电工电子学实验二 单向交流电路

电工电子学实验二  单向交流电路
电工电子学实验二  单向交流电路

课程名称:电工电子学实验指导老师:实验名称:单向交流电路

一、实验目的

1.学会使用交流仪表(电压表、电流表、功率表)。

2.掌握用交流仪表测量交流电路电压、电流和功率的方法。

3.了解电感性电路提高功率因数的方法和意义。

二、主要仪器设备

1.实验电路板

2.单相交流电源(220V)

3.交流电压表或万用表

4.交流电流表

5.功率表

6.电流插头、插座

三、实验内容

1.交流功率测量及功率因素提高

按图2-6接好实验电路。

图2-6

(1)测量不接电容时日光灯支路的电流I RL和电源实际电压U、镇流器两端电压U L、日光灯管两端

电压U R及电路功率P,记入表2-2。

计算:cosφRL= P/ (U·I RL)= 0.46

表2-2

(2)测量并联不同电容量时的总电流I和各支路电流I、I及电路功率,记入表2-3。

表2-3

注:上表中的计算公式为cosφ= P/( I ·U),其中U为表2-2中的U=219V。

四、实验总结

1.根据表2-2中的测量数据按比例画出日光灯支路的电压、电流相量图,并计算出电路参数R、R L、X L、L。

如图,由于I RL在数值上远远小于各电压的值,因而图中只标明了方向,无法按比例画出。

另外,此处I RL是按照U R的方向标注的。(如若按照cosφRL=0.46,得I RL与U的夹角φRL=-63°,则I RL与U R的方向有少许差别,这会在后文的误差分析中具体讨论。)

R=U R/I RL=294.7 Ω据图得U L与I RL夹角为81°,则得:R L+jX L=Z=U L/I RL=26.9+169.9 j 因而得:R L=26.9 ΩX L=169.9 ΩL= X L/2пf=0.54 H

2.根据表2-3的数据,按比例画出并联不同电容量后的电源电压和各电流的相量图,并判别相应电路是电感性还是电容性。

所得向量图如下,其中由于电压与电流数量级相差过多,电压未按比例绘制长度。

如图,由于φ全部<0,因此所测电路都为电感性。

3.讨论电感性负载用并联电容器的方法来提高功率因素的方法和意义。

根据上面各图所示,I RL在电容变化时基本保持不变,这是因为加在负载(包括电感和日光灯)两端的电压是恒定的,因此其内部的电流不变,而当并联的电容改变时,只改变I C的相位,因而导致I的相位改变,可以看出,在φ<0时,随着电容的增大φ越来越接近0,即I与U的方向趋于一致,因而cosφ趋向于1,功率因素提高。而当φ=0时,系统为电阻性,功率因素为1,功率利用率最高。而当电容继续增大时,φ>0且不断增加,致使cosφ变小,功率因素减小,此时系统处于电容性。此次实验由于实验次数与数据尺度的限制,没有出现电阻性和电容性的情况。

综上可得,提高功率因素的一般方法是,对于电感电路(日常使用电路通常为电感电路),并联适当大小的电容器有利于功率因素的提高,其电容大小以使总电压与总电流相位差接近0为宜。根据公式计算,当20

121R L

C LC

f -

=

π,即并联谐振时,功率因素达到最大(式中R 表示负载和电感的等效电阻)。在现实生活生产中增大功率因素是有积极意义的,因为这样可以更充分地利用电源所供给的功率,增大生产效率。由于日常所用电路大多为电感性的,因此并联电容这种方法能够得到广泛应用,但在实际电路设计制造中,可能会由于多种因素的限制影响,不可能使得功率因素刚好为1,只能尽可能接近于1,这也体现了理论与实践的差别。

五、心得体会

本次实验涉及到交流电,是从前的电学实验从未接触过的,总体感觉有些复杂,但经过仔细的实践和分析,最终结果还是比较符合要求的。在这次实验过程中,我们学习并使用了交流仪表,并掌握了测量交流电路中电流、电压及功率的方法,了解、分析了电感性电路提高功率因数的方法及其意义。

下面对本次实验的误差进行分析。在不接电容时测得的数据中(表2-2),通过功率和总电压与电流的计算得到的cos φRL =0.46,为一个计算值,如继续算下去,可得φRL =-63°,即为I RL 与U 的夹角,然而根据分析可知,I RL 应与U R 在向量图中的方向相同,因此据此推算应得U R 与U 的夹角也为63°;然而根据测量值,U R 与U 的夹角约为51°,与计算值有所差异。这种情况下,应以测量值为准,因为计算值为二次数据,并非直接所得,因此可信度不如测量值高。造成这种现象可能有多种原因:1.电路上或仪表内有耗能元件,导致功率测量偏小,从而致使cos φRL 偏小。2.由于功率表电流插孔的问题,电路总线上的电流未完全流入功率表,而有部分“漏过”功率表直接进入负载端,导致测得的功率偏小,进而使cos φRL 偏小。3.由于这是电路首次接通后测得的数据,电路内部及仪表内部各元件可能还未达到稳定状态,对测得的数据有所影响,造成偏差,这种情况下应进行多组平行实验,以判断是随机误差还是系统误差。4.功率表或其他测量元件已损坏,这种情况发生的可能性较低,基本可以排除。

另外,这次实验不足的是,在更改并联电容大小时,未能设计足够多的组和恰当的数据尺度,导致实

验结果处理时,所得全部电路都为电感性,没有得到电容性和电阻性的电路,因而从未能体现出电容并联过度反而会使功率因素下降这一现象。此外,通过表2-3可见,随着并联电容的增多,功率P 也有少许增加,因此推测可能电容也有少量负载耗电,这与理论上的理想电容器时有所差别的,当然这种现象的出现也不排除其他元件或温度的影响。

三相交流电路实验报告1

中国石油大学(华东)现代远程教育 实验报告 课程名称:电工电子学 实验名称:三相交流电路 实验形式:在线模拟 +现场实践 提交形式:在线提交实验报告 学生姓名:赵军学号: 年级专业层次:14 春石油开采技术高起专 学习中心:江苏油田学习中心 提交时间:2014 年 6 月8 日

一、实验目的 1 . 练习三相交流电路中负载的星形接法。 2 . 了解三相四线制中线的作用。 二、实验原理 1 . 对称三相电路中线、相电压和线、相电流的关系,三相电路中,负载的连接分为星形连接和三角形连接两种。一般认为电源提供的是对称三相电压。 ( 1 )星形连接的负载如图1 所示: 图1 星形连接的三相电路 A、B、C表示电源端,N为电源的中性点(简称中点),N'为负载的中性点。无论是三线制或四线制,流过每一相负载的相电流恒等于与之相连的端线中的线电流: (下标I 表示线的变量,下标p 表示相的变量) 在四线制情况下,中线电流等于三个线电流的相量之和,即 端线之间的电位差(即线电压)和每一相负载的相电压之间有下列关系:

当三相电路对称时,线、相电压和线、相电流都对称,中线电流等于零,而线、相电压满足: ( 2 )三角形连接的负载如图2 所示: 其特点是相电压等于线电压: 线电流和相电流之间的关系如下: 当三相电路对称时,线、相电压和线、相电流都对称,此时线、相电流满足: 2 . 不对称三相电路 在三相三线制星形连接的电路中,若负载不对称,电源中点和负载中点的电位不再相等,称为中点位移,此时负载端各相电压将不对称,电流和线电压也不对称。 在三相四线制星形连接的电路中,如果中线的阻抗足够小,那么负载端各相电压基本对称,线电压也基本对称,从而可看出中线在负载不对称时起到了很重要的作用。但由于负载不对称,因此电流是不对称的三相电流,这时的中线电流将不再为零。 在三角形连接的电路中,如果负载不对称,负载的线、相电压仍然对称,但线、相电流不再 对称。 如果三相电路其中一相或两相开路也属于不对称情况。

实验三--单相交流调压电路实验

信息科技大学 电力电子技术实验报告 实验项目:单相交流调压电路实验 学院:自动化 专业:自动化(信息与控制系统) /学号:贾鑫玉/2012010541 班级:自控1205班 指导老师:白雪峰 学期: 2014-2015学年第一学期

实验三单相交流调压电路实验 一.实验目的 1.加深理解单相交流调压电路的工作原理。 2.加深理解交流调压感性负载时对移相围要求。 二.实验容 1.单相交流调压器带电阻性负载。 2.单相交流调压器带电阻—电感性负载。 三.实验线路及原理 本实验采用了锯齿波移相触发器。该触发器适用于双向晶闸管或两只反并联晶闸管电路的交流相位控制,具有控制方式简单的优点。 晶闸管交流调压器的主电路由两只反向晶闸管组成。 四.实验设备及仪器 1.教学实验台主控制屏 2.NMCL—33组件 3.NMEL—03组件 4.NMCL-05(A)组件或NMCL—36组件 5.二踪示波器 6.万用表 五.注意事项 在电阻电感负载时,当α

交流调功电路工作原理及谐波分析

1、交流调功电路的工作原理 交流调功电路的工作周期为交流电网周期的整数倍,在一个周期内导通整数个周波, 这对电网来讲是非线性负载,存在谐波污染。由于交流调功电路工作频率低于电网频率,因此谐波次数为分数次,不能用电源频率作为基频来进行傅里叶分析。单相交流调功电路工作原理 单相交流调功电路如图1所示,其中u s.为交流电源电压,u T为反并联晶闸管两端压,R为负载电阻,u为负载电压,i为负载电流,各变量正方向如图1所示。单相交流调功电路在整数倍交流电源周期内,使反并联的晶闸管在电源电压过零时刻导通整数个电源周期。此时,电源频率f不能作为傅里叶分析的基频,最低频率是分数次谐波频率。 假设交流调功电路工作周期为M个电源周期,则T=M/f,此时的基频为f/M(HZ) ,晶闸管导通时,电流i就可表示为 " 式中,为电流瞬时最大值;为最低角频率。 在工作周期内,以N个导通交流电源周期的中点为零点,左右对称选取M/2f构成完整的工作 周期。如:当f=50HZ,M=5,N=3时,负载电流参考坐标系如图2所示,

此时负载电流i可以表示为 当自变量为ωt时,式(2)可以化为

2、单相交流调功电路的谐波统一公式及特点 根据三角函数傅里叶级数的正交性,通过选择坐标系使电流在一个工作周期内为奇函数(如图2所示),此时电流i(t)的傅里叶级数中直流分量和余弦分量均为零,只含正弦分量,则有 根据 得 式中,当N=M时,为交流电源频率分量。从式 (6)中可得,当N=kM (k=2,3,……)时,Bn=0,因此谐波成分均为电源频率的非整数次。式(4)和式(6)构成单相交流调功电路的谐波统一公式。 当f=50HZ,M=5,N=3时,负载电流的谐波特性如图3所示。

实验三 单相和三相交流调压电路实验(软件仿真)1

实验三单相和三相交流调压电路实验 一、实验目的 (1).加深理解交流调压电路的工作原理。 (2).加深理解单相交流调压感性负载时对移相范围要求。 (2).加深理解三相交流调压阻性负载时的工作情况。 二、实验设备及仪器 (1).计算机 (2).MATLAB软件 三、注意事项 (1)在电阻电感负载时,当α

交流电源:simpowersystem\Electrical sources\AC Voltage Source 晶闸管: simpowersystem\Power Electronics\thyristor 电阻: simpowersystem\Elements\series RLC Branch (b)设置参数 根据已知条件设置电源和负载参数,晶闸管可用默认参数。 图2电阻负载主电路部分 步骤二:搭建触发电路 (a)触发电路利用脉冲发生器实现,如图3所示 图3 脉冲触发电路 触发脉冲提取路径为: simulink\Sources\Pulse Genetator (b)设置参数 脉冲类型:Time based 时间:Use simulation time 脉冲幅值:1.0 脉冲宽度:5 脉冲周期:(自己思考) 脉冲延时:(单位:秒;触发角不同,延时不同。注意:两个触发脉冲的延时是否一样?应差多少?) 步骤三:搭建测量电路

单相交流调功电路实验

创新性实验 姓名刘太阳 班级自动化2013级2班 学号201301100221 单相交流调功电路实验 一、实验目的

熟悉调功电路的基本工作原理与特点。 二、实验所需挂件及附件 三、实验线路及原理 单相交流调功电路方框图如图所示。 单相交流调功电路方框图 把两个晶闸管反并联后串联在交流电路中,通过对晶闸管的控制就可以控制交流输出。这种电路不改变交流电的频率,称为交流电力控制电路。 交流调功电路的主电路和交流调压电路的形式基本相同,只是控制的方式不同。他不是采用移相控制而采用通断控制方式。 交流调功电路不是在每个交流电源周期都通过触发延迟角对输出电压波形进行控制。而是以交流电的周期为单位控制晶闸管的通断,即负载与交流电源接通几个周波,再断开几个周波,通过改变接通周波数和断开周波数的比值来调节负载所消耗的平均功率。如图所示,这种电路常用于电炉的温度控制,因为像电炉这样的控制对象,其时间常数往往很大,没有必要对交流电源的各个周期进行频繁的控制。只要大致以周波数为单位控制负载所消耗的平均功率,故称之为交流调功电路。 L C336

单相交流调功主电路 采用周波控制方式,使得负载电压电流的波形都是正弦波,不会对电网电压电流造成通常意义的谐波污染。此外由于在BCR导通期间,负载上的电压保持为电源电压,因此若将此控制方式用于手电钻在低速下对玻璃或塑性材料进行钻孔,将非常有利。 交流调功电路典型波形图 实验线路,选用灯泡作为实验负载,从灯泡亮、暗时段的变化,可了解交流调功电路的原理与特征。实验线路中双向晶闸管的触发信号由555组成振荡器,产生一个占空比可调的触发脉冲,并通过模拟门形成可靠的触发信号,其频率要低于市电的频率,并可在一定的范

电路仿真实验报告42016年度

电路仿真实验报告 实验一直流电路工作点分析和直流扫描分析 一、实验目的 (1)学习使用Pspice软件,熟悉它的工作流程,即绘制电路图、元件类别的选择及其参数的赋值、分析类型的建立及其参数的设置、Probe窗口的设置和分析的运行过程等。 (2)学习使用Pspice进行直流工作点的分析和直流扫描的操作步骤。 二、原理与说明 对于电阻电路,可以用直观法列些电路方程,求解电路中各个电压和电流。Pspice软件是采用节点电压法对电路进行分析的。 使用Pspice软件进行电路的计算机辅助分析时,首先编辑电路,用Pspice的元件符号库绘制电路图并进行编辑。存盘。然后调用分析模块、选择分析类型,就可以“自动”进行电路分析了。 三、实验示例 1、利用Pspice绘制电路图如下 2、仿真 (1)点击Psipce/New Simulation Profile,输入名称; (2)在弹出的窗口中Basic Point是默认选中,必须进行分析的。点击确定。 (3)点击Pspice/Run(快捷键F11)或工具栏相应按钮。 (4)如原理图无错误,则显示Pspice A/D窗口。

(5)在原理图窗口中点击V,I工具栏按钮,图形显示各节点电压和各元件电流值如下。 四、选做实验 1、直流工作点分析,即求各节点电压和各元件电压和电流。 2、直流扫描分析,即当电压源的电压在0-12V之间变化时,求负载电阻R l中电流虽电压源的变化

曲线。 曲线如图: 直流扫描分析的输出波形3、数据输出为: V_Vs1 I(V_PRINT1) 0.000E+00 1.400E+00 1.000E+00 1.500E+00 2.000E+00 1.600E+00 3.000E+00 1.700E+00 4.000E+00 1.800E+00 5.000E+00 1.900E+00 6.000E+00 2.000E+00 7.000E+00 2.100E+00 8.000E+00 2.200E+00 9.000E+00 2.300E+00 1.000E+01 2.400E+00 1.100E+01 2.500E+00 1.200E+01 2.600E+00

电工电子综合实验1--裂相电路仿真实验报告格 2

电子电工综合实验论文 专题:裂相(分相)电路 院系:自动化学院 专业:电气工程及其自动化 姓名:小格子 学号: 指导老师:徐行健

裂相(分相)电路 摘要: 本实验通过仿真软件Mulitinism7,研究如何将一个单相的交流分裂成多相交流电源的问题。用如下理论依据:电容、电感元件两端的电压和电流相位差是90度,将这种元件和与之串联的电阻当作电源,这样就可以把单相交流源分裂成两相交流电源、三相电源。同时本实验还研究了裂相后的电源接不同的负载时电压、功率的变化。得到如下结论: 1.裂相后的电源接相等负载时两端的电压和负载值成正相关关系; 2.接适当的负载,裂相后的电路负载消耗的功率将远大于电源消耗的功率; 3.负载为感性时,两实验得到的曲线差别较小,反之,则较大。 关键词:分相两相三相负载功率阻性容性感性 引言 根据电路理论可知,电容元件和电感元件最容易改变交流电的相位,又因它们不消耗能量,可用作裂相电路的裂相元件。所谓裂相,就是将适当的电容、电感与三相对称负载相配接,使三相负载从单相电源获得三相对称电压。而生活和工作中一般没有三相动力电源,只有单相电源,如何利用单相电源为三相负载供电,就成了值得深入研究的问题了。 正文 1.实验材料与设置装备 本实验是理想状态下的实验,所有数据都通过在电路专用软件Multisim 7中模拟实验测得的;所有实验器材为(均为理想器材) 实验原理: (1). 将单相电源分裂成两相电源的电路结构设计 把电源U1分裂成U1和U2输出电压,如下图所示为RC桥式分相电压原理,可以把输入电压分成两个有效值相等,相位相差90度的两个电压源。 上图中输出电压U1和U2与US之比为

无中线星形联结三相交流调压电路

实验报告 实验项目:无中线星形联结三相交流调压电路专业班级: 姓名:学号: 实验室号:402实验组号: 实验时间:2014.12.27 批阅时间: 指导教师:成绩:

1.熟悉 Matlab 仿真软件和 Simulink 模块库。 2.掌握无中线星形联结三相交流调压电路的工作原理、工作情况和工作波形。 二.实验器材: 计算机、matlab 软件。 三.实验原理: 三相交流调压电路有星形联结和三角形联结等多种方案。其中星形联结又有无中线和有中线两种电路,三角形联结有线路控制、支路控制和中点控制的不同电路。无中线星形联结三相交流调压电路的原理图如图所示。 无中线星形联结三相交流调压电路 uc ub ua Uct ut p1p2 pulse56 Uct ut p1p2 pulse34 Uct ut p1p2 pulse12 Continuous pow ergui g1g2m AI A2VT1,3 g1g2m AI A2 VT1,2 g1g2m AI A2VT1,1 v +-v +-v + -U 输出 U 输入 Rc Rb Ra 6 Multimeter (10*u[1]/180) Fcn 30@

无中线星形联结三相交流调压电路的仿真模型如图所示,该模型实际上由三个单相交流调压电路组成,图中VT12、VT34和VT56分别为双向晶闸管开关模块,pulse12、pulse34和pulse56是相应晶闸管的触发模块。为了观察方便,在触发模块的移相控制输入端接入了一个控制角与移相控制电压 Uct 的变化函数Uct = 10u1/180 式中,u1为控制角(度),由常数模块@设定。 五.实验数据: 1.电阻负载α = 30°无中线星形联结三相交流调压电路的输出电压和波形 2.电阻负载α = 60°无中线星形联结三相交流调压电路的输出电压和波形

技校电工学第五版第三章单相交流电路

第三章单相交流电路 §3-1 交流电的基本概念 一、填空题(将正确答案填写在横线上) 1.正弦交流电流是指电流的大小和方向均按正弦规律变化的电流。 2.交流电的周期是指交流电每重复变化一次所需的时间,用符号T表示,其单位为秒(S);交流电的频率是指交流电1S内变化的次数,用符号f表示,其单位为赫兹(Hz),周期与频率的关系是T=1/f或f=1/T。 3.我国动力和照明用电的标准频率为50Hz,习惯上称为工频,其周期是 0.02s,角频率是314rad/s。 4.正弦交流电的三要素是周期(频率或角频率)、有效值(最大值)和初相位。 5.已知一正弦交流电流i=sin(314t-π/4)A,则该交流电的最大值为1A,有效值为0.707A,频率为50Hz,周期为0.02S,初相位为-π/4。 6.阻值为R的电阻接入2V的直流电路中,其消耗功率为P,如果把阻值为 R/2的电阻接到最大值为2V的交流电路中,它消耗的功率为P。 7.如图3-1所示正弦交流电流,其电流瞬时值表达式是: i=4sin314t(A)。 8.常用的表示正弦量的方法有解析式、波形图和相量图。 9.作相量图时,通常取逆(顺、逆)时针转动的角度为 正,同一相量图中,各正弦量的频率应相同。用相量表示正弦 交流电后,它们的加、减运算可按平行四边形法则进行。 二、判断题(正确的,在括号内画√;错误的,在括号内画×) 1.正弦交流电的三要素是指:有效值、频率和周期。(×) 2.用交流电压表测得交流电压是220V,则此交流电压的最大值是380V。(×) 3.一只额定电压为220V的白炽灯,可以接到最大值为311V的交流电源上。(√) 4.用交流电流表测得交流电的数值是平均值。(×) 三、选择题(将正确答案的序号填写在括号内) 1.交流电的周期越长,说明交流电变化得(B). A.越快B.越慢C.无法判断 *2.某一正弦交流电压的周期为0.Ols,其频率为(C)。 A.60Hz B.50Hz C.100Hz D.80Hz 3.已知一交流电流,当t=O时的值i0=1A,初相位为30°,则这个交流电的有效值为(B)。 A.0.5A B.1.414A C.1A D.2A 4.已知一个正弦交流电压波形如图3-2所示,其瞬时值表达式为(C)。 A.μ=lOsin(ωt-π/2)V B.μ=-lOsin(ωt-π/2)V C.μ

单相交流调功电路正文

1概述 1.1晶闸管交流调功器 交流调功器:是一种以晶闸管为基础,以智能数字控制电路为核心的电源功率控制电器,简称晶闸管调功器,又称可控硅调功器,可控硅调整器,可控硅调压器,晶闸管调整器,晶闸管调压器,电力调整器,电力调压器,功率控制器。具有效率高、无机械噪声和磨损、响应速度快、体积小、重量轻等诸多优点。 1.2 交流调压与调功 交流调功电路的主电路和交流调压电路的形式基本相同,只是控制的方式不同,它不是采用移相控制而采用通断控制方式。交流调压是在交流电源的半个周期内作移相控制,交流调功是以交流电的周期为单位控制晶闸管的通断,即负载与交流电源接通几个周波,再断开几个周波,通过改变接通周波数和断开周波数的比值来调节负载所消耗的平均功率。如图3-21所示,这种电路常用于电炉的温度控制,因为像电炉这样的控制对象,其时间常数往往很大,没有必要对交流电源的各个周期进行频繁的控制。只要大致以周波数为单位控制负载所消耗的平均功率,故称之为交流调功电路。 1.3 过零触发和移相触发 过零触发是在设定时间间隔内,改变晶闸管导通的周波数来实现电压或功率的控制。过零触发的主要缺点是当通断比太小时会出现低频干扰,当电网容量不够大时会出现照明闪烁、电表指针抖动等现象,通常只适用于热惯性较大的电热负载。 移相触发是早期触发可控硅的触发器。它是通过调速电阻值来改变电容的充放电时间再来改变单结晶管的振荡频率,实际改变控制可控硅的触发角。早期可控可是依靠这样改变阻容移相线路来控制。所为移相就是改变可控硅的触发角大小,也叫改变可控硅的初相角。故称移相触发线路。

2系统总体方案 2.1交流调功电路工作原理 单相交流调功电路方框图如图2.1.1所示。 图2.1.1 交流调功电路的主电路和交流调压电路的形式基本相同,只是控制的方式不同,它不是采用移相控制而采用通断控制方式。交流调压是在交流电源的半个周期内作移相控制,交流调功是以交流电的周期为单位控制晶闸管的通断,即负载与交流电源接通几个周波,再断开几个周波,通过改变接通周波数和断开周波数的比值来调节负载所消耗的平均功率。如图2.1.2所示,这种电路常用于电炉的温度控制,因为像电炉这样的控制对象,其时间常数往往很大,没有必要对交流电源的各个周期进行频繁的控制。只要大致以周波数为单位控制负载所消耗的平均功率,故称之为交流调功电路。 图2.1.2 LO AD BCR TLC336A1 A2 g u 脉宽可调矩形波信号发生器

电工电子学实验报告_实验三_三相交流电路.doc

一、实验目的 1.学习三相交流电路中三相负载的连接。 2.了解三相四线制中线的作用。 3.掌握三相电路功率的测量方法。 二、主要仪器设备 1.实验电路板 2.三相交流电源 3.交流电压表或万用表 4.交流电流表 5.功率表 6.单掷刀开关 7.电流插头、插座 三、实验内容 1.三相负载星形联结 按图 3-2 接线,图中每相负载采用三只白炽灯,电源线电压为220V。 图3-2 三相负载星形联结 (1) 测量三相四线制电源的线电压和相电压,记入表3-1( 注意线电压和相电压的关系) 。 U UV/V U VW/V U WU/V U UN/V U VN/V U WN/V 219218 220127 127127 表 3-1 (2)按表 3-2 内容完成各项测量,并观察实验中各白炽灯的亮度。表中对称负载时为每相开亮三 只灯;不对称负载时为 U相开亮一只灯, V 相开亮两只灯, W相开亮三只灯。 测量值相电压相电流中线电流中点电压负载情况U UN’ /V U VN’ /V U WN’ /VI U/AI V/AI W/A I N/A U N’N/V 对称有中线124 124 124 0 负载无中线125 125 123 1 不对称有中线126 125 124

负载 无中线 167 143 78 50 表 3-2 2. 三相负载三角形联结 按图 3-3 连线。测量功率时可用一只功率表借助电流插头和插座实现一表两用, 具体接法见图 3-4 所示。接好实验电路后,按表 3-3 内容完成各项测量,并观察实验中白炽灯的亮度。表中对称负载和不 对称负载的开灯要求与表 3-2 中相同。 图 3-3 三相负载三角形联结 图 3-4 两瓦特表法测功率 测量值 线电流 (A) 相电流 (A) 负载电压 (V) 功率 (W) 负载情况 I U I V I W I UV I VW I WU UV VW WU 1 2 U U U P P 对称负载 213 212 215 -111 -109 不对称负载 220 217 216 表 3-3

双闭环三相异步电机调压调速系统实验报告

“运动控制系统”专题实验 实验报告 电子与信息工程学院自动化科学与技术系

(5)可调电阻(NMCL—03) (6)电机导轨及测速发电机(或光电编码器) (7)三相线绕式异步电动机 (8)双踪示波器 (9)万用表 (10)直流发电机M03 四.实验原理 1.系统组成及原理 双闭环三相异步电动机调压调速系统的主电路为三相晶闸管交流电源及三相绕线式异步电动机(转子回路串电阻)。控制系统由电流调节器(ACR),速度调节器(ASR),电流变换器(FBC),速度变换器(FBS),触发器(GT),一组桥脉冲放大器等组成。其系统原理图如图6-1所示。 图6-1 整个调速系统采用了速度,电流两个反馈控制环。这里的速度环作用基本上与直流调速系统相同而电流环的作用则有所不同。在稳定运行情况下,电流环对电网振动仍有较大的抗扰作用,但在起动过程中电流环仅起限制最大电流的作用,不会出现最佳起动的恒流特性,也不可能是恒转矩起动。 异步电机调压调速系统结构简单,采用双闭环系统时静差率较小,且比较容易实现正,反转,反接和能耗制动。但在恒转矩负载下不能长时间低速运行,因低速运行时转差功率 电子与信息工程学院自动化科学与技术系

电子与信息工程学院自动化科学与技术系

电子与信息工程学院自动化科学与技术系

(2)空载电压为200V时 n/(r/min) 1281 1223 1184 1107 1045 I G/A 0.10 0.11 0.12 0.13 0.13 U G/V 182 179 176 166 157 M/(N·m) 0.2265 0.2458 0.2636 0.2814 0.2831 2.闭环系统静特性 n/(r/min) 1420 1415 1418 1415 1416 1412 电子与信息工程学院自动化科学与技术系

实验3三相交流调压电路实验

实验3 三相交流调压电路实验 一、实验目的 (1) 了解三相交流调压触发电路的工作原理。 (2) 加深理解三相交流调压电路的工作原理。 (3) 了解三相交流调压电路带不同负载时的工作特性。 二、实验所需挂件及附件 三、实验线路及原理 交流调压器应采用宽脉冲或双窄脉冲进行触发。实验装置中使用双窄脉冲。实验线路如图3-1所示。

图中晶闸管均在DJK02上,用其正桥,将D42三相可调电阻接成三相负载,其所用的交流表均在DJK01控制屏的面板上。 四、实验内容 (1)三相交流调压器触发电路的调试。 (2)三相交流调压电路带电阻性负载。 (3)三相交流调压电路带电阻电感性负载(选做)。 图3-1三相交流调压实验线路图 五、预习要求 (1)阅读电力电子技术教材中有关交流调压的内容,掌握三相交流调压的工作原理。 (2)如何使三相可控整流的触发电路用于三相交流调压电路。 六、实验方法 (1)DJK02和DJK02-1上的“触发电路”调试

①打开DJK01总电源开关,操作“电源控制屏”上的“三相电网电压指示”开关,观察输入的三相电网电压是否平衡。 ②将DJK01“电源控制屏”上“调速电源选择开关”拨至“直流调速”侧。 ③用10芯的扁平电缆,将DJK02的“三相同步信号输出”端和DJK02-1“三相同步信号输入”端相连,打开DJK02-1电源开关,拨动“触发脉冲指示”钮子开关,使“窄”的发光管亮。 ④观察A、B、C三相的锯齿波,并调节A、B、C三相锯齿波斜率调节电位器(在各观测孔左侧),使三相锯齿波斜率尽可能一致。 ⑤将DJK06上的“给定”输出U g直接与DJK02-1上的移相控制电压U ct 相接,将给定开关S2拨到接地位置(即U ct=0),调节DJK02-1上的偏移电压电位器,用双踪示波器观察A相同步电压信号和“双脉冲观察孔”VT1的输出波形,使α=180°。 ⑥适当增加给定U g的正电压输出,观测DJK02-1上“脉冲观察孔”的波形,此时应观测到单窄脉冲和双窄脉冲。 ⑦将DJK02-1面板上的U 端接地,用20芯的扁平电缆,将DJK02-1的 lf “正桥触发脉冲输出”端和DJK02“正桥触发脉冲输入”端相连,并将DJK02“正桥触发脉冲”的六个开关拨至“通”,观察正桥VT1~VT6晶闸管门极和阴极之间的触发脉冲是否正常。 (2)三相交流调压器带电阻性负载 使用正桥晶闸管VT1~VT6,按图3-21连成三相交流调压主电路,其触发脉冲己通过内部连线接好,只要将正桥脉冲的6个开关拨至“接通”,“U lf”端接地即可。接上三相平衡电阻负载,接通电源,用示波器观察并记录α=30°、60°、90°、120°、150°时的输出电压波形,并记录相应的输出电压有效值,填入下表:

三相交流电路实验报告-百度文库(精)

三相交流电路实验报告-百度文库(精)

中国石油大学(华东)现代远程教育 实验报告 课程名称:电工电子学 实验名称:三相交流电路 实验形式:在线模拟+现场实践 提交形式:在线提交实验报告 学生姓名:毕义合学号:12952112061 年级专业层次:网络12春高起专 学习中心:建设工程分院函授站 提交时间: 2013 年 6 月 23 日

一、实验目的 1. 练习三相交流电路中负载的星形接法。 2. 了解三相四线制中线的作用。 二、实验原理 1. 对称三相电路中线、相电压和线、相电流的关系,三相电路中,负载的连接分为星形连接和三角形连接两种。一般认为电源提供的是对称三相电压。 (1)星形连接的负载如图1所示: 图1 星形连接的三相电路

A、B、C表示电源端,N为电源的中性点(简称中点),N' 为负载的中性点。无论是三线制或四线制,流过每一相负载的相电流恒等于与之相连的端线中的线电流: (下标I表示线的变量,下标p表示相的变量) 在四线制情况下,中线电流等于三个线电流 的相量之和,即 端线之间的电位差(即线电压)和每一相负载的相电压之间有下列关系: 当三相电路对称时,线、相电压和线、相电流都对称,中线电流等于零,而线、相电压满足: (2)三角形连接的负载如图2所示:

其特点是相电压等于线电压: 线电流和相电流之间的关系如下: 当三相电路对称时,线、相电压和线、相电 流都对称,此时线、相电流满足: 2.不对称三相电路 在三相三线制星形连接的电路中,若负载不对称,电源中点和负载中点的电位不再相等,称

为中点位移,此时负载端各相电压将不对称,电流和线电压也不对称。 在三相四线制星形连接的电路中,如果中线的阻抗足够小,那么负载端各相电压基本对称,线电压也基本对称,从而可看出中线在负载不对称时起到了很重要的作用。但由于负载不对称,因此电流是不对称的三相电流,这时的中线电流将不再为零。 在三角形连接的电路中,如果负载不对称,负载的线、相电压仍然对称,但线、相电流不再对称。 如果三相电路其中一相或两相开路也属于不对称情况。 3.三相负载接线原则 连接后加在每相负载上的电压应等于其额定

电工学课件(哈工大)第三章_正弦交流电路资料

哈尔滨工业大学 电工学教研室 第3章正弦交流电路 返回

3.1 正弦电压与电流3.3 电阻元件、电感元件与电容元件3.4 电阻元件的交流电路3.5 电感元件的交流电路3.6 电容元件的交流电路 3.7 电阻、电感与电容元件的交流电路3.8 阻抗的串联与并联3.9 交流电路的频率特性3.10 功率因数的提高 目录 3.2 正弦量的相量表示法

3.1 正弦电压与电流 直流电和正弦交流电 前面两章分析的是直流电路,其中的电压和电流的大小 和方向是不随时间变化的。 I,U O t 直流电压和电流 返回

t i u O 正弦电压和电流 实际方向和参考方向一致 实际方向和参考方向相反 + - 正半周 实际方向和参考方向一致 + _ u R ⊕ i 负半周 实际方向和参考方向相反 + _ u R ⊕ i 正弦交流电的电压和电流是按照正弦规律周期性变化的。

3.1.1 频率和周期 正弦量变化一次所需要的时间(秒)称为周期(T )。每秒内变化的次数称为频率(),单位是赫兹(Hz )。 我国和大多数国家采用50Hz 的电力标准,有些国家(美国、日本等)采用60Hz 。 小常识 正弦量变化的快慢还可用角频率来表示:f T ππω22==t T 2 T 2 3T t ωπ π 2π3π 4T 2u i O f 频率是周期的倒数: f =1/T 已知=50Hz,求T 和ω。 [解]T =1/=1/50=0.02s, ω=2π=2×3.14×50=314rad/s f f f 例题3.1

3.1.2 幅值和有效值 瞬时值和幅值 正弦量在任一瞬间的值称为瞬时值,用小写字母表示,如、u、e等。 i 瞬时值中的最大的值称为幅值或最大值,用带下标m的大写字母表示,如I U m、E m等。 m、 有效值 在工程应用中常用有效值表示交流电的幅度。一般所讲的正 弦交流电的大小,如交流电压380V或220V,指的都是有效值。 有效值是用电流的热效应来规定的。设一交流电流和一直流 电流I 流过相同的电阻R,如果在交流电的一个周期内交流电和直 流电产生的热量相等,则交流电流的有效值就等于这个直流电的 电流I。

7单相交流调压电路实验报告

实验报告 课程名称:现代电力电子技术 实验项目:单相交流调压电路实验 实验时间: 实验班级: 总份数: 指导教师:朱鹰屏 自动化学院电力电子实验室 二〇〇年月日

广东技术师范学院实验报告 学院:自动化学院专业:电气工程及其自 动化 班级:成绩: 姓名:学号:组别:组员: 实验地点:电力电子实验室实验日期:指导教师签名: 实验(七)项目名称:单相交流调压电路实验 1.实验目的和要求 (1)加深理解单相交流调压电路的工作原理。 (2)加深理解单相交流调压电路带电感性负载对脉冲及移相范围的要求。 (3)了解KC05晶闸管移相触发器的原理和应用。 2.实验原理 三、实验线路及原理 本实验采用KCO5晶闸管集成移相触发器。该触发器适用于双向晶闸管或两个反向并联晶闸管电路的交流相位控制,具有锯齿波线性好、移相范围宽、控制方式简单、易于集中控制、有失交保护、输出电流大等优点。 单相晶闸管交流调压器的主电路由两个反向并联的晶闸管组成,如图3-15所示。 图中电阻R用D42三相可调电阻,将两个900Ω接成并联接法,晶闸管则利用DJK02上的反桥元件,交流电压、电流表由DJK01控制屏上得到,电抗器L d从DJK02上得到,用700mH。 图 3-15 单相交流调压主电路原理图

3.主要仪器设备 1.电路调试

主电路放大电路: (1)KC05集成移相触发电路的调试。 (2)单相交流调压电路带电阻性负载。 (3)单相交流调压电路带电阻电感性负载。 (l)KCO5集成晶闸管移相触发电路调试 将DJK01电源控制屏的电源选择开关打到“直流调速”侧使输出线电压为200V,用两根 导线将200V交流电压接到DJK03的“外接220V”端,按下“启动”按钮,打开DJK03电源开关,

电工学 三相交流电路习题及参考答案

三相交流电路 习题参考答案 3-1一台三相交流电动机,定子绕组星形连接于U L =380V 的对称三相电源上,其线电流I L =2.2A ,cos φ=0.8,试求每相绕组的阻抗Z 。 解:先由题意画出电路图(如下图),以帮助我们思考。 因三相交流电动机是对称负载,因此可选一相进行计算。三相负载作星接时 p l U U 3= 由于U l =380(V),I L =2.2(A) 则 U P =220(V), I p =2.2(A), 1002 .2220 == = p p U U Z (Ω) 由阻抗三角形得 808.0100=?==?COS Z R (Ω) 60801002222 =-=-= R Z X L (Ω) 所以 Z=80+j60(Ω) 3-2已知对称三相交流电路,每相负载的电阻为R=8Ω,感抗为X L =6Ω。 (1)设电源电压为U L =380V ,求负载星形连接时的相电流、相电压和线电流,并画相量图; (2)设电源电压为U L =220V ,求负载三角形连接时的相电流、相电压和线电流,并画相量图;

(3)设电源电压为U L =380V ,求负载三角形连接时的相电流、相电压和线电流,并画相量图。 解:由题意: (1)负载作星接时 p l U U 3= 因380=l U V ,则 2203 380== ==c b a U U U (V ) 设?=0/220a U (V ) 因相电流即线电流,其大小为: ?-=+? = 9.36/226 80/220. j I A (A) 9.156/22.-=B I (A) ?=1.83/22. C I (A) 此时的相量图略。 (2)负载作三角形连接时 p l U U = 因220=l U V ,则 220===ca bc ab U U U (V ) 设?=0/220ab U 则相电流 ?-=+? == 9.36/226 80/220. . j Z U I ab ab (A ) ?-=9.156/22.bc I (A )

基于multisim的晶闸管交流电路仿真实验分析报告

基于multisim的晶闸管交流电路仿真实验报告

————————————————————————————————作者:————————————————————————————————日期:

自动化(院、系)自动化专业112 班组电力电子技术课 学号21 姓名易伟雄实验日期2013.11.24 教师评定 实验一、基于Multisim的晶闸管交流电路仿真实验 一、实验目的 (1)加深理解单相桥式半控整流电路的工作原理。 (2)了解晶闸管的导通条件和脉冲信号的参数设置。 二、实验内容 2.1理论分析 在单相桥式半控整流阻感负载电路中,假设负载中电感很大,且电路已工作于稳态。在u2正半周,触发角α处给晶闸管VT1加触发脉冲,u2经VT1和VD4向负载供电。u2过零变负时,因电感作用使电流连续,VT1继续导通。但因a点电位低于b点电位,使得电流从VD4转移至VD2,VD4关断,电流不再流经变压器二次绕组,而是由VT1和VD2续流。此阶段,忽略器件的通态压降,则ud=0,不会像全控桥电路那样出现ud为负的情况。 在u2负半周触发角α时刻触发VT3,VT3导通,则向VT1加反压使之关断,u2经VT3和VD2向负载供电。u2过零变正时,VD4导通,VD2关断。VT3和VD4续流,ud又为零。此后重复以上过程。 2.2仿真设计

(院、系)专业班组课学号姓名实验日期教师评定 触发脉冲的参数设计如下图

(院、系)专业班组课学号姓名实验日期教师评定 2.3仿真结果 当开关S1打开时,仿真结果如下图

(院、系)专业班组课学号姓名实验日期教师评定 三、实验小结与改进 此次实验在进行得过程中遇到了很多的问题,例如:触发脉冲参数的设置,元器件的选择等其中。还有一个问题一直困扰着我,那就是为什么仿真老是报错。后来,通过不断在实验中的调试发现,这是因为一些元器件的参数设置过小,导致调试出错。总的来说,这次实验发现了很多问题,但在反复的调试下,最后我还是完成了实验。同时,也让我认识到实践比理论更难掌握。通过不断的发现问题,然后逐一解决问题,最后得出自己的结论,我想实验的乐趣就在于此吧。 而对于当开关S1打开时的实验结果,这是因为出现了失控现象。我从书中发现:当一个晶闸管持续导通而二极管轮流导通的情况,这使ud成为正弦半波,即半周期ud 为正弦,另外半周期ud为零,其平均值保持恒定,相当于单相半波不可控整流电路时的波形 另外,在实验过程中,我们如果进行一些改进:电路在实际应用中可以加设续流二极管,以避免可能发生的失控现象。实际运行中,若无续流二极管,则当α突然增大至180度或触发脉冲丢失时,会发生一个晶闸管持续导通而二极管轮流导通的情况,这使ud成为正弦半,即半周期ud为正弦,另外半周期ud为零,其平均值保持恒定,相当于单相半波不可控整流电路时的波形。有二极管时,续流过程由二极管完成,在续流阶段晶闸管关断,这就避免了某一个晶闸管持续导通从而导致失控的想象。同时续流期间导电回路中只有一个管压降,少了一个管压降,有利于降低损耗。

实验三 单相交流调压电路实验

北京信息科技大学 电力电子技术实验报告 实验项目:单相交流调压电路实验 学院:自动化 专业:自动化(信息与控制系统) 姓名/学号:贾鑫玉/2012010541 班级:自控1205班 指导老师:白雪峰 学期:2014-2015学年第一学期

实验三单相交流调压电路实验 一.实验目的 1.加深理解单相交流调压电路的工作原理。 2.加深理解交流调压感性负载时对移相范围要求。 二.实验内容 1.单相交流调压器带电阻性负载。 2.单相交流调压器带电阻—电感性负载。 三.实验线路及原理 本实验采用了锯齿波移相触发器。该触发器适用于双向晶闸管或两只反并联晶闸管电路的交流相位控制,具有控制方式简单的优点。 晶闸管交流调压器的主电路由两只反向晶闸管组成。 四.实验设备及仪器 1.教学实验台主控制屏 2.NMCL—33组件 3.NMEL—03组件 4.NMCL-05(A)组件或NMCL—36组件 5.二踪示波器 6.万用表 五.注意事项 在电阻电感负载时,当α

交流谐振电路(电脑仿真)实验报告模板

实验时间:2019年月日,第批 签到序号:【进入实验室后填写】 福州大学 【实验八】交流谐振电路 (信息技术实验中心209实验室) 学院 班级 学号 姓名 实验前必须完成【实验预习部分】 登录下载预习资料 携带学生证提前10分钟进实验室

实验预习部分【实验目的】 【实验仪器】(名称) 【实验原理】(文字叙述、主要公式、原理图)

实验预习部分【实验内容和步骤】

实验预习部分 【1】写出示波器以下功能对应的标号 电源开关:,聚焦:,辉度:, 垂直方式开关:,水平位移:,垂直位移:与,【2】示波器校准信号为峰峰值4 V、1 KHz的方波,校准时垂直偏转灵敏度(衰减器开关10/15)应设定为V/DIV,并调节垂直微调旋钮(14/19)让波形垂直方向占大格,扫描时间因数(20)选择ms/DIV,并调节扫描微调(24)让一个波形周期水平方向占大格。 【3】R LC串联谐振电路,当信号源频率与谐振频率相同时,电流与信号源电压位相差;当信号源频率小于谐振频率时,电流位相于信号源电压位相,整个电路呈性;当信号源频率大于谐振频率时,电流位相于信号源电压位相,整个电路呈性。 【4】用示波器器观察和两波形,调节信号源频率,当示波器上显示的两列波时信号源频率为RLC串联电路谐振频率(注2)。 注1:示波器仪器介绍中校准信号为峰峰值2 V,但是仿真实验中是作为峰峰值4 V来校准。 注2:当示波器同时显示两路波形时,按“X-Y”按键(30)两次后两波形按照相同时序显示。

数据记录与处理 观测RLC串联谐振电路的特性 信号源峰峰值:; 电阻取值:,电感取值:,电容取值:; 谐振频率计算值:,品质因数计算值:。 谐振频率测量值 f:。

三相交流电路-电工电子学实验报告

实验报告 课程名称:电工电子学指导老师:张伯尧成绩:___ _实验名称:三相交流电路 一、实验目的和要求二、实验设备 三、实验内容四、实验结果 五、心得 一、实验目的 一、实验目的 1.学习三相交流电路中三相负载的连接。 2.了解三相四线制中线的作用。 3. 掌握三相电路功率的测量方法。 二、主要仪器设备 1. 实验电路板 2. 三相交流电源(220V) 3. 交流电压表或万用表 4. 交流电流表 5. 功率表 6. 单掷刀开关 7. 电流插头、插座 三、实验内容 1. 三相负载星形联结 按图1接线,图中每相负载采用三只白炽灯,电源线电压为220V。 图1

1) 测量三相四线制电源各电压(注意线电压和相电压的关系)。 U UV/V U VN/V U WU/V U UN/V U VN/V U WN/V 217.0218.0217.0127.0127.0127.3 2)按表2内容完成各项测量,并观察实验中各电灯的亮度。表中对称负载时为每相开亮三 只灯;不对称负载时为U相开亮1只灯,V相开亮2只灯,W相开亮3只灯。 测量值 负载情况相电压相电流中线电 流 中点电 压 U UN’/V U VN’/ V U WN’/ V I U/A I V/A I W/A I N/A U N’N/V 对称负载有中线1241241240.2630.2630.26500无中线126.1126.8126.50.2630.2630.2660 1.1 不对称负载有中线1241251240.0920.1760.2660.1560无中线168144770.1050.1880.216051.9 2. 三相负载三角形联结 按图2接线。测量功率时可用一只功率表借助电流插头和插座实现一表两用,具体接法见图3所示。接好实验电路后,按表3内容完成各项测量,并观察实验中电灯的亮度。 表3中对称负载和不对称负载的开灯要求与表2中相同。 三相负载三角形联结记录数据

相关文档
最新文档