(精品)软启动电阻的计算(浪涌抑制)

(精品)软启动电阻的计算(浪涌抑制)

软启动电阻的计算

设R 为变频器启动时的限流电阻启动电阻,由于变频器通电瞬间滤波电容相当于短路,因而冲击电流过大,故需加限流电阻限流,由主电路的形式可以看出,当电容充电时,限流电阻和滤波电容构成的回路是一个典型的一阶环节,其时间常数为R C τ=? ,故在零初始状态下,电容上电压的响应方程式为:1t C dc U U e τ

-??=- ???

当4t T =时,98.2%c dc U U =,故可选取充电时间为 44t RC τ==

如果要求充电时间为10t s =

10 2.2441100t R K C F

μ===Ω? 故R 上消耗的功率为:

22

60020882200

dc R U P W R ===? 所以可以选取限流电阻为2.2K 20W

选用该电阻时充电回路的瞬时最大冲击电流为 615/2200=0.3A 在允许的范围之内。 并且电阻阻值越小,充电越快,但功率要求越高,冲击电流越大。

NTC热敏电阻,抑制浪涌电流

为了避免电子电路中在开机瞬间产生的浪涌电流,在电源电路中串接一个功率型NTC热敏电阻,能有效的抑制开机时的浪涌电流,并在完成浪涌电流抑制作用后,由于通过其电流的持续作用,功率型热敏电阻的阻值将下降的一个非常小的程度,它消耗的功率可以忽略不计,不会对正常的工作电流造成影响,所以在电源回路中使用功率型NTC热敏电阻,是抑制开机浪涌电流保护电子设备免遭破坏的最为简便而有效的措施。 功率型NTC热敏电阻器的选用原则 1.电阻器的最大工作电流〉实际电源回路的工作电流 2.功率型电阻器的标称电阻值 R≥1.414*E/Im 式中 E为线路电压 Im为浪涌电流 对于转换电源,逆变电源,开关电源,UPS电源, Im=100倍工作电流 对于灯丝,加热器等回路 Im=30倍工作电流 3.B值越大,残余电阻越小,工作时温升越小 4.一般说,时间常数与耗散系数的乘积越大,则表示电阻器的热容量越大,电阻器抑制浪涌电流的能力也越强。 华巨电子生产的功率型防浪涌热敏电阻工3种类型如下: 功率型NTC热敏电阻,主要应用于开关电源,UPS,大功率电子产品的开机防浪涌 SC MF72功率型NTC热敏电阻SCD大功率型NTC热敏电阻MF74超大功率型NTC热敏电阻 0.1A~11A 2A~32A 10A~36A 其中SC系列为常规热敏电阻常见的有D5,D7,D9,D11,D13,D15,D20,D25系列,如 5D5,5D7,5D9,10D11,10D15,5D20,5D25等 具体规格型号和参数等信息参见:https://www.360docs.net/doc/e74036194.html,/ntcremin/sc.htm SCD系列是SCD系列大功率NTC热敏电阻是华巨电子工程师花费数年时间研制出来的专利产品,产品选用纳米材料等高科技产品作为原材料联合南京东南大学和理工大学等几所学校和科研院所联合研发的新一代抑制浪涌的功率型NTC热敏电阻,生产中采用新工艺新技术生产的新一代防浪涌NTC热敏电阻,SCD系列热敏电阻具有抑制浪涌能力强,最大稳态电流大,性能稳定,性价比高等特点。广泛应用于各种大功率电源,充电器,工业设备,汽车电子,航空航天领域,对于拟制浪涌冲,防止因电流浪涌损坏设备的正常运行起到很好地保护作用。SCD系列具有大稳态电流最大可以达到35A,大阻值,大电流,耐高温的特点。相

接地网电阻计算公式

接地网电阻计算公式 三维方法设计变电站的接地电阻 陈光辉1 江建武2 (1 深圳市长科防雷技术有限公司,深圳) (2 深圳供电局变电部,深圳) 【摘要】用三维方法设计变电站的接地电阻,可使接地电阻比传统设计更加准确,结合现有国内外接地新材料.新技术,新 工艺,可使变电站接地网接地电阻达到最佳效果 【关键词】三维地网设计、新材料,新工艺施工。 前言 目前,由于征地等原因,变电所的占地面积越来越小,有的GIS 室内型110kV 变电站占地面积仅有1500m2, 且大部分建在山上,这些地方往往电阻率很高,欲在这样的地方不扩网、不外引,在原地使其工频接地电阻达到 规程要求标准,用常规方法很难实现。我公司在实践过程中,采用三维方法设计,即A-T-N 方案,成功解决了 土壤电阻率300Ωm,占地面积为5000m2 情况下的接地电阻R≤0.5Ω的国家规定标准。 1 A 方案 用常规的方法实现工频接接地电阻RA,主要是用于解决地网的电位分布均匀,均衡最大值下的冲击电压,以 及降低水平网的工频接地电阻,它可以利用工地的自然接地体,如建筑物、自来水管等来完成网格式接地网的接 地电阻,它是在不扩网、不外引、不使用任何降阻剂的情况下计算出的工频接地阻抗值,计算公式采用部颁《交流 电气装置的接地》[1]有关规定的公式进行。 a e R a R 1 = (1) 1 3ln 0 0.2 L S S L a ? ?? ? ? ?? ? = ?(2) ?? ? ??= + + ? ? B

hd S L B S Re 5 9 ln 2 0.213 (1 ) π ρρ (3) S h B 1 4.6 1 + = (4) 式中:Ra—任意形状边缘闭合接地网的接地电阻(Ω); Re—等值(即等面积、等水平接地极总长度)方形接地网的接地电阻(Ω); S—接地网的总面积(m2); d—水平接地极的直径或等效直径(m); h—水平接地极的埋设深度(m); LO—-接地网的外缘边线总长度(m); L—水平接地极的总长度(m)。 简化后的计算方法: S R a ′ = 0.5ρ(5) 式中:ρ—土壤电阻率(Ωm); S—地网面积(m2)。 上式公式中, a R 和土壤电阻率ρ成正比,和地网占地面积S 成反比。如果取p=300Ωm,欲达到R=0.5Ω面 积S 则必须达到90000m2。 在正方型接地网中,当网格数超过16 个时,基本(1)式=(5)式;当网格数少于16 个时,a R > R′a 。 日本川漱太朗公式为: ?? ? ?? ? + ? ′

绕线异步电机水电阻启动原理图

绕线异步电机水电阻启动原理图 工作原理 QXQ水电阻起动器,是根据电动机降压起动理论,在电动机的定子回路中串入一适当的可变水电阻进行分压,充分利用水电阻热容量大不会烧毁以及可调可恢复性等优良特性,通过控制系统控制传动机构拖动电极极板运动,改变动、定极板间的距离,从而达到改变水电阻阻值的大小,使水电阻阻值的变化与电动机转差率的变化同步,达到恒电流起动的目的,并使电动机均匀加速至额定转速,缩短起动时间。当起动完成后,星点接触器自动投入并旁路水电阻,电动机全压运行。

唐钢动力厂电控车间所管辖的3号氧压机电动机是前苏联上世纪90年代初的产品,主电机为俄罗斯产的10KV、3150KW同步电动机,电流为207A,转速为3000转/分,原起动方式为直接起动,对电网冲击很大, 电动机本身因起动电流多大,曾经造成发生放炮事故两起。05年动力厂将该氧压机改为降压起动,加装了GSDQ水电阻软起动装置作为电动机的起动,取得了较好效果。 2、水电阻软起动装置的工作原理 在电动机星点的定子回路中串接液体电阻,电动机在起动过程中通过水电阻柜中电极板的移动来改变液体电阻值的大小,从而均匀地提高电动机端电压,降低了电动机的启动电流,减少电网的电压降和冲击,电动机的转速随着电阻值得减少平滑的升高,励磁装置随时检测电动机转速,当电动机转速达到额定转速的90%(2700转/分)时,励磁装置QYJ发出投全压信号,液态软起动设备中的星点柜开关合闸,将液体电阻切除,电动机星点短接,转入全压启动阶段。转速迅速上升,当电动机转速达到额定转速的97%(2910转/分)左右时,励磁装置自动投励,将电动机拉入同步转速(3000转/分),投入正常运行。起动过程中,液体电阻值在预定的时间内自动无级减少,直至接近为零时电动机投入全压运行。由于该装置的核心部分在电气一次主回路上,设备维护量小,启动运行可靠。 GSDQ水电阻软起动装置采用PLC控制,利用计算机仿真软件对电动机的启动过程进行模拟器起动,使电动机起动的全过程可预测、可

热敏电阻抑制浪涌电流设计

图1是典型的电子产品电源部分简化电路,C1是与负载并联的滤波电容。在开机上电的瞬间,电容电压不能突变,因此会产生一个很大的充电电流。根据一阶电路零状态响应模型所建立的一阶线性非齐次方程可以求出其电流初始值相当于把滤波电容短路而得到的电流值。这个电流就是我们常说的输入浪涌电流,它是在对滤波电容进行初始充电时产生的,其大小取决于启动上电时输入电压的幅值以及由桥式整流器和电解电容其所形成的回路的总电阻。 假设输入电压V1为220Vac,整个电网内阻(含整流桥和滤波电容)Rs=1Ω,若正好在电源输入波形达到90度相位的时候开机,那么开机瞬间浪涌电流的峰值将达到I=220×1.414/1=311(A)。这个浪涌电流虽然时间很短,但如果不加以抑制,会减短输入电容和整流桥的寿命,还可能造成输入电源电压的降低,让使用同一输入电源的其它动力设备瞬间掉电,对临近设备的正常工作产生干扰。 浪涌电流的抑制 浪涌电流的抑制方法有很多,一般中小功率电源中采用电阻限流的办法抑制开机浪涌电流。图2是一个常见的110V/220V双输入电源示意图,以此为例,我们分析一下如何使用NTC热敏电阻进行浪涌电流的抑制。

NTC热敏电阻,即负温度系数热敏电阻,其特性是电阻值随着温度的升高而呈非线性的下降。NTC在应用上一般分为测温热敏电阻和功率型热敏电阻,用于抑制浪涌的NTC热敏电阻指的就是功率型热敏电阻器。 图2中R1~R4为热敏电阻浪涌抑制器通常放置的位置。对于同时兼容110Vac和220Vac输入的双电压输入产品,应该在R1和R2位置同时放两个NTC热敏电阻,这样可使在110Vac输入连接线连接时和220Vac输入连接线断开时的冲击电流大小一致,也可单独在R3或R4处放置一个NTC热敏电阻。对于只有220Vac输入的单电压产品,只需在R3或R1位置放1个NTC热敏电阻即可。 其工作原理如下: 在常温下,NTC热敏电阻具有较高的电阻值(一般选用5Ω或10Ω),即标称零功率电阻值。参考图1的例子,串接10ΩNTC时,开机浪涌电流为:I=220×1.414/(1+10)= 28(A),比未使用NTC热敏电阻时的311A降低了10倍,有效的起到了抑制浪涌电流的作用。 开机后,由于NTC热敏电阻迅速发热、温度升高,其电阻值会在毫秒级的时间内迅速下降到一个很小的级别,一般只有零点几欧到几欧的大小,相对于传统的固定阻值限流电阻而言,这意味着电阻上的功耗因为阻值的下降随之降低了几十到上百倍,因此这种设计非常适合对转换效率和节能有较高要求的产品,如开关电源。 断电后,NTC热敏电阻随着自身的冷却,电阻值会逐渐恢复到标称零功率电阻值,恢复时间需要几十秒到几分钟不等。下一次启动时,又按上述过程循环。 改进型电源设计 上述使用NTC浪涌抑制器的电路与使用固定电阻的电路相比,已经具备了节能的特性。对于某些特殊的产品,如工业产品,有时客户会提出如下要求:1、如何降低NTC的故障率以提高其使用寿命?2、如何将NTC的功耗降至最低?3、如何使串联了NTC热敏电阻的电源电路能适应循环开关的应用条件? 对于第1、2两点,因为NTC热敏电阻的主要作用是抑制浪涌,产品正常启动后它所消耗的能量是我们不需要的,如果有一种可行的办法能将NTC热敏电阻从正常工作的电路中切断,就可以满足这种要求。 对于第3点,首先分析为什么使用了NTC热敏电阻的产品不能频繁开关。从电路工作原理的分析我们可以看到,在正常工作状态下,是有一定电流通过NTC热敏电阻的,这个工作电流足以使NTC的表面温度达到100℃~200℃。当产品关断时,NTC热敏电阻必须

电流、功率、电压、电阻计算公式.

= 1.732 X U X I X COSφ 功率 P =1.732X380X I X0.85 电流 I = P / (1.732 X 380 X 0.85 功率分有功和无功,有功P=U*I*(cos a;无功Q=U*I*(sin a;注:a是功率因数。 三相电动机的功率电阻的电流如何计算。电压已知为380V。求高人指点!2012-4-20 09:43 提问者:mfkwfntxgt|浏览次数:364次 我来帮他解答 2012-4-20 10:23 满意回答 电流=I,电压=U,电阻=R,功率=P U=IR,I=U/R,R=U/I, P=UI,I=P/U,U=P/I P=U2/R,R=U2/P 就记得这一些了,不知还有没有 还有P=I2R P=IU R=U/I 最好用这两个;如电动机电能转化为热能和机械能。电流 符号: I 符号名称: 安培(安) 单位: A 公式: 电流=电压/电阻 I=U/R 单位换算: 1MA(兆安)=1000kA(千安)=1000000A(安)

1A(安)=1000mA(毫安)=1000000μA(微安)单相电阻类电功率的计算公式= 电压U*电流I 单相电机类电功率的计算公式= 电压U*电流I*功率因数COSΦ 三相电阻类电功率的计算公式= 1.732*线电压U*线电流I (星形接法) = 3*相电压U*相电流I(角形接法) 三相电机类电功率的计算公式= 1.732*线电压U*线电流I*功率因数COSΦ(星形电流=I,电压=U,电阻=R,功率=P U=IR,I=U/R,R=U/I, P=UI,I=P/U,U=P/I P=U2/R,R=U2/P 就记得这一些了,不知还有没有 还有P=I2R ⑴串联电路 P(电功率)U(电压)I(电流)W(电功)R(电阻)T (时间) 电流处处相等 I1=I2=I 总电压等于各用电器两端电压之和 U=U1+U2 总电阻等于各电阻之和 R=R1+R2 U1:U2=R1:R2 总电功等于各电功之和 W=W1+W2 W1:W2=R1:R2=U1:U2 P1:P2=R1:R2=U1:U2 总功率等于各功率之和 P=P1+P2 ⑵并联电路 总电流等于各处电流之和 I=I1+I2 各处电压相等 U1=U1=U 总电阻等于各电阻之积除以各电阻之和 R=R1R2÷(R1+R2)

异步电动机水电阻启动原理及常见故障处理

异步电动机水电阻启动原理及常见故障处 理 [摘要] 液体电阻起动器又称“液体变阻器”(俗称“水电阻”)。是为改善大中型绕线式交流异步电动机的起动性能而研制的新型起动器。液体电阻起动器的基本原理是通过机械传动装置使导电液体中两平行极板的距离逐渐减小直至为零,使串入电机转子回路中的电阻值平滑减小,从而实现绕线式大中型电动机的重载平滑起动。 [关键词] 异步电动机启动 水电阻 一、 异步电机启动概述: 电动机启动的一般要求是有足够大的启动转矩,较小的启动 电流,还要求启动设备尽可能简单、易于操作与维护方便,并有良好的经济性。过大的启动电流会造成线路电压降,影响其他负载的运行。对频繁启动的电机,大的启动电流也会造成电机内部发热过多而损坏电机。 定子启动电流: 1= st I 启动转子功率因数:

`2r = st θc os 启动转矩: ` 2 12 1 `2`2 11212r =(r +r )(x +x )st m p T U ω+ 二 水电阻软起动装置的工作原理 一般而言,高压电机如果直起,启动电流是额定电流的6~8倍,这样如果系统容量太小,也可能会将系统电压拖低20%甚至更厉害,这样连在这个系统内的其他电气设备都有可能保护跳机,所以一般都会采用软启动技术。我们所说的水电阻启动,就是其中一种。起动性能及优点:1. 系统功率因数高;2. 电网电压波动较小;3. 起动平稳无冲击。在定子回路中串入三相水电阻,电阻大小可通过传动机构控制极板间距离来调节,阻值平滑减小、起动过程在较小起动电流下进行。 1水电阻基本原理: 起动器靠溶解在水中的电解质(NaHCO3)离子导电的。电解质充满于两个平行的平面极板(既水电阻的两个电极)之间,构成一个电容状的导电体——水电阻。自身无感性元件,故与频敏、电抗器等起动设备相比,有提高电动机的功率因数,节能降耗的功能。水电阻串入电动机定子回路以后,不仅能改变电动机的转差率S ,达到调速的目的,还能增加电动机起动时的转矩,减小起动电流。具有平滑无级调速,并可使转速达到额定转速。 水电阻起动器,是根据电动机降压起动理论,在电动机的定子(转子)回路中串入一适当的可变水电阻进行分压,充分利用

浪涌电流抑制电路

浪涌电流限制电路图 开关电源在加电时,会产生较高的浪涌电流,因此必须在电源的输入端安装防止浪涌电流的软启动装置,才能有效地将浪涌电流减小到允许的范围内。浪涌电流主要是由滤波电容充电引起,在开关管开始导通的瞬间,电容对交流呈现出较低的阻抗。如果不采取任何保护措施,浪涌电流可接近数百A。 开关电源的输入一般采用电容整流滤波电路如图2所示,滤波电容C可选用低频或高频电容器,若用低频电容器则需并联同容量高频电容器来承担充放电电流。图中在整流和滤波之间串入的限流电阻Rsc是为了防止浪涌电流的冲击。合闸时Rsc限制了电容C的充电电流,经过一段时间,C上的电压达到预置值或电容C1上电压达到继电器T动作电压时,Rsc被短路完成了启动。同时还可以采用可控硅等电路来短接Rsc。当合闸时,由于可控硅截止,通过Rsc对电容C进行充电,经一段时间后,触发可控硅导通,从而短接了限流电阻Rsc。 开关电源中浪涌电流抑制模块的应用 [导读]分析了电容输入式滤波整流器上电时对电源的浪涌电流冲击及危害,介绍了常规解决办法及存在的问题,提出一种实用解决方案。 1 上电浪涌电流 目前,考虑到体积,成本等因素,大多数AC/DC变换器输入整流滤波采用电容输入式滤波方式,电路原理如图1所示。由于电容器上电压不能跃变,在整流器上电之初,滤波电容电压几乎为零,等效为整流输出端短路。如在最不利的情况(上电时的电压瞬时值为电源电压峰值)上电,则会产生远高于整流器正常工作电流的输入浪涌电流,如图2所示。当滤波电容为470μF并且电源内阻较小时,第一个电流峰值将超过100A,为正常工作电流峰值的10倍。

浪涌电流会造成电源电压波形塌陷,使得供电质量变差,甚至会影响其他用电设备的工作以及使保护电路动作;由于浪涌电流冲击整流器的输入熔断器,使其在若干次上电过程的浪涌电流冲击下而非过载熔断。为避免这类现象发生,而不得不选用更高额定电流的熔断器,但将出现过载时熔断器不能熔断,起不到保护整流器及用电电路的作用;过高的上电浪涌电流对整流器和滤波电容器造成不可恢复的损坏。因此,必须对带有电容滤波的整流器输入浪涌电流加以限制。 2 上电浪涌电流的限制 限制上电浪涌电流最有效的方法是,在整流器与滤波电容器之间,或在整流器的输入侧加一负温度系数热敏电阻(NTC),如图3所示。利用负温度系数热敏电阻在常温状态下具有较高阻值来限制上电浪涌电流,上电后由于NTC流过电流发热使其电阻值降低以减小NTC 上的损耗。这种方法虽然简单,但存在的问题是限制上电浪涌电流性能受环境温度和NTC 的初始温度影响,在环境温度较高或在上电时间间隔很短时,NTC起不到限制上电浪涌电流的作用,因此,这种限制上电浪涌电流方式仅用于价格低廉的微机电源或其他低成本电源。而在彩色电视机和显示器上,限制上电浪涌电流则采用串一限流电阻,电路如图4所示。最常见的应用是彩色电视机,这种方法的优点是简单,可靠性高,允许在宽环境温度范围内工作,其缺点是限流电阻上有损耗,降低了电源效率。事实上整流器上电处于稳态工作后,这一限流电阻的限流作用已完成,仅起到消耗功率、发热的负作用,因此,在功率较大的开关电源中,采用上电后经一定延时后用一机械触点或电子触点将限流电阻短路,如图5所示。这种限制上电浪涌电流方式性能好,但电路复杂,占用体积较大。为使应用这种抑制上电浪涌电流方式,象仅仅串限流电阻一样方便,本文推出开关电源上电浪涌电流抑制模块。

水电阻基本知识介绍

水电阻基本知识介绍 一.使用水电阻的意义 液体电阻起动器又称“液体变阻器”(俗称“水电阻”)。是为改善大中型绕线式交流异步电动机的起动性能而研制的新型起动器。液体电阻起动器的基本原理是通过机械传动装置使导电液体中两平行极板的距离逐渐减小直至为零,使串入电机转子回路中的电阻值平滑减小,从而实现绕线式大中型电动机的重载平滑起动。它克服了频敏电阻起动器冲击电流大、难起动和操作不便等问题。适用于大型设备的电动机重载起动,是频敏电阻起动器和金属电阻起动器的替代产品。采用水电阻取代频敏电阻起动器和金属电阻起动器。 一般而言,高压电机如果直起,启动电流是额定电流的6~8倍,这样如果系统容量太小,也可能会将系统电压拖低20%甚至更厉害,这样连在这个系统内的其他电气设备都有可能保护跳机,所以一般都会采用软启动技术。我们所说的水电阻启动,就是其中一种。起动性能及优点:1. 系统功率因数高;2. 电网电压波动较小;3. 起动平稳无冲击。在定子回路中串入三相水电阻,电阻大小可通过传动机构控制极板间距离来调节,阻值平滑减小、起动过程在较小起动电流下进行。 我们水泥分厂使用的是上海东屋电器有限公司生产的Bw2系列液体启动变阻器。用来拖动水泥磨机和主排风机的转子回路,作为电动机的启动之用。它有启动电流小,启动力矩大,启动平稳的特点,比较适用我厂的电网容量范围和启动负载较大的问题。 二.水电阻的基本原理与结构

1.基本原理 靠溶解在水中的电解质(NaCO3)离子导电,电解质充满于两个平面极板之间,构成一个电容状的导电体,自身无感性元件,故与频敏、电抗器等起动设备相比,有提高电动机的功率因数,节能降耗的功能。水电阻串入电动机定子回路以后,不仅能改变电动机的转差率S,达到调速的目的,还能增加电动机起动时的转矩,减小起动电流。具有平滑无级调速,并可使转速达到额定转速。HYT系列水阻调速器是以改变串入电机转子回路的水电阻来调节电机转速的,电阻越大,电机转速越低;电阻为零,电机达到全速。为了克服调速过程中水电阻过热现象,循环冷却装置。 2.水电阻溶液的配制 变阻器所用溶液是在99%以上的无水碳酸钠(Na2CO3)和水(自来水)配制而成。配液用水最好是蒸馏水,也可用软化水,最低限度应是经过净置后支掉沉淀物的生活用水。纯水、蒸馏水更有利于降低电阻值。由于受用户所用的碳酸钠纯度、水质、场地的环境温度的影响,按给定比例配置的电解质液不一定能得到所要求的电阻值。所以,这时要根据公式电动机额定电阻 R=U2e/3I2e来计算。其中U2e为电机转子开路电压(见电机铭牌);I2e为电机转子额定电流(见电机铭牌)。将活动极板和固定极板分开至极限位置。用电压电流表法依次测量每一相的电阻。测量值R1与计算值R比较,如测量值比计算值大,在电解液中再加适量的碳酸钠;如测量值比计算值小,电解液中需要加适量的水,然后再测量再调整,直到测量值与计算值相等为止。注意:溶液配制时,必须先用适量的温水把碳酸钠充分搅匀,直至完全溶解

如何使用热敏电阻抑制电源电路浪涌电流

如何使用热敏电阻抑制电源电路浪涌电 流 开机浪涌电流产生的原因 图1是典型的电子产品电源部分简化电路,C1是与负载并联的滤波电容。在开机上电的瞬间,电容电压不能突变,因此会产生一个很大的充电电流。根据一阶电路零状态响应模型所建立的一阶线性非齐次方程可以求出其电流初始值相当于把滤波电容短路而得到的电流值。这个电流就是我们常说的输入浪涌电流,它是在对滤波电容进行初始充电时产生的,其大小取决于启动上电时输入电压的幅值以及由桥式整流器和电解电容其所形成的回路的总电阻。 图1 电源示意图 假设输入电压V1为220Vac,整个电网内阻(含整流桥和滤波电容)Rs=1Ω,若正好在电源输入波形达到90度相位的时候开机,那么开机瞬间浪涌电流的峰值将达到I=220×1.414/1=311(A)。这个浪涌电流虽然时间很短,但如果不加以抑制,会减短输入电容和整流桥的寿命,还可能造成输入电源电压的降低,让使用同一输入电源的其它动力设备瞬间掉电,对临近设备的正常工作产生干扰。

浪涌电流的抑制 浪涌电流的抑制方法有很多,一般中小功率电源中采用电阻限流的办法抑制开机浪涌电流。图2是一个常见的110V/220V双输入电源示意图,以此为例,我们分析一下如何使用NTC热敏电阻进行浪涌电流的抑制。 图2 110/220Vac双输入电源示意图 NTC热敏电阻,即负温度系数热敏电阻,其特性是电阻值随着温度的升高而呈非线性的下降。NTC在应用上一般分为测温热敏电阻和功率型热敏电阻,用于抑制浪涌的NTC 热敏电阻指的就是功率型热敏电阻器。 图2中R1~R4为热敏电阻浪涌抑制器通常放置的位置。对于同时兼容110Vac和220Vac输入的双电压输入产品,应该在R1和R2位置同时放两个NTC热敏电阻,这样可使在110Vac输入连接线连接时和220Vac输入连接线断开时的冲击电流大小一致,也可单独在R3或R4处放置一个NTC热敏电阻。对于只有220Vac输入的单电压产品,只需在R3或R1位置放1个NTC热敏电阻即可。 其工作原理如下: 在常温下,NTC热敏电阻具有较高的电阻值(一般选用5Ω或10Ω),即标称零功率电阻值。参考图1的例子,串接10ΩNTC时,开机浪涌电流为:I=220×1.414/(1+10)= 28

高压水电阻启动原理

、概述 高压交流电动机水电阻起动器适用于额定电压3-10KV ,额定功率 200-20000KW 的大、中型鼠笼式电动机或同步电动机的软起动(与保护),尤其是电网容量不富裕的企业。 起动器靠溶解在水中的电解质离子导电的。电解质充满于两个平行的平面极板(既水电阻的两个电极)之间,构成一个电容状的导电体-水电阻。它自身无感性元件,故与频敏、电抗等起动设备相比,具有起动功率因数高,起动电流小等优点。 本产品在技术上采用了液态耐高压新材料、智能传动系统、计算机仿真、远程通信、开环编程控制、闭环控制、人机界面等多项现代高新技术。具有控制精度高、控制动作可靠,能达到恒流起动的目的,在液态软起动技术领域处于国内先进水平。 本产品广泛适用于建材、冶金、矿山、石油化工、电力、造纸、系统水利等行业。 二、工作原理 水电阻起动器,是根据电动机降压起动理论,在电动机的定子回路中串入一适当的可变水电阻进行分压,充分利用水电阻热容量大不会烧毁以及可调可恢复性等优良特性,通过控制系统控制传动机构拖动电极极板运动,改变动、定极板间的距离,从而达到改变水电阻阻值的大小,使水电阻阻值的变化与电动机转差 率的变化同步,达到恒电流起动的目的,并使电动机均匀加速至额定转速,缩短起动时间。当起动完成后,星点接触器自动投入并旁路水电阻,电动机全压运行。 三、性能特点

1)起动过程可预测 采用计算机仿真技术,在计算机上输入用户提供的电动机、电网、负载三大参数,通过计算机对起动参数进行优化设置,获得电动机起动过程如电流、转速及电网压降等最佳变化曲线。 2)起动电流可控制(起动过程可控制) 根据负载实际工况,通过调整、配置电液的浓度来改变电阻值的大小,同时通过PLC 程序控制、电流反馈等方法、达到控制起动的目的。 3)起动时间可调整 根据现场实际工况和用户的要求,可通过改变PLC 控制程序、调整动极板的起动初始位置及传动电动机转速来改变极板的行程时间,达到电动机起动时间的目的。 4)可连续起动 由于液态电阻热容量大,可塑性强,单次起动温升得到有效的控制,故根据工况需要,可连续起动;而且起动过程水电阻阻值变化通过极板距离及接近速度控制,可大可小,温升影响处于次要地位。 5)起动过程平滑,起动运行切换无冲击 动极板的线性运动使串接水电阻阻值线性减小,从而使电动机的起动过程均匀、平滑、无级;起动完成切换瞬间,水电阻阻值趋近于零,故切换时对电网不会产生电流冲击,对机械传动系统不会产生机械冲击。[若不采用动极板的线性运动改变阻值,则起动设备就不

雷电浪涌防护一级测试波形的选择

雷电浪涌防护一级测试波形的选择——8/20波形和10/350 波形的比较研究 本文以Dion Neri 和Bruce Glushakow 所著的白皮书为基础,该白皮书经IEEE审核后被确定为学术理论性文件。 开始论述之前,我们先关注一下这样一个事实:多年来,美国的浪涌保护器(又称瞬态电压抑制器TVSS)的测试方案都以ANSI/IEEE C62.41(美国国家标准委员会/电气电子工程师协会C62.41标准)为测试规范。而在实际应用中,按照该标准进行设计、生产、测试的浪涌保护器在全球市场上取得了良好的应用效果。 一、历史回顾:10/350 作为一级测试波形的由来 在1995年以前,包括美国在内的大多数国家都采用8/20 波形测试浪涌保护器,“国际电气规范”(IEC)也采用相同的做法。但此后,在IEC 61643标准文件中,却对安装在建筑物进线处的浪涌保护器引入了新的“配电系统1级防护”测试方案。为了适应IEC 61643对冲击脉冲电流(I imp)的要求,测试机构不得不将测试波形改为10/350。而这一变化的所谓“理论基础”是:10/350的波形更接近于直接雷击的波形参数,因此,在对此类进行浪涌保护器(IEC称SPD)的有效性测试时采用10/350波形比8/20波形更合适。 然而,在经过大量可靠的跟踪调查之后,IEEE认为对测试方案做出类似的改动根本不具备充分的理由,因此仍然坚持采用8/20波形。但在现实中,IEC引入的“配电系统1级防护”测试新方案却在浪涌保护器市场上造成了混乱:在某些欧洲生产商的鼓动下,“配电系统1级浪涌保护器” 在设计、生产上按照10/350测试脉冲为参考,采用真空管作为防护元件,并宣称该种保护器成为所谓“主流”。他们依据很简单:“既然直接雷击的波形只能用10/350波形的脉冲进行模仿,所以,ANSI/IEEE所主张的8/20波形的测试规范就不足以起到防护直接雷击的作用。” 二、IEC选择10/350 的技术依据 按照IEC的“新要求”,测试“防护直接雷击的浪涌保护器”时应采用10/350波形冲击脉冲,而测试“防护间接雷击的浪涌保护器”时应采用8/20波形。 从右图可见,100kA的10/350波形脉冲的放电强度是20kA的 8/20 波形脉冲的125倍。125 × 0.4 = 50 照此类推:我们可以得出以下结论: 如果使用压敏电阻MOV作为浪涌抑制元件,设计一个能防护100kA 的10/350 波形的冲击脉冲的保护器,它所具备的放电能力必须相当于防护2500kA的8/20波形冲击脉冲的能力。 以上结论的计算过程发表在IEC的规范文件中,并以此作为理论依据证明:“按10/350波形测试设计的保护器的防护能力比按8/20波形测试的保护器要高20倍以上。” 三、对10/350波形的采用的争议 我们讨论这样的结论是否正确之前,先看看这样一些事实: 1.按8/20设计的浪涌保护器的实际应用状况 多年来,在所有采用ANSI/IEEE标准测试的低压浪涌保护器的市场上,至今没有,也没

浪涌电流及浪涌抑制器分类及主要技术详解

浪涌电流及浪涌抑制器分类及主要技术详解 【电源网】浪涌电流指电源接通瞬间,流入电源设备的峰值电流。由于 输入滤波电容迅速充电,所以该峰值电流远远大于稳态输入电流。电源应该 限制AC开关、整流桥、保险丝、EMI滤波器件能承受的浪涌水平。反复开 关环路,AC输入电压不应损坏电源或者导致保险丝烧断。浪涌电流也指由 于电路异常情况引起的使结温超过额定结温的不重复性最大正向过载电流。 ?浪涌抑制器的分类 ?1.放电间隙(又称保护间隙): ?它一般由暴露在空气中的两根相隔一定间隙的金属棒组成,其中一根金属 棒与所需保护设备的电源相线L1或零线(N)相连,另一根金属棒与接地线(PE)相连接,当瞬时过电压袭来时,间隙被击穿,把一部分过电压的电荷引入大地,避免了被保护设备上的电压升高。这种放电间隙的两金属棒之间的距离可按 需要调整,结构较简单,其缺点是灭弧性能差。改进型的放电间隙为角型间隙,它的灭弧功能较前者为好,它是靠回路的电动力F作用以及热气流的上 升作用而使电弧熄灭的。 ?2.气体放电管: ?它是由相互离开的一对冷阴板封装在充有一定的惰性气体(Ar)的玻璃管或 陶瓷管内组成的。为了提高放电管的触发概率,在放电管内还有助触发剂。 这种充气放电管有二极型的,也有三极型的,气体放电管的技术参数主要有:直流放电电压Udc;冲击放电电压Up(一般情况下Up≈(2~3)Udc;工频而授电 流In;冲击而授电流Ip;绝缘电阻R(>109Ω);极间电容(1-5PF)气体放电管可在直 流和交流条件下使用,其所选用的直流放电电压Udc分别如下:在直流条件 下使用:Udc≥1.8U0(U0为线路正常工作的直流电压)在交流条件下使用:U

圆柱形导体接地电阻的计算

电磁场仿真实验报告

2010级4班 吴开宇2010302540009

圆柱形导体接地电阻的计算 一、基本原理 一般来说,接地电阻由连接导线的电阻、连接导线和接地体的接触电阻、接地体本身的电阻和电流流入大地时所具有的电阻组成。由于前三项与最后一项相比很小,可忽略不计,所以接地电阻为电流从接地体流入地中时所具有的电阻,即:R=U/I(其中U为接地体对于无穷远的电压,I为流经接地体而注入大地的流散电流)。 二、相关数据 试求长为1m,直径0.05m,与大地垂直的、上圆柱表面与地面持平的管形接地体电阻(电阻率ρ1= 1.5×10-7Ω·m)。 我们无法建一个无穷大的土壤模型,而离开接地电极距离为接地电极尺寸10倍以内的土壤对接地电阻值有较大影响,因此一个长宽高分别为4m、4m、20m 的长方体土壤块基本满足我们的精度要求(电阻率ρ2=500Ω·m)。

圆柱形导体接地体接地电阻计算的物理模型 三、实验步骤 0、定义分析类型。 进入Main Menu>Preferences,在弹出的对框中选中“Electric”,点击“OK”(command: /COM, Electric)。 1、进入前处理菜单。 进入Main Menu>Preprocessor,点开菜单即可(command: /PREP7)。 2、建立一个圆柱体模型。 点击Modeling>Create>Volumes>Cylinder>Solid Cylinder。在弹出的对话框中,“WPX”和“WPY”分别为圆心在工作平面上的X和Y坐标,“Radius”为圆柱体的半径,“Depth”为圆柱体的深度;依次填入“0,0,0.025,-1”,点击“OK”。这样

正向冲击电流浪涌电流试验标准

正向冲击电流(浪涌电流)试验标准 Forward Surge Test 一、目的:检验器件经正向大电流冲击而不失效的能力。 二、试验设备:浪涌电流测试仪(10~2000A) 三、环境试验条件及判据: (1)标准状态 标准状态是指预处理, 后续处理及试验中的环境条件。论述如下: 环境温度: 15~35℃ 相对湿度: 45~75% (2)判定状态 判定状态是指初测及终测时的环境条件。论述如下: 环境温度: 25±3℃ 相对湿度: 45~75% 四、操作规范: 4.1要严格按照PFD - Ⅲ型高温反偏试验台“技术说明书”操作顺序操作。 4.2常规产品规定每季度做一次周期试验,试验条件及判据采用或等效采 用产品标准;新产品、新工艺、用户特殊要求产品等按计划进行。 4.3采用LTPD的抽样方法,在第一次试验不合格时,可采用追加样品抽 样方法或采用筛选方法重新抽样,但无论何种方法只能重新抽样或追 加一次。 4.4若LTPD=10%,则抽22只,0收1退,追加抽样为38只,1收2退。 抽样必须在OQC检验合格成品中抽取。 五、操作规程: 1.整流二极管

1.1把被检测样品按二极管的极性正确地在夹具上固定好。 1.2测试台的黑色多路开关打在“0”位,切记不能打在“1~4” 档的任何一档。 2.整流桥堆 2.1 把被测样品整流桥堆放在夹具上夹好。 2.2 把多路黑色开关打向“1~4”任何一档,切记不能打在“0”档。 3.把充电/浪涌开关打在浪涌位置,浪涌/浪涌+反压大在浪涌位置, 反向电压调节旋钮反时针调到零。 4.启动电源,此时,IFSM、VFM、浪涌次数、10个数码管显示全为 零,10ms指示灯亮。 5.按一下薄膜面板上的SET键,此时,IFSM4个数码管闪烁,此时 您可根据要求设置浪涌电流值了,设置数0~9自左向右切换,F1为10ms,F2为8.3ms,如有误操作可用Del键修改,当数值确定后,按ENT键确定,IFSM显示设置的浪涌电流值。 注意: 1.在设置电流值时,最右边一位数码只有0、5有效,最左边一 位数码管只有0、1、2有效,其余数不认。 2.当设置错误时按ENT键无效、IFSM数码管闪烁。 3.只有在充电/浪涌开关打在浪涌时才可以设置,在充电时设置 无效。 6.把充电/浪涌开关打向充电,样品测试台中大接触器吸合,充电 电瓶表指示、当指示到40V左右时,充电指示发光管(绿色)闪

水电阻液变电阻式软启动装置.

水电阻液变电阻式软启动装置 水电阻式是靠极板的移动和大电流使水汽化(极板表面)形成高电阻改变液体的电阻来控制启动电流(电压),而液变电阻是靠掺入杂质的多少,极板的大小及大电流使极板附近的水汽化产生的高电阻来控制启动电流,二者都是串在定子回路中,如图3所示。启动完毕之后K2将电阻短接。 水电阻和液变电阻式软启动装置受环境温度的影响比较大,主要是由于对汽化电阻的影响较大,因此启动电流控制不准确,另外二者在启动时会产生很大的能量损耗,使水温迅速升高,所以对连续启动次数是有限制的。 由电机学可知,启动电流与加在电机上的电压成正比,假定电机全压启动时电流为5In,如果要以3 In来软启动,则电机上的电压Ud要达0.6U,因为电机在启动时的功率因数很小(仅0.2左右),可近似认为Ud=Ux(电机感抗上的电压),由此算出水电阻电压UR+Ur(电机电压的阻性分量)≈0.8U,从中去掉Ur(小于0.2U)可得:UR≈0.6U,这时水电阻上消耗的功率为:PR= UR·3In=1.8· U·In=1.8 Pn。就是说如果电机为10000KW,则启动时水电阻上消耗的功率为18000KW,如此大的功率使极板附近的水汽化,汽化电阻不好控制且受环境温度的影响,这便是控制精度不高的原因,有时甚至有启动失败的情况。 由大量的实验可知,电动机启动时,在达到额定转速的80%之前,启动电流没有明显的下降,即使在软启动情况下,在达到额定转速的80%附近也有个启动电流的最大值,此最大值与电机的负荷状况及加速过程等情况有关,一般在(1.5~3.5)In之间。 液变电阻软启动装置以电流为调节变量,由于液变电阻受环境温度的影响较大,有时会发生汽化电阻太大,启动电流不能达到此最大值的情况,这时电机会长时间达不到额定转速,造成启动失败。如果第二次启动则必须等待降温,可能要几个小时,这种情况对连续化大生产的工厂来说是不允许的,造成的损失是不可估量的。 水电阻式软启动装置由于极板是移动的,不会产生上述的问题,但是水的汽化压力会使极板剧烈振动,使其寿命缩短,在大功率电机的情况下,这个问题将变得非常严重。 用水电阻启动电机时,水电阻串在电机的末端,高压开关的前面是电源,后面是电机定子绕组。开关关合时,全压加在电机绕组的首端,产生操作过电压的情况与直接全压启动的情况时一样的。会对电机绝缘造成极大的伤害。

浪涌抑制电阻阻值及功率的选择

浪涌抑制电阻阻值及功率的选择 大功率电源,输入浪涌抑制电路一般都选择功率电阻+继电器的方式,电阻给电容充电后利用继电器短路电阻,那么电阻阻值及功率如何根据后级电流来选择? 今天有套系统本来准备发货的,包装前上电试验一下,结果没工作,拆开看电阻已经炸裂了,换电阻再试验又没有问题,郁闷了,电阻的阻值及功率如何计算? greendot查看完整内容 这个问题可以用仿真来探究一下, R=1K ,C=1000μF,Vac=220Vrms 电压和电流波形如下: 头0.5秒的:

0-2秒内,平均功率15.2W,能量30.4J 0-5 ,6.94W,34.7J 0-10,3.55W,35.5J 0-20,1.78W,35.6J 至于电阻选多大功率,由王版决定。 ?回复楼主 ? ?1楼 ?1155050 ?| 本网技工 (180) | 发消息 | 查看最佳答案 ?2011-09-26 13:43 这个电阻换成压敏电阻是不是合适点? ?回复1楼 ? ?2楼 ?YTDFWANGWEI ?| 总工程师 (12447) | 发消息 | 查看最佳答案 ?2011-09-26 15:04

4KW,这个功率等级好象没有压敏电阻吧. ?回复2楼 ? ?3楼 ?晶纲禅诗 ?| 副总工程师 (7208) | 发消息 | 查看最佳答案 ?2011-09-26 23:44 这方面王工还是缺少经验一般这个功率电阻要选“特殊”的规格品种,但似乎国内并不好找, 要选耐冲击型的,有点类似“延迟保险丝”的特性。买不到时,可选高电阻率、大截面积的电阻丝自己绕制。 实在无奈时,可以增大功率电阻的阻值与功率,并延长继电器的吸合等待时间来改善。 ?回复3楼 ? ?4楼 ?1155050 ?| 本网技工 (180) | 发消息 | 查看最佳答案 ?2011-09-27 08:12 分析的到位,大虾级别 ?回复4楼 ? ?5楼 ?YTDFWANGWEI ?| 总工程师 (12447) | 发消息 | 查看最佳答案 ?2011-09-27 08:25 耐冲击的,我们常用的应该是线绕电阻吧?如果用电阻丝自己绕,批产这玩

电流 电阻 电压 计算公式

电流电阻电压计算公式 1、串联电路电流和电压有以下几个规律:(如:R1,R2串联) ①电流:I=I1=I2(串联电路中各处的电流相等) ②电压:U=U1+U2(总电压等于各处电压之和) ③电阻:R=R1+R2(总电阻等于各电阻之和)如果n个阻值相同的电阻串联,则有R总=nR 2、并联电路电流和电压有以下几个规律:(如:R1,R2并联) ①电流:I=I1+I2(干路电流等于各支路电流之和) ②电压:U=U1=U2(干路电压等于各支路电压) ③电阻:(总电阻的倒数等于各并联电阻的倒数和)或。 如果n个阻值相同的电阻并联,则有R总= R 注意:并联电路的总电阻比任何一个支路电阻都小。 电功计算公式:W=UIt(式中单位W→焦(J);U→伏(V);I→安(A);t→秒)。 5、利用W=UIt计算电功时注意:①式中的W、U、I和t是在同一段电路;②计算时单位要统一;③已知任意的三个量都可以求出第四个量。 6、计算电功还可用以下公式:W=I2Rt ;W=Pt;W=UQ(Q是电量); 【电学部分】 1电流强度:I=Q电量/t 2电阻:R=ρL/S 3欧姆定律:I=U/R 4焦耳定律: ⑴Q=I2Rt普适公式) ⑵Q=UIt=Pt=UQ电量=U2t/R (纯电阻公式) 5串联电路: ⑴I=I1=I2 ⑵U=U1+U2 ⑶R=R1+R2 ⑷U1/U2=R1/R2 (分压公式) ⑸P1/P2=R1/R2 6并联电路: ⑴I=I1+I2 ⑵U=U1=U2 ⑶1/R=1/R1+1/R2 [ R=R1R2/(R1+R2)] ⑷I1/I2=R2/R1(分流公式) ⑸P1/P2=R2/R1 7定值电阻: ⑴I1/I2=U1/U2 ⑵P1/P2=I12/I22 ⑶P1/P2=U12/U22

看:河南全新公司如何打好水电阻软启动市场营销策略仗.

看:河南全新公司如何打好水电阻软启动市场营销策略仗 生活中离不开营销,企业离不开营销,企业要想不断向前发展,必须将营销摆在首位,水电阻软启动企业依然如此。只有搞好营销,才能提高自己的积累,实现占领市场、扩大规模的目的。当然,众所周知,目前我国的水电阻软启动市场的品牌的天下,水电阻软启动品牌为营销提供了强劲的拉力,很多企业也进行了不遗余力的品牌建设工程。河南全新水电阻软启动生产厂家认为:营销对水电阻软启动品牌建设的促进作用,并不仅仅体现在为品牌建设直接提供资金支持的方面,还可以在营销的过程中,运用各种策略为化妆品品牌加分,而这些营销手段并不需要投入额外的资金,就能在实现营销目标的同时,达到品牌建设的目的。第一,在销售过程中 我们知道, 单纯的营销活动是没有的, 为了卖产品而卖产品的营销活动是不会成功的。因为, 在营销过程中, 无时不刻地都打上了自己品牌的烙印。特别是在产品同质化十分严重的今天, 不同品牌都在销售相同品质的产品。消费者选择的标准是什么?那就是不同的品牌了。在河南全新水电阻软启动销售部,业务人员担任着十分重要的品牌宣传工作,从顾客来来电的招呼与问候,到产品及品牌的详细解说,到成交后的欢送,业务人员都是这个过程的主导者和执行者。河南全新水电阻软启动销售经理说到:坚决杜绝消费者来电询问,你不理不睬,解说时爱理不理, 消费者离开时不发一语。消费者对你的印象乃至对你的品牌的印象都不会好。这样,你就为你的品牌建设做了减法。 第二,促销活动中 河南全新水电阻软启动不管促销活动的销售目的是达到多少多少,始终都有这样一个目标― 宣传自己的水电阻软启动品牌。而且,不管活动效果的好与坏,促销活动都能达到宣传品牌的目的,提升了河南全新水电阻软启动品牌的知名度和影响力。和促销产品一样,首先要做好物料的准备,宣传单张、背景喷绘等展示品牌形象的物料一定要准备充足和到位,发放宣传单张的数量就是品牌宣传效果的一个佐证;其次,人员一定要到位,当消费者拿着你的宣传单张想进一步了解的时候, 如果没有解说人员, 那么, 他们的做法通常是把单张捏成一团, 转身就投入了垃圾桶;第三,活

相关文档
最新文档