向量法求二面角(一)(人教A版)(含答案)

向量法求二面角(一)(人教A版)(含答案)
向量法求二面角(一)(人教A版)(含答案)

向量法求二面角(一)(人教A版)

一、单选题(共7道,每道14分)

1.如图,在三棱锥P-ABC中,PA⊥底面ABC,AC⊥AB,PA=AB=2,AC=1,二面角A-PC-B的正弦值为( )

A. B.

C. D.

答案:B

解题思路:

试题难度:三颗星知识点:用空间向量求二面角

2.如图,在三棱锥P-ABQ中,PB⊥平面ABQ,BA=BP=BQ,D,C,E,F分别是AQ,BQ,AP,BP的中点,AQ=2BD,则平面PCD与平面QEF所成的锐二面角的正切值为( )

A. B.

C. D.

答案:B

解题思路:

试题难度:三颗星知识点:用空间向量求二面角

3.如图,四边形ABCD为正方形,PD⊥平面ABCD,PD∥QA,,二面角Q-BP-C的正弦值为( )

A. B.

C. D.

答案:A

解题思路:

试题难度:三颗星知识点:用空间向量求二面角

4.如图,在三棱柱中,是边长为4的正方

形.,若AB=3,BC=5,则二面角的余弦值为( )

A. B.

C. D.

答案:C

解题思路:

试题难度:三颗星知识点:用空间向量求二面角

5.如图,在四棱锥A-BCDE中,平面ABC⊥平面BCDE,∠CDE=∠BED=90°,AB=CD=2,DE=BE=1,.则二面角B-AD-E的大小为( )

A.30°

B.45°

C.60°

D.75°

答案:A

解题思路:

试题难度:三颗星知识点:用空间向量求二面角

6.如图,在长方体中,,E为CD中点.若二面角

的大小为30°,则AB的长为( )

A. B.

C. D.2

答案:D

解题思路:

试题难度:三颗星知识点:用空间向量求二面角

7.如图,直三棱柱,∠BAC=90°,,点M,N分别为和

的中点.若二面角为直二面角,则λ的值为( )

A. B.1

C. D.

答案:C

解题思路:

试题难度:三颗星知识点:用空间向量求二面角

用向量法求二面角的平面角教案

用向量法求二面角的平面 角教案 Prepared on 24 November 2020

第三讲:立体几何中的向量方法 ——利用空间向量求二面角的平面角大家知道,立体几何是高中数学学习的一个难点,以往学生学习立体几何时,主要采取“形到形”的综合推理方法,即根据题设条件,将空间图形转化为平面图形,再由线线,线面等关系确定结果,这种方法没有一般规律可循,对人的智力形成极大的挑战,技巧性较强,致使大多数学生都感到束手无策。 高中新教材中,向量知识的引入,为学生解决立体几何问题提供了一个有效的工具。它能利用代数方法解决立体几何问题,体现了数形结合的思想。并且引入向量,对于某些立体几何问题提供通法,避免了传统立体几何中的技巧性问题,因此降低了学生学习的难度,减轻了学生学习的负担,体现了新课程理念。 为适应高中数学教材改革的需要,需要研究用向量法解决立体几何的各种问题。本文举例说明如何用向量法解决立体几何的空间角问题。以此强化向量的应用价值,激发学生学习向量的兴趣,从而达到提高学生解题能力的目的。 利用向量法求空间角,不需要繁杂的推理,只需要将几何问题转化为向量的代数运算,方便快捷。空间角主要包括线线角、线面角和二面角,下面对二面角的求法进行总结。 教学目标 1.使学生会求平面的法向量; 2.使学生学会求二面角的平面角的向量方法; 3.使学生能够应用向量方法解决一些简单的立体几何问题; 4.使学生的分析与推理能力和空间想象能力得到提高. 教学重点 求平面的法向量;

求解二面角的平面角的向量法. 教学难点 求解二面角的平面角的向量法. 教学过程 Ⅰ、复习回顾 一、回顾相关公式: 1、二面角的平面角:(范围:],0[πθ∈) 角的补角. 3、用空间向量解决立体几何问题的“三步曲”: (1)建立立体图形与空间向量的联系,用空间向量表示问题中涉及的点、直线、平面,把立体几何问题转化为向量问题;(化为向量问题) (2)通过向量运算,研究点、直线、平面之间的位置关系以及它们之间距离和夹角等问题;(进行向量运算) (3)把向量的运算结果“翻译”成相应的几何意义。(回到图形) Ⅱ、典例分析与练习 例1、如图,ABCD 是一直角梯形,?=∠90ABC ,⊥SA 面ABCD ,1===BC AB SA , 2 1 = AD ,求面SCD 与面SBA 所成二面角的余弦值. 分析 分别以,,BA AD AS 所在直线为,,x y z 轴,

利用法向量解立体几何题

利用法向量解立体几何题 一、运用法向量求空间角 向量法求空间两条异面直线a, b 所成角θ,只要在两条异面直线a, b 上各任取一个向量 ''AA BB 和,则角<','AA BB >=θ或π-θ,因为θ是锐角,所以cos θ= '''' AA BB AA BB ??, 不需 要用法向量。 1、运用法向量求直线和平面所成角 设平面α的法向量为n =(x, y, 1),则直线AB 和平面α所成的角θ的正弦值为 sin θ= cos( 2 π -θ) = |cos| = AB AB n n ?? 2、运用法向量求二面角 设二面角的两个面的法向量为12,n n ,则<12,n n >或π-<12,n n >是所求角。这时要借助图形来判断所求角为锐角还是钝角,来决定<12,n n >是所求,还是π-<12,n n >是所求角。 二、运用法向量求空间距离 1、求两条异面直线间的距离 设异面直线a 、b 的公共法向量为(,,)n x y z =,在a 、b 上任取一点A 、B ,则异面直线a 、b 的距离 d =AB ·cos ∠BAA ' = || || AB n n ? 略证:如图,EF 为a 、b 的公垂线段,a '为过F 与a 平行的直线, 在a 、b 上任取一点A 、B ,过A 作AA '// EF ,交a '于A ' , A

则?ˉ //AA n ,所以∠BAA ' =<,BA n >(或其补角) ∴异面直线a 、b 的距离d =AB ·cos ∠BAA ' = || || AB n n ? * 其中,n 的坐标可利用a 、b 上的任一向量,a b (或图中的,AE BF ),及n 的定义得 0n a n a n b n b ??⊥?=?????⊥?=??? ? ① 解方程组可得n 。 2、求点到面的距离 求A 点到平面α的距离,设平面α的法向量法为(,,1)n x y =,在α内任取一点B ,则A 点到平面α的距离为 d = || || AB n n ?,n 的坐标由n 与平面α内的两个不共线向量的垂直关系,得到方程组(类似于前面所述, 若方程组无解,则法向量与XOY 平面平行,此时可改设 (1,,0)n y =,下同)。 3、求直线到与直线平行的平面的距离 求直线a 到平面α的距离,设平面α的法向量法为(,,1)n x y =,在直线a 上任取一点A , 在平面α内任取一点B ,则直线a 到平面α的距离 d = || || AB n n ? 4、求两平行平面的距离 设两个平行设平面α、β的公共法向量法为(,,1)n x y =,在平面α、β内各任取一点A 、 B ,则平面α到平面β的距离 d = || || AB n n ? 三、证明线面、面面的平行、垂直关系 设平面外的直线a 和平面α、β,两个面α、β的法向量为12,n n ,则 1a//a n α?⊥ 1a a//n α⊥? 12////n n αβ? 12n n αβ⊥?⊥

(完整版)《用向量法求二面角的平面角》教案

第三讲:立体几何中的向量方法 ——利用空间向量求二面角的平面角大家知道,立体几何是高中数学学习的一个难点,以往学生学习立体几何时,主要采取“形到形”的综合推理方法,即根据题设条件,将空间图形转化为平面图形,再由线线,线面等关系确定结果,这种方法没有一般规律可循,对人的智力形成极大的挑战,技巧性较强,致使大多数学生都感到束手无策。 高中新教材中,向量知识的引入,为学生解决立体几何问题提供了一个有效的工具。它能利用代数方法解决立体几何问题,体现了数形结合的思想。并且引入向量,对于某些立体几何问题提供通法,避免了传统立体几何中的技巧性问题,因此降低了学生学习的难度,减轻了学生学习的负担,体现了新课程理念。 为适应高中数学教材改革的需要,需要研究用向量法解决立体几何的各种问题。本文举例说明如何用向量法解决立体几何的空间角问题。以此强化向量的应用价值,激发学生学习向量的兴趣,从而达到提高学生解题能力的目的。 利用向量法求空间角,不需要繁杂的推理,只需要将几何问题转化为向量的代数运算,方便快捷。空间角主要包括线线角、线面角和二面角,下面对二面角的求法进行总结。 教学目标 1.使学生会求平面的法向量; 2.使学生学会求二面角的平面角的向量方法; 3.使学生能够应用向量方法解决一些简单的立体几何问题; 4.使学生的分析与推理能力和空间想象能力得到提高. 教学重点 求平面的法向量; 求解二面角的平面角的向量法. 教学难点

求解二面角的平面角的向量法. 教学过程 Ⅰ、复习回顾 一、回顾相关公式: 1、二面角的平面角:(范围:],0[πθ∈) 结论: 或 统一为: 2、法向量的方向:一进一出,二面角等于法向量夹角;同进同出,二面角等于法向量夹角的补角. 3、用空间向量解决立体几何问题的“三步曲”: (1)建立立体图形与空间向量的联系,用空间向量表示问题中涉及的点、直线、平面,把立体几 2 12121,cos cos n n n n n n ? ?? ?? ρ?=><=θ

用向量法求二面角的平面角教案

第三讲:立体几何中的向量方法 利用空间向量求二面角的平面角大家知道,立体几何是高中数学学习的一个难点,以往学生学习立体几何时,主要采取“形到形” 的综合推理方法,即根据题设条件,将空间图形转化为平面图形,再由线线,线面等关系确定结果,这种方法没有一般规律可循,对人的智力形成极大的挑战,技巧性较强,致使大多数学生都感到束手无策。 高中新教材中,向量知识的引入,为学生解决立体几何问题提供了一个有效的工具。它能利用代数 方法解决立体几何问题,体现了数形结合的思想。并且引入向量,对于某些立体几何问题提供通法,避免了传统立体几何中的技巧性问题,因此降低了学生学习的难度,减轻了学生学习的负担,体现了新课 程理念。 为适应高中数学教材改革的需要,需要研究用向量法解决立体几何的各种问题。本文举例说明如何用向量法解决立体几何的空间角问题。以此强化向量的应用价值,激发学生学习向量的兴趣,从而达到提高学生解题能力的目的。 利用向量法求空间角,不需要繁杂的推理,只需要将几何问题转化为向量的代数运算,方便快捷。 空间角主要包括线线角、线面角和二面角,下面对二面角的求法进行总结。 教学目标 1使学生会求平面的法向量; 2?使学生学会求二面角的平面角的向量方法; 3. 使学生能够应用向量方法解决一些简单的立体几何问题; 4. 使学生的分析与推理能力和空间想象能力得到提高 教学重点 求平面的法向量; 求解二面角的平面角的向量法 教学难点 求解二面角的平面角的向量法 教学过程 I、复习回顾 一、回顾相关公式: 1、二面角的平面角:(范围:[0,])

2、 法向量的方向: 一进一出,二面角等于法向量夹角;同进同出,二面 角等于法向量夹角的补角 . 3、 用空间向量解决立体几何问题的“三步曲” : (1) 建立立体图形与空间向量的联系,用空间向量表示问题中涉及的点、直线、平面,把立体几何 问题转化为向量问题;(化为向量问题) (2) 通过向量运算,研究点、直线、平面之间的位置关系以及它们之间距离和夹角等问题; (进行 向量运算) (3) 把向量的运算结果“翻译”成相应的几何意义。 (回到图形) n 、典例分析与练习 例1、如图,ABCD 是一直角梯形, ABC 90 , SA 求面SCD 与面SBA 所成二面角的余弦值? 分析 分别以BA, AD,AS 所在直线为x,y,z 轴, 建立空间直角坐标系,求出平面 SCD 的法向量 仁, 平面SBA 法向量n 2,利用n i , n 2夹角 cos cos n 1, n 2 结论: 或 ——■ cos cos 门1,门2 cos cos n j , n 2 统一为: n 1 n 2 |n 1 n 2 1 面 ABCD , SA AB BC 1, AD -, 2

用向量法求二面角的平面角教案

第三讲:立体几何中的向量方法——利用空间向量求二面角的平面角 大家知道,立体几何是高中数学学习的一个难点,以往学生学习立体几何时,主要采取“形到形”的综合推理方法,即根据题设条件,将空间图形转化为平面图形,再由线线,线面等关系确定结果,这种方法没有一般规律可循,对人的智力形成极大的挑战,技巧性较强,致使大多数学生都感到束手无策。 高中新教材中,向量知识的引入,为学生解决立体几何问题提供了一个有效的工具。它能利用代数方法解决立体几何问题,体现了数形结合的思想。并且引入向量,对于某些立体几何问题提供通法,避免了传统立体几何中的技巧性问题,因此降低了学生学习的难度,减轻了学生学习的负担,体现了新课程理念。 为适应高中数学教材改革的需要,需要研究用向量法解决立体几何的各种问题。本文举例说明如何用向量法解决立体几何的空间角问题。以此强化向量的应用价值,激发学生学习向量的兴趣,从而达到提高学生解题能力的目的。 利用向量法求空间角,不需要繁杂的推理,只需要将几何问题转化为向量的代数运算,方便快捷。空间角主要包括线线角、线面角和二面角,下面对二面角的求法进行总结。 教学目标 1.使学生会求平面的法向量; 2.使学生学会求二面角的平面角的向量方法; 3.使学生能够应用向量方法解决一些简单的立体几何问题; 4.使学生的分析与推理能力和空间想象能力得到提高. 教学重点

求平面的法向量; 求解二面角的平面角的向量法. 教学难点 求解二面角的平面角的向量法. 教学过程 Ⅰ、复习回顾 一、回顾相关公式: 1、二面角的平面角:(范围:],0[πθ∈) 向量夹角的补角. 3、用空间向量解决立体几何问题的“三步曲”: (1)建立立体图形与空间向量的联系,用空间向量表示问题中涉及的点、直线、平面,把立体几何问题转化为向量问题;(化为向量问题) (2)通过向量运算,研究点、直线、平面之间的位置关系以及它们之间距离和夹角等问题;(进行向量运算) (3)把向量的运算结果“翻译”成相应的几何意义。(回到图形) Ⅱ、典例分析与练习 例1、如图,ABCD 是一直角梯形,?=∠90ABC ,⊥SA 面ABCD ,1===BC AB SA ,

二面角求法及经典题型归纳

- 1 - αβa O A B 二面角求法 一:知识准备 1、二面角的概念:从一条直线出发的两个半平面所组成的图形叫做二面角, 这条直线叫做二面角的棱, 这两个半平面叫做二面角的面. 2、二面角的平面角的概念:平面角是指以二面角的棱上一点为端点,在两个半平面内分别做垂直于棱的两条射线,这两条射线所成的角就叫做该二面角的平面角。 3、二面角的大小范围:[0°,180°] 4、三垂线定理:平面内的一条直线,如果和这个平面的一条斜线的射影垂直,那么它就和这条斜线垂直 5、平面的法向量:直线L 垂直平面α,取直线L 的方向向量,则这个方向向量叫做平面α的法向量。(显然,一个平面的法向量有无数个,它们是共线向量) 6、二面角做法:做二面角的平面角主要有3种方法: (1)、定义法:在棱上取一点,在两个半平面内作垂直于棱的2 条射线,这2条所夹 的角; (2)、垂面法:做垂直于棱的一个平面,这个平面与2个半平面分别有一条交线,这2条交线所成的角; (3)、三垂线法:过一个半平面内一点(记为A )做另一个半平面的一条垂线,过这个垂足(记为B )再做棱的垂线,记垂足为C ,连接AC ,则∠ACB 即为该二面角的平面角。 7、两个平面的法向量的夹角与这两个平面所成的二面角的平面角有怎样的关系? 二:二面角的基本求法及练习 1、定义法: 从一条直线出发的两个半平面所组成的图形叫做二面角, 这条直线叫做二面角的棱, 这两个半平面叫做二面角的面,在棱上取点,分别在两面内引两条射线与棱垂直,这两条垂线所成的角的大小就是二面角的平面角。 本定义为解题提供了添辅助线的一种规律。如例1中从二面角S —AM —B 中半平面ABM 上的一已知点(B )向棱AM 作垂线,得垂足(F ); 在另一半平面ASM 内过该垂足(F )作棱AM 的垂线(如GF ),这两条垂线(BF 、GF )便形成该二面角的一个平面角,再在该平面角内建立一个可解三角形,然后借助直角三角函数、正弦定理与余弦定理解题。 例1.在正方体ABCD —A 1B 1C 1D 1中,求 (1)二面角11A B C A 的大小; (2)平面11A DC 与平面11ADD A 所成角的正切值。 C1

利用法向量求二面角的正负

利用法向量求二面角的平面角 授课教师:陈诚班级:高二(14)班时间:2010-01-14 【教学目标】 1、让学生初步理解二面角的平面角与半平面法向量的关系,并能解决与之有关 的简单问题。 2、通过本节课的学习,培养学生观察、分析与推理从特殊到一般的探究能力和 空间想象能力。 3、培养学生主动获取知识的学习意识,激发学生学习兴趣和热情,获得积极的 情感体验。 【教学重点】利用法向量计算二面角的大小。 【教学难点】求两个面的法向量及判断二面角大小与两个面的法向量的夹角的关系。 【课时安排】1课时 【教学过程】 一、内容回顾 求二面角的平面角的方法:定义法、三垂线法、向量法。 前两种方法是空间立体的方法,难度较大,都涉及到要在两半平面内找棱的垂线,或是找点在平面内的射影,再算边长,通过解三角形来解决。 而向量法也是要找两个与棱垂直的且和半平面延伸方向一致的向量来计算夹角。所以这些方法都涉及到了找垂线,再说明,再计算的过程,都需要逻辑推理。 而如果解决二面角的平面角也能像前面解决线线角或线面角问题一样,能通过空间向量的方法来解决,那么这些逻辑推理过程,我们能通过利用空间向量的程式化计算来转化。因为空间中平面的位置可以用平面的法向量来表示,所以二面角的平面角可以用平面的法向量的夹角来解决,那么向量的夹角与二面角的平面角有着一种什么样的联系呢?

二、新课讲授 如图,二面角为l αβ-- 1、记121212,,C =A,=B.l l l l l l αβαβ⊥⊥ 且与相交于, 2、过B 作,()BO l AO AOB ⊥∠连下面说明即是二面角的平面角 11,,.,.l l BO l l BOC l OC l l l AOC l AO AOB ⊥⊥∴⊥∴⊥⊥∴⊥∴⊥∴∠ 面面是二面角的平面角(一找、二证、三计算) 3、,l AOC BOC ⊥面和面 0=360. AOC BOC AOBC AOBC ∴ 又过空间一点有且只有一个平面和已知直线垂直。面和面重合。 即四点共面,即有平面四边形内角和 4、在12 l l ,上分别取直线的方向向量12,,n n ,事实上,由于线面垂直,两 方向向量即是两平面的法向量。 ①0 01212,,180,180.ACB n n ACB AOB AOB n n ∠=<>∠+∠=?∠+<>= ②00 1212,180,180,.ACB n n ACB AOB AOB n n ∠+<>=∠+∠=?∠=<> 由①②分别可得1212,,COS AOB COS n n COS AOB COS n n ∠=-<> ∠=<> 5、总结。计算二面角的平面角,可先找两平面的法向量的夹角。即计算法 向量的数量积。可求出法夹角的余弦值,继而得到平面角的余弦值。

高中立体几何中二面角经典求法

高中立体几何中二面角求法 摘要:在立体几何中,求二面角的大小是历届高考的热点,几乎每年必考,而对于求二面角方面的问题,同学们往往很难正确地找到作平面角的方法,本文对求二面角的方法作了一个总结,希望对学生有帮助。 (一)、二面角定义的回顾: 从一条直线出发的两个半平面所组成的图形就叫做二面角。二面角的大小是用二面角的平面角来衡量的。而二面角的平面角是指在二面角βα--l 的棱上任取一点O ,分别在两个半平面内作射线l BO l AO ⊥⊥,,则AOB ∠为二面角βα--l 的平面角。 α β (二)、二面角的通常求法 1、由定义作出二面角的平面角; * 2、利用三垂线定理(逆定理)作出二面角的平面角; 3、作二面角棱的垂面,则垂面与二面角两个面的交线所成的角就是二面角的平面角。 4、空间坐标法求二面角的大小 5、平移或延长(展)线(面)法 6、射影公式S 射影=S 斜面cos θ 7、化归为分别垂直于二面角的两个面的两条直线所成的角 1、利用定义作出二面角的平面角,并设法求出其大小。 例1、 如图,已知二面角α-а-β等于120°,PA ⊥α,A ∈α,PB ⊥β,B ∈β. 求∠APB 的大小. 解: 设平面∩PAB α=OA,平面PAB ∩β=OB 。 ∵PA ⊥α, аα ∴PA ⊥а 同理PB ⊥а ∴а⊥平面PAB 又∵OA 平面PAB ∴а⊥OA 同理а⊥OB. ∴∠AOB 是二面角α-а-β的平面角. 在四边形PAOB 中, ∠AOB=120°,. O A B ) A B l P . B A

∠PAO=∠POB=90°, 所以∠APB=60° 2、 ( 3、 三垂线定理(逆定理)法 由二面角的一个面上的斜线(或它的射影)与二面角的棱垂直,推得它位于二面角的另一的面上的射影(或斜线)也与二面角的棱垂直,从而确定二面角的平面角。 例2:如图,ABCD-A 1B 1C 1D 1是长方体,侧棱AA 1长为1,底面为正方体且边长为2,E 是棱BC 的中点,求面C 1DE 与面CDE 所成二面角的正切值. 解:在长方体ABCD —A 1B 1C 1D 1中 由三垂线定理可得: CD CE=1, DE= 5 3、找(作)公垂面法 由二面角的平面角的定义可知两个面的公垂面与棱垂直,因此公垂面与两个面的交线所成的角,就是二面角的平面角。 例5、如图,已知PA 与正方形ABCD 所在平面垂直,且AB =PA ,求平面PAB 与平面PCD 所成的二面角的大小。 \ 解: ∵PA ⊥平面ABCD ,∴PA ⊥CD .P 又CD ⊥AD ,故CD ⊥平面PAD . A D 而CD 平面PCD , B C 所以 平面PCD ⊥平面PAD . A B C D A 1 B 1 C 1 ( E O CO DE O C C ,连结,作过点⊥11DE CO ⊥的平面角 为二面角C DE C OC C --∠∴11的正方形 是边长为又2ABCD CO DE CE CD S CDE Rt CDE ?=?=??2 1 21中,在1 1=CC 又5 52tan 1= ∠∴OC C 5 52tan arg 1=∠∴OC C 5 5 2= ∴CO

空间向量法求二面角

徐沟中学高二年级数学学案 命制人: 董晓燕 郭凯丽 复查人:段红蕊 空间向量法求二面角 学习目标: 1.让学生初步理解用与二面角的平面角两边平行的向量的夹角计算二面角大小的方法;让学生初步了解二面角的平面角与两个面的法向量的夹角的关系;并能解决与之有关的简单问题. 新知自学: 让学生观察两平面的法向量的夹角与二面角的平面角之间的关系,引导学生用法向量的 夹角解 图1 图2 课堂互学: 例1;在长方体ABCD —A 1B 1C 1D 1中,AB=2,BC=4,AA 1=2,点Q 是BC 的中点,求此时二面角A —A 1D —Q 的大小. 例2.如图,AB ⊥平面BCD ,BD CD ⊥,若2AB BC BD ==,求二面角 B A C D --的正弦值 例3:如图5,在底面是直角梯形的四棱锥S —A BCD 中,AD//BC ,∠A BC=900,S A ⊥面A BCD ,S A =21,A B=BC=1,A D=2 1 。 求侧面SCD 与面SB A 所成的二面角的大小。 总结提炼: 随堂检测: 1.如图,正三棱柱111ABC A B C -的所有棱长都为 2,D 为1CC 中点. (Ⅰ)求证:1AB ⊥平面1A BD ; (Ⅱ)求二面角11C B A A --的大小; 能力提升: 1.如图,在直三棱柱ABC-A 1B 1C 1中,平面A 1BC ⊥侧面A 1ABB 1,且AA 1=AB=2. (1)求证:AB ⊥BC ;(2)若直线AC 与平面A 1BC 所成的角为6π ,求锐二面角A-A 1C-B 的大小. A B C D E F ?ω θ β l α 2 n 1 n θ β l α ? 1 n 2 n O (A ) B A 1 C 1 B 1 D 1 D C Q z y x 图4 A z y D C B S 图5 A B C D 1 A 1 C 1 B

向量法求线面角,二面角

利用空间向量解立体几何问题1、线面垂直

别解:本题还可以证明向量A1C与平面DBE的法向量平行 11.(2009安徽卷理) 如图,四棱锥F-ABCD的底面ABCD是菱形,其对角线AC=2,,AE、CF都与平面 ABCD垂直,AE=1,CF=2.

(I )求二面角B -A F -D 的大小; (向量法)以A 为坐标原点,BD 、AC 、AE 方向分别为x 轴、y 轴、z 轴的正方向建立空间直角坐标系(如图) 设平面ABF 的法向量1(,,)n x y z =,则由1100n AB n AF ??=???=?? 得02220 x y y z ?- +=???+=? 令1z = ,得1 x y ?=??=-??1(2,1,1)n =-- 同理,可求得平面ADF 的法向量2(2,1,1)n =-。 由120n n ?=知,平面ABF 与平面ADF 垂直, 二面角B-AF-D 的大小等于 2 π 。 14.(2009江西卷文) 如图,在四棱锥P ABCD -中,底面ABCD 是矩形,PA ⊥平面ABCD ,4PA AD ==, 2AB =.以BD 的中点O 为球心、BD 为直径的球面交PD 于点M . (1)求证:平面ABM ⊥平面PCD ; (2)求直线PC 与平面ABM 所成的角; (3)求点O 到平面ABM 的距离. 解:方法(一):

(1)证:依题设,M在以BD为直径的球面上,则BM⊥PD. 因为PA⊥平面ABCD,则PA⊥AB,又AB⊥AD, 所以AB⊥平面PAD,则AB⊥PD,因此有PD⊥平面ABM,所以平面ABM⊥平面PCD. (2)设平面ABM与PC交于点N,因为AB∥CD,所以AB∥平面PCD,则AB∥MN∥CD, 由(1)知,PD⊥平面ABM,则MN 是PN 在平面ABM 上的射影, 所以 P N M ∠就是PC 与平面ABM 所成的角, 且PNM PCD ∠=∠ tan tan PD PNM PCD DC ∠=∠== 所求角为arctan (3)因为O 是BD 的中点,则O 点到平面ABM 的距离等于D 点到平面ABM 距离的一半,由(1)知,PD⊥平面ABM于M ,则|DM|就是D 点到平面ABM 距离. 因为在Rt △PAD 中,4PA AD ==,PD AM ⊥,所以M 为PD 中点,DM =,则O 点到平面ABM 。 方法二: (1)同方法一; (2)如图所示,建立空间直角坐标系,则(0,0,0)A ,(0,0,4)P ,(2,0,0)B , (2,4,0)C ,(0,4,0)D , (0,2,2)M , 设平面ABM 的一个法向量(,,)n x y z =,由,n AB n AM ⊥⊥可得:20 220x y z =??+=? ,令1z =-, 则1y =,即(0,1,1)n =-.设所求角为α ,则2sin 3 PC n PC n α ?= = , 所求角的大小为. (3)设所求距离为h ,由(1,2,0),(1,2,0)O AO =,得:2AO n h n ?= = 25.(2009全国卷Ⅰ文)(本小题满分12分)(注决:在试题卷上作答无效) 如图,四棱锥S ABCD -中, 底面ABCD 为矩形,SD ⊥底面ABCD ,AD = ,

高中数学二面角求法及经典题型归纳

αβa O A B 立体几何二面角求法 一:知识准备 1、二面角的概念:从一条直线出发的两个半平面所组成的图形叫做二面角, 这条直线叫做二面角的棱, 这两个半平面叫做二面角的面. 2、二面角的平面角的概念:平面角是指以二面角的棱上一点为端点,在两个半平面内分别做垂直于棱的两条射线,这两条射线所成的角就叫做该二面角的平面角。 3、二面角的大小范围:[0°,180°] 4、三垂线定理:平面内的一条直线,如果和这个平面的一条斜线的射影垂直,那么它就和这条斜线垂直 5、平面的法向量:直线L 垂直平面α,取直线L 的方向向量,则这个方向向量叫做平面α的法向量。(显然,一个平面的法向量有无数个,它们是共线向量) 6、二面角做法:做二面角的平面角主要有3种方法: (1)、定义法:在棱上取一点,在两个半平面内作垂直于棱的2 条射线,这2条所夹 的角; (2)、垂面法:做垂直于棱的一个平面,这个平面与2个半平面分别有一条交线,这2条交线所成的角; (3)、三垂线法:过一个半平面内一点(记为A )做另一个半平面的一条垂线,过这个垂足(记为B )再做棱的垂线,记垂足为C ,连接AC ,则∠ACB 即为该二面角的平面角。 7、两个平面的法向量的夹角与这两个平面所成的二面角的平面角有怎样的关系? 二:二面角的基本求法及练习 1、定义法: 从一条直线出发的两个半平面所组成的图形叫做二面角, 这条直线叫做二面角的棱, 这 两个半平面叫做二面角的面,在棱上取点,分别在两面内引两条射线与棱垂直, 这两条垂线所成的角的大小就是二面角的平面角。 本定义为解题提供了添辅助线的一种规律。如例1中从二面角S —AM —B 中半平面ABM 上的一已知点(B )向棱AM 作垂线,得垂足(F ); 在另一半平面ASM 内过该垂足(F )作棱AM 的垂线(如GF ),这两条垂线(BF 、GF )便形成该二面角的一个平面角,再在该平面角内建立一个可解三角形,然后借助直角三角函数、正弦定理与余弦定理解题。 例1.在正方体ABCD —A 1B 1C 1D 1中,求 (1)二面角11A B C A 的大小; (2)平面11A DC 与平面11ADD A 所成角的正切值。 C1

用法向量求二面角时法向量方向的判断

用法向量求二面角时法向量方向的判断 贺年成 摘要:在求二面角时如何判断法向量的方向 关键词:法向量 二面角 方向 判断 借助法向量求二面角的平面角时,二面角的平面角θ的大小与法向量的所 成角α(=α12<,>n n )相等或互补,当二面角两个法向量都指向二面角的内部或外部时,θπα=-(图1);当两个法向量一个指向二面角的内部而另一个指向二面角的外部时,θα=(图2) 。 对于法向量的方向的判断一直是个难点,其实我们可以借助空间坐标系的坐标原点就可以判断法向量的方向,具体方法如下: 面ABC 与空间直角坐标系的坐标轴分别交于A,B,C 三点,不妨设A(a ,0,0), B(0, b ,0), C(0,0, c ),坐标原点O 在面ABC 上的射影为D 点,容易证明:ABC ?是锐角三角形,而且D 点为ABC ?的垂心1,也就可以知道D 点在ABC ?的内部,设D (x,y,z ),也即向量OD =(x,y,z ) ,则知x ,y ,z 分别与a ,b ,c 同号,此时取平面ABC 的一个法向量n =(111,,x y z ),若n 与向量OD 的对应的一个坐标同号, 1 容易证明三侧棱两两垂直的三棱锥的性质:顶点在底面上的射影为底面三角形的垂心,底面为锐角三角形,锐角三角形的垂心在三角形的内部。

则另外两个也必然对应同号,也即111,,x y z 与a ,b ,c 对应同号, 这样,只要111,,x y z 与对应的a ,b ,c 有一个同号,则可知n 与OD 同向,从而可进一步判断出n 的方向为指向平面ABC 异于原点O 的一侧,否则就指向原点所在的那一侧,这样一来我们可以很容易地判断法向量到底指向二面角的内部还是外部。若二面角的一个半平面过坐标原点,则可以通过平移半平面,让坐标原点置于二面角的内部或外部,再用上面的方法判断。 例. 如右图在四棱锥P —ABCD 中,底面ABCD 是边长为2的正方形,侧棱PD ⊥底面ABCD ,PD=DC ,E ,F 分别是PC,PD 的中点,(1)求二面角F —BE —C 的大小,(2)求二面角D —BE —C 的大小。 解析:(1)以D 点为原点,DA 所在直线为x 轴,DC 所在直线为y 轴,DP 所在直线为z 轴,建立如图所示的空间直角坐标系D-xyz ,依题意有P (0,0,2),F (0,0,1),E (0,1, 1),B (2,2,0),C (0,2,0),BE =(-2,-1,1),FE = (0,1,0),EC =(0,1,-1),DE =(0,1,1),设1n = (111,,x y z ), 2n =(222,,x y z ), 3n =(333,,x y z )分别为平面BEF ,平面BEC ,平面BDE 的法向量,110 BE n FE n ?=??=?? ?1111200x y z y --+=?? =? 可取平面BEF 的一个法向量 1n =(-1,0,-2) ,220 BE n EC n ?=??=?? ?22222200x y z y z --+=??-=? 可取平面BEC 的一个法向量2n =(0,1,1),坐标原点D 在二面角的内部,平面BEF 与Z 轴交于F 点,F 点的竖坐标与0n 的竖坐标符号相异,可知1n 的方向指向坐标原点D 所在的一侧,也即1n 指向二面角的内部,同理,平面BEC 与Y 轴交于C 点,C 点的纵坐标与2n 的纵坐标符号相同,可知2n 的方向指向异于坐标原 A

向量法求二面角专题练习

1,在底面是直角梯形的四棱锥S —A BCD 中,AD//BC ,∠A BC=900,S A ⊥ 面A BCD ,S A =21,A B=BC=1,A D=2 1 。 求侧面SCD 与面SB A 所成的二面角的 大小。 2如图,正三棱柱111ABC A B C -的所有棱长都为 2,D 为1CC 中点. (Ⅰ)求证:1AB ⊥平面1A BD ; (Ⅱ)求二面角11C B A A --的大小; 3.如图,已知四棱锥P ABCD -,底面ABCD 为菱形, PA ⊥平面ABCD ,60ABC ∠= ,E F ,分别是BC PC ,的中点. (1)证明:AE PD ⊥; (2)若H 为PD 上的动点,EH 与平面PAD 面角E AF C --的余弦值. A B C D 1 A 1 C 1 B P B E C D F A

4.如图,在底面是菱形的四棱锥P —ABC D中,∠ABC=600,PA=AC=a ,PB=PD=a 2,点E 在PD 上,且PE:ED=2:1. (1)证明PA ⊥平面ABCD ; (2)求以AC 为棱,EAC 与DAC 为面的二面角 的大小 5.如图,直三棱柱ABC —A 1B 1C 1中,∠ACB=90°,AC=AA 1=1,,AB 1与A 1B 相 交于点D ,M 为B 1C 1的中点. (1)求证:CD ⊥平面BDM ; (2)求平面B 1BD 与平面CBD 所成二面角的大小.

6.如图,在四棱锥P—ABCD中,底面ABCD为正方形,PD⊥平面ABCD,且PD=AB=a,E为PB 的中点. (1)求异面直线PD与AE所成的角的大小; (2)在平面PAD内求一点F,使得EF⊥平面PBC; (3)在(2)的条件下求二面角F—PC—E的大小. 7. 如图,正方体ABCD—A1B1C1D1的棱长为1, E、F、M、N分别是A1B1、BC、C1D1、B1C1 的中点. (1)用向量方法求直线EF与MN的夹角; (2)求直线MF与平面ENF所成角的余弦值; (3)求二面角N—EF—M的平面角的正切值.

法向量求解二面角的平面角

法向量求解二面角的平面角 求二面角是高考中必考内容,学习过程中要备受关注,利用传统方法求解二面角的关键是首先知道二面角的平面角,再转化到三角形中解决,而利用法向量可以降低问题的难度,把问题转化为程序化的求解过程,本文就剖析如何利用法向量求解二面角. 一、法向量求二面角步骤 1、建立适当的直角坐标系,当图形中有明显互相垂直且交于一点的三条直线,可以利用这三条直线直接建系;如果没有明显交于一点的三条直线,但图形中有一定对称关系,(如正三棱柱、正四棱柱等)利用图形对称性建立空间直角坐标系解题;此外页可以利用面面垂直的性质定理,作出互相垂直且交于一点的三条直线,建立坐标系. 2、求法向量:一般用待定系数法求解,一般步骤如下:(1)设出平面的法向量为n =(x ,y ,z );(2)找出(求出)平面内的两个不共线的向量的坐标),,(111c b a a =, ),,(222c b a b =;(3)根据法向量的定义建立关于x 、y 、z 的方程组???=?=?0 0b n a n ;(4)解方 程组,取其中的一个解,即得法向量£? 3、利用数量积公式求角:设1n ,2n 分别是两个半平面的法向量,则 由 21,cos n n >= <求得><21,n n ,而><21,n n 的大小或其补角的大小即为二面角的 大小,应注意1n ,2n 的方向。所以二面角的大小可以通过该二面角的两个面的法向量的夹角求得,他等于两法向量的夹角或其补角. 二、考题剖析 例1、在四棱锥ABCD P -中,⊥PA 平面ABCD ,底面ABCD 为矩形, 1 (0)AB PA BC a a == >. (Ⅰ)当1a =时,求证:BD PC ⊥; (Ⅱ)若BC 边上有且只有一个点Q ,使得QD PQ ⊥,求此时二面角Q PD A --的 余弦值. A B Q D C P

二平面法向量的夹角一定等于二面角吗

二平面法向量的夹角一定等于二面角吗 关键词:平面法向量二面角 摘要:二平面法向量的夹角与二面角的关系用向量法求二面角的方法 向量是数形结合的典范,具有几何与代数的二重性,是一个解决问题的重要的数学工具。在中学数学中向量最重要的应用领域就是用它解决立体几何的问题,这样就把抽象的空间思维转化为较机械的代数运算,为解决立体几何中的夹角与距离问题提供了极大的方便.但是在运用向量法求角时,一定要注意所取向量的夹角与所求的犄角之间的关系,否则常会导致误解.下面我们先看 一个误解的例子: 在《未来导报〃高考周刊》2005——2006 学年度第32期(总第111期)中,利用空间向 量求二面角一文中的例1: 图1 在四棱锥V—ABCD中,底面ABCD是正方形, 侧面VAD是正三角形,平面VAD⊥底面ABCD,求面VAD与面VDB所成二面角的大小。 解:建立如图1所示的空间直角坐标系,并设正方形边长为1.依据题意,得=(o,1,o)是面VAD的法向量,设=(1,y,z)是面VDB的法向量,则

? ??=?=?0VB n 0 VD n ? ? ? ? -=- =1y 3 3z ? ??? ? ??--=33,1,1 7 21 n AB ,cos - =>= <∴ . 所以面VAD 与面VDB 所成的二面角的大小为: 7 21 arccos -π . 误解分析:如图2 ,在二面角βια--中,点P 为平面α、β外一点,点A 、B 分别在平面α、 β内, 且P ⊥α,PB ⊥β,AC 、BC 分别为平面PAB 与平面α、β的交线.显然有ACB ∠为二面角βια--的平面角; π=∠+∠ACB APB (圆的内接四边形的对角互补)。 则ACB PB ,PA BP ,AB ∠->=>=<<π ACB APB BP ,PA PB ,AP ∠=∠->=>=<<π 结论:1、当所取平面的法向量的方向,同时指向二面角内或二面角外时,平面法向量的夹角与二面角互补; 2、当所取平面法向量的方向一个指向二面角内另一个指向二面角外时,法向量的夹角与二面角相等。 在上例中,显然所取二平面的法向量同指向二面角内,所以面VAD 与面VDB 所成的二面角的大小为: 7 21 arccos )721arccos ()721(arccos =--=- -πππ. 方法指点:不论所取平面法向量的方向如何,平面法向量的夹角与二 图2

经典习题平面法向量求法及应用

平面法向量的求法及其应用 一、 平面的法向量 1、定义:如果α⊥→ a ,那么向量→ a 叫做平面α的法向量。平面α的法向量共有两大类(从方向上分),无数条。 2、平面法向量的求法 方法一(内积法):在给定的空间直角坐标系中,设平面α的法向量(,,1)n x y =r [或(,1,)n x z =v ,或 (1,,)n y z =r ],在平面α内任找两个不共线的向量,a b r r 。由n α⊥r ,得0n a ?=r r 且0n b ?=r r ,由此得到关于,x y 的方程组,解此方程组即可得到n r 。 方法二:任何一个z y x ,,的一次次方程的图形是平面;反之,任何一个平面的方程是z y x ,,的一次方程。 0=+++D Cz By Ax )0,,(不同时为C B A ,称为平面的一般方程。其法向量),,(C B A n =→ ;若平面与3 个坐标轴的交点为),0,0(),0,,0(),0,0,(321c P b P a P ,如图所示,则平面方程为:1=++c z b y a x ,称此方程为平面的截距式方程,把它化为一般式即可求出它的法向量。 方法三(外积法): 设 , 为空间中两个不平行的非零向量,其外积→ → ?b a 为一长度等于 θsin ||||→ → b a ,(θ为,两者交角,且πθ<<0),而与 , 皆垂直的向量。通常我们采 取「右手定则」,也就是右手四指由 的方向转为 的方向时,大拇指所指的方向规定为→ →?b a 的方向,→ → → → ?-=?a b b a 。:),,,(),,,(222111则设z y x b z y x a ==→ → ??=?→ → 21y y b a ,21z z 21x x - ,21z z 21x x ??? ? 21y y (注:1、二阶行列式:c a M = cb ad d b -=;2、适合右手定则。 ) 例1、 已知,)1,2,1(),0,1,2(-==→ → b a , 试求(1):;→ → ?b a (2):.→ →?a b Key: (1) )5,2,1(-=?→ → b a ;)5,2,1()2(-=?→ → a b 例2、如图1-1,在棱长为2的正方体1111ABCD A B C D -中, 求平面AEF 的一个法向量n r 。 二、 平面法向量的应用 1、 求空间角 (1)、求线面角:如图2-1,设→ n 是平面α的法向 量, 图1-1 C 1 C B y F A D x A 1 D 1 z B 1 E )2,2,1(:=?=→→→AE A F n key 法向量 A B α 图2-1-2 θ C → n 图2-1-1 α θ B → n A C

关于利用法向量求二面角的问题

a× a 关于利用法向量求二面角的问题 我们知道法向量是解决立体几何问题的有力工具,但是在利用法向量在求二面角的时候,求出的两个法向量的夹角是与所求二面角相等还是互补,却没有认真思考过,这个还得从两个向量的外积说起. 两个向量外积的定义:两个向量a 与b 的外积(也称向量积)是一个向量,即为b a ?,它的长度(模)为||?=||||,它的方向与和都垂直,并且按?,,的顺序构成右手标架(如下图所示) 若是?,则所得向量长度与?相等,但是方向却刚好相反,所以向量外积不满足交换律.我们可以根据这个定义来确定平面法向量的方向. 设平面 α内有三个点),,(),,,(),,(333222111z y x C z y x B z y x A ,则 1212,(y y x x --=,)12z z -,),,(131313z z y y x x ---=,所以 1 31 31212( z z y y z z y y ----=?,1 31 31212x x z z x x z z ----,1 31 31212y y x x y y x x ----), 很明显,向量?可以为平面α的法向量.此时?的方向应该是垂直平面α并且向上.我们利用这个结论来求二面的大小. 说明:行列式 bc ad d c b a -=,上面有关内容请参考高等代数的相关内容.

如图所示,设平面α与平面β所成的二面角为θ,法向量分别为,,显然与所成的角为?,且?θ=,即此时与所成的角?就是平面α与平面β所成的二面角为θ,从这里我们可以看出,只要平面α与平面β的法向量,方向一个朝向二面角的里面,一个朝向二面角的外面,求出的法向量的夹角即为所求二面角.那怎样做到这一点呢?那就要用到我们前面所讲到的右手标架. 如图,我们来求平面 α与平面β所成的二面角θ,设),,(111z y x =, ),,(222z y x AC =, 若 2211y x y x 221 1x z x z 2 21 1z y z y ,且设= z 2 211y x y x ,= y 2 211x z x z ,= x 2 211z y z y 则平面α的一个法向量),,(z y x =?=,根据右手标架应该是竖直向上,即朝向这个二面角的外面,此时我们求平面β的法向量方向应该是朝向二面角的里面. 设),,(333z y x =,),,(444z y x =,要使平面β的法向量方向朝向二面角的里

相关文档
最新文档