中考数学相似综合练习题附答案

中考数学相似综合练习题附答案
中考数学相似综合练习题附答案

一、相似真题与模拟题分类汇编(难题易错题)

1.在△ABC中,∠ABC=90°.

(1)如图1,分别过A、C两点作经过点B的直线的垂线,垂足分别为M、N,求证:△ABM∽△BCN;

(2)如图2,P是边BC上一点,∠BAP=∠C,tan∠PAC= ,求tanC的值;

(3)如图3,D是边CA延长线上一点,AE=AB,∠DEB=90°,sin∠BAC= ,,直接写出tan∠CEB的值.

【答案】(1)解:∵AM⊥MN,CN⊥MN,

∴∠AMB=∠BNC=90°,

∴∠BAM+∠ABM=90°,

∵∠ABC=90°,

∴∠ABM+∠CBN=90°,

∴∠BAM=∠CBN,

∵∠AMB=∠NBC,

∴△ABM∽△BCN

(2)解:如图2,过点P作PM⊥AP交AC于M,PN⊥AM于N.

∵∠BAP+∠1=∠CPM+∠1=90°,

∴∠BAP=∠CPM=∠C,

∴MP=MC

∵tan∠PAC=,

设MN=2m,PN=m,

根据勾股定理得,PM=,

∴tanC=

(3)解:在Rt△ABC中,sin∠BAC= = ,

过点A作AG⊥BE于G,过点C作CH⊥BE交EB的延长线于H,

∵∠DEB=90°,

∴CH∥AG∥DE,

∴ =

同(1)的方法得,△ABG∽△BCH

∴,

设BG=4m,CH=3m,AG=4n,BH=3n,

∵AB=AE,AG⊥BE,

∴EG=BG=4m,

∴GH=BG+BH=4m+3n,

∴,

∴n=2m,

∴EH=EG+GH=4m+4m+3n=8m+3n=8m+6m=14m,

在Rt△CEH中,tan∠BEC= =

【解析】【分析】(1)根据垂直的定义得出∠AMB=∠BNC=90°,根据同角的余角相等得出∠BAM=∠CBN,利用两个角对应相等的两个三角形相似得出:△ABM∽△BCN;

(2)过点P作PF⊥AP交AC于F,在Rt△AFP中根据正切函数的定义,由

tan∠PAC=,同(1)的方法得,△ABP∽△PQF,故,设AB= a,PQ=2a,BP= b,FQ=2b(a>0,b>0),然后判断出△ABP∽△CQF,得

从而表示出CQ,进根据线段的和差表示出BC,再判断出△ABP∽△CBA,得出

再得出BC,从而列出方程,表示出BC,AB,在Rt△ABC中,根据正切函数的定义得出tanC的值;

(3)在Rt△ABC中,利用正弦函数的定义得出:sin∠BAC=,过点A作AG⊥BE于G,过点C作CH⊥BE交EB的延长线于H,根据平行线分线段成比例定理得出

,同(1)的方法得,△ABG∽△BCH ,故,设BG=4m,CH=3m,AG=4n,BH=3n,根据等腰三角形的三线合一得出EG=BG=4m,故GH=BG+BH=4m+3n,根据比例式列出方程,求解得出n与m的关系,进而得出EH=EG+GH=4m+4m+3n=8m+3n=8m+6m=14m,在Rt△CEH中根据正切函数的定义得出tan∠BEC的值。

2.如图,△ABC是一锐角三角形余料,边BC=16cm,高AD=24cm,要加工成矩形零件,使矩形的一边在BC上,其余两个顶点E、F分别在AB、AC上.

求:

(1)AK为何值时,矩形EFGH是正方形?

(2)若设AK=x,S EFGH=y,试写出y与x的函数解析式.

(3)x为何值时,S EFGH达到最大值.

【答案】(1)解:设边长为xcm,

∵矩形为正方形,

∴EH∥AD,EF∥BC,

根据平行线的性质可以得出: = 、 = ,

由题意知EH=x,AD=24,BC=16,EF=x,即 = , = ,

∵BE+AE=AB,

∴ + = + =1,

解得x= ,

∴AK= ,

∴当时,矩形EFGH为正方形

(2)解:设AK=x,EH=24-x,

∵EHGF为矩形,

∴ = ,即EF= x,

∴S EFGH=y= x?(24-x)=- x2+16x(0<x<24)

(3)解:y=- x2+16x

配方得:y= (x-12)2+96,

∴当x=12时,S EFGH有最大值96

【解析】【分析】(1)设出边长为xcm,由正方形的性质得出,EH∥AD,EF∥BC,根据平行线的性质,可以得对应线段成比例,代入相关数据求解即可。

(2)设AK=x,则EH=16-x,根据平行的两三角形相似,再根据相似三角形的对应边上的高之比等于相似比,用含x的代数式表示出EF的长,根据矩形面积公式即可得出y与x的函数解析式。

(3)将(2)中的函数解析式转化为顶点式,利用二次函数的性质可得出矩形EFGH的面积取最大值时的x的值。

3.已知:如图,在△ABC中,AB=BC=10,以AB为直径作⊙O分别交AC,BC于点D,E,连接DE和DB,过点E作EF⊥AB,垂足为F,交BD于点P.

(1)求证:AD=DE;

(2)若CE=2,求线段CD的长;

(3)在(2)的条件下,求△DPE的面积.

【答案】(1)解:∵AB是⊙O的直径,

∴∠ADB=90°,即BD⊥AC

∵AB=BC,

∴△ABD≌CBD

∴∠ABD=∠CBD

在⊙O中,AD与DE分别是∠ABD与∠CBD所对的弦

∴AD=DE;

(2)解:∵四边形ABED内接于⊙O,∴∠CED=∠CAB,

∵∠C=∠C,∴△CED∽△CAB,∴,

∵AB=BC=10,CE=2,D是AC的中点,

∴CD= ;

(3)解:延长EF交⊙O于M,

在Rt△ABD中,AD= ,AB=10,

∴BD=3 ,

∵EM⊥AB,AB是⊙O的直径,

∴,

∴∠BEP=∠EDB,

∴△BPE∽△BED,

∴,

∴BP= ,

∴DP=BD-BP= ,

∴S△DPE:S△BPE=DP:BP=13:32,

∵S△BCD= × ×3 =15,S△BDE:S△BCD=BE:BC=4:5,∴S△BDE=12,

∴S△DPE= .

【解析】【分析】(1)根据已知条件AB是⊙O的直径得出∠ADB=90°,再根据等腰三角形的三线合一的性质即可得出结论。

(2)根据圆内接四边形的性质证得∠CED=∠CAB,再根据相似三角形的判定证出△CED∽△CAB,得出对应边成比例,建立关于CD的方程,即可求出CD的长。

(3)延长EF交⊙O于M,在Rt△ABD中,利用勾股定理求出BD的长,再证明△BPE∽△BED,根据相似三角形的性质得对应边成比例求出BP的长,然后根据等高的三角形的面积之比等于对边之比,再由三角形面积公式即可求解。

4.如图,抛物线y= x2+bx+c 与x轴交于点A和点B,与y轴交于点C,点B坐标为(6,0),点C坐标为(0,6),点D是抛物线的顶点.

(1)求抛物线的解析式及点D的坐标;

(2)如图1,抛物线的对称轴与x轴交于点E,连接BD,点F是抛物线上的动点,当∠FBA=∠BDE时,求点F的坐标;

(3)如图2,若点M是抛物线上的动点,过点M作MN∥x轴与抛物线交于点N,点P在x轴上,点Q在坐标平面内,以线段MN为对角线作正方形MPNQ,求点Q的坐标.

【答案】(1)解:把B(6,0),C(0,6)代入y= x2+bx+c,得

解得 ,抛物线的解析式是y= x2+2x+6, 顶点D的坐标是(2,8)

(2)解:如图1,过F作FG⊥x轴于点G,

设F(x, x2+2x+6),则FG= ,

∵∠FBA=∠BDE,∠FGB=∠BED=90°,∴△FBG∽△BDE,∴,

∵B(6,0),D(2,8),∴E(2,0),BE=4,DE=8,OB=6,∴BG=6-x,

当点F在x轴上方时,有,∴x=-1或x=6(舍去),此时F1的坐标为(-1,),

当点F在x轴下方时,有,∴x=-3或x=6(舍去),此时F2的坐标为(-3,),

综上可知F点的坐标为(-1,)或(-3,)

(3)解:如图2,

不妨M在对称轴的左侧,N在对称轴的左侧,MN和PQ交于点K,由题意得点M,N关于抛物线的对称轴对称,四边形MPNQ为正方形,且点P在x轴上

∴点P为抛物线的对称轴与x轴的交点,点Q在抛物线的对称轴上 ,

∴KP=KM=k,则Q(2,2k),M坐标为(2-k,k),

∵点M在抛物线y= x2+2x+6的图象上,∴k= (2-k)2+2(2-k)+6

解得k1= 或k2=

∴满足条件的点Q有两个,Q1(2,)或Q2(2,).

【解析】【分析】(1)根据点B、C的坐标,利用待定系数法建立关于b、c的方程组,求解就可得出函数解析式,再求出顶点坐标。

(2)过F作FG⊥x轴于点G,设出点F的坐标,表示出FG的长,再证明△FBG∽△BDE,利用相似三角形的性质建立关于x的方程,当点F在x轴上方时和当点F在x轴下方时,求出符合题意的x的值,求出点F的坐标。

(3)由点M,N关于抛物线的对称轴对称,可得出点P为抛物线的对称轴与x轴的交点,点Q在抛物线的对称轴上,设Q(2,2k),M坐标为(2-k,k),再由点M在抛物线上,列出关于k的方程,求解即可得出点Q的坐标。

5.

(1)问题发现:

如图1,在等边三角形ABC中,点M为BC边上异于B、C的一点,以AM为边作等边三角形AMN,连接CN,NC与AB的位置关系为________;

(2)深入探究:

如图2,在等腰三角形ABC中,BA=BC,点M为BC边上异于B、C的一点,以AM为边作等腰三角形AMN,使∠ABC=∠AMN,AM=MN,连接CN,试探究∠ABC与∠ACN的数量关系,并说明理由;

(3)拓展延伸:

如图3,在正方形ADBC中,AD=AC,点M为BC边上异于B、C的一点,以AM为边作正方形AMEF,点N为正方形AMEF的中点,连接CN,若BC=10,CN= ,试求EF的长.【答案】(1)NC∥AB

(2)解:∠ABC=∠ACN,理由如下:

∵ =1且∠ABC=∠AMN,

∴△ABC~△AMN

∴,

∵AB=BC,

∴∠BAC= (180°﹣∠ABC),

∵AM=MN

∴∠MAN= (180°﹣∠AMN),

∵∠ABC=∠AMN,

∴∠BAM=∠CAN,

∴△ABM~△ACN,

∴∠ABC=∠ACN

(3)解:如图3,连接AB,AN,

∵四边形ADBC,AMEF为正方形,

∴∠ABC=∠BAC=45°,∠MAN=45°,

∴∠BAC﹣∠MAC=∠MAN﹣∠MAC

即∠BAM=∠CAN,

∵,

∴,

∴△ABM~△ACN

∴,

∴ =cos45°= ,

∴,

∴BM=2,

∴CM=BC﹣BM=8,

在Rt△AMC,

AM= ,

∴EF=AM=2 .

【解析】【解答】解:(1)NC∥AB,理由如下:∵△ABC与△MN是等边三角形,

∴AB=AC,AM=AN,∠BAC=∠MAN=60°,

∴∠BAM=∠CAN,

在△ABM与△ACN中,

∴△ABM≌△ACN(SAS),

∵∠ANC+∠ACN+∠CAN=∠ANC+60°+∠CAN=180°,

∴∠ANC+∠MAN+∠BAM=∠ANC+60°+∠CAN=∠BAN+∠ANC=180°,

∴CN∥AB;

【分析】(1)由题意用边角边易得△ABM≌△ACN,则可得∠B=∠ACN=60°,所以∠BCN+∠B=∠BCA+∠ACN+∠B=180°,根据平行线的判定即可求解;

(2)由题意易得△ABC~△AMN,可得比例式,由三角形内角和定理易得∠BAM=∠CAN,根据相似三角形的判定可得△ABM~△ACN,由相似三角形的性质即可求解;

(3)要求EF的值,只须求得CM的值,然后解直角三角形AMC即可求解。连接AB,AN,由正方形的性质和相似三角形的判定易得△ABM~△ACN,可得比例式

,可求得BM的值,而CM=BC﹣BM,解直角三角形AMC即可求得AM的值,即为EF的值。

6.如图,抛物线与轴交于A,B两点(点B在点A的左侧),与y轴交于点C,顶点为D,其对称轴与轴交于点E,联接AD,OD.

(1)求顶点D的坐标(用含的式子表示);

(2)若OD⊥AD,求该抛物线的函数表达式;

(3)在(2)的条件下,设动点P在对称轴左侧该抛物线上,PA与对称轴交于点M,若△AME与△OAD相似,求点P的坐标.

【答案】(1)解:∵,∴顶点D的坐标为(4,-4m)

(2)解:∵

∴点A(6,0),点B(2,0),则OA=6,∵抛物线的对称轴为x=4,∴点E(4,0),

则OE=4,AE=2,又DE=4m,

∴由勾股定理得:,,

又OD⊥AD,∴,则,解得:

∵m>0,∴抛物线的函数表达式

(3)解:如图,过点P作PH⊥x轴于点H,

则△APH∽△AME,

在Rt△OAD中,,设点P的坐标为,

当△APH∽△AME∽△AOD时,∵,

∴,即,

解得:x=0,x=6(舍去),∴点P的坐标为;

②△APH∽△AME∽△OAD时,∵,∴,即

解得:x=1,x=6(舍去),∴点P的坐标为;

综上所述,点P的坐标为或 .

【解析】【分析】(1)将抛物线的解析式配成顶点式即可求得顶点D的坐标;

(2)要求抛物线的解析式,只须求出m的值即可。因为抛物线与x轴交于点A、B,所以令y=0,解关于x的一元二次方程,可得点A、B的坐标,则OA、OD、AD均可用含m的代数式表示;因为OD⊥AD,所以在直角三角形OAD中,由勾股定理可得,将OA、OD、AD代入可得关于m的方程,解方程即可得m的值,则抛物线的解析式可求解;

(3)△AME与△OAD中的对应点除直角顶点D、E固定外,其余两点都不固定,所以分两

种情况:

①当△AME∽△AOD时,过点P作PH⊥x轴于点H,易得△APH∽△AME∽△AOD,可得相应的比例式求解;

②当△AME∽△OAD时,过点P作PH⊥x轴于点H,易得△APH∽△AME∽△OAD,可得相应的比例式求解。

7.如图,点A、B的坐标分别为(4,0)、(0,8),点C是线段OB上一动点,点E在x轴正半轴上,四边形OEDC是矩形,且OE=2OC.设OE=t(t>0),矩形OEDC与△AOB 重合部分的面积为S.

根据上述条件,回答下列问题:

(1)当矩形OEDC的顶点D在直线AB上时,求t的值;

(2)当t=4时,求S的值;

(3)直接写出S与t的函数关系式(不必写出解题过程);

(4)若S=12,则t=________.

【答案】(1)解:由题意可得∠BCD=∠BOA=90°,∠CBD=∠OBA,

∴△BCD∽△BOA,

而CD=OE=t,BC=8?CO=8? ,OA=4,

则8? ,解得t=,

∴当点D在直线AB上时,t=

(2)解:当t=4时,点E与A重合,设CD与AB交于点F,

则由△CBF∽△OBA得,

即,解得CF=3,

∴S= OC(OE+CF)= ×2×(3+4)=7

(3)解:①当0<t≤时,S= t2

②当<t≤4时,S=-t2+10t?16

③当4<t≤16时,S=t2+2t

(4)8

【解析】【解答】解:(3)①当0﹤t≤时,如图(1),

②当

∵A(4,0),B(0,8)

∴直线AB的解析式为y=-2x+8,

∴G(t,-2t+8),F(4-,),

∴DF=t-4,DG=t-8,

∴S=S矩形COED-S△DFG=t·

③当4<t≤16时,如图(3)

∵CD∥OA,

∴△BCF∽△BOA,

∴,

∴CF=4-,

∴S=S△BOA-S△BCF=

(4)由题意可知把S=12代入S= t2+2t中, . t2+2t=12,整理,得t2-32t+192=0.解得 t1=8,t2=24>16(舍去)当S=12时,t=8

【分析】(1)首先判断出△BCD∽△BOA,根据相似三角形对应边成比例得出BC ∶BO=CD ∶OA ,根据矩形的性质及线段的和差得出CD=OE=t,BC=8?CO=8- ,OA=4,利用比例式即可得出方程,求解得出t的值;

(2)当t=4时,点E与A重合,设CD与AB交于点F,则由△CBF∽△OBA得CF :CB=OA ∶OB ,根据比例式得出方程,求解得出CF的长,根据梯形的面积公式即可算出答案;

(3)①当0﹤t≤ 时,如图(1),其重叠部分的面积就是矩形的面积,根据矩形的面积

公式即可得出函数关系式;②当

8.已知菱形的一个角与三角形的一个角重合,然后它的对角顶点在这个重合角的对边上,这个菱形称为这个三角形的亲密菱形,如图,在△CFE中,CF=6,CE=12,∠FCE=45°,以点C为

圆心,以任意长为半径作AD,再分别以点A和点D为圆心,大于 AD长为半径做弧,交

于点B,AB∥CD.

(1)求证:四边形ACDB为△CFE的亲密菱形;

(2)求四边形ACDB的面积.

【答案】(1)证明:由已知得:AC=CD,AB=DB,由已知尺规作图痕迹得:BC是∠FCE的角平分线,

∴∠ACB=∠DCB,

又∵AB∥CD,

∴∠ABC=∠DCB,

∴∠ACB=∠ABC,

∴AC=AB,

又∵AC=CD,AB=DB,

∴AC=CD=DB=BA,

四边形ACDB是菱形,

又∵∠ACD与△FCE中的∠FCE重合,它的对角∠ABD顶点在EF上,

∴四边形ACDB为△FEC的亲密菱形.

(2)解:设菱形ACDB的边长为x,∵CF=6,CE=12,

∴FA=6-x,

又∵AB∥CE,

∴△FAB∽△FCE,

∴ ,

即,

解得:x=4,

过点A作AH⊥CD于点H,

在Rt△ACH中,∠ACH=45°,

∴sin∠ACH= ,

∴AH=4× =2 ,

∴四边形ACDB的面积为: .

【解析】【分析】(1)依题可得:AC=CD,AB=DB,BC是∠FCE的角平分线,根据角平分线的定义和平行线的性质得∠ACB=∠ABC,根据等角对等边得AC=AB,从而得AC=CD=DB=BA,根据四边相等得四边形是菱形即可得四边形ACDB是菱形;再根据题中的新定义即可得证.(2)设菱形ACDB的边长为x,根据已知可得CF=6,CE=12,FA=6-x,根据相似三角形的判定

和性质可得,解得:x=4,过点A作AH⊥CD于点H,在Rt△ACH中,根据锐角三角形函数正弦的定义即可求得AH ,再由四边形的面积公式即可得答案.

9.如图,在四边形ABCD中,∠B=∠C=90°,AB>CD,AD=AB+CD.

(1)利用尺规作∠ADC的平分线DE,交BC于点E,连接AE(保留作图痕迹,不写作法)(2)在(1)的条件下,①证明:AE⊥DE;

②若CD=2,AB=4,点M,N分别是AE,AB上的动点,求BM+MN的最小值。

【答案】(1)

(2)①证明:在AD上取一点F使DF=DC,连接EF,

∵DE平分∠ADC,

∴∠FDE=∠CDE,

在△FED和△CDE中,

DF=DC,∠FDE=∠CDE,DE=DE

∴△FED≌△CDE(SAS),

∴∠DFE=∠DCE=90°,∠AFE=180°-∠DFE=90°

∴∠DEF=∠DEC,

∵AD=AB+CD,DF=DC,

∴AF=AB,

在Rt△AFE≌Rt△ABE(HL)

∴∠AEB=∠AEF,

∴∠AED=∠AEF+∠DEF= ∠CEF+ ∠BEF= (∠CEF+∠BEF)=90°。∴AE⊥DE

②解:过点D作DP⊥AB于点P,

∵由①可知,B,F关于AE对称,BM=FM,

∴BM+MN=FM+MN,

当F,M,N三点共线且FN⊥AB时,有最小值,

∵DP⊥AB,AD=AB+CD=6,

∴∠DPB=∠ABC=∠C=90°,

∴四边形DPBC是矩形,

∴BP=DC=2,AP=AB-BP=2,

在Rt△APD中,DP= = ,

∵FN⊥AB,由①可知AF=AB=4,

∴FN∥DP,

∴△AFN∽△ADP

∴,

即,

解得FN= ,

∴BM+MN的最小值为

【解析】【分析】(1)根据角平分的做法即可画出图.(2)①在AD上取一点F使DF=DC,连接EF;角平分线定义得∠FDE=∠CDE;根据全等三角形判定SAS得△FED≌△CDE,再由全等三角形性质和补角定义得∠DFE=∠DCE=∠AFE=90°,

∠DEF=∠DEC;再由直角三角形全等的判定HL得Rt△AFE≌Rt△ABE,由全等三角形性质得∠AEB=∠AEF,再由补角定义可得AE⊥DE.

②过点D作DP⊥AB于点P;由①可知,B,F关于AE对称,根据对称性质知BM=FM,当F,M,N三点共线且FN⊥AB时,有最小值,即BM+MN=FM+MN=FN;在Rt△APD中,根据勾股定理得DP= = ;由相似三角形判定得△AFN∽△ADP,再由相似三

角形性质得,从而求得FN,即BM+MN的最小值.

10.问题提出;

(1)如图1,矩形ABCD,AB=4,BC=8,点E为CD的中点,点P为BC上的动点,CP=________时,△APE的周长最小.

(2)如图2,矩形ABCD,AB=4,BC=8,点E为CD的中点,点P、点Q为BC上的动点,且PQ=2,当四边形APQE的周长最小时,请确定点P的位置(即BP的长)

问题解决;

(3)如图3,某公园计划在一片足够大的等边三角形水域内部(不包括边界)点P处修一个凉亭,设计要求PA长为100米,同时点M,N分别是水域AB,AC边上的动点,连接P、M、N的水上浮桥周长最小时,四边形AMPN的面积最大,请你帮忙算算此时四边形AMPN面积的最大值是多少?

【答案】(1)

(2)解:点A向右平移2个单位到M,点E关于BC的对称点F,连接MF,交BC于Q,此时MQ+EQ最小,

∵PQ=3,DE=CE=2,AE=2 ,

∴要使四边形APQE的周长最小,只要AP+EQ最小就行,

即AP+EQ=MQ+EQ,过M作MN⊥BC于N,

∴MN∥CD

∴△MNQ∽△FCQ,

∴NQ=4

∴BP=BQ﹣PQ=4+2﹣2=4

(3)解:如图,作点P关于AB的对称点G,作点P关于AC的对称点H,连接GH,交AB,AC于点M,N,此时△PMN的周长最小.

∴AP=AG=AH=100米,∠GAM=∠PAM,∠HAN=∠PAN,

∵∠PAM+∠PAN=60°,

∴∠GAH=120°,且AG=AH,

∴∠AGH=∠AHG=30°,

过点A作AO⊥GH,

∴AO=50米,HO=GO=50 米,

∴GH=100 米,

∴S△AGH= GH×AO=2500 平方米,

∵S四边形AMPN=S△AGM+S△ANH=S△AGH﹣S△AMN,

∴S△AMN的值最小时,S四边形AMPN的值最大,

∴MN=GM=NH=时

∴S四边形AMPN=S△AGH﹣S△AMN=2500 ﹣=平方米.

【解析】【解答】(1)∵四边形ABCD是矩形,

∴∠D=90°=∠ABC,AB=CD=4,BC=AD=8,

∵E为CD中点,

∴DE=CE=2,

在Rt△ADE中,由勾股定理得:AE===2 ,

即△APE的边AE的长一定,

要△APE的周长最小,只要AP+PE最小即可,

延长AB到M,使BM=AB=4,则A和M关于BC对称,

连接EM交BC于P,此时AP+EP的值最小,

∵四边形ABCD是矩形,

∴AB∥CD,

∴△ECP∽△MBP,

∴CP=

故答案为:

【分析】(1)延长AB到M,使BM=AB,则A和M关于BC对称,连接EM交BC于P,此时AP+EP的值最小,根据勾股定理求出AE长,根据矩形性质得出AB∥CD,推出△ECP∽△MBP,得出比例式,代入即可求出CP长;(2)点A向右平移2个单位到M,点E关于BC的对称点F,连接MF,交BC于Q,要使四边形APQE的周长最小,只要AP+EQ最小就行,证△MNQ∽△FCQ即可求BP的长;(3)作点P关于AB的对称点G,作点P关于AC的对称点H,连接GH,交AB,AC于点M,N,此时△PMN的周长最小.S四=S△AGM+S△ANH=S△AGH-S△AMN,即S△AMN的值最小时,S四边形AMPN的值最大.

边形AMPN

中考数学专题训练---圆的综合的综合题分类含答案

一、圆的综合真题与模拟题分类汇编(难题易错题) 1.如图,⊙O的半径为6cm,经过⊙O上一点C作⊙O的切线交半径OA的延长于点B,作∠ACO的平分线交⊙O于点D,交OA于点F,延长DA交BC于点E. (1)求证:AC∥OD; (2)如果DE⊥BC,求AC的长度. 【答案】(1)证明见解析;(2)2π. 【解析】 试题分析:(1)由OC=OD,CD平分∠ACO,易证得∠ACD=∠ODC,即可证得AC∥OD;(2)BC切⊙O于点C,DE⊥BC,易证得平行四边形ADOC是菱形,继而可证得△AOC是等边三角形,则可得:∠AOC=60°,继而求得弧AC的长度. 试题解析:(1)证明:∵OC=OD,∴∠OCD=∠ODC.∵CD平分∠ACO, ∴∠OCD=∠ACD,∴∠ACD=∠ODC,∴AC∥OD; (2)∵BC切⊙O于点C,∴BC⊥OC.∵DE⊥BC,∴OC∥DE.∵AC∥OD,∴四边形ADOC 是平行四边形.∵OC=OD,∴平行四边形ADOC是菱形,∴OC=AC=OA,∴△AOC是等边三 角形,∴∠AOC=60°,∴弧AC的长度=606 180 π? =2π. 点睛:本题考查了切线的性质、等腰三角形的判定与性质、菱形的判定与性质以及弧长公式.此题难度适中,注意掌握数形结合思想的应用. 2.不用圆规、三角板,只用没有刻度的直尺,用连线的方法在图1、2中分别过圆外一点A作出直径BC所在射线的垂线.

【答案】画图见解析. 【解析】 【分析】根据直角所对的圆周角是直角,构造直角三角形,利用直角三角形性质可画出垂线;或结合圆的轴对称性质也可以求出垂线. 【详解】解:画图如下: 【点睛】本题考核知识点:作垂线.解题关键点:结合圆的性质和直角三角形性质求出垂线. 3.已知:如图,在矩形ABCD中,点O在对角线BD上,以OD的长为半径的⊙O与AD,BD分别交于点E、点F,且∠ABE=∠DBC. (1)判断直线BE与⊙O的位置关系,并证明你的结论; (2)若sin∠ABE= 3 3 ,CD=2,求⊙O的半径. 【答案】(1)直线BE与⊙O相切,证明见解析;(2)⊙O的半径为3 . 【解析】 分析:(1)连接OE,根据矩形的性质,可证∠BEO=90°,即可得出直线BE与⊙O相切;(2)连接EF,先根据已知条件得出BD的值,再在△BEO中,利用勾股定理推知BE的长,设出⊙O的半径为r,利用切线的性质,用勾股定理列出等式解之即可得出r的值.详解:(1)直线BE与⊙O相切.理由如下: 连接OE,在矩形ABCD中,AD∥BC,∴∠ADB=∠DBC. ∵OD=OE,∴∠OED=∠ODE. 又∵∠ABE=∠DBC,∴∠ABE=∠OED, ∵矩形ABDC,∠A=90°,∴∠ABE+∠AEB=90°, ∴∠OED+∠AEB=90°,∴∠BEO=90°,∴直线BE与⊙O相切;

中考数学专题复习——操作探究(详细答案)

中考数学专题复习——操作探究 一.选择题 1. (2018?临安?3 分.)如图,正方形硬纸片A BCD的边长是4,点E.F分别是A B.BC的中点,若沿左图中的虚线剪开,拼成如图的一座“小别墅”,则图中阴影部分的面积是() A.2 B.4 C.8 D.10 2. (2018?嘉兴?3 分)将一张正方形纸片按如图步骤①,②沿虚线对折两次,然后沿③中平行于底边的虚线剪去一个角,展开铺平后的图形是() A. (A) B. (B) C. (C) D. (D) 3. (2018?广西南宁?3 分)如图,矩形纸片A BCD,AB=4,BC=3,点P在B C 边上,将△CDP 沿D P 折叠,点C落在点E处,PE.DE 分别交A B 于点O、F,且O P=OF,则c os∠ADF 的值为 () A.11 13 B. 13 15 C. 15 17 D. 17 19 4.(2018?海南?3 分)如图1,分别沿长方形纸片A BCD 和正方形纸片E FGH 的对角线A C,EG 剪开,拼成如图2所示的?KLMN,若中间空白部分四边形O PQR 恰好是正方形,且?KLMN 的面积为50,则正方形E FGH 的面积为()

A.24 B.25 C.26 D.27 二、填空题 1. (2018?杭州?4 分)折叠矩形纸片 ABCD 时,发现可以进行如下操作:①把△ADE 翻折,点A 落在D C 边上的点F处,折痕为D E,点E在A B 边上;②把纸 片展开并铺平;③把△CDG 翻折,点C落在直线A E 上的点H处,折痕为D G,点G在B C 边上,若 AB=AD+2,EH=1,则A D= 。 2.(2018?临安?3 分.)马小虎准备制作一个封闭的正方体盒子,他先用5 个大小一样的正方 形制成如图所示的拼接图形(实线部分) ,经折叠后发现还少一个面,请你在图中的拼接图形 上再接一个正方形,使新拼接成的图形经过折叠后能成为一个封闭的正方体盒子(添加所有符 合要求的正方形,添加的正方形用阴影表示) . 3.(2018?金华、丽水?4分)如图2,小靓用七巧板拼成一幅装饰图,放入长方形A BCD内, 装饰图中的三角形顶点E,F分别在边A B,BC上, 三角形①的边G D在边A D上,则AB BC 的值 是. 4. (2018·湖北省恩施·3 分)在Rt△ABC 中,AB=1,∠A=60°,∠AB C=90°,如图所示将R t△ABC沿直线l无滑动地滚动至R t△DE F,则点B所经过的路径与直线l所围成的封闭 图形的面积为.(结果不取近似值)

中考数学几何综合题汇总.doc

如图 8,在Rt ABC中,CAB 90,AC 3 , AB 4 ,点 P 是边 AB 上任意一点,过点 P 作PQ AB 交BC于点E,截取 PQ AP ,联结 AQ ,线段 AQ 交BC于点D,设 AP x ,DQ y .【2013徐汇】 (1)求y关于x的函数解析式及定义域;( 4 分) (2)如图 9,联结CQ,当CDQ和ADB相似时,求x的值;( 5 分) (3)当以点C为圆心,CQ为半径的⊙C和以点B为圆心,BQ为半径的⊙B相交的另一个交点在边 AB 上时,求 AP 的长.( 5 分) C Q D E A P B (图 8) C Q D E A (图 9) P B C A B (备用图) 【2013 奉贤】如图,已知AB是⊙O的直径,AB=8,点C在半径OA上(点C与点O、A不重合),过点 C作 AB的垂线交⊙ O于点 D,联结 OD,过点 B 作 OD的平行线交⊙ O于点 E、交射 线CD于点 F. (1)若 ⌒ ED BE⌒ ,求∠ F 的度数; (2)设CO x, EF y,写出y 与x之间的函数解析式,并写出定义域;

(3)设点 C 关于直线 OD 的对称点为 P ,若△ PBE 为等腰三角形,求 OC 的长. 第 25 题 【 2013 长宁】△ ABC 和△ DEF 的顶点 A 与 D 重合,已知∠ B = 90 . ,∠ BAC = 30 . , BC=6,∠ FDE = 90 , DF=DE=4. (1)如图①, EF 与边 、 分别交于点 ,且 . 设 DF a ,在射线 上取 AC AB G 、H FG=EH DF 一点 P ,记: DP xa ,联结 CP. 设△ DPC 的面积为 y ,求 y 关于 x 的函数解析式,并写 出定义域; (2)在( 1)的条件下,求当 x 为何值时 PC // AB ; ( 3)如图②,先将△ DEF 绕点 D 逆时针旋转,使点 E 恰好落在 AC 边上,在保持 DE 边与 AC 边完 全重合的条件下, 使△ DEF 沿着 AC 方向移动 . 当△ DEF 移动到什么位置时, 以线段 AD 、FC 、BC 的长度为边长的三角形是直角三角形. 图① 图② 【 2013 嘉定】已知 AP 是半圆 O 的直径,点 C 是半圆 O 上的一个动点 (不与点 A 、P 重合),联结 AC ,以直线 AC 为对称轴翻折 AO ,将点 O 的对称点记为 O 1 ,射线 AO 1 交半圆 O 于 点 B ,联结 OC . (1)如图 8,求证: AB ∥ OC ; (2)如图 9,当点 B 与点 O 1 重合时,求证: AB CB ;

中考数学综合专题训练【几何综合题】(几何)精品解析

中考数学综合专题训练【几何综合题】(几何)精品解析 在中考中,几何综合题主要考察了利用图形变换(平移、旋转、轴对称)证明线段、角的数量关系及动态几何问题。学生通常需要在熟悉基本几何图形及其辅助线添加的基础上,将几何综合题目分解为基本问题,转化为基本图形或者可与基本图形、方法类比,从而使问题得到解决。 在解决几何综合题时,重点在思路,在老师讲解及学生解题时,对于较复杂的图形,根据题目叙述重复绘图过程可以帮助学生分解出基本条件和图形,将新题目与已有经验建立联系从而找到思路,之后绘制思路流程图往往能够帮助学生把握题目的脉络;在做完题之后,注重解题反思,总结题目中的基本图形及辅助线添加方法,将题目归类整理;对于典型的题目,可以解析题目条件,通过拓展题目条件或改变条件,给出题目的变式,从而对于题目及相应方法有更深入的理解。同时,在授课过程中,将同一类型的几何综合题成组出现,分析讲解,对学生积累对图形的“感觉”有一定帮助。 一.考试说明要求 图形与证明中要求:会用归纳和类比进行简单的推理。 图形的认识中要求:会运用几何图形的相关知识和方法(两点之间的距离,等腰三角形、等边三角形、直角三角形的知识,全等三角形的知识和方法,平行四边形的知识,矩形、菱形和正方形的知识,直角三角形的性质,圆的性质)解决有关问题;能运用三角函数解决与直角三角形相关的简单实际问题;能综合运用几何知识解决与圆周角有关的问题;能解决与切线有关的问题。 图形与变换中要求:能运用轴对称、平移、旋转的知识解决简单问题。 二.基本图形及辅助线 解决几何综合题,是需要厚积而薄发,所谓的“几何感觉”,是建立在足够的知识积累的基础上的,熟悉基本图形及常用的辅助线,在遇到特定条件时能够及时联想到对应的模型,找到“新”问题与“旧”模型间的关联,明确努力方向,才能进一步综合应用数学知识来解决问题。在中档几何题目教学中注重对基本图形及辅助线的积累是非常必要的。 举例: 1、与相似及圆有关的基本图形

青岛市中考数学探究题经典例题

问题提出: 如图①,将一直角三角形纸片△ABC折叠,使点A与点C重合,这时DE为折痕,△CBE 为等腰三角形;再继续将纸片沿△CBE的对称轴EF折叠,这时得到了两个完全重合的矩形(其中一个是原直角三角形的接矩形,另一个是拼合成的无缝隙、无重叠的矩形),我们称这样两个矩形为“叠加矩形”. 知识运用: (1)如图②,正方形网格中的△ABC能折叠成“叠加矩形”吗?如果能,请在图②中画出折痕; (2)如图③,在正方形网格中,以给定的BC为一边,画出一个斜三角形ABC,使其顶点A在格点上,且△ABC折成的“叠加矩形”为正方形; (3)若一个锐角三角形所折成的“叠加矩形”为正方形,那么它必须满足的条件是什么?结合图③,说明理由。 拓展应用: (4)如果一个四边形一定能折成"叠加矩形",那么它必须满足的条件是什么?

23.(本小题满分10分) 提出问题:如图①,在四边形ABCD 中,点E 、F 是AD 的n 等分点中最中间2个,点G 、H 是BC 的n 等分点中最中间2个,(其中n 为奇数),连接EG 、FH ,那么S 四边形EFHG 与S 四边形 之间有什么关系呢? 探究发现:为了解决这个问题,我们可以先从一些简单的、特殊的情形入手: (1).如图②:四边形ABCD 中,点E 、F 是AD 的3等分点,点G 、H 是BC 的3等分点,连接EG 、FH ,那么S 四边形EFHG 与S 四边形ABCD 之间有什么关系呢? 如图③,连接EH 、BE 、DH , 因为△EGH 与△EBH 高相等,底的比是1:2, 所以S △EGH = 2 1 S △EBH 因为△EFH 与△DEH 高相等,底的比是1:2, 所以S △EFH = 2 1 S △DEH 所以S △EGH +S △EFH =21S △EBH +21 S △DEH 即S 四边形EFHG =2 1 S 四边形EBHD 连接BD , 因为△ABE 与△ABD 高相等,底的比是1:3, 所以S △ABE = 3 1 S △ABD 因为△CDH 与△BCD 高相等,底的比是1:3, 所以S △CDH =3 1 S △BCD 所以S △ABE +S △CDH =31S △ABD +31S △BCD =31(S △ABD +S △BCD )=31 S 四边形ABCD 所以S 四边形EBHD =32 S 四边形ABCD 所以S 四边形EFHG =21S 四边形EBHD =21×3 2S 四边形ABCD =31 S 四边形ABCD 图③ 图 ① 图 ②

中考数学综合题专题【圆】专题训练含答案

中考数学综合题专题【圆】专题训练含答案 一、选择题 1.(北京市西城区)如图,BC 是⊙O 的直径,P 是CB 延长线上一点,PA 切⊙O 于点A ,如果PA =3,PB =1,那么∠APC 等于 ( ) (A ) 15 (B ) 30 (C ) 45 (D ) 60 2.(北京市西城区)如果圆柱的高为20厘米,底面半径是高的 41,那么这个圆柱的侧面积是 ( ) (A )100π平方厘米 (B )200π平方厘米 (C )500π平方厘米 (D )200平方厘米 3.(北京市西城区)“圆材埋壁”是我国古代著名的数学菱《九章算术》中的一个问题,“今在圆材,埋在壁中,不知大小.以锯锯之,深一寸,锯道长一尺,问径几何?”用 现在的数学语言表述是:“如图,CD 为⊙O 的直径,弦AB ⊥CD ,垂足为E ,CE =1寸,AB =寸,求直径CD 的长”.依题意,CD 长为 ( ) (A )2 25寸 (B )13寸 (C )25寸 (D )26寸 4.(北京市朝阳区)已知:如图,⊙O 半径为5,PC 切⊙O 于点C ,PO 交⊙O 于点A ,PA =4,那么PC 的长等于 ( ) (A )6 (B )25 (C )210 (D )214 5.(北京市朝阳区)如果圆锥的侧面积为20π平方厘米,它的母线长为5厘 米,那么此圆锥的底面半径的长等于 ( ) (A )2厘米 (B )22厘米 (C )4厘米 (D )8厘米 6.(天津市)相交两圆的公共弦长为16厘米,若两圆的半径长分别为10厘 米和17厘米,则这两圆的圆心距为 ( ) (A )7厘米 (B )16厘米 (C )21厘米 (D )27厘米 7.(重庆市)如图,⊙O 为△ABC 的内切圆,∠C = 90,AO 的延长线交BC 于点D ,AC =4,DC =1,,则⊙O 的半径等于 ( )

【中考数学压轴题专题突破48】综合实践与创新问题(4)

【中考压轴题专题突破48】 综合实践与创新问题(4) 1.综合与实践 问题情境:在数学活动课上,老师出示了这样一个问题:如图1,在矩形ABCD中,AD =2AB,E是AB延长线上一点,且BE=AB,连接DE,交BC于点M,以DE为一边在DE的左下方作正方形DEFG,连接AM.试判断线段AM与DE的位置关系. 探究展示:勤奋小组发现,AM垂直平分DE,并展示了如下的证明方法: 证明:∵BE=AB,∴AE=2AB. ∵AD=2AB,∴AD=AE. ∵四边形ABCD是矩形,∴AD∥BC. ∴.(依据1) ∵BE=AB,∴.∴EM=DM. 即AM是△ADE的DE边上的中线, 又∵AD=AE,∴AM⊥DE.(依据2) ∴AM垂直平分DE. 反思交流: (1)①上述证明过程中的“依据1”“依据2”分别是指什么? ②试判断图1中的点A是否在线段GF的垂直平分线上,请直接回答,不必证明; (2)创新小组受到勤奋小组的启发,继续进行探究,如图2,连接CE,以CE为一边在CE的左下方作正方形CEFG,发现点G在线段BC的垂直平分线上,请你给出证明; 探索发现: (3)如图3,连接CE,以CE为一边在CE的右上方作正方形CEFG,可以发现点C,点B都在线段AE的垂直平分线上,除此之外,请观察矩形ABCD和正方形CEFG的顶点与边,你还能发现哪个顶点在哪条边的垂直平分线上,请写出一个你发现的结论,并加以证明.

问题情境 在综合实践课上,老师让同学们“以三角形的旋转”为主题进行数学活动,如图(1),在三角形纸片ABC中,AB=AC,∠B=∠C=α. 操作发现 (1)创新小组将图(1)中的△ABC以点B为旋转中心,逆时针旋转角度α,得到△DBE,再将△ABC以点A为旋转中心,顺时针旋转角度α,得到△AFG,连接DF,得到图(2),则四边形AFDE的形状是. (2)实践小组将图(1)中的△ABC以点B为旋转中心,逆时针逆转90°,得到△DBE,再将△ABC以点A为旋转中心,顺时针旋转90°,得到△AFG,连接DF、DG、AE,得到图(3),发现四边形AFDB为正方形,请你证明这个结论. 拓展探索 (3)请你在实践小组操作的基础上,再写出图(3)中的一个特殊四边形,并证明你的结论.

中考数学综合专题训练【以圆为基础的几何综合题】精品专题解析

中考数学综合专题训练【以圆为基础的几何综合题】精品专题解析 几何综合题一般以圆为基础,涉及相似三角形等有关知识;这类题虽较难,但有梯度,一般题目中由浅入深有1~3个问题,解答这种题一般用分析综合法. 【典型例题精析】 例1.如图,已知⊙O的两条弦AC、BD相交于点Q,OA⊥BD. (1)求证:AB2=AQ·AC: (2)若过点C作⊙O的切线交DB的延长线于点P,求证:PC=PQ. P 分析:要证A B2=AQ·AC,一般都证明△ABQ∽△ACB.∵有一个公共角∠QAB=∠BAC,?∴只需再证明一个角相等即可. 可选定两个圆周角∠ABQ=∠ACB加以证明,以便转化,题目中有垂直于弦的直径,可知AB=AD,AD和AB所对的圆周角相等. (2)欲证PC=PQ, ∵是具有公共端点的两条线段, ∴可证∠PQC=∠PCQ(等角对等边) 将两角转化,一般原地踏步是不可能证明出来的,没有那么轻松愉快的题目给你做,因为数学是思维的体操. ∠BQC=∠AQD=90°-∠1(充分利用直角三角形中互余关系) ∵∠PCA是弦切角,易发现应延长AO与⊙交于E,再连结EC,?利用弦切角定理得∠PCA=∠E,同时也得到直径上的圆周角∠ACE=90°, ∴∠PCA=∠E=90°-∠1. 做几何证明题大家要有信心,拓展思维,不断转化,寻根问底,不断探索,?充分发挥题目中条件的总体作用,总能得到你想要的结论,同时也要做好一部分典型题,?这样有利于做题时发生迁移,联想. 例2.如图,⊙O1与⊙O2外切于点C,连心线O1O2所在的直线分别交⊙O1,⊙O2于A、E,?过点A作⊙O2的切线AD交⊙O1于B,切点为D,过点E作⊙O2的切线与AD交于F,连结BC、CD、?DE. (1)如果AD:AC=2:1,求AC:CE的值; (2)在(1)的条件下,求sinA和tan∠DCE的值; (3)当AC:CE为何值时,△DEF为正三角形?

中考数学 直机关操作探究大题操作探究大题 人教新课标版

中考数学 直机关操作探究大题操作探究大题 人教新课标版 26.(12分)25.如图1,在等腰梯形ABCD 中,AD BC ∥,E 是AB 的中点,过点E 作EF BC ∥交CD 于点F .46AB BC ==,,60B =?∠. (1)求点E 到BC 的距离; (2)点P 为线段EF 上的一个动点,过P 作PM EF ⊥交BC 于点M ,过M 作MN AB ∥交折线ADC 于点N ,连结PN ,设EP x =. ①当点N 在线段AD 上时(如图2),PMN △的形状是否发生改变?若不变,求出PMN △的周长;若改变,请说明理由; ②当点N 在线段DC 上时(如图3),是否存在点P ,使PMN △为等腰三角形?若存在,请求出所有满足要求的x 的值;若不存在,请说明理由. 26(1)如图1,过点E 作EG BC ⊥于点G . ······ 1分 A D E B F C 图4(备用) A D E B F C 图5(备用) A D E B F C 图1 图2 A D E B F C P N M 图3 A D E B F C P N M (第26题)

∵E 为AB 的中点, ∴1 22 BE AB ==. 在Rt EBG △中,60B =?∠,∴30BEG =?∠. ··· 2分 ∴1 12 BG BE EG ====, 即点E 到BC 3分 (2)①当点N 在线段AD 上运动时,PMN △的形状不发生改变. ∵PM EF EG EF ⊥⊥,,∴PM EG ∥. ∵EF BC ∥,∴EP GM = ,PM EG == 同理4MN AB ==. 如图2,过点P 作PH MN ⊥于H ,∵MN AB ∥, ∴6030NMC B PMH ==?=?∠∠,∠. ∴12PH PM == ∴3 cos302 MH PM =?=. 则35422NH MN MH =-=-=. 在Rt PNH △中,PN === ∴PMN △的周长=4PM PN MN ++=. ············ 6分 ②当点N 在线段DC 上运动时,PMN △的形状发生改变,但MNC △恒为等边三角形. 当PM PN =时,如图3,作PR MN ⊥于R ,则MR NR =. 类似①,3 2 MR =. ∴23MN MR ==. ················· 7分 ∵MNC △是等边三角形,∴3MC MN ==. 此时,6132x EP GM BC BG MC ===--=--=. ··········· 8分 当 MP MN =时,如图4,这时 图3 A D E B F C P N M 图4 A D E B F C P M N 图5 A D E B F (P ) C M N G G R G 图1 A D E B F C G 图2 A D E B F C P N M G H

中考数学综合练习题

42.等边三角形ABC的边长为6,在AC,BC边上各取一点E,F,连结AF,BE相交于点P (1)若AE=CF, ①求证:AF=BE,并求∠APB的度数; ②若AE=2,试求AP?AF的值; (2)若AF=BE,当点E从点A运动到点C时,试求点P经过的路径的长. 43.合作学习 如图,矩形ABOD的两边OB,OD都在坐标轴的正半轴上,OD=3,另两边与反比例函数 的图象分别相交于点E,F,且DE=2,过点E作EH⊥x轴于点H,过点F作FG⊥EH 于点G。回答下列问题: ①该反比例函数的解析式是什么? ②当四边形AEGF为正方形时,点F的坐标是多少? (1)阅读合作学习内容,请解答其中的问题; (2)小亮进一步研究四边形AEGF的特征后提出问题:“当AE>EG时,矩形AEGF与矩形DOHE能否全等?能否相似?” 针对小亮提出的问题,请你判断这两个矩形能否全等?直接写出结论即可;这两个矩形能否相似?若能相似,求出相似比;若不能相似,试说明理由. 44.九(3)班为了组队参加学校举行的“五水共治”知识竞赛,在班里选取了若干名学生,分成人数相同的甲乙两组,进行了四次“五水共治”模拟竞赛,成绩优秀的人数和优秀率分别绘 制成如下统计图. 根据统计图,解答下列问题: (1)第三次成绩的优秀率是多少?并将条形统计图补充完整;

(2)已求得甲组成绩优秀人数的平均数,方差,请通过计算说明,哪一组成绩优秀的人数较稳定? 45.一种长方形餐桌的四周可坐6人用餐,现把若干张这样的餐桌按如图方式进行拼接.(1)若把4张、8张这样的餐桌拼接起来,四周分别可坐多少人? (2)若用餐的人数有90人,则这样的餐桌需要多少张? 46.在棋盘中建立如图所示的直角坐标系,三颗棋子A,O,B的位置如图,它们的坐标分别是(-1,1),(0,0)和(1,0). (1)如图2,添加棋子C,使A,O,B,C四颗棋子成为一个轴对称图形,请在图中画出该图形的对称轴; (2)在其它格点位置添加一颗棋子P,使A,O,B,P成为一个轴对称图形,请直接写出棋子P的位置的坐标(写出2个即可). 47.如图,在平面直角坐标系中,A是抛物线上的一个动点,且点A在第一象限内.AE⊥轴于点E,点B坐标为(0,2),直线AB交轴于点C,点D与点C关于轴对称,直线DE与AB相交于点F,连结BD.设线段AE的长为,△BED的面积为 .

中考数学复习题目

中考复习题 1 .计算:22221 (1)121 a a a a a a +-÷+---+. 2.“只要人人都献出一点爱,世界将变成美好的人间”.在今年的慈善一日捐活动中,济南市某中学八年级三班50名学生自发组织献爱心捐款活动.班长将捐款情况进行了统计,并绘制成了统计图.根据右图提供的信息,捐款金额.. 的众数和中位数分别是( ) A .20、20 B .30、20 C .30、30 D .20、30 3.不等式组213 351x x +>??-? ≤的解集在数轴上表示正确的是( ) 4.在综合实践活动课上,小明同学用纸板制作了一个圆锥形漏斗模型.如图所示,它的底面半径6cm OB =,高8cm OC =.则这个圆锥漏斗的侧面积是( ) A .230cm B .230cm π C .260cm π D .2120cm 5.如图,矩形 ABCD 中,35AB BC ==,.过对角线交点O 作OE AC ⊥交AD 于E ,则 AE 的长是( ) A .1.6 B .2.5 C .3 D .3.4 6.如图,O 的半径5cm OA =,弦8cm AB =,点P 为弦AB 上一动点,则点P 到圆心O 的 最短距离是 cm . 金额(元) 50 100 (第2题图) 2 2 C . 2 D . 2 (第4题图) B A C O A B C D O E (第5题图) O A B

7.如图,AOB ∠是放置在正方形网格中的一个角,则cos AOB ∠的值是 . 8.九年级三班小亮同学学习了“测量物体高度”一节课后, 他为 了测得右图所放风筝的高度,进行了如下操作: (1)在放风筝的点A 处安置测倾器,测得风筝C 的仰角 60CBD =?∠; (2)根据手中剩余线的长度出风筝线BC 的长度为70米; (3)量出测倾器的高度 1.5AB =米. 根据测量数据,计算出风筝的高度CE 约为 米.(精确到0.1 1.73≈) 9.已知,如图①,在ABCD 中,E 、F 是对角线BD 上的两点, 且BF DE =. 求证:AE CF =. 10.已知,如图②,AB 是O 的直径,CA 与O 相切于点A .连接CO 交O 于点D ,CO 的延长线交O 于点E .连接BE 、BD ,30ABD =?∠,求EBO ∠和C ∠的度数. 20.有3张不透明的卡片,除正面写有不同的数字外,其它均相同.将这三张卡片背面朝上洗匀后,第一次从中随机抽取一张,并把这张卡片标有的数字记作一次函数表达式中的k ,第二次从余下..的两张卡片中再随机抽取一张,上面标有的数字记作一次函数表达式中的b . (1)写出k 为负数的概率; (2)求一次函数y kx b =+的图 象经过二、三、四象限的概率. (用树状图或列表法求解) 11.如图,AB 与O ⊙相切于点B ,AO 的延长线交 O ⊙于点C ,连结BC ,若34A ∠=°,则C ∠= . 12.观察下列等式: 221.4135-=?; 222.5237-=?; 223.6339-=? 224.74311-=?; …………则第n (n 是正整数)个等式为________. A D B E C 60 第8题图 A E C D F B 第9题 图第10题图② 1-2 - 3 - 正 背

2019年全国各地中考数学试题分类汇编(第一期)专题37操作探究(含解析)

操作探究 一.选择题 1. (2019?湖南邵阳?3分)如图,在Rt△ABC中,∠BAC=90°,∠B=36°,AD是斜边 BC上的中线,将△ACD沿AD对折,使点C落在点F处,线段DF与AB相交于点E,则∠BED等于() A.120°B.108°C.72°D.36° 【分析】根据三角形内角和定理求出∠C=90°﹣∠B=54°.由直角三角形斜边上的中线的性质得出AD=BD=CD,利用等腰三角形的性质求出∠BAD=∠B=36°,∠DAC =∠C=54°,利用三角形内角和定理求出∠ADC=180°﹣∠DAC﹣∠C=72°.再根据折叠的性质得出∠ADF=∠ADC=72°,然后根据三角形外角的性质得出∠BED=∠BAD+∠ADF=108°. 【解答】解:∵在Rt△ABC中,∠BAC=90°,∠B=36°, ∴∠C=90°﹣∠B=54°. ∵AD是斜边BC上的中线, ∴AD=BD=CD, ∴∠BAD=∠B=36°,∠DAC=∠C=54°, ∴∠ADC=180°﹣∠DAC﹣∠C=72°. ∵将△ACD沿AD对折,使点C落在点F处, ∴∠ADF=∠ADC=72°, ∴∠BED=∠BAD+∠ADF=36°+72°=108°. 故选:B. 【点评】本题考查了折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形 状和大小不变,位置变化,对应边和对应角相等.也考查了直角三角形斜边上的中线的性质、 等腰三角形的性质、三角形内角和定理以及三角形外角的性质. 2. (2019?浙江金华?3分)将一张正方形纸片按如图步骤,通过折叠得到图④,再沿虚线剪去一个角,展开铺平后得到图⑤,其中FM,GN是折痕,若正方形EFGH与五边形MCNGF 的面积相等,则的值是()

初三中考数学综合题一

初三中考数学综合题(一) A 卷 一、选择题(每小题3分,共30分) 1.下列各数中是负数的是( ) A .-(-3) B .-(-3)2 C .-(-2)3 D .|-2| 2.下列计算正确的是( ) A .3a = B .632a a a ÷= C .()1 22a a -=- D .() 3 2628a a -=- 3.6月5日是世界环境日,“海洋存亡,匹夫有责”,目前全球海洋总面积约为36105.9万.平方千米,用科学记数法(保留三个有效数字)表示为( ) A .6 1061.3?平方千米 B .7 1061.3?平方千米 C .81061.3?平方千米 D .91061.3?平方千米 4.一个几何体的三视图如图所示,则这个几何体是( ). 5.已知下列四个命题:(1).对角线互相垂直平分的四边形是正方形;(2).相邻的两个角都互补的四边形是平行四边形;(3).平分弦的直径垂直于弦,并且平分弦所对的两条弧;( 4).对角线垂直相等的四边形是菱形。其中真命题的个数是( ) A .0 B .1 C .2 D .3 6.已知112233 (2)(1)(2)P y P y P y --,,,,,是反比例函数2y x =的图象上的三点,则123y y y ,,的大小关系是( ) A.321y y y << 123y y y << C.213y y y << D. 以上都不对 7.如右图,小明课间把老师的三角板的直角顶点放在黑板的两 条平行线a b 、上,已知155∠=°,则2∠的度数为( ) A .45° B .125° C .55° D .35° 8.已知点P (x ,y )在函数x x y -+= 2 1 的图象上,那么点P 应在平面直角坐标系中的( ) A .第一象限 B . 第二象限 C . 第三象限 D . 第四象限 9.“只要人人都献出一点爱,世界将变成美好的人间”.在今年的慈善一日捐活动中,成都市某中学九年级三班50名学生自发组织献爱心捐款活动.班长将捐款情况进行了统计,并绘制成了统计图.根据右图提供的信息,捐款金额.. 的众数和中位数分别是( ) A .20、20 B .30、20 C .3010.如图,在平面直角坐标系中,点A 在第一象限, ⊙A 与x 轴相切于B ,与y 轴交于C (0,1), D (0,4)两点,则点A 的坐标是 ( ) A .35 (,)22 B .3(,2)2 A B C D 主 视 图左视图俯 视图(第4题)

题型七 综合实践题-2021年中考数学第二轮重难题型突破(原卷版)

题型七综合实践题 已知Rt△ABC中,∠BAC=90°,AB=AC,点E是线段AC上的一个动点(不与A、C重合),以CE为一边作Rt△DCE,使∠DCE=90°,且CD=CA.沿CA方向平移△CDE,使点C移动到点A,得到△ABF.过点F作FG⊥BC,交线段BC于点G,连接DG、EG. 【深入探究】 (1)如图①,当点E在线段AC上时,小文猜想GC=GF,请你帮他证明这一结论; (2)如图②,当点E在线段AC的延长线上,且CE<CA时,猜想线段DG与EG的数量关系和位置关系,并证明你的猜想; 【拓展应用】 (3)如图③,将(2)中的“CE<CA”改为“CE>CA”,若设∠CDE=α,请用含α的式子表示∠CGE的度数(直接回答即可,不必证明). 第1题图 例2.在正方形ABCD中,BD是一条对角线,点P在直线CD上(不与点C、D重合),连接AP,平移△ADP,使点D 移动到点C,得到△BCQ,过点Q作QH⊥BD于H,连接AH,PH. 【问题发现】 (1)如图①,若点P在线段CD上,AH与PH的数量关系是________,位置关系是________; 【拓展探究】 (2)如图②,若点P在线段CD的延长线上,其他条件不变,(1)中的结论是否仍然成立?若成立,请给出证明,否则说明理由; 【解决问题】 (3)若点P在线段DC的延长线上,且∠AHQ=120°,正方形ABCD的边长为2,请直接写出DP的长度. 第2题图 例3.如图,在Rt△ABC中,∠ACB=90°,∠A=30°,点O为AB中点,点P为直线BC上的动点(不与点B、点C重合),连接OC、OP,将线段OP绕点P逆时针旋转60°,得到线段PQ,连接BQ. (1)如图①,当点P在线段BC上时,请直接写出线段BQ与CP的数量关系; (2)如图②,当点P在CB延长线上时,(1)中结论是否成立?若成立,请加以证明;若不成立,请说明理由; (3)如图③,当点P在BC延长线上时,若∠BPO=45°,AC=6,请直接写出BQ的长.

中考数学专题训练--函数综合题

中考数学专题训练函数综合题专题 1. 如图,一次函数y kx b y 4 与反比例函数x 的图像交于 A 、B 两点,其中y 点A的横坐标为1,又一次函数y (1)求一次函数的解析式; (2)求点 B 的坐标. kx b 的图像与x 轴交于点C3,0 . A C O x B 2. 已知一次函数y=(1-2x)m+x+3 图像不经过第四象限,且函数值y 随自变量x 的减小而减小。(1)求m 的取值范围; (2)又如果该一次函数的图像与坐标轴围成的三角形面积是 4.5 ,求这个一次函数的解析式。 y 2 1 -1 O -1 1 2 x 图 2 3. 如图,在平面直角坐标系中,点O 为原点,已知点 A 的坐标为(2,2),点B、C 在x 轴上,BC=8,AB=AC ,直线 y 1 / 22 D A

° AC 与 y 轴相交于点 D . ( 1)求点 C 、D 的坐标; ( 2)求图象经过 B 、D 、 A 三点的二次函数解析式及它的顶点坐标. 4. 如图四, 已知二次函数 y ax 2 2ax 3 的图像与 x 轴交于点 A ,点 B ,与 y 轴交于点 C ,其顶点为 D ,直线 DC 的函数关系式为 y kx b ,又 tan OBC 1. y ( 1)求二次函数的解析式和直线 DC 的函数关系式; D ( 2)求 △ ABC 的面积. C ( 图 四 ) A O B x 5. 已知在直角坐标系中,点 A 的坐标是( -3, 1),将线段 OA 绕着点 O 顺时针旋转 90 得到 OB. y 2 / 22 A

x

(1)求点B 的坐标;(2) 求过A、B、O 三点的抛物线的解析式;(3)设点B 关于抛物线的对称轴的对称点为C,求△ABC 的面积。 y 6.如图,双曲线0)、与y 轴交于点5 x 在第一象限的一支上有一点 B. C(1,5),过点C 的直线y kx b( k 0) 与x 轴交于点A(a, (1) 求点A 的横坐标 a 与k 之间的函数关系式; (2) 当该直线与双曲线在第一象限的另一交点 D 的横坐标是9 时,求△COD 的面积. y B C D O A x 第 6 题 3 / 22

聊城市中考数学专题复习讲义动手操作

中考数学专题:动手操作题(含答案) 操作型问题是指通过动手测量、作图(象) 、取值、计算等实验,猜想获得数学结论的探索 研究性活动,这类活动完全模拟以动手为基础的手脑结合的科学研究形式,需要动手操作、 合情猜想和验证,不但有助于实践能力和创新能力的培养,更有助于养成实验研究的习惯, 符合新课程标准特别强调的发现式学习、探究式学习和研究式学习,鼓励学生进行“微科 研”活动,培养学生乐于动手、 勤于实践的意识和习惯, 切实提高学生的动手能力、实践能 力的指导思想. 类型之一 折叠剪切问题 折叠中所蕴含着丰富的数学知识, 解决该类问题的基本方法就是,根据“折叠后的图形再展 开,则所得的整个图形应该是轴对称图形”, 求解特殊四边形的翻折问题应注意图形在变 换前后的形状、大小都不发生改变,折痕是它们的对称轴.折叠问题不但能使有利于培养我 们的动手能力,而且还更有利于培养我们的观察分析和解决问题的能力. 1. 将一正方形纸片按下列顺序折叠,然后将最后折叠的纸片沿虚线剪去上方的小三角形. 将纸片展开,得 到的图形是 3. 如下左图:矩形纸片 ABCD AB=2,点E 在BC 上,且AE=EC 若将纸片沿 AE 折 叠,点B 恰好落在AC 上,则AC 的长是 . 4. 如上右图,在正方形纸片 ABCD 中,对角线 AC BD 交于点0,折叠正方形纸片 ABCD 使AD 落在BD 上,点A 恰好与BD 上的点F 重合.展开后,折痕 DE 分别交 AB AC 于点E 、G.连接GF.下列结论:①/ AGD=112.5 :②tan △ 0GD ④四边形 AEFG 是菱形;⑤BE=20G 其中正确结论的序号是 类型之二 分割图形问题 分割问题通常是先给出一个图形(这个图形可能是规则的,也有可能不规 则) 你用直线、线段等把该图形分割成面积相同、形状相同的几部分。解决这类问题的时 候可以借助对称的性质、面积公式等进行分割。 5. 如图所示的方角铁皮, 要求用一条直线将其分成面积相等的两部分, 请你设计两种不同的 分割方案(用铅笔画图,不写画法,保留作图痕迹或简要的文 字说明). 6. 如图1 , △ ABC 中,/ C =90 ,请用直尺和圆规作一条直线, 把厶 ABC 分割成两个等腰三角形(不写作法,但须保留作图痕迹) A C D 匚口-0-H 2. 如图,把一张长方形纸片对折,折痕为 ----------- AB 再以AB 的中点0为顶点把平角/ AOB 三等分,沿平角的三等分线折叠,将折叠 A ---------------- 后的图形剪出一个以 0为顶点的等腰三角 后得到的平面图形- -定是 A.正三角形 B .正方形 C .正五边形 D .正六边形 / AED=2

中考数学综合习题(六)

中考数学综合习题(六) 一、 填空题 1、计算:(2)--= ;15- = ;1 3()2 -= . 2、计算:(52)(52)+-= . 3、计算:2sin60°= . 4、将3 2 x xy -分解因式的结果为 . 5、一个圆锥形容器的底面半径为12cm ,母线长为15cm ,那么这个圆锥形容器的高为 cm. 6、如图,将边长为8cm 的正方形ABCD 沿直线l 向右翻动(不滑动),当正方形连续翻动三次后,正方形ABCD 的中心经过的路线长是 cm. 选择题(7~12题为单项选择题;13~15题为多项选择题) 7、下列计算正确的是( ) A 、3 2 5 2a a a += B 、32 6 (2)4a a -= C 、2 2 2 ()a b a b +=+ D 、623 a a a ÷= 8、下列各图中,∠1大 于∠2的 是( ) 9、下列运算中,错误.. 的是( ) A 、 (0)a ac c b bc =≠ B 、1a b a b --=-+ C 、0.55100.20.323a b a b a b a b ++= -- D 、x y y x x y y x --=++ 10、将不等式841 13822 x x x x +<-?? ?≤-??的解集在数轴上表示出来,正确的是( ) 11、在下面的四个几何体中,它们各自的左视图与主视图不一样的是( )

12、已知某种品牌电脑的显示器的大约为4 210?小时,这种显示 寿命 器工作的天数为d (天),平均每天工作的时间为t (小时),那么能正确表示d 与t 之间的函数关系的图象是( ) 13、下列说法正确的是( ) A 、9的算术平方根是3 B 、设a 是实数,则a a -的值可能是正数,也可能是负数 C 、点(2,3)P -关于原点的对称点的坐标是(2,3)-- D 、抛物线2 6y x x =--的顶点在第四象限 14、如图,反映的是某中学七(3)班学生外出乘车、步行、骑车的人数直方图(部分)和扇形分布图,则下列说法正确的是( ) A 、七(3)班外出步行的有8人 B 、七(3)班外出的共有40人 C 、在扇形统计图中,步行人数所占的圆心角度数为82° D 、若该校七年级外出的学生共有500人,那么估计全年级外出骑车的约有150人 15、如图,在直角梯形ABCD 中,AD ∥BC ,∠B=90°,E 为AB 上一点,且ED 平分∠ADC ,EC 平分∠BCD ,则下列结论中正确的有( ) A 、∠ADE=∠CDE B 、DE ⊥E C C 、AD·BC=BE·DE D 、 CD=AD+BC 三、解答下列各题 A B C D E F 12 20 乘车50% 步行 20% 骑车30% 乘车 步行 骑车

中考数学综合题专题复习【相似】专题解析

一、相似真题与模拟题分类汇编(难题易错题) 1.如图,已知A(﹣2,0),B(4,0),抛物线y=ax2+bx﹣1过A、B两点,并与过A点的直线y=﹣ x﹣1交于点C. (1)求抛物线解析式及对称轴; (2)在抛物线的对称轴上是否存在一点P,使四边形ACPO的周长最小?若存在,求出点P的坐标,若不存在,请说明理由; (3)点M为y轴右侧抛物线上一点,过点M作直线AC的垂线,垂足为N.问:是否存在这样的点N,使以点M、N、C为顶点的三角形与△AOC相似,若存在,求出点N的坐标,若不存在,请说明理由. 【答案】(1)解:把A(-2,0),B(4,0)代入抛物线y=ax2+bx-1,得 解得 ∴抛物线解析式为:y= x2?x?1 ∴抛物线对称轴为直线x=- =1 (2)解:存在 使四边形ACPO的周长最小,只需PC+PO最小 ∴取点C(0,-1)关于直线x=1的对称点C′(2,-1),连C′O与直线x=1的交点即为P 点. 设过点C′、O直线解析式为:y=kx

∴k=- ∴y=- x 则P点坐标为(1,- ) (3)解:当△AOC∽△MNC时, 如图,延长MN交y轴于点D,过点N作NE⊥y轴于点E ∵∠ACO=∠NCD,∠AOC=∠CND=90° ∴∠CDN=∠CAO 由相似,∠CAO=∠CMN ∴∠CDN=∠CMN ∵MN⊥AC ∴M、D关于AN对称,则N为DM中点 设点N坐标为(a,- a-1) 由△EDN∽△OAC ∴ED=2a ∴点D坐标为(0,- a?1) ∵N为DM中点 ∴点M坐标为(2a,a?1) 把M代入y= x2?x?1,解得 a=4 则N点坐标为(4,-3) 当△AOC∽△CNM时,∠CAO=∠NCM ∴CM∥AB则点C关于直线x=1的对称点C′即为点N

相关文档
最新文档