全息照片及其原理

全息照片及其原理
全息照片及其原理

全息照片及其原理

摘要本文描述了笔者所见到的一张全息照片的特点,并利用全息照相的基本原理和白光再现全息的原理对所观察到的部分现象进行一些简单的解释。

关键词全息照相白光再现全息

从1948年伽柏首次提出全息照相的思想,到1971年伽柏因全息技术获得诺贝尔物理学奖,再到如今的白光记录全息技术,短短六十年,全息技术被广泛运用到工业、医学、生物、军事等多个领域,并体现出其强大的优势。

一、现象描述

笔者曾在大学期间进入到学校的演示实验室,并在那里见到了一张全息照片,并观察到若干现象:

1.全息照片长约50cm,宽约30cm,厚约4cm。除了照片外,没有

其他任何辅助装置。

2.全息照片内容为三件青铜器,包括背景,物体在内,整张照片均

为青绿色。

3.全息照片具有极强的立体感,层次感,可以从各个角度观察照片

中物体的各面。

二、原理解释

1.全息照相基本原理

物体发出的光包含光的振幅和光的相位两方面的信息并可以用复

数形式表示

),(),(),(y x i e y x a y x A ψ=

并且光用复数表示后满足复数的运算规则。

在普通摄影中,相片只是记录了景物反射光的强弱,即振幅信息。如果能在拍摄过程中,同时记录下光的振幅和相位信息,就能记录下立体信息,这就是的全息摄影思想。但由于所有的记录介质只能对光强有响应,所以应将光的相位信息转化为光强信息记录下来。常用的方法是干涉法。

拍摄原理如图一所示。

激光器发射出的

光被分束器分成两

部分。其中一部分

照射到物体上,通

过物体的漫反射反

射到感光胶片上,

称为物光;另一部

分则直接照射到感光胶片上,称为参照光。二者发生干涉,记录下光的信息。

设物光为),(),(),(y x i o e y x o y x O ψ=,类似的那么参照光则为

),(),(),(y x i r e y x r y x R ψ=,二者在胶片上干涉有

),(),(),(y x R y x O y x A +=

则光强为

经查阅资料,全息底片经过冲洗后,全息图上各点振幅透过率与入射光强度有如下关系

),(),(0y x kI T y x T +=

其中为),(y x I 振幅透过率,),(y x T 为入射光强。

再现物体的像的时候,用和参照光一样的再现光照射全息图,则有 )

,(),(),(),()],(),([),(),(),(2220y x P y x O y x kr y x R y x kr y x ko T y x R y x T y x M ++++=?= 通过利思的离轴全息,即可将这三部分分离开。其中第二部分正比于原物光,与原物光具有相同的振幅分布和相位分布。与正常相片仅仅记录光强信息不同,全息图的再现发出的是正比于物光的光,包括振幅和相位,因而再现时能显示出光全部的信息,具有极强的立体感,可以从各个方向进行观察。

2.白光再现全息原理

事实上,笔者所见的全息图仅有4cm 厚,并未发现全息再现时发射参考光的装置,仅仅是在白光下直接观察。

上述讨论仅仅是考虑到参考光与物光干涉形成的二维干涉条纹。经查阅资料,“由于乳胶胶片具有一定厚度,但是它是透明的,故在其内部也存在着物光与参考光的相互干涉,干涉条纹也被记录下来,经过处理后得到三维全息图,相当于三维衍射光栅。”“与晶格类似,可以用白光再现。”

如果单色光制成的全息图,当用白光照射时,与X 光在晶格中衍射)cos(),(),(2),(),()

,(),(),(22*r o y x r y x o y x r y x o y x A y x A y x I ψψ-++=?=

一样,如果入射光的入射角θ和波长λ满足布拉格方程

θ=

λ

2d

sin

那么存在干涉极大,从而可以得到原物的虚像。

所以说,这种三维光栅衍射对波长具有选择性,可以代替原来的参照光作为再现光,从而可以通过白光照射直接全息再现,即通过白光还原影像。

以上是反射全息原理,说明可以通过白光照射取代激光器照射,从而可以直接观察相片,无需其他装置;并且正是由于其对波长的选择性,使观察到的虚像为同一波长,同一颜色。

并且,经查阅,当用波长为632.8nm激光(He-Ne激光器)制作全息片,由于乳胶收缩等一系列原因,白光再现时,实际观察到的像并非红色,而是青绿色的。

三、结论

1.由于全息图记录下了光的振幅和相位信息,再现时发出正比于原

物光的光,因而具有极强的立体感,形象逼真,并可以从各个角度观察。

2.通过反射全息原理制作的全息图全息再现时可用白光代替参考

光,所以可以直接观察,十分方便。

3.由于三维光栅衍射对于光具有选择性,所以观察到相片为一种颜

色,比如笔者所见到的青绿色。

四、结束语

全息照相不仅可以拍摄出效果极佳的相片,还可以用于信息的大容量存储,产品的防伪与检测等多个方面,并发挥着巨大的作用。随着科学技术的发展,相信在不久的将来,每个人都能拥有一张自己的全息照片。

参考文献

[1] 王家慧,张连娣等.大学物理实验教程.2009

[2] 吕广娟,张孝林,段新超.白光再现全息照相.大学物理实验.20O6

[3] 杨帆.激光全息照相技术及其应用前景.中州大学学报.2008

[4] 朱家健.浅谈全息术及其应用.中国科技信息.2008

[5] 杨晓梅.激光全息照相实验中相关问题的讨论.大学物理实

验.2008

全息照相实验报告 程子豪 2010035012 少年班01 一、实验目的: 1.了解全息照相记录和再现的基本原理和主要特点; 2.学习全息照相的操作技术; 3.观察和分析全息图的成像特性。 二、实验原理: 2.1全息照相原理的文字表述: 普通照相底片上所记录的图像只反映了物体上各点发光(辐射光或反射光)的强弱变化,显示的只是物体的二维平面像,丧失了物体的三维特征。全息照相则不同,它是借助于相干的参考光束和物光束相互干涉来记录物光振幅和相位的全部信息。这样的照相把物光束的振幅和相位两种信息全部记录下来,因而称为全息照相。 全息照相的基本原理早在1948年就由伽伯(D. Gabor)发现,但是由于受光源的限制(全息照相要求光源有很好的时间相干性和空间相干性),在激光出现以前,对全息技术的研究进展缓慢,在60年代激光出现以后,全息技术得到了迅速的发展。目前,全息技术在干涉计量、信息存储、光学滤波以及光学模拟计算等方面得到了越来越广泛的应用。伽伯也因此而获得了1971年度的诺贝尔物理学奖。 全息照相在记录物光的相位和强度分布时,利用了光的干涉。从光的干涉原理可知:当两束相干光波相遇,发生干涉叠加时,其合强度不仅依赖于每一束光各自的强度,同时也依赖于这两束光波之间的相位差。在全息照相中就是引进了一束与物光相干的参考光,使这两束光在感光底片处发生干涉叠加,感光底片将与物光有关的振幅和位相分别以干涉条纹的反差和条纹的间隔形式记录下来,经过适当的处理,便得到一张全息照片。 具体来说,全息照相包括以下两个过程: 1、波前的全息记录 利用干涉的方法记录物体散射的光波在某一个波前平面上的复振幅分布,这就是波前的全息记录。通过干涉方法能够把物体光波在某波前的位相分布转换成光强分布,从而被照相底片记录下来,因为我们知道,两个干涉光波的振幅比和位相差决定着干涉条纹的强度分布,所以在干涉条纹中就包含了物光波的振幅和位相信息。典型的全息记录过程是这样的:从激光器发出的相干光波被分束镜分成两束,一束经反射、扩束后照在被摄物体上,经物体的反射或透射的光再射到感光底片上,这束光称为物光波;另一束经反射、扩束后直接照射在感光底片上,这束光称为参考光波。由于这两束光是相干的,所以在感光底片上就形成并记录了明暗相间的干涉条纹。干涉条纹的形状和疏密反映了物光的位相分布的情况,而条纹明暗的反差反映了物光的振幅,感光底片上将物光的信息都记录下来了,经过显影、定影处理后,便形成与光栅相似结构的全息图—全息照片。所以全息图不是别的,正是参考光波和物光波干涉图样的记录。显然,全息照片本身和原来物体没有任何相似之处。 2、衍射再现 物光波前的再现利用了光波的衍射。用一束参考光(在大多数情况下是与记录全息图时用的参考光波完全相同)照射在全息图上,就好像在一块复杂光栅上发生衍射,在衍射光波中将包含有原来的物光波,因此当观察者迎着物光波方向观察时,便可看到物体的再现像。这是一个虚像,它具有原始物体的一切特征。此外还有一个实像,称为共轭像。应该指出,共轭波所形成的实像的三维结构与原物并不完全相似。

物理与光电工程学院 光电信息技术实验报告 姓名:张皓景 学号:20111359069 班级:光信息科学与技术专业2011级2班实验名称:全息照相实验 任课教师:裴世鑫

一、实验目的 1.了解光学全息照相的基本原理及其主要特点。 2.学习全息照相的拍摄方法和实验技术。 3.了解全息照相再现物像的性质、观察方法。 二、实验仪器 三、实验装置示意图 5底片 图1 全息照相光路 四、实验原理 全息照相是一种二步成像的照相技术。第一步采用相干光照明,利用干涉原理,把物体

在感光材料(全息干版)处的光波波前纪录下来,称为全息图。第二步利用衍射原理,按一定条件用光照射全息图,原先被纪录的物体光波的波前,就会重新激活出来在全息图后继续传播,就像原物仍在原位发出的一样。需要注意的是我们看到的“物”并不是实际物体,而是与原物完全相同的一个三维像。 1.全息照相的纪录——光的干涉 由光的波动理论知道,光波是电磁波。一列单色波可表示为: 2cos(t )r x A πω?λ =+- (1) 式中,A 为振幅,ω 为圆频率,λ 为波长,φ 为波源的初相位。 一个实际物体发射或反射的光波比较复杂,但是一般可以看成是由许多不同频率的单色光波的叠加: 1 2cos(t )n i i i i i r x A πω?λ==+- ∑ (2) 因此,任何一定频率的光波都包含着振幅(A )和位相(ωt+φ-2πr/λ)两大信息。 全息照相的一种实验装置的光路如图(1)所示。激光器射出的激光束通过分光板分成两束,一束经透镜扩束后照射到被摄物体上,再经物体表面反射(或透射)后照射到感光底片(全息干版)上,这部分光叫物光。另一束经反射镜改变光路,再由透镜扩大后直接投射到全息干版上,这部分光称为参考光。由于激光是相干光,物光和参考光在全息底片上叠加,形成干涉条纹。因为从被摄物体上各点反射出来的物光,在振幅上和相位上都不相同,所以底片上各处的干涉条纹也不相同。强度不同使条纹明暗程度不同,相位不同使条纹的密度、形状不同。因此,被摄物体反射光中的全部信息都以不同明暗程度和不同疏密分布的干涉条纹形式记录下来,经显影、定影等处理后,就得到一张全息照片。这种全息照片和普通照片截然不同,一般在全息照片上只有通过高倍显微镜才能看到明暗程度不同、疏密程度不同的干涉条纹。由于干涉条纹密度很高,所以要求记录介质有较高的分辨率,通常达1000 条线/毫米以上,故不能用普通照相底片拍摄全息图。 2.全息照相的再现——光的衍射 由于全息照相在感光板上纪录的不是被摄物的直接形象,而是复杂的干涉条纹,因此全息照片实际上相当于一个衍射光栅,物象再现的过程实际是光的衍射现象。要看到被摄物体的像,必须用一束同参考光的波长和传播方向完全相同的光束照射全息照片,这束光叫再现光。这样在原先拍摄时放置物体的方向上就能看到与原物形象完全一样的立体虚像。如图2 所示把拍摄好的全息底片放回原光路中,用参考光波照射全息片时,经过底片衍射后有三部分光波射出。 0 级衍射光——它是入射再现光波的衰减。 +1 级衍射光——它是发散光,将形成一个虚像。如果此光波被观察者的眼睛接收,就等于接收了原被摄物发出的光波,因而能看到原物体的再现像。

1引言 我们看到的世界是三维的、彩色的,这是因为每个物体发射的光被人眼接受时,光的强弱、射向和距离、颜色都不同。从波动光学的观点看,是由于各物体发射的特定的光波不同,光的特征主要取决于光波的振幅、相位、和波长。如果能看到景物光波的完全特征,就能看到景物逼真的三维像,这就是全息术。全息术诞生到现在60年来取得了很大的进展,已经被广泛应用于近代科学研究和工业生产中。 1948年,丹尼斯·盖伯提出一种记录光波振幅和相位的方法,随后用实验验证了这一想法,即全息术,并制成世界上第一张全息图。全息术在刚开始的十多年中进展缓慢,直到激光的出现使得全息术获得巨大进展。总结全息照相的发展,可以分为四个阶段:第一阶段是用水银灯记录同轴全息图,这时是全息照相的萌芽时期,主要原因是没有好的相干光源,再现像和共轭像不能分离;第二阶段是用激光记录、激光再现的全息照相,能够把原始像和共轭像分离;第三阶段是激光记录、白光再现的全息照相,主要有反射全息、象全息、彩虹全息及合全息;第四阶段是当前所致力的方向,就是白光记录全息图。[1]

2 全息照相的原理 全息照相是一种二步成像的照相技术,它利用物光和参考光在感光胶片上进行干涉叠加形成全息照片,在运用衍射原理使之再现,因此全息照相的过程包括全息记录和全息再现两个过程。 2.1 全息记录 2-1图 全息记录 如图1所示,激光器射出的激光束通过分束镜分成两束,一束光经扩束镜扩束后直接投摄到感光底片上,这束光称为参考光,另一束光经反射镜反射及扩束镜扩束后射到被摄物体上,在经过物体反射到感光板上,这束光称为物光。两束光将在感光板上产生干涉,形成干涉条纹。设 物光波:()()()1,00,=A ,i x y U x y x y e ?-?% 参考光波:()()()2,,=A ,i x y R R U x y x y e ?-?% 式中012,,,R A A ??分别为物光波参考光波的振幅和初相位。当两束光波发生干涉,其合成光波为:

实验32 激光全息照相 【实验目的】 1、学习全息照相的基本原理和方法。 2、了解全息照相的主要特点。 3、学习观察全息照片的方法。 【实验装置】 全息照相的整套装置(PHYWE),如图1所示: 【全息照相的特点】 全息照相与普通照相无论在原理上还是方法上都有本质上的差别。普通照相是以几何光学的折射定律为基础,利用透镜把物体成像在平面上,记录各点的光强或振幅分布,物象之间各点一一对应,但却是二维平面像上的点与三维物体各点之间的对应,因此并不完全逼真,即使一般所谓的“立体照相”也多是利用双目视差的错觉,而不是物体的真正三维图象。而全息照相是以光的干涉、衍射等物理光学的规律为基础,借助于参考光波记录物光波的振幅与位相的全部信息, 在记录介质(如感光干版)上得到的不是物体的像,而只有在高倍显微镜下才能观察得到的细密干涉条纹,称之为全息图。(在感光版上看见的同心环,斑纹之类不是原来物体的真正信号,而是由给出参考光的发射镜上的灰尘微粒及其它散射物引起的。)条纹的明暗程度和图样反映了物光波的振幅与位相分布,好象是一个复杂的衍射光栅,只有经过适当的再照明才能重建原来的物光波。 与普通照片相比,全息照片还具有如下几个特点: 1)全息照片在适当的照明下重建物光波与原来的物光波具有相同的深度和视差。改变观察的位置,就可以看到景物被遮拦的物体,观察近距离的物体,眼睛必须重新调焦。 2)把全息照片分成小块,其中每一小块都可以再现整个图象。因为照片上每一点都受到参考光和被摄物体所有部分的光的作用,所以这些点就用编码的形式包含了整个图象的信息。但是当小块逐渐减小时,分辨率逐渐变差。这是因为分辨率是成像系统孔径的函数。 3)全息照片可以用接触法复制,但无正负片之分,不论是原来的还是复制的都再现被摄物体的正像。而且无论照明乳剂的反差特性如何,再现影象的反差同原物体的反差都非常接近。 4)全息照片绕垂直轴线转,引起一个倒转的像,让全息照片绕一水平轴线旋转,也产

全息照相实验报告 【实验目的】 1.了解全息照相的基本原理。 2.掌握全息照相以及底片的冲洗方法。 3.观察物象再现。 【实验仪器】 防震光学平台、氦氖激光器、高频滤波器)、扩束透镜(两个)、分束器、反射镜(两个)、全息Ⅰ型干版、显影液和定影液及暗房设备。 【实验原理】 全息照相与普通照相无论是在远离上还是在方发生都有本质的区别。普通照相是用几何光学的方法记录物体上各点的发光强度分部,得到的是二维平面像,像上各点的照度与物体上的各点发光强度一一对应。而全息照相的记录对象是整个物体发出的光波(即物体上各点发出的光波的叠加),借助于参考光用干涉的方法记录这个物光波的振幅和位相(周相)分布,即记录下物光波与参考光波相干后的全部信息。此时,记录信息底片上得到的不是物体的像,而是细密的干涉条纹,就好像一个复杂无比的衍射光栅,必须经过适当的再照明,才能重建原来的无广播,从而再现物体的三维立体像。由于底片上任何一小部分都包含整个物体的信息,因此,只利用拍摄的全息底片的一小部分也能再现整个物像。 1.全息记录 全息照相的光路图如下图所示:

感光底板 用激光光源照射物体,物体因漫反射发出物光波。波场上没一点的振幅和相位都是空间坐标的函数。我们用O表示物光波没一点的复振幅与相位。用同一激光管员经分光板分出的另一部分光直接照射到地板上,这个光波称为参考光波,它的振幅和相位也是空间坐标的函数,其复振幅和位相用R表示,草考光通常为平面或球面波。这样在记录信息的底板上的总光场是物光与参考光的叠加。叠加后的复振幅为O+R,如图从而底板上各点的发光强度分布为 I(OR)(O*R*)OO*RR*OR*O*RIOIROR*O*R (式1) 式子中,O*与R*分别是O和R的共轭量;I。,IR分别为物光波和参考光波独立照射底版时的放光强度。 2.物相再现 3.底板经过曝光冲洗后,形成各处透光率不同的全息照片,它相当于一个复杂的光栅。一般来说,光透过这样的全息照片时,振幅以及位相都要发生变化。如果令 t=透过光的复振幅/入射光的复振幅(式2) 则复振幅透过率t一般为复数。但对于平面吸收型全息照片t为实数。如果曝光及冲洗合适,可使得 tt0KI (式3)

全息照相实验报告 全息照相实验报告 【实验目的】 1.了解全息照相的基本原理。 2.掌握全息照相以及底片的冲洗方法。 3.观察物象再现。 【实验仪器】 防震光学平台、氦氖激光器、高频滤波器)、扩束透镜(两个)、分束器、反射镜(两个)、全息Ⅰ型干版、显影液和定影液及暗房设备。 【实验原理】 全息照相与普通照相无论是在远离上还是在方发生都有本质的区别。普通照相是用几何光学的方法记录物体上各点的发光强度分部,得到的是二维平面像,像上各点的照度与物体上的各点发光强度一一对应。而全息照相的记录对象是整个物体发出的光波(即物体上各点发出的光波的叠加),借助于参考光用干涉的方法记录这个物光波的振幅和位相(周相)分布,即记录下物光波与参考光波相干后的全部信息。此时,记录信息底片上得到的不是物体的像,而是细密的干涉条纹,就好像一个复杂无比的衍射光栅,必须经过适当的再照明,才能重建原来的无广播,从而再现物体的三维立体像。由于底片上任何一小部分都包含整个物体的信息,因此,只利用拍摄的全息底片的一小部分也能再现整个物像。 1.全息记录 全息照相的光路图如下图所示: 感光底板 用激光光源照射物体,物体因漫反射发出物光波。波场上没一点的振幅和相位都是空间坐标的函数。我们用O表示物光波没一点的复振幅与相位。用同一激光管员经分光板分出的另一部分光直接照射到地板上,这个光波称为参考光波,它的振幅和相位也是空间坐标的函数,其复振幅和位相用R表示,草考光通常为平面或球面波。这样在记录信息的底板上的总光场是物光与参考光的叠加。叠加后的复振幅为O+R,如图从而底板上各点的发光强度分布为 I(O R)(O*R*)OO*RR*OR*O*R IO IR OR*O*R (式1) 式子中,O*与R*分别是O和R的共轭量;I。,IR分别为物光波和参考光波独立照射底版时的放光强度。 2.物相再现 3.底板经过曝光冲洗后,形成各处透光率不同的全息照片,它相当于一个复杂的光栅。一般来说,光透过这样的全息照片时,振幅以及位相都要发生变化。如果令 t=透过光的复振幅/入射光的复振幅(式2) 则复振幅透过率t一般为复数。但对于平面吸收型全息照片t为实数。如果曝光及冲洗合适,可使得 t t0KI (式3) 物象再现是用光照射已经摄制好的全息照片并观察透过光。这个过程称为波

光学全息照相实验报告

实验II 光学全息照相 光学全息照相是利用光波的干涉现象,以干涉条纹的形式,把被摄物表面光波的振幅和位相信息记录下来,它是记录光波全部信息的一种有效手段。这种物理思想早在1948年伽柏(D.Gabor)即就已提出来了,但直到1960年,随着激光器的出现,获得了单色性和相干性极好的光源时,才使光学全息照相技术的研究和应用得到迅速地发展。光学全息照相在精密计量、无损检测、遥感测控、信息存储和处理、生物医学等方面的应用日益广泛,另外还相应出现了微波全息,X光全息和超声全息等新技术,全息技术已发展成为科学技术上的一个新领域。 本实验通过对三维物体进行全息照相并再现其立体图像,了解全息照相的基本原理及特点,学习拍摄方法和操作技术,为进一步学习和开拓应用这一技术奠定基础。 实验目的

了解光学全息照相的基本原理和主要特点; 学习静态光学全息照相的实验技术; 观察和分析全息全图的成像特性。 仪器用具 全息台、He —Ne 激光器及电源、分束镜、全反射镜、扩束透镜、曝光定时器、全息感光底版等。 基本原理 全息照片的拍摄 全息照相是利用光的干涉原理将光波的振幅和相位信息同时记录在感光板上的过程.相干光波可以是平面波也可以是球面波,现以平面波为例说明全息照片拍摄的原理。如图1所示,一列波函数为t i ae y πυ21=、振幅为a 、频率为υ、波长为λ 的平面单色光波作为参考光垂直入射到感光板上。另一列同频率、波函数为t i r T t i Be be y πυλπ222==??? ??-的相 干平面单色光波从物体出发,称为物光,以入射角θ同时入射到感光板上,物光与参考光产生干涉,在感光板上形成的光强分布为 ax ab b a I cos 222++= (1)

全息照相实验报告 班级:XXX :XXX 学号:XXX 时间:XXX 【实验目的】 1.了解全息照相的基本原理。 2.掌握全息照相以及底片的冲洗方法。 3.观察物象再现。 【实验仪器】 防震光学平台、氦氖激光器、曝光定时器及快门、扩束透镜(两个)、分束器、反射镜(两个)、全息Ⅰ型干版、显影液和定影液及暗房设备。 【实验原理】 全息照相与普通照相无论是在远离上还是在方发生都有本质的区别。普通照相是用几何光学的方法记录物体上各点的发光强度分部,得到的是二维平面像,像上各点的照度与物体上的各点发光强度一一对应。而全息照相的记录对象是整个物体发出的光波(即物体上各点发出的光波的叠加),借助于参考光用干涉的方法记录这个物光波的振幅和位相(周相)分布,即记录下物光波与参考光波相干后的全部信息。此时,记录信息底片上得到的不是物体的像,而是细密的干涉条纹,就好像一个复杂无比的衍射光栅,必须经过适当的再照明,才能重建原来的无广播,从而再现物体的三维立体像。由于底片上任何一小部分都包含整个物体的信息,因此,只利用拍摄的全息底片的一小部分也能再现整个物像。 1.全息记录 全息照相的光路图如下图所示: 用激光光源照射物体,物体因漫反射发出物光波。波场上没一点的振幅和相位都是空间坐标的函数。我们用O 表示物光波没一点的复振幅与相位。用同一激光管员经分光板分出的另一部分光直接照射到地板上,这个光波称为参考光波,它的振幅和相位也是空间坐标的函数,其复振幅和位相用R 表示,草考光通常为平面或球面波。这样在记录信息的底板上的总光场是物光与参考光的叠加。叠加后的复振幅为O+R ,如图从而底板上各点的发光强度分布为 ********()()O R I O R O R OO RR OR O R I I OR O R =++=+++=+++ (式1) 式子中,O*与R*分别是O 和R 的共轭量;I 。,IR 分别为物光波和参考光波独立照射底版时 感光底板

全息照相原理 王颢璠 (西安交通大学理学院,应用物理专业91班) 摘要:了解全息照相的拍摄原理及观察原理,介绍了全息照相的应用. 关键词:反射衍射干涉菲涅尔-基尔霍夫积分衍射公式 PACC:0760,0768 1.引言 也称"全息摄影".一种可把被摄物反射的光波中的全部信息记录下来的新型照相技术.全息照相和常规照相不同,在底片上记录的不是三维物体的平面图像,而是光场本身. 2.全息照相的拍摄原理 拍摄全息照片的基本光路大致如 图. 激光光源(波长为λ)的光分成 两部分:直接照射到底片上的叫参考 光;另一部分经物体表面散射的光也照 射到照相底片,称为物光.参考光和物 光在底片上各处相遇时将发生干涉,底 片记录的即是各干涉条纹叠加后的图 像. 关于强度:显然参考光各处的强度是一样的,但由于物体表面的反射率不同,所以物光的强度各处不同.因此,参考光和物光叠加干涉时形成的

干涉条纹各处浓淡也就不同

. 关于相位.如图.设O 为物体上某一发光点. 设参考光在a 处的波动方程为: )cos(0?ω+=t A y 物光在O 点的波动方程为: )cos(11?ω+=t A y 物光在a 处的波动方程为: )/2cos(11λπ?ωr t A y -+= 参考光与物光的相位差: λπ??δ?/210r +-= 由干涉知:=δ?(2k+1)π处为暗条纹, 解得r=λ[(2k+1)π+10??-]/2π =δ?2k π处为明条纹,解得 r=λ[2k π+10??-]/2π 设a 、b 为相邻的两暗纹,由干涉知:a 、b 两处的物光与参考光必须都反相.因为a b 两处的参考光相同,所以其物光的波程差为λ.由几何关系知: θ λθλsin /sin ==d d 由此可知: 当θ不同时,物光与参考光形成的干涉条纹的间距也不 同,而θ的大小又可以反映出物光光波的相位.;再根据条纹的方向即可确定出物体的前后,上下,左右的位置. 3.全息照相的观察原理

全息照相大学物理实验总结 篇一:物理实验-全息照相-实验报告 物 理实验报告 班级__信工C班___组别______D______ 姓名____李铃______学号_1111000048_ 日期___2013.3.6___指导教师___张波____ 【实验题目】_________全息照相 【实验目的】 1.了解全息摄影的基本原理、实验装置以及实验方法; 2.掌握激光全息摄影和激光再现的实验技术; 3.通过观察全息图像的再现,弄清全息照片和普通照片的本质区别 【实验仪器】 防震全息台,氦—氖激光器,扩束透镜,分束棱镜(或分束板),反射镜,毛玻璃屏,调节支架,米尺,计时器,照相冲洗设备等。 【实验原理】 全息摄影采用激光作为照明光源,并将光源发出的光分为两束,一束直接射向感光片,另一束经被摄物的反射后再射向感光片。两束光在感光片上叠加产生干涉,感光底片上各点的感光程度不仅随强度也随两束光的位相关系而不同。所以全息摄影不仅记录了物体上的反光强度,也记录了位相信息。人眼直接去看这种感光的底片,只能看到像指纹一样的干涉条纹,但如果用激光去照射它,人眼透过底片就能看到

原来被拍摄物体完全相同的三维立体像。 全息图种类很多,有菲涅耳图、夫琅和费图、傅立叶变换全息图、彩虹全息图、像全息图、体积全息图等。不管哪种全息图都要分成两步来完成,即用干涉法记录光波全息图,称波前记录;用衍射原理使原光波波前再现,称波前再现。 1.全息照相的过程 物体发出的包含振幅和位相信息的光可以用下式表示:其中: 信息,而位相信息 为振幅,为位相。普通摄影只能记录物体光波的振幅全部丢失,因此照片没有立体感。数学表达式为: 实际上没有任何一种感光材料可以直接记录光波的位相,在全息摄影中我们利用光的干涉原理来记录光波的振幅和位相信息。如右图 所示,激光器L发出的激光由分束镜BS将光线一 分为二,透射光线经反射镜M2反射再经过扩束后 照射在被摄物体上,这束光线称为物光(O光);反 射光线经反射镜M1反射再经过扩束后直接照射在 感光材料上,因而称为参考光(R光);两束光线在 P处相干并形成干涉条纹,这些条纹记录了物光的 所有振幅和位相信息。数学表达式如下: 物光为: 参考光为: 两光相干后总光强为:

全息照相实验报告 程子豪2010035012 少年班01 一、实验目的: 1.了解全息照相记录和再现的基本原理和主要特点; 2.学习全息照相的操作技术; 3.观察和分析全息图的成像特性。 二、实验原理: 2.1全息照相原理的文字表述: 普通照相底片上所记录的图像只反映了物体上各点发光(辐射光或反射光)的强弱变化,显示的只是物体的二维平面像,丧失了物体的三维特征。全息照相则不同,它是借助于相干的参考光束和物光束相互干涉来记录物光振幅和相位的全部信息。这样的照相把物光束的振幅和相位两种信息全部记录下来,因而称为全息照相。 全息照相的基本原理早在1948年就由伽伯(D. Gabor)发现,但是由于受光源的限制(全息照相要求光源有很好的时间相干性和空间相干性),在激光出现以前,对全息技术的研究进展缓慢,在60年代激光出现以后,全息技术得到了迅速的发展。目前,全息技术在干涉计量、信息存储、光学滤波以及光学模拟计算等方面得到了越来越广泛的应用。伽伯也因此而获得了1971年度的诺贝尔物理学奖。 全息照相在记录物光的相位和强度分布时,利用了光的干涉。从光的干涉原理可知:当两束相干光波相遇,发生干涉叠加时,其合强度不仅依赖于每一束光各自的强度,同时也依赖于这两束光波之间的相位差。在全息照相中就是引进了一束与物光相干的参考光,使这两束光在感光底片处发生干涉叠加,感光底片将与物光有关的振幅和位相分别以干涉条纹的反差和条纹的间隔形式记录下来,经过适当的处理,便得到一张全息照片。 具体来说,全息照相包括以下两个过程: 1、波前的全息记录 利用干涉的方法记录物体散射的光波在某一个波前平面上的复振幅分布,这就是波前的全息记录。通过干涉方法能够把物体光波在某波前的位相分布转换成光强分布,从而被照相底片记录下来,因为我们知道,两个干涉光波的振幅比和位相差决定着干涉条纹的强度分布,所以在干涉条纹中就包含了物光波的振幅和位相信息。典型的全息记录过程是这样的:从激光器发出的相干光波被分束镜分成两束,一束经反射、扩束后照在被摄物体上,经物体的反射或透射的光再射到感光底片上,这束光称为物光波;另一束经反射、扩束后直接照射在感光底片上,这束光称为参考光波。由于这两束光是相干的,所以在感光底片上就形成并记录了明暗相间的干涉条纹。干涉条纹的形状和疏密反映了物光的位相分布的情况,而条纹明暗的反差反映了物光的振幅,感光底片上将物光的信息都记录下来了,经过显影、定影处理后,便形成与光栅相似结构的全息图—全息照片。所以全息图不是别的,正是参考光波和物光波干涉图样的记录。显然,全息照片本身和原来物体没有任何相似之处。 2、衍射再现 物光波前的再现利用了光波的衍射。用一束参考光(在大多数情况下是与记录全息图时用的参考光波完全相同)照射在全息图上,就好像在一块复杂光栅上发生衍射,在衍射光波中将包含有原来的物光波,因此当观察者迎着物光波方向观察时,便可看到物体的再现像。这是一个虚像,它具有原始物体的一切特征。此外还有一个实像,称为共轭像。应该指出,共轭波所形成的实像的三维结构与原物并不完全相似。

全息照相实验 【目的要求】 1.了解全息照相记录和再现的基本原理; 2.掌握漫反射全息照片的摄制方法及加深对全息照片特点的理解。 【仪器用具】 JQX-1型激光全息实验台,He-Ne激光器,分束镜(50%)一个,扩束镜(40倍)两个,全反射镜两个,被摄物体(如:小瓷猪,小瓷马等)及放置物体的底座,全息干版及底架,暗室技术使用的设备。 【原理】 普通照相底片上所记录的图象只反映了物体上各点发光(辐射光或反射光)的强弱变化,也就是只记录了物光的振幅信息,于是,在照相纸上显示的只是物体的二维平面像,丧失了物体的三维特征。全息照相则不同,它是借助于相干的参考光束和物光束相互干涉来记录物光振幅和相位的全部信息。这样的照相把物光束的振幅和相位两种信息全部记录下来,因而称为全息照相。 全息照相的基本原理早在1948年就由伽伯(D. Gabor)发现,但是由于受光源的限制(全息照相要求光源有很好的时间相干性和空间相干性),在激光出现以前,对全息技术的研究进展缓慢,在60年代激光出现以后,全息技术得到了迅速的发展。目前,全息技术在干涉计量、信息存储、光学滤波以及光学模拟计算等方面得到了越来越广泛的应用。伽伯也因此而获得了1971年度的诺贝尔物理学奖。 (一)、全息照相与全息照相术 在介绍全息照相的基本原理之前,首先看一下全息照相和普通照相有什么区别。总的来说,全息照相和普通照相的原理完全不同。普通照相通常是通过照相机物镜成像,在感光底片平面上将物体发出的或它散射的光波(通常称为物光)的强度分布(即振幅分布)记录下来,由于底片上的感光物质只对光的强度有响应,对相位分布不起作用,所以在照相过程中把光波的位相分布这个重要的信息丢失了。因而,在所得到的照片中,物体的三维特征消失,不再存在视差,改变

一、实验目的与实验仪器 实验目的: 1.了解全息照相的基本原理。 2.掌握全息照相的方法和冲洗底片的方法 3.观察物像再现 实验仪器: 1.氦氖激光灯,成套全息照相工具元件及防振装置 2.曝光定时器,光点检流计,硅光电池,全息底片 3.被照物体,显影液,定影液等 二、实验原理 全息照相与普通照相无论是在远离上还是在方发生都有本质的区别。普通照相是用几何光学的方法记录物体上各点的发光强度分布,得到的是二维平面像,像上各点的照度与物体上的各点发光强度一一对应。而全息照相的记录对象是整个物体发出的光波(即物体上各点发出的光波的叠加),借助于参考光用干涉的方法记录这个物光波的振幅和位相(周相)分布,即记录下物光波与参考光波相干后的全部信息。此时,记录信息底片上得到的不是物体的像,而是细密的干涉条纹,就好像一个复杂无比的衍射光栅,必须经过适当的再照明,才能重建原来的无广播,从而再现物体的三维立体像。由于底片上任何一小部分都包含整个物体的信息,因此,只利用拍摄的全息底片的一小部分也能再现整个物像。 相关原理图: (1)实验光路图 物象再现原理

干涉方法制作光栅方法: 三、实验步骤 1.预热激光源,调整光源 各元件大致摆放到各自的相应位臵上, 调整各元件, 使各光束都与台面平行且与各元件中心重合, 开始时不要加扩束镜,测量物光与参考光的光程, 从分束镜开始, 沿着光束的前进方向量至全息干板为止, 按等光程按排光路为好, 光程差不得大于1 cm。 2.检验光照强度,确定曝光时间 3.感光片曝光 将激光器出射的激光遮挡住,装夹好全息干板,使乳胶面向着被拍摄的物体,静置几分钟使防震台不震动后取消遮挡,激光曝光10-20s。特别要注意再曝光过程中绝对不要触及防震台

光学全息照相实验报告集团文件版本号:(M928-T898-M248-WU2669-I2896-DQ586-M1988)

实验II 光学全息照相 光学全息照相是利用光波的干涉现象,以干涉条纹的形式,把被摄物表面光波的振幅和位相信息记录下来,它是记录光波全部信息的一种有效手段。这种物理思想早在1948年伽柏(D.Gabor)即就已提出来了,但直到1960年,随着激光器的出现,获得了单色性和相干性极好的光源时,才使光学全息照相技术的研究和应用得到迅速地发展。光学全息照相在精密计量、无损检测、遥感测控、信息存储和处理、生物医学等方面的应用日益广泛,另外还相应出现了微波全息,X光全息和超声全息等新技术,全息技术已发展成为科学技术上的一个新领域。 本实验通过对三维物体进行全息照相并再现其立体图像,了解全息照相的基本原理及特点,学习拍摄方法和操作技术,为进一步学习和开拓应用这一技术奠定基础。 实验目的 了解光学全息照相的基本原理和主要特点; 学习静态光学全息照相的实验技术; 观察和分析全息全图的成像特性。 仪器用具 全息台、He—Ne激光器及电源、分束镜、全反射镜、扩束透镜、曝光定时器、全息感光底版等。 基本原理 全息照片的拍摄

全息照相是利用光的干涉原理将光波的振幅和相位信息同时记录在感光板上的过程.相干光波可以是平面波也可以是球面波,现以平面波为例说 明全息照片拍摄的原理。如图1所示,一列波函数为t i ae y πυ21=、振幅为 a 、频率为υ、波长为λ的平面单色光波作为参考光垂直入射到感光板上。另一列同频率、波函数为t i r T t i Be be y πυλπ222==??? ??-的相干平面单色光波从物体出发,称为物光,以入射角θ同时入射到感光板上,物光与参考光产生干涉,在感光板上形成的光强分布为 ax ab b a I cos 222++= (1) 由此可见,在感光板上形成了明暗相间的干涉条纹。条纹的间距为 θλ sin =d (2) 可见,在感光底板上的光强分布和干涉条纹间距都受光波的振幅和相位所调制。 在实际情况中,物光是来自于物体上的漫反射光,其波阵面很复杂,因此,感光底板上的干涉条纹并不是等间距的平行条纹,而是呈现出非常复杂的干涉图样,只是在极小的范围内可近似看作等间距的平行条纹。 激光束经分束镜后分成两束,一束光经反射镜M1反射后又经L1扩束均匀地照在被摄物体上,再从物体表面反射到感光底板上,这束光称为物光。同时使另一束光通过反射镜M2反射后又经L2扩束后直接照在感光底板上,这束光称为参考光。当物光和参考光满足相干条件时,在感光底板上形成干涉图样。由于物光的振幅和相位与物体表面各点的分布和漫反射光的性质有关,所以,干涉图样与被摄物体有一一对应的关

全息照相技术 建电131 徐芳勤 02

内容摘要: 全息照相是应用光的干涉来实现的,它用激光作光源,通过全息记录和再现过程实现,全息照相较之普通照相有许多优点,它既记录光波的振幅,又记录位相的全部信息,是一种利用波的干涉记录被摄物体反射(或透射)光波中信息(振幅、相位)的照相技术。全息摄影是通过一束参考光和被摄物体上反射的光叠加在感光片上产生干涉条纹而成。全息摄影不仅记录被摄物体反射光波的振幅(强度),而且还记录反射光波的相对相位。为了满足产生光的干涉条件,通常要用相干性好的激光作光源,而且光和照射物体的光是从同一束激光分离出来的。感光片显影后成为全息图。所以全息照相技术有重要的实际应用。 关键词: 全息照相,波的干涉,全息照片,全息摄影 引言: 我们看到的世界是三维的、彩色的,这是因为每个物体发射的光被人眼接受时,光的强弱、射向和距离、颜色都不同。从波动光学的观点看,是由于各物体发射的特定的光波不同,光的特征主要取决于光波的振幅、相位、和波长。如果能看到景物光波的完全特征,就能看到景物逼真的三维像,这就是全息术。全息术诞生到现在60年来取得了很大的进展,已经被广泛应用于近代科学研究和工业生产中。

1947年匈牙利出生的英国物理学家D.伽柏(D.Gabor)最先提出全息术的设想,意图提高电子显微镜的分辨本领。方法是完全撇开电子显微物镜,用胶片纪录经物体衍射的末聚焦的电子波,得到全息图。 1962年苏前联科学家U.丹尼苏克(Denisyuk)提出了反射全息图的方法,第一次用普通的白织灯照明全息图观察到全息像。 1965年,R.L.鲍威尔,K.A.斯泰特森提出全息干涉术。物体在施加应力前后经过两次全息曝光,再现的全息像上的等高线显示物体变形的状况。 1968年,S.A.本顿发明彩虹全息术,由于可用白光观察全息图,看到记录物体的彩虹像,成为显示全息术的重要进展。它使后来通过模压技术批量生产全息图成为现实。从此全息术才真正的走出实验室,在生产实践和科学研究领域中成为了重要角色,以全息电影和全息电视,全息储存、全息显示及全息防伪商标等各种形式存在。 全息照相原理: 全息照相分为两步。第一步利用干涉法拍摄全息图(全息照片),如图1(a)所示。从激光器发出的相干光束,被分束镜分成两束光,一束光照明到被摄物体,从物体上反射或散射的物光射到感光胶片上。另一部分光束投射到反射镜,被反射的光波直接照射到感光胶片上,这束光称为参考光。物光与参考光在胶片上迭加干涉,产生的干涉图样即记录了物体振幅和位相的全部信息。这张具有干涉图样的胶片经过适当曝光与冲洗处理后,就是一张全息图(全息照片)。这一拍摄

全息照相实验报告 程子豪12 少年班01 一、实验目的: 1.了解全息照相记录和再现的基本原理和主要特点; 2.学习全息照相的操作技术; 3.观察和分析全息图的成像特性。 二、实验原理: 全息照相原理的文字表述: 普通照相底片上所记录的图像只反映了物体上各点发光(辐射光或反射光)的强弱变化,显示的只是物体的二维平面像,丧失了物体的三维特征。全息照相则不同,它是借助于相干的参考光束和物光束相互干涉来记录物光振幅和相位的全部信息。这样的照相把物光束的振幅和相位两种信息全部记录下来,因而称为全息照相。 全息照相的基本原理早在1948年就由伽伯(D. Gabor)发现,但是由于受光源的限制(全息照相要求光源有很好的时间相干性和空间相干性),在激光出现以前,对全息技术的研究进展缓慢,在60年代激光出现以后,全息技术得到了迅速的发展。目前,全息技术在干涉计量、信息存储、光学滤波以及光学模拟计算等方面得到了越来越广泛的应用。伽伯也因此而获得了1971年度的诺贝尔物理学奖。 全息照相在记录物光的相位和强度分布时,利用了光的干涉。从光的干涉原理可知:当两束相干光波相遇,发生干涉叠加时,其合强度不仅依赖于每一束光各自的强度,同时也依赖于这两束光波之间的相位差。在全息照相中就是引进了一束与物光相干的参考光,使这两束光在感光底片处发生干涉叠加,感光底片将与物光有关的振幅和位相分别以干涉条纹的反差和条纹的间隔形式记录下来,经过适当的处理,便得到一张全息照片。 具体来说,全息照相包括以下两个过程: 1、波前的全息记录 利用干涉的方法记录物体散射的光波在某一个波前平面上的复振幅分布,这就是波前的全息记录。通过干涉方法能够把物体光波在某波前的位相分布转换成光强分布,从而被照相底片记录下来,因为我们知道,两个干涉光波的振幅比和位相差决定着干涉条纹的强度分布,所以在干涉条纹中就包含了物光波的振幅和位相信息。典型的全息记录过程是这样的:从激光器发出的相干光波被分束镜分成两束,一束经反射、扩束后照在被摄物体上,经物体的反射或透射的光再射到感光底片上,这束光称为物光波;另一束经反射、扩束后直接照射在感光底片上,这束光称为参考光波。由于这两束光是相干的,所以在感光底片上就形成并记录了明暗相间的干涉条纹。干涉条纹的形状和疏密反映了物光的位相分布的情况,而条纹明暗的反差反映了物光的振幅,感光底片上将物光的信息都记录下来了,经过显影、定影处理后,便形成与光栅相似结构的全息图—全息照片。所以全息图不是别的,正是参考光波和物光波干涉图样的记录。显然,全息照片本身和原来物体没有任何相似之处。 2、衍射再现 物光波前的再现利用了光波的衍射。用一束参考光(在大多数情况下是与记录全息图时用的参考光波完全相同)照射在全息图上,就好像在一块复杂光栅上发生衍射,在衍射光波中将包含有原来的物光波,因此当观察者迎着物光波方向观察时,便可看到物体的再现像。这是一个虚像,它具有原始物体的一切特征。此外还有一个实像,称为共轭像。应该指出,共轭波所形成的实像的三维结构与原物并不完全相似。

大学物理实验总结 ——全息照相个人心得 通过大学物理实验的课程学习,将物理理论与实践结合在一起,在这过程中能够发现很多的乐趣。实际的实验操作,使我对一些物理知识、现象有了更深入的认识,也激发起我对物理实验的兴趣和对物理现象探索的渴望。给我印象深刻的实验有很多,如迈克耳孙干涉仪测波长实验、衍射光栅实验、霍尔效应实验等。而全息照相立体效果十分有趣,是物理学中一道别样的风景。 全息照相的原理其实很简单,利用干涉方法记录了物体抵达摄影底片时光波的振幅与相位的全部信息。它记录的不是物体的几何信息,而是物光与另一束与之相干的参考光抵达照相底片的干涉条纹。所以,全息照片上一般看不到原物体的像,必须用原来的参考光照明,才能看到原物体的立体像,这被称为全息底片的再现。 从全息照相和普通照相对比中,我们可以很容易发现全息照相的特别之处。 普通照相通常是通过照相机物镜成像,在感光底片平面上将物体发出的或它散射的光波(通常称为物光)的强度分布(即振幅分布)记录下来,由于底片上的感光物质只对光的强度有响应,对相位分布不起作用,所以在照相过程中把光波的相位分布这个重要的信息丢失了。因而,在所得到的照片中,物体的三维特征消失了。全息技术则完全不同,由全息术所产生的像是完全逼真的立体像(因为同时记录下了物光的强度分布和相位分布,即全部信息),当以不同的角度观察时,就象观察一个真实的物体一样,能够看到像的不同侧面,也能在不同的距离聚焦。 实验过程中使用到的仪器主要有:激光全息实验台,He-Ne激光器,光开关及曝光定时器;其它需要的是:分束镜一个,扩束镜两个,全反射镜两个,被摄物体及放置物体的底座,全息干版及底架以及暗室效果。 拍好全息照相除了掌握它的原理步骤外,还有很多的关键点值得我们注意: (1) 具有一定功率的相干光源;具有稳定的操作平台;要有合适的光路; (2)搭光路时要注意光斑是否均匀;物光和参考光在屏上要重叠,放置干版时要与该位置一致; (3) 搭好光路后要检查光程差是否接近零、物光和参考光的夹角是否适当(30°至50°)、以及物屏距离是否合适(10至15cm)、各元件间的距离尽可能拉大些; (4) 装底片时,药膜面不能装反;曝光时,不得走动,不能用手触摸光学元件的光学面,不要随意搬动和取下被摄物;激光器开启后,不要中途关闭、直到实验完毕。 (5)要获得最终的全息图,充分了解和学习感光底片的显影、定影、冲洗等有关摄影的暗室技术知识也是不可缺少的;显影时间2分钟左右,定影时间20分钟左右。定影后的底片应放在清水中冲洗2分钟。将全息照片放回原处,遮住物光,用参考光束照亮全息片,可观察到物体的像。 全息照片有很多奇妙的特点:片上的花纹与被摄物体无任何相似之处,在相干光束的照射下,物体图像却能如实重现。此外立体感很明显(三维再现性),如某些隐藏在物体背后的东西,只要把头偏移一下,也可以看到。视差效应很明显。全息图打碎后,只要任取一小片,照样可以用来重现物光波。甚至是,在同一张照片上,可以重叠数个不同的全息图。在记录时或改变物光与参考光之间的夹角,或改变物体的位置,或改变被摄的物体等等,一一曝光之后再进行显影与定影,再现时能一一重现各个不同的图像。 全息照相是六十年代发展起来的一种立体摄影和波阵面再现的新技术。由于全息照相能够把

全息照相实验报告 实验人:宋易知201411941009指导教师:曹惠贤 实验时间:2015.10.16 一.实验目的 1.了解光学全息照相的基本原理及其主要特点。 2.学习全息照相的拍摄方法和实验技术。 3.了解全息照相再现物像的性质、观察方法。 二.实验器材 全息实验台*1、激光器*1、分束镜*1、反射镜*2、扩束镜*2、载物台*1、被摄物*1、快门*1、干板架*1、全息干板*1、显影、定影器材。 三.实验原理 光路图 全息照相是一种二步成像的照相技术。第一步采用相干光照明,利用干涉原理,把物体在感光材料(全息干版)处的光波波前纪录下来,称为全息图。第二步利用衍射原理,按一定条件用光照射全息图,原先被纪录的物体光波的波前,就会重新激活出来在全息图后继续传播,就像原物仍在原位发出的一样。 1.全息照相的纪录——光的干涉

由光的波动理论知道,光波是电磁波。一列单色波可表示为: 2cos(t )r x A πω?λ=+-(1) 式中,A 为振幅,ω 为圆频率,λ 为波长,φ 为波源的初相位。 一个实际物体发射或反射的光波比较复杂,但是一般可以看成是由许多不同频率的单色光波的叠加: 12cos(t )n i i i i i r x A πω?λ==+- ∑(2) 因此,任何一定频率的光波都包含着振幅(A )和位相(ωt+φ-2πr/λ)两大信息。 全息照相的一种实验装置的光路如图(1)所示。激光器射出的激光束通过分光板分成两束,一束经透镜扩束后照射到被摄物体上,再经物体表面反射(或透射)后照射到感光底片(全息干版)上,这部分光叫物光。另一束经反射镜改变光路,再由透镜扩大后直接投射到全息干版上,这部分光称为参考光。由于激光是相干光,物光和参考光在全息底片上叠加,形成干涉条纹。因为从被摄物体上各点反射出来的物光,在振幅上和相位上都不相同,所以底片上各处的干涉条纹也不相同。强度不同使条纹明暗程度不同,相位不同使条纹的密度、形状不同。因此,被摄物体反射光中的全部信息都以不同明暗程度和不同疏密分布的干涉条纹形式记录下来,经显影、定影等处理后,就得到一张全息照片。这种全息照片和普通照片截然不同,一般在全息照片上只有通过高倍显微镜才能看到明暗程度不同、疏密程度不同的干涉条纹。由于干涉条纹密度很高,所以要求记录介质有较高的分辨率,通常达1000 条线/毫米以上,故不能用普通照相底片拍摄全息图。 2.全息照相的再现——光的衍射 由于全息照相在感光板上纪录的不是被摄物的直接形象,而是复杂的干涉条纹,因此全息照片实际上相当于一个衍射光栅,物象再现的过程实际是光的衍射现象。要看到被摄物体的像,必须用一束同参考光的波长和传播方向完全相同的光束照射全息照片,这束光叫再现光。这样在原先拍摄时放置物体的方向上就能看到与原物形象完全一样的立体虚像。如图2 所示把拍摄好的全息底片放回原光路中,用参考光波照射全息片时,经过底片衍射后有三部分光波射出。 0 级衍射光——它是入射再现光波的衰减。 +1 级衍射光——它是发散光,将形成一个虚像。如果此光波被观察者的眼睛接收,就等于接收了原被摄物发出的光波,因而能看到原物体的再现像。 -1级衍射光——它是会聚光,将在与原物点对称的位置上形成物体的再现虚像的共轭实像。

相关文档
最新文档