人教精选备战中考数学易错题专题复习平行四边形附详细答案

人教精选备战中考数学易错题专题复习平行四边形附详细答案
人教精选备战中考数学易错题专题复习平行四边形附详细答案

一、平行四边形真题与模拟题分类汇编(难题易错题)

1.问题发现:

(1)如图①,点P 为平行四边形ABCD 内一点,请过点P 画一条直线l ,使其同时平分平行四边形ABCD 的面积和周长.

问题探究:

(2)如图②,在平面直角坐标系xOy 中,矩形OABC 的边OA 、OC 分别在x 轴、y 轴正半轴上,点B 坐标为(8,6).已知点(6,7)P 为矩形外一点,请过点P 画一条同时平分矩形OABC 面积和周长的直线l ,说明理由并求出直线l ,说明理由并求出直线l 被矩形ABCD 截得线段的长度.

问题解决:

(3)如图③,在平面直角坐标系xOy 中,矩形OABCD 的边OA 、OD 分别在x 轴、y 轴正半轴上,DC x ∥轴,AB y ∥轴,且8OA OD ==,2AB CD ==,点

(1052,1052)P --为五边形内一点.请问:是否存在过点P 的直线l ,分别与边OA 与BC 交于点E 、F ,且同时平分五边形OABCD 的面积和周长?若存在,请求出点E 和点F 的坐标:若不存在,请说明理由.

【答案】(1)作图见解析;(2)25y x =-,353)(0,0)E ,(5,5)F .

【解析】

试题分析:(1)连接AC 、BD 交于点O ,作直线PO ,直线PO 将平行四边形ABCD 的面积和周长分别相等的两部分.

(2)连接AC ,BD 交于点O ',过O '、P 点的直线将矩形ABCD 的面积和周长分为分别相等的两部分.

(3)存在,直线y x =平分五边形OABCD 面积、周长.

试题解析:(1)作图如下:

(2)∵(6,7)P ,(4,3)O ',

∴设:6PO y kx =+',

67{43k b k b +=+=,2{5

k b ==-, ∴25y x =-,

交x 轴于5,02N ?? ???

, 交BC 于11,62M ?? ???, 2

211563522MN ??=+-= ???.

(3)存在,直线y x =平分五边形OABCD 面积、周长.

∵(1052,102)P --在直线y x =上,

∴连OP 交OA 、BC 于点E 、F ,

设:BC y kx b =+,(8,2)(2,8)B C ,

82{28k b k +=+=,1{10

k b =-=, ∴直线:10BC y x =-+,

联立10{y x y x =-+=,得55x y =??=?

, ∴(0,0)E ,(5,5)F .

2.如图①,在等腰Rt ABC 中,90BAC ∠=,点E 在AC 上(且不与点A 、C 重合),在ABC △的外部作等腰Rt CED △,使90CED ∠=,连接AD ,分别以AB ,AD 为邻边作平行四边形ABFD ,连接AF .

()1请直接写出线段AF ,AE 的数量关系;

()2①将CED 绕点C 逆时针旋转,当点E 在线段BC 上时,如图②,连接AE ,请判断线段AF ,AE 的数量关系,并证明你的结论;

②若25AB =,2CE =,在图②的基础上将CED 绕点C 继续逆时针旋转一周的过程中,当平行四边形ABFD 为菱形时,直接写出线段AE 的长度.

【答案】(1)证明见解析;(2)①AF 2AE =

②4222

【解析】

【分析】 ()1如图①中,结论:AF 2AE =,只要证明AEF 是等腰直角三角形即可; ()2①如图②中,结论:AF 2AE =,连接EF ,DF 交BC 于K ,先证明

EKF ≌EDA 再证明AEF 是等腰直角三角形即可;

②分两种情形a 、如图③中,当AD AC =时,四边形ABFD 是菱形.b 、如图④中当AD AC =时,四边形ABFD 是菱形.分别求解即可.

【详解】

()1如图①中,结论:AF 2AE =.

理由:四边形ABFD 是平行四边形,

AB DF ∴=,

AB AC =,

AC DF ∴=,

DE EC =,

AE EF ∴=,

DEC AEF 90∠∠==,

AEF ∴是等腰直角三角形,

AF 2AE ∴=.

故答案为AF 2AE =.

()2①如图②中,结论:AF 2AE =

理由:连接EF ,DF 交BC 于K .

四边形ABFD 是平行四边形,

AB//DF ∴,

DKE ABC 45∠∠∴==,

EKF 180DKE 135∠∠∴=-=,EK ED =,

ADE 180EDC 18045135∠∠=-=-=,

EKF ADE ∠∠∴=,

DKC C ∠∠=,

DK DC ∴=,

DF AB AC ==,

KF AD ∴=,

在EKF 和EDA 中,

EK ED EKF ADE KF AD =??∠=∠??=?

EKF ∴≌EDA ,

EF EA ∴=,KEF AED ∠∠=,

FEA BED 90∠∠∴==,

AEF ∴是等腰直角三角形,

AF

2AE ∴=. ②如图

③中,当AD AC =时,四边形ABFD 是菱形,设AE 交CD 于H ,易知EH DH CH 2===,22AH (25)(2)32=-=,AE AH EH 42=+=,

如图④中当AD AC =时,四边形ABFD 是菱形,易知

AE AH EH 32222=-=-=,

综上所述,满足条件的AE 的长为4222

【点睛】

本题考查四边形综合题、全等三角形的判定和性质、等腰直角三角形的判定和性质、平行四边形的性质、勾股定理等知识,解题的关键是熟练掌握全等三角形的判定和性质,寻找全等的条件是解题的难点,属于中考常考题型.

3.现有一张矩形纸片ABCD(如图),其中AB=4cm,BC=6cm,点E是BC的中点.将纸片沿直线AE折叠,点B落在四边形AECD内,记为点B′,过E作EF垂直B′C,交B′C于F.

(1)求AE、EF的位置关系;

(2)求线段B′C的长,并求△B′EC的面积.

【答案】(1)见解析;(2)S△B′EC=108 25

【解析】

【分析】

(1)由折线法及点E是BC的中点,可证得△B'EC是等腰三角形,再有条件证明∠AEF=90°即可得到AE⊥EF;

(2)连接BB′,通过折叠,可知∠EBB′=∠EB′B,由E是BC的中点,可得EB′=EC,

∠ECB′=∠EB′C,从而可证△BB′C为直角三角形,在Rt△AOB和Rt△BOE中,可将OB,BB′的长求出,在Rt△BB′C中,根据勾股定理可将B′C的值求出.

【详解】

(1)由折线法及点E是BC的中点,

∴EB=EB′=EC,∠AEB=∠AEB′,

∴△B'EC是等腰三角形,

又∵EF⊥B′C

∴EF为∠B'EC的角平分线,即∠B′EF=∠FEC,

∴∠AEF=180°﹣(∠AEB+∠CEF)=90°,即∠AEF=90°,

即AE⊥EF;

(2)连接BB'交AE于点O,由折线法及点E是BC的中点,

∴EB=EB′=EC,

∴∠EBB′=∠EB′B,∠ECB′=∠EB′C;

又∵△BB'C三内角之和为180°,

∴∠BB'C=90°;

∵点B′是点B关于直线AE的对称点,

∴AE垂直平分BB′;

在Rt △AOB 和Rt △BOE 中,BO 2=AB 2﹣AO 2=BE 2﹣(AE ﹣AO )2

将AB =4cm ,BE =3cm ,AE =5cm ,

∴AO =165 cm , ∴BO =22AB AO -=

125cm , ∴BB ′=2BO =

245cm , ∴在Rt △BB 'C 中,B ′C =22BC BB '-=

518cm , 由题意可知四边形OEFB ′是矩形,

∴EF =OB ′=

125, ∴S △B ′EC =*111812108225525

B C EF '

?=??=.

【点睛】

考查图形的折叠变化及三角形的内角和定理勾股定理的和矩形的性质综合运用.关键是要理解折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,只是位置变化.

4.△ABC 为等边三角形,AF AB =.BCD BDC AEC ∠=∠=∠.

(1)求证:四边形ABDF 是菱形.

(2)若BD 是ABC ∠的角平分线,连接AD ,找出图中所有的等腰三角形.

【答案】(1)证明见解析;(2)图中等腰三角形有△ABC ,△BDC ,△ABD ,△ADF ,△ADC ,△ADE .

【解析】

(1)先求证BD∥AF,证明四边形ABDF是平行四边形,再利用有一组邻边相等的平行四边形是菱形即可证明;(2)先利用BD平分∠ABC,得到BD垂直平分线段AC,进而证明△DAC是等腰三角形,根据BD⊥AC,AF⊥AC,找到角度之间的关系,证明△DAE是等腰三角形,进而得到BC=BD=BA=AF=DF,即可解题,见详解.

【详解】

(1)如图1中,∵∠BCD=∠BDC,

∴BC=BD,

∵△ABC是等边三角形,

∴AB=BC,

∵AB=AF,

∴BD=AF,

∵∠BDC=∠AEC,

∴BD∥AF,

∴四边形ABDF是平行四边形,

∵AB=AF,

∴四边形ABDF是菱形.

(2)解:如图2中,∵BA=BC,BD平分∠ABC,

∴BD垂直平分线段AC,

∴DA=DC,

∴△DAC是等腰三角形,

∵AF∥BD,BD⊥AC

∴AF⊥AC,

∴∠EAC=90°,

∵∠DAC=∠DCA,∠DAC+∠DAE=90°,∠DCA+∠AEC=90°,

∴∠DAE=∠DEA,

∴DA=DE,

∴△DAE是等腰三角形,

∵BC=BD=BA=AF=DF,

∴△BCD,△ABD,△ADF都是等腰三角形,

综上所述,图中等腰三角形有△ABC,△BDC,△ABD,△ADF,△ADC,△ADE.

本题考查菱形的判定,等边三角形的性质,等腰三角形的判定等知识,属于中考常考题型,熟练掌握等腰三角形的性质是解题的关键.

5.如图,在正方形ABCD中,点E在CD上,AF⊥AE交CB的延长线于F.

求证:AE=AF.

【答案】见解析

【解析】

【分析】

根据同角的余角相等证得∠BAF=∠DAE,再利用正方形的性质可得AB=AD,

∠ABF=∠ADE=90°,根据ASA判定△ABF≌△ADE,根据全等三角形的性质即可证得

AF=AE.

【详解】

∵AF⊥AE,

∴∠BAF+∠BAE=90°,

又∵∠DAE+∠BAE=90°,

∴∠BAF=∠DAE,

∵四边形ABCD是正方形,

∴AB=AD,∠ABF=∠ADE=90°,

在△ABF和△ADE中,

∴△ABF≌△ADE(ASA),

∴AF=AE.

【点睛】

本题主要考查了正方形的性质、全等三角形的判定和性质等知识点,证明△ABF≌△ADE是解决本题的关键.

6.如图1,矩形ABCD中,AB=8,AD=6;点E是对角线BD上一动点,连接CE,作EF⊥CE 交AB边于点F,以CE和EF为邻边作矩形CEFG,作其对角线相交于点H.

(1)①如图2,当点F与点B重合时,CE=,CG=;

②如图3,当点E是BD中点时,CE=,CG=;

(2)在图1,连接BG,当矩形CEFG随着点E的运动而变化时,猜想△EBG的形状?并加以证明;

(3)在图1,CG

CE

的值是否会发生改变?若不变,求出它的值;若改变,说明理由;

(4)在图1,设DE 的长为x ,矩形CEFG 的面积为S ,试求S 关于x 的函数关系式,并直接写出x 的取值范围.

【答案】(1)245,185 ,5,154 ;(2)△EBG 是直角三角形,理由详见解析;(3)34 ;(4)S=34

x 2﹣485x+48(0≤x≤325). 【解析】

【分析】

(1)①利用面积法求出CE ,再利用勾股定理求出EF 即可;②利用直角三角形斜边中线定理求出CE ,再利用相似三角形的性质求出EF 即可;

(2)根据直角三角形的判定方法:如果一个三角形一边上的中线等于这条边的一半,则这个三角形是直角三角形即可判断;

(3)只要证明△DCE ∽△BCG ,即可解决问题;

(4)利用相似多边形的性质构建函数关系式即可;

【详解】

(1)①如图2中,

在Rt △BAD 中,22AD AB +, ∵S △BCD =

12?CD?BC=12?BD?CE , ∴CE=245.2224186()55

-. ②如图3中,过点E 作MN ⊥AM 交AB 于N ,交CD 于M .

∵DE=BE ,

∴CE=12BD=5, ∵△CME ∽△ENF ,

∴CM EN CE EF

=, ∴CG=EF=

154, (2)结论:△EBG 是直角三角形.

理由:如图1中,连接BH .

在Rt △BCF 中,∵FH=CH ,

∴BH=FH=CH ,

∵四边形EFGC 是矩形,

∴EH=HG=HF=HC ,

∴BH=EH=HG ,

∴△EBG 是直角三角形.

(3)F 如图1中,∵HE=HC=HG=HB=HF ,

∴C 、E 、F 、B 、G 五点共圆,

∵EF=CG ,

∴∠CBG=∠EBF , ∵CD ∥AB ,

∴∠EBF=∠CDE ,

∴∠CBG=∠CDE ,

∵∠DCB=∠ECG=90°,

∴∠DCE=∠BCG ,

∴△DCE ∽△BCG ,

∴6384

CG BC CE DC ===.

(4)由(3)可知: 34CG CD CE CB ==, ∴

矩形CEFG ∽矩形ABCD , ∴2

264

CEFG ABCD S CE CE S CD ==矩形矩形(), ∵CE 2=(325-x )2+245

)2,S 矩形ABCD =48, ∴S 矩形CEFG =

34

[(325-x )2+(245)2]. ∴矩形CEFG 的面积S=34

x 2-485x+48(0≤x≤325). 【点睛】 本题考查相似三角形综合题、矩形的性质、相似三角形的判定和性质、勾股定理、直角三角形的判定和性质、相似多边形的性质和判定等知识,解题的关键是灵活运用所学知识解决问题,学会添加常用辅助线,构造相似三角形或直角三角形解决问题,属于中考压轴题.

7.数学活动课上,老师给出如下问题:如图,将等腰直角三角形纸片沿斜边上的高AC 剪开,得到等腰直角三角形△ABC 与△EFD ,将△EFD 的直角顶点在直线BC 上平移,在平移的过程中,直线AC 与直线DE 交于点Q ,让同学们探究线段BQ 与AD 的数量关系和位置关系.

请你阅读下面交流信息,解决所提出的问题.

展示交流:

小敏:满足条件的图形如图甲所示图形,延长BQ 与AD 交于点H .我们可以证明△BCQ ≌△ACD ,从而易得BQ=AD ,BQ ⊥AD .

小慧:根据图甲,当点F 在线段BC 上时,我们可以验证小慧的说法是正确的.但当点F 在线段CB 的延长线上(如图乙)或线段CB 的反向延长线上(如图丙)时,我对小慧说法的正确性表示怀疑.

(1)请你帮助小慧进行分析,小敏的结论在图乙、图丙中是否成立?请说明理由. (选择图乙或图丙的一种情况说明即可).

(2)小慧思考问题的方式中,蕴含的数学思想是 .

拓展延伸:

根据你上面选择的图形,分别取AB、BD、DQ、AQ的中点M、N、P、T.则四边形MNPT 是什么样的特殊四边形?请说明理由.

【答案】成立;分类讨论思想;正方形.

【解析】

试题分析:利用等腰直角三角形的性质结合全等三角形的判定与性质得出BQ=AD,

BQ⊥AD;利用已知条件分类得出,体现数学中的分类讨论思想,

拓展延伸:利用三角形中位线定理结合正方形的判定方法,首先得出四边形MNPT是平行四边形进而得出它是菱形,再求出一个内角是90°,即可得出答案.

试题解析:(1)、成立,

理由:如图乙:由题意可得:∠FDE=∠QDC=∠ABC=∠BAC=45°,则DC=QC,AC=BC,

在△ADC和△BQC中∵,∴△ADC≌△BQC(SAS),∴AD=BQ,

∠DAC=∠QBC,

延长AD交BQ于点F,则∠ADC=∠BDF,∴∠BFD=∠ACD=90°,∴AD⊥BQ;

(2)、小慧思考问题的方式中,蕴含的数学思想是:分类讨论思想;

拓展延伸:四边形MNPT是正方形,

理由:∵取AB、BD、DQ、AQ的中点M、N、P、T,∴MN AD,TP AD,

∴MN TP,

∴四边形MNPT是平行四边形,∵NP BQ,BQ=AD,∴NP=MN,∴平行四边形MNPT 是菱形,

又∵AD⊥BQ,NP∥BQ,MN∥AD,∴∠MNP=90°,∴四边形MNPT是正方形.

考点:几何变换综合题

8.如图,现有一张边长为4的正方形纸片ABCD,点P为正方形AD边上的一点(不与点A、点D重合),将正方形纸片折叠,使点B落在P处,点C落在G处,PG交DC于H,

折痕为EF,连接BP、BH.

(1)求证:∠APB=∠BPH;

(2)当点P在边AD上移动时,求证:△PDH的周长是定值;

(3)当BE+CF的长取最小值时,求AP的长.

【答案】(1)证明见解析.(2)证明见解析.(3)2.

【解析】

试题分析:(1)根据翻折变换的性质得出∠PBC=∠BPH,进而利用平行线的性质得出∠APB=∠PBC即可得出答案;

(2)首先证明△ABP≌△QBP,进而得出△BCH≌△BQH,即可得出

PD+DH+PH=AP+PD+DH+HC=AD+CD=8;

(3)过F作FM⊥AB,垂足为M,则FM=BC=AB,证明△EFM≌△BPA,设AP=x,利用折叠的性质和勾股定理的知识用x表示出BE和CF,结合二次函数的性质求出最值.

试题解析:(1)解:如图1,

∵PE=BE,

∴∠EBP=∠EPB.

又∵∠EPH=∠EBC=90°,

∴∠EPH-∠EPB=∠EBC-∠EBP.

即∠PBC=∠BPH.

又∵AD∥BC,

∴∠APB=∠PBC.

∴∠APB=∠BPH.

(2)证明:如图2,过B作BQ⊥PH,垂足为Q.

由(1)知∠APB=∠BPH,

又∵∠A=∠BQP=90°,BP=BP,

在△ABP和△QBP中,

∴△ABP≌△QBP(AAS),

∴AP=QP,AB=BQ,

又∵AB=BC,

∴BC=BQ.

又∠C=∠BQH=90°,BH=BH,

在△BCH和△BQH中,

∴△BCH≌△BQH(SAS),

∴CH=QH.

∴△PHD的周长为:PD+DH+PH=AP+PD+DH+HC=AD+CD=8.

∴△PDH的周长是定值.

(3)解:如图3,过F作FM⊥AB,垂足为M,则FM=BC=AB.

又∵EF为折痕,

∴EF⊥BP.

∴∠EFM+∠MEF=∠ABP+∠BEF=90°,

∴∠EFM=∠ABP.

又∵∠A=∠EMF=90°,

在△EFM和△BPA中,

∴△EFM≌△BPA(AAS).

∴EM=AP.

设AP=x

在Rt△APE中,(4-BE)2+x2=BE2.

解得BE=2+,

∴CF=BE-EM=2+-x,

∴BE+CF=-x+4=(x-2)2+3.

当x=2时,BE+CF取最小值,

∴AP=2.

考点:几何变换综合题.

9.倡导研究性学习方式,着力教材研究,习题研究,是学生跳出题海,提高学习能力和创新能力的有效途径.下面是一案例,请同学们认真阅读、研究,完成“类比猜想”的问题.习题如图(1),点E、F分别在正方形ABCD的边BC、CD上,∠EAF=45°,连接EF,则EF=BE+DF,说明理由.

解答:∵正方形ABCD中,AB=AD,∠BAD=∠ADC=∠B=90°,

∴把△ABE绕点A逆时针旋转90°至△ADE′,点F、D、E′在一条直线上.

∴∠E′AF=90°-45°=45°=∠EAF,又∵AE′=AE,AF=AF

∴△AE′F≌△AEF(SAS)∴EF=E′F=DE′+DF=BE+DF.

类比猜想:

(1)请同学们研究:如图(2),在菱形ABCD中,点E、F分别在BC、CD上,当

∠BAD=120°,∠EAF=60°时,还有EF=BE+DF吗?请说明理由.

(2)在四边形ABCD中,点E、F分别在BC、CD上,当AB=AD,∠B+∠D=180°,

∠EAF=∠BAD时,EF=BE+DF吗?请说明理由.

【答案】证明见解析.

【解析】

试题分析:(1)把△ABE绕点A逆时针旋转120°至△ADE′,如图(2),连结E′F,根据菱形和旋转的性质得到AE=AE′,∠EAF=∠E′AF,利用“SAS”证明△AEF≌△AE′F,得到EF=E′F;由于∠ADE′+∠ADC=120°,则点F、D、E′不共线,所以DE′+DF>EF,即由BE+DF>EF;(2)把△ABE绕点A逆时针旋转∠BAD的度数至△AD E′,如图(3),根据旋转的性质得到AE′=AE,∠EAF=∠E′AF,然后利用“SAS”证明△AEF≌△AE′F,得到EF=E′F,由于

∠ADE′+∠ADC=180°,知F、D、E′共线,因此有EF=DE′+DF=BE+DF;根据前面的条件和结论可归纳出结论.

试题解析:(1)当∠BAD=120°,∠EAF=60°时,EF=BE+DF不成立,EF<BE+DF.

理由如下:∵在菱形ABCD中,∠BAD=120°,∠EAF=60°,

∴AB=AD,∠1+∠2=60°,∠B=∠ADC=60°,

∴把△ABE绕点A逆时针旋转120°至△ADE′,如图(2),连结E′F,

∴∠EAE′=120°,∠1=∠3,AE′=AE,DE′=BE,∠ADE′=∠B=60°,

∴∠2+∠3=60°,

∴∠EAF=∠E′AF,

在△AEF和△AE′F中

∴△AEF≌△AE′F(SAS),

∴EF=E′F,

∵∠ADE′+∠ADC=120°,即点F、D、E′不共线,

∴DE′+DF>EF

∴BE+DF>EF;

(2)当AB=AD,∠B+∠D=180°,∠EAF=∠BAD时,EF=BE+DF成立.

理由如下:如图(3),

∵AB=AD,

∴把△ABE绕点A逆时针旋转∠BAD的度数至△ADE′,如图(3),

∴∠EAE′=∠BAD,∠1=∠3,AE′=AE,DE′=BE,∠ADE′=∠B,

∵∠B+∠D=180°,

∴∠ADE′+∠D=180°,

∴点F、D、E′共线,

∵∠EAF=∠BAD,

∴∠1+∠2=∠BAD,

∴∠2+∠3=∠BAD,

∴∠EAF=∠E′AF,

在△AEF和△AE′F中

∴△AEF≌△AE′F(SAS),

∴EF=E′F,

∴EF=DE′+DF=BE+DF;

归纳:在四边形ABCD中,点E、F分别在BC、CD上,当AB=AD,∠B+∠D=180°,

∠EAF=∠BAD时,EF=BE+DF.

考点:四边形综合题.

10.已知:如图,四边形ABCD和四边形AECF都是矩形,AE与BC交于点M,CF与AD交于点N.

(1)求证:△ABM≌△CDN;

(2)矩形ABCD和矩形AECF满足何种关系时,四边形 AMCN是菱形,证明你的结论.【答案】(1)证明见解析;(2)当AB=AF时,四边形AMCN是菱形.证明见解析;【解析】

试题分析:(1)由已知条件可得四边形AMCN是平行四边形,从而可得AM=CN,再由AB=CD,∠B=∠D=90°,利用HL即可证明;

(2)若四边形AMCN为菱形,则有AM=AN,从已知可得∠BAM=∠FAN,又∠B=∠F=90°,所以有△ABM≌△AFN,从而得AB=AF,因此当AB=AF时,四边形AMCN是菱形.

试题解析:(1)∵四边形ABCD是矩形,∴∠B=∠D=90°,AB=CD,AD∥BC.

∵四边形AECF是矩形,∴AE∥CF.∴四边形AMCN是平行四边形.∴AM=CN.在

Rt△ABM和Rt△CDN中,AB=CD,AM=CN,∴Rt△ABM≌Rt△CDN.

(2)当AB=AF时,四边形AMCN是菱形.

∵四边形ABCD、AECF是矩形,∴∠B=∠BAD=∠EAF=∠F=90°.∴∠BAD-∠NAM=∠EAF-∠NAM,即∠BAM=∠FAN.又∵AB=AF,∴△ABM≌△AFN.∴AM=AN.由(1)知四边形AMCN是平行四边形,∴平行四边形AMCN是菱形.

考点:1.矩形的性质;2.三角形全等的判定与性质;3.菱形的判定.

相关主题
相关文档
最新文档