨酸发酵车间的物料衡算结果表 第五章谷氨酸发酵罐的设计与选型 5.1谷氨酸发酵罐空管灭菌蒸汽用量 5.2发酵罐的选型 5.3生产能力、数量和容积的确定 5.4主要尺寸的计算 5.5冷却面积的计算 5.6搅拌器计算 5.7搅拌轴功率的计算 5.8设备结构的工艺计算 5.9设备材料的选择 5.10发酵罐壁厚的计算

5.11接管设计 5.12支座选择选用裙式支座 第六章发酵罐的设计图 第一章前言 谷氨酸是一种氨基酸, 其用途非常广泛,可用于食品、医学、化妆品等,它是非人体所必需氨基酸,但它参与许多代过程,因而具有较高的营养价值,在人体,谷氨酸能与血氨结合生成谷氨酰胺,解除组织代过程中所产生的氨毒害作用,可作为治疗肝病的辅助药物,谷氨酸还参与脑蛋白代和糖代,对改进和维持脑功能有益。另外,众所周知的谷氨酸钠盐即味精有很强烈的鲜味,是重要的调味品。 第二章谷氨酸发酵罐的主要技术指标 根据常识,一个良好的发酵罐应满足下列要求:①结构严密,经得起蒸汽的反复灭菌,壁光滑,耐腐性好,以利于灭菌彻底和减小金属离子对生物反应的影响;②有良好的气-液-固接触和混合性能以及高效的热量、质量、动量传递性能;③在保持生物反应要求的前提下,降低能耗;④有良好的热量交换性能,以维持生物反应最是温度;⑤有可行的管道比例和仪表控制,适用于灭菌操作和自动化控制。 本论文设计原理是基于强化传质、传热等操作,将生物体活性控制在最佳状态,降低总的操作费用。另外,发酵罐部状态也是不可忽视的影响因素。 初步确定主要技术指标如表1所示。 表1主要技术指标

谷氨酸棒状杆菌生产谷氨酸的调节控制

谷氨酸棒状杆菌生产谷氨酸的调节控制 1 菌种的选育 目前工业上应用的谷氨酸产生菌有谷氨酸棒状杆菌、黄色短杆菌、噬氨短杆菌等。我国常用的菌种有北京棒状杆菌、纯齿棒状杆菌等。在谷氨酸发酵中,如果能够改变细胞膜的通透性,使谷氨酸不断地排到细胞外面,就会大量生成谷氨酸。研究表明,影响细胞膜通透性的主要因素是细胞膜中的磷脂含量。因此,对谷氨酸产生菌的选育,往往从控制磷脂的合成或使细胞膜受损伤入手,以提高细胞膜对谷氨酸的通透性,如生物素缺陷型菌种的选育。 发酵中原料要消耗在如下三个方面:第一、供菌体增殖,生成足够量的菌体,使其干重占到发酵液的1.0%1.5%,这是产酸前提与基础。第二、生成谷氨酸。第三、由于菌体代谢多支路及发酵条件控制不当而产生的一些其他副产物如乳酸、酮酸、其他氨基酸等等及一些原料被分解而随空气逸出。【1】 2 糖液质量是发酵的基础 糖液质量是发酵成功的基础" 这是氨基酸发酵业界同仁的共识。氨基酸发酵所需的糖液不同 于麦芽糖、结晶糖。有它自身特点,其糖液DX、DE、透光率高而且经糖谱分析,糖(及以上的)值要低,防止发生复合反应。为达到上述要求,作出符合发酵所需要的优质糖液,可按以下条件实施生产调控: 2.1一次喷射双酶法% 2.2选用高效优质酶和喷射器-水热器); 2.3 液化:调浆ph5.8~6.0 液化维持温度100~95%;液化维持时间100~120min 2.4糖化:ph4.1~4.3 糖化温度60% 糖化时间32~36h 2.5过滤:高液位压差法 3 接种量和种子培养扩大级数 为提高发酵罐中菌的增殖速度,菌体数尽快达到高峰,使产物的合成时间提前,力争采用较大种量。

谷氨酸的发酵和提取工艺综述

综述:谷氨酸的发酵与提取工艺 第一部分谷氨酸概述 谷氨酸非人体所必需氨基酸,但它参与许多代谢过程,因而具有较高的营养价值,在人体内,谷氨酸能与血氨结合生成谷氨酰胺,解除组织代谢过程中所产生的氨毒害作用,可作为治疗肝病的辅助药物,谷氨酸还参与脑蛋白代谢和糖代谢,对改进和维持脑功能有益。另外,众所周知的谷氨酸钠盐即味精有很强烈的鲜味,是重要的调味品。 1996、1997、1998年味精年产量分别为55.0万吨、56.64万吨、59.03万吨。尽管如此,我国人均年消耗味精量还只有400g左右,而台湾省已达2000g。因此,中国将是世界上最大的潜在味精消费市场,也就是说,味精生产会稳步发展。这也意味着谷氨酸的生产不断在扩大[1]。 谷氨酸生产走到今天就生产技术而言已有了长足进步,无论是规模还是产能都今非昔比,与此同时各厂家还在追求完美, 这是行业进步的动力,也是生存之所需。实际上生产工艺是与时俱进的,没有瑕疵的工艺是不存在的。如:配方及提取方法现在是多种多样,有单一用纯生物素的,也有用甘蔗糖蜜加纯生物素的, 还有加玉米浆干粉或麸皮水解液及豆粕水解液等等;提取方法有:等电-离交、等电-离交-转晶、连续等点-转晶等等[2]。 本综述简述谷氨酸生产的流程及发酵机制,着重介绍谷氨酸的提取工艺。 第二部分谷氨酸生产原料及其处理 谷氨酸发酵的主要原料有淀粉、甘蔗糖蜜、甜菜糖蜜、醋酸、乙醇、正烷烃(液体石蜡)等。国内多数谷氨酸生产厂家是以淀粉为原料生产谷氨酸的,少数厂家是以糖蜜为原料进行谷氨酸生产的,这些原料在使用前一般需进行预处理。 (一)糖蜜的预处理 谷氨酸生产糖蜜预处理的目的是为了降低生物素的含量。因为糖蜜中特别是甘蔗糖蜜中含有过量的生物素,会影响谷氨酸积累。故在以糖蜜为原料进行谷氨酸发酵时,常常采用一定的措施来降低生物素的含量,常用的方法有以下几种:(1)活性炭处理法; (2)水解活性炭处理法;(3)树脂处理法。 (二)淀粉的糖化 绝大多数的谷氨酸生产菌都不能直接利用淀粉,因此,以淀粉为原料进行谷氨酸生产时,必须将淀粉质原料水解成葡萄糖后才能供使用。可用来制成淀粉水解糖的原料很多,主要有薯类、玉米、小麦、大米等,我国主要以甘薯淀粉或大米制备水解糖。 淀粉水解的方法有三种:①酸解法;②酶解法;③酸酶(或酶酸)结合法。 1.酸解法用酸解法生产水解糖,其工艺流程如下: 原料(淀粉、水、盐酸)调浆→糖化→冷却→中和→脱色→过滤除杂→糖液2.酶解法先用α-淀粉酶将淀粉水解成糊精和低聚糖,然后再用糖化酶将糊精和低聚糖进一步水解成葡萄糖的方法,称为酶解法。 与淀粉的酸解相比,酶解法具有以下一些优点:①酶解反应条件比较温和。细菌α-淀粉酶是在pH6.0~7.0、温度85~90℃条件下,将淀粉液化成能溶解于水的糊精和低聚糖;而糖化酶是在pH4.0~4.5、温度58—60℃条件下,完成糖化反应的。②由于酶的作用专一性强,因此水解过程中很少有副反应发生。③淀粉乳

谷氨酸发酵工艺流程

目录 一、谷氨酸简介 (2) 二、谷氨酸发酵的工艺流程 (2) 2.1谷氨酸生产菌种 (3) 2.2生产原料 (3) 2.3培养基制备 (3) 2.3.1碳源 (3) 2.3.2氮源 (3) 2.3.3生物素 (4) 2.4种子扩大培养 (4) 2.5谷氨酸发酵 (4) 三、谷氨酸发酵的工艺控制 (4) 3.1环境控制 (4) 3.1.1pH (4) 3.1.2温度 (4) 3.1.3通风量 (5) 3.1.4泡沫 (5) 3.1.5无菌 (5) 3.2.细胞膜渗透性控制 (5) 四、小结 (5) 五、参考文献 (6)

谷氨酸发酵工艺 山东农业大学生命科学学院08级生物工程2班邢若枫 摘要:众所周知,日常所用调味料味精就是L一谷氨酸单钠盐(monosodiuo gluamate,MsG)。自1909年日本发明并工业化生产味情以来,几经变迁,已发展成为以谷氨酸发酵为主体的世界性氨基酸发酵工业。1956年从日本开始,以后先后由面二筋豆粕和废糖蜜浓缩物水解的方向,转向以糖质为原料的细菌发酵法。生产味精谷氨酸之类氨基酸的发酵,区别于传统的酿酒和抗菌素发游,是一种改变微生物代谢的代谢控制发酵。本文则就谷氨酸发酵生产过程、谷氨酸发酵机制和研究动向等方面,说明谷氨酸发酵的发展。[1] 关键词:谷氨酸;发酵;工艺;研究;发展 一、谷氨酸简介 谷氨酸一种酸性氨基酸,分子内含两个羧基,化学名称为α-氨基戊二酸。为无色晶体,有鲜味,微溶于水,而溶于盐酸溶液,等电点3.22。大量存在于谷类蛋白质中,动物脑中含量也较多。分子式C5H9NO4、分子量147.13076。 谷氨酸在生物体内的蛋白质代谢过程中占重要地位,参与动物、植物和微生物中的许多重要化学反应。谷氨酸可生产许多重要下游产品如L—谷氨酸钠、L—苏氨酸、聚谷氨酸等。氨基酸作为人体生长的重要营养物质,不仅具有特殊的生理作用,而且在食品工业中具有独特的功能。谷氨酸钠俗称味精,是重要的鲜味剂,对香味具有增强作用。谷氨酸钠广泛用于食品调味剂,既可单独使用,又能与其它氨基酸等并用。谷氨酸为世界上氨基酸产量最大的品种,作为营养药物可用于皮肤和毛发。用于生发剂,能被头皮吸收,预防脱发并使头发新生,对毛乳头、毛母细胞有营养功能,并能扩张血管,增强血液循环,有生发防脱发功效。用于皮肤,对治疗皱纹有疗效。脑组织只能氧化谷氨酸,而不能氧化其它氨基酸,故谷酰胺可作为脑组织的能量物质,改进维持大脑机能。谷氨酸作为神经中枢及大脑皮质的补剂,对于治疗脑震荡或神经损伤、癫痫以及对弱智儿童均有一定疗效。在工业上,聚谷氨酸可降解塑料,是环境友好材料。[2] 谷氨酸发酵是典型的代谢控制发酵。谷氨酸的大量积累不是由于生物合成途径的特异,而是菌体代谢调节控制和细胞膜通透性的特异调节以及发酵条件的适合。 谷氨酸产生菌主要是棒状类细菌,这类细菌中含质粒较少,而且大多数是隐蔽性质粒,难以直接作为克隆载体,而且此类菌的遗传背景、质粒稳定尚不清楚,在此类细菌这种构建合适的载体困难较多。需要对它们进行改建将棒状类细菌质粒与已知的质粒进行重组,构建成杂合质粒。受体菌选用短杆菌属和棒杆菌属的野生菌或变异株,特别是选用谷氨酸缺陷型变异株为受体,便于从转化后的杂交克隆中筛选产谷氨酸的个体,用谷氨酸产量高的野生菌或变异菌作为受体效果更好。供体菌株选择短杆菌及棒杆菌属的野生菌或变异株,只要具有产谷氨酸能力都可选用,但选择谷氨酸产量高的菌株作为供体效果最好。这样就可以较容易地在棒状类细菌中开展各项分子生物学研究。有了合适的载体及其转化系统后,就可通过DNA 体外重组技术进行谷氨酸产生菌的改造。这对以后谷氨酸发酵的低成本、大规模、高质量有较大的发展空间。[3] 二、谷氨酸发酵的工艺流程 菌种的选育,培养基配制,斜面培养,一级种子培养,二级种子培养,发酵(发酵过程参数控制通风量、pH、温度、泡沫),发酵液。(流程见图表1)

味精的工艺流程

味精的生产 一、味精及其生理作用 1. 味精的种类 按谷氨酸的含量分类:99%、95%、90%、80%四种 按外观形状分类:结晶味精、粉末味精 2.味精的生理作用和安全性 (1)参与人体代谢活动:合成氨基酸 (2)作为能源 (3)解氨毒 味精的毒性试验表明是安全的。 二、味精的生产方法 味精的生产方法:水解法、发酵法、合成法和提取法。 1、水解 原理:蛋白质原料经酸水解生成谷氨酸,利用谷氨酸盐酸盐在盐酸中的溶解度最小的性质,将谷氨酸分离提取出来,再经 中和处理制成味精。 生产上常用的蛋白质原料——面筋、大豆及玉米等。 水解中和,提取 蛋白质原料——谷氨酸————味精 2、发酵法 原理: 淀粉质原料水解生成葡萄糖,或直接以糖蜜或醋酸为 原料,利用谷氨酸生产菌生物合成谷氨酸,然后中和、提取 制得味精。 淀粉质原料—→糖液—→谷氨酸发酵—→中和—→味精 3、合成法 原理:石油裂解气丙烯氧化氨化生成丙烯腈,通过羰化、 氰氨化、水解等反应生成消旋谷氨酸,再经分割制成L-谷氨酸, 然后制成味精。 丙烯→氧化、氨化→丙烯睛→谷氨酸→味精 4、提取法 原理:以废糖蜜为原料,先将废糖蜜中的蔗糖回收,再将废液用碱法水解浓缩,提取谷氨酸,然后制得味精。 水解、浓缩中和,提取 废糖蜜————→谷氨酸————→味精

二、味精的生产工艺图 三、原料来源 谷氨酸发酵以糖蜜和淀粉为主要原料。 糖蜜:是制糖工厂的副产物,分为甘蔗糖蜜和甜菜糖蜜两大类。 淀粉:来自薯类、玉米、小麦、大米等 1、淀粉的预处理 (1)淀粉的水解 原料→粉碎→加水→液化→糖化→淀粉水解糖

(2)淀粉的液化 在 -淀粉酶的作用将淀粉水解生成糊精和低聚糖。 (3)淀粉的糖化 在糖化酶(如曲霉菌糖化剂)的作用下将糊精和低聚糖水解成葡萄糖。 喷射液化器出口温度控制在100-105℃,层流罐温度维持在95-100 ℃,液化时间约1h,然后进行高温灭酶。淀粉浆液化后,通过冷却器降温至60 ℃进入糖化罐,加入糖化酶进行糖化。糖化温度控制在60 ℃左右,pH值4.0-4.4,糖化时间48h.糖化结束后,将糖化罐加热至80-85 ℃,灭酶30min.过滤得葡萄糖液。 喷射液化器层流罐 糖化罐 四、谷氨酸菌种的培养 1、谷氨酸发酵菌的特征和分类 谷氨酸发酵菌分属于棒杆菌属、短杆菌属、小节菌属和节杆菌属中的细菌。 ⑴棒杆菌属 细胞为直或微弯的杆菌,常呈一端膨大的棒状,不运动,革兰氏染色阳性。例如,AS.1.299,AS.1.542等。

谷氨酸生产工艺

谷氨酸生产工艺 生物技术081 郁海东 08010071 摘要: 谷氨酸,是一种酸性氨基酸。分子内含两个羧基,化学名称为α-氨基戊二酸。谷氨酸是里索逊1856年发现的,为无色晶体,有鲜味,微溶于水,而溶于盐酸溶液,等电点3.22。大量存在于谷类蛋白质中,动物脑中含量也较多。谷氨酸在生物体内的蛋白质代谢过程中占重要地位,参与动物、植物和微生物中的许多重要化学反应。 目前,我国许多工厂采用多种方法来提高谷氨酸产率,如选育高产菌种、改进发酵工艺、搞好发酵控制、引进微机控制、增加控制参数等。这些方法对于提高谷氨酸产率非常有效。 谷氨酸是生产味精的主要原料,随着发酵法生产谷氨酸技术的发展,我国味精生产始于1923年,至今已有80多年历史,随着科学技术的不断进步,味精生产技术也在不断变革,由创建之初的以面筋、豆粕为原料水解法生产工艺,改变为现在以淀粉为原料发酵法生产工艺,发酵法生产工艺从1964年在上海味精厂首次投入生产以来,发酵法生产谷氨酸的生产技术进步较大,尤其是近几年随着菌种的突破以及新技术,新设备的应用进展更快,进入九十年代,尤其九五年后,技术进步较快,目前行业最好水平时(仅少数厂家)制糖收率99%以上,发酵产酸11-12%,转化率59-62%,提取收率96-98%精制收率96%,与80年代比较全行业平均制糖收率提高了10%,发酵产酸率提高了117%,转化率提高了43%,提取收率提高了20%,精制收率提高了8.8%,综合技术指标淀粉消耗下降了166% 关键词:菌种、培养基选择、发酵工艺、分离纯化、质量控制 谷氨酸发酵的工艺流程 菌种的选育,培养基的配制,斜面培养,一级种子培养,二级种子培养,发酵,发酵液。 谷氨酸菌种的生产 谷氨酸生产菌为谷氨酸杆菌。乳糖发酵短杆菌。黄色短杆菌。我国主要使用的是北京棒杆菌D110、北京棒杆菌ASI。299、锯齿棒杆菌等。谷氨酸生产菌种保藏常用液氮保存法。 在已报道的谷氨酸生产菌种中,除牙胞杆菌外,他们都有一些共同的特点:革兰氏阳性,菌体为球形、短杆至棒状、不形成芽孢,没有鞭毛、不能运动。需要生物素作为生长因子,在通气条件下才能产生谷氨酸。 可用原生质体融合技术选育。转化选育法、转导选育法、重组DNA技术构建谷氨酸工程菌、固定化细胞技术发酵生产谷氨酸。经研究,谷氨酸的分泌是由细胞膜控制的。 谷氨酸发酵培养制备 发酵原理

相关文档
最新文档